
Incremental Algorithms for Optimizing Model

Computation Based on Partial Instantiation�

Raymond T. Ngy and Xiaomei Tian

Department of Computer Science

University of British Columbia

Vancouver, B.C., V6T 1Z4,

Canada.

Abstract

It has been shown that mixed integer programming methods can e�ectively support

minimal model, stable model and well-founded model semantics for ground deductive

databases. Recently, a novel approach called partial instantiation has been devel-

oped which, when integrated with mixed integer programming methods, can handle

non-ground logic programs. The goal of this paper is to explore how this integrated

framework based on partial instantiation can be optimized. In particular, we develop

an incremental algorithm that minimizes repetitive computations. We also develop

several optimization techniques to further enhance the e�ciency of our incremental

algorithm. Experimental results indicate that our algorithm and optimization tech-

niques can bring about very signi�cant improvement in run-time performance.

keywords: incremental computation, mixed integer programming, logic programs

1 Introduction

Very active research in the past decade has led to the development of numerous methods

for evaluating deductive databases and logic programs. Algorithms, such as magic sets and

counting methods, have proven to be very successful for de�nite and strati�ed deductive

databases [1, 2]. During the past few years, however, several new semantics for disjunctive

programs and programs with negations, such as minimal models, stable models and well-

founded models [18, 12, 22], have been proposed and widely studied. Recently, it has been

shown that mixed integer programming methods can be used to provide a general and rather

e�ective computational paradigm for those semantics [3, 4, 20].

�Research partially sponsored by NSERC Grants OGP0138055 and STR0134419.
yPerson handling correspondence. Email: rng@cs.ubc.ca

1

However, like other methods that use linear or integer programming methods for logic

deduction [10, 15], the paradigm proposed in [3, 4, 20] is in e�ect propositional, and can

only deal with the ground versions of deductive databases, which are normally much larger

in sizes than their non-ground versions. To solve this problem, [16, 17] very recently propose

a novel approach, called partial instantiation, which combines uni�cation with mixed integer

programming (or with any other propositional deduction techniques), and which can directly

solve a non-ground version of a program. Equally importantly, the approach can handle

function symbols, thus making it a true logic programming computational paradigm. While

we will discuss partial instantiation in greater details in Section 2, the general strategy is to

alternate iteratively between two phases:

evaluation (of propositional program) ! partial instantiation ! evaluation : : :

More speci�cally, the initial step begins with evaluating a given non-ground logic program P

that may contain disjunctive heads and negations in the bodies as a propositional program

using mixed integer programming. This generates a set of true propositional atoms and a

set of false propositional atoms. The partial instantiation phase then begins by checking

whether uni�cation or \conict resolution" is possible between atoms in the two sets. If

A is an atom in the true set and B an atom in the false set, the most general uni�er for

A and B is called a conict-set uni�er. Then for each conict-set uni�er � (there can be

multiple), clauses in P are instantiated with � and added to P for further evaluation. In

other words, in the next iteration, the (propositional) program to be evaluated is P [P�.

This process continues, until either no more conict-set uni�er is found, or the time taken

has gone beyond a certain time limit 1.

The main focus of this paper is on how to optimize the run-time performance of the eval-

uation phase. In particular, as described in [3, 4, 20], the evaluation of program P comprises

of two steps: a step to reduce the size of P , followed by the mixed integer programming step

to �nd the models. Let us represent the operations symbolically as model(sizeopt(P)). As

shown in [3, 4, 20], the operation sizeopt to reduce the size of programs is highly bene�cial

to the subsequent operation of �nding the models. Thus, as far as the partial instantiation

paradigm is concerned, if �1; : : : ; �n are all the conict-set uni�ers, an obvious strategy will be

to compute model(sizeopt(P [P�1)); : : : ; model(sizeopt(P [P�n)) one by one. The major

problem tackled in this paper is how to compute sizeopt(P [P�i) incrementally. That is, we

try to optimize the evaluation phase by reusing sizeopt(P) to compute sizeopt(P [P�1); : : : ;

sizeopt(P [P�n). As will be shown in Example 2, our task is complicated by the fact that

sizeopt is not a monotonic operation. The principal contributions of this paper are:

� the development of an algorithm, called Incr, which will be formally proved to be

incremental;

� the development of several optimizations which may further reduce the size of a pro-

gram, save time in computing least models, and avoid processing conict-set uni�ers

that are redundant;

1Partial instantiation may be in�nite in the presence of function symbols.

2

� the implementation and experimental evidence showing that these algorithms and op-

timizations can lead to signi�cant improvement in run-time e�ciency; and

� the implementation of the entire framework that includes both the evaluation and

partial instantiation phases.

Excellent work has been done on incremental view maintenance for relational, active and

deductive databases [5, 6, 9, 11, 13, 14, 21, 23]. Most relevant to our work here are the

proposals for deductive databases. [14] deals with recursive views; [11] is concerned with

right-linear chains; [23] focuses on rules with negations; and last but not least, [13] handles

rules with aggregations, recursions and negations. However, all these proposals are concerned

with changes { insertions, deletions and/or updates { to the external database predicates

or the base relations. As such, there are two main di�erences between the work presented

here and the existing ones mentioned above. First, the algorithms we developed focus on

handling rules inserted or deleted. Second, the operation under consideration here is not

logic deduction, i.e. deducing heads from the bodies of rules. Rather, as will be discussed in

greater details in Section 2, the operation sizeopt takes a set P of rules as input, and returns

a subset P 0
� P by deleting rules that will not be useful in subsequent model computations.

The outline of the paper is as follows. Section 2 reviews partial instantiation and the

operation sizeopt. Section 3 presents an incremental algorithm Incr and proves that it is in-

deed incremental with respect to sizeopt. Section 4 develops several optimizations to further

improve the performance of Incr and minimal model computation based on partial instanti-

ation. Section 5 gives implementation details and presents experimental results showing the

e�ectiveness of the algorithms and optimizations.

2 Preliminaries

2.1 Review: Partial Instantiation

As described in [16, 17], computing minimalmodels of logic programs by partial instantiation

can be viewed as expanding and processing nodes of partial instantiation trees. Given a non-

ground logic program P with disjunctive heads and negations in the bodies, the root node of

the partial instantiation tree corresponding to P solves P directly as a propositional program.

Consider an example presented in [16] where P is the program consisting of the following

clauses:

p(X1; Y1) q(X1; Y1)

q(a; Y2)

q(X2; b)

In the root node, P is solved as the program fA B;C ;D g, whereA;B;C;D denote

p(X1; Y1); q(X1; Y1); q(a; Y2) and q(X2; b) respectively. For this propositional program, the set

3

P10 = P5

T10 = T5

F10 = F5

NODE 10

P9 = P5

T9 = T5

F9 = F5

NODE 9

P8 = P4

T8 = T4

F8 = F4

NODE 8

P7 = P4

T7 = T4

F7 = F4

NODE 7

P4 = P1 U {p(X2, b)}

T4 = T1 U {p(X2,b)}

F4 = F1

NODE 4

P5 = P2 U {p(a, Y2)}

T5 = T2 U {p(a, Y2)}

F5 = F2

NODE 5

P3 = P1

T3 = T1

F3 = F1

NODE 3

P6 = P2

T6 = T2

F6 = F2

NODE 6

P1 = P0 U {p(a, Y2)}

T1 = T0 U {p(a, Y2)}

F1 = F0

NODE 1

1 2

1

2

= {X1 = a, Y1 = Y2}

{X1 = X2, Y1 = b}=

P2 = P0 U {p(X2, b)}

T2 = T0 U {p(X2,b)}

F2 = F0

NODE 2

1 1

11

3 4 2

7 8 2

5 6 2

9 10 2

= =

= =

= =

= =

ROOT
P0
T0 = {q(a, Y2), q(X2,b)}

F0 = {p(X1, Y1), q(X1, Y1)}

Figure 1: An Example of a Partial Instantiation Tree

4

of true atoms is T = fC;Dg, and the set of false atoms is F = fA;Bg. \Conict resolution"

then looks for uni�cation between an atom in T with an atom in F . For our example, there

are two conict-set uni�ers: a) �1 = fX1 = a; Y1 = Y2g, and b) �2 = fX1 = X2; Y1 = bg. Now

for each conict-set uni�er �i, a child node is created which is responsible for the processing

of the instantiated program P [P�i. As shown in Figure 1, the root node of the tree for our

example has two child nodes. One corresponds to the program P1 = P[fp(a; Y2) q(a; Y2)g.

The other child node corresponds to P2 = P [fp(X2; b) q(X2; b)g. In the evaluation

phase of P2, P2 again is treated as a propositional program whose true and false sets are

T2 = fq(a; Y2); q(X2; b); p(X2; b)g and F2 = F . For T2 and F2, there are two conict-set

uni�ers which are identical to �1; �2. Thus, the node for P2 has two child nodes. Similarly, it is

not di�cult to verify that the node for P1 also has two child nodes. This process of expanding

child nodes, and alternating between evaluation and partial instantiation continues. A node

is a leaf node if its true and false set of atoms cannot be uni�ed. For our example, the partial

instantiation tree is �nite and has 11 nodes in total.

2.2 Review: Algorithm SizeOpt

The following algorithm intends to reduce the size of a given program by deleting clauses

whose bodies cannot possibly be satis�ed. Since as far as minimal model computation is

concerned, a negative literal in the body of a clause can be moved to become a positive

literal in the head, hereafter we only consider clauses possibly with disjunctive heads, but

no negation in the bodies.

Algorithm SizeOpt ([4]) Input P , a ground disjunctive program, and S0, the set of atoms

that do not appear in the head of any clause in P .

1. Initialize Q to P , Qd to ; and i to 0.

2. Set R to ;.

3. For each clause Cl � A1 _ : : : _ Am B1 ^ : : : ^Bn in Q, and for some Bj such that

Bj 2 Si

(a) delete Cl from Q;

(b) add Cl to Qd; and

(c) add A1; : : : ; Am to R.

4. Increment i by 1, and set Si to R.

5. For all A in Si, if A occurs in the head of some clause in Q, delete A from Si.

6. If Si is empty, then return Q and Qd, and halt. Otherwise, go back to Step 2. 2

Hereafter, we use the notation sizeopt(P) = hQ;Qdi to denote the application of the above

algorithm on P , where Q is the set of retained clauses, and Qd is the set of deleted clauses.

5

Example 1 Let P be the following program:

A B ^ C (1)

B _D A ^ E (2)

B E ^ F (3)

D A (4)

Initially, S0 is the set fC;E;Fg. Thus, after Step 3 in the �rst iteration of Algorithm

SizeOpt, Qd consists of Clauses 1, 2 and 3, and the only clause remained in Q is Clause 4.

After Step 5, S1 is fA;Bg. In the second iteration of Algorithm SizeOpt, the clause D A

is deleted from Q and added to Qd in Step 3. S2 is the set fDg. In the third iteration of

Algorithm SizeOpt, execution halts as Q becomes empty. 2

Example 2 Let P 0 be the program obtained by adding the following two clauses to P

introduced in the previous example:

C _G (5)

E C (6)

When Algorithm SizeOpt is applied to P 0, the situation changes drastically. S0 is now fFg.

In the �rst iteration, Clause 3 is the only clause added to Qd, and S1 is empty after Step 5.

Thus, the algorithm halts in Step 6 without another iteration. 2

The above example demonstrates that Algorithm SizeOpt is not monotonic, i.e. P1 � P2 6)

Qd;1 � Qd;2 where sizeopt(P1) = h ; Qd;1i and sizeopt(P2) = h ; Qd;2i. It is also easy to see

that Algorithm SizeOpt is not anti-monotonic either (i.e. P1 � P2 6) Qd;2 � Qd;1). The

following lemma, proved in [4], shows that Algorithm SizeOpt preserves minimal models.

Lemma 1 ([4]) Let P be a disjunctive deductive database such that sizeopt(P) = hQ;Qdi.

M is a minimal model of P i� M is a minimal model of Q. 2

3 An Incremental Algorithm

Suppose P is the program considered in a node N of a partial instantiation tree, and

�1; : : : ; �m are all the conict-set uni�ers. As discussed in Section 2.1, Node N has m chil-

dren, the j-th of which processes the instantiated program P [P�j (where 1 � j � m).

As described above, Algorithm SizeOpt can be applied to P [P�j to reduce the number of

clauses that need to be processed. However, this approach of applying Algorithm SizeOpt

directly may lead to a lot of repeated computations, as Algorithm SizeOpt has already been

applied to P in Node N (and similarly, the programs in the ancestors of N). To avoid repet-

itive computations as much as possible, we develop Algorithm Incr that reuses sizeopt(P)

to produce sizeopt(P [P�j), as shown in Figure 2.

6

sizeopt(P) -
sizeopt(P [P�j)

P
-

P [P�j

? ?

Algorithm SizeOpt Algorithm SizeOpt

Algorithm Incr

Figure 2: Incremental Maintenance

3.1 Graphs for Maintaining Deleted Clauses

Recall from Section 2 that sizeopt(P) produces the pair hQ;Qdi, where Qd consists of clauses

deleted from P . To facilitate incremental processing, Algorithm Incr uses a directed graph

G, called a DC-graph, to organize the deleted clauses. The intended properties of a DC-graph

are as follows.

� Nodes represent atoms that do not appear in the head of any clause in Q.

� If there is an arc from node Bi to A, then the arc is labeled by a clause Cl 2 Qd such

that A appears in the head of Cl and Bi occurs in the body of Cl.

The only exceptions to the above properties are the special root node and the arcs originated

from this root node. As will be shown later, the root node is the place where a graph traversal

begins. Arcs originated from the root node are not labeled, as those arcs do not correspond

to any clause in Qd.

�

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��

�
��= ?

Q
QQs

�
���

?�
�
��

-
�

?

A
A
A
A
A
A
A
AU

root

C E F

D

2

A

1

2,4

B
2

1

3
2,3

Figure 3: DC-graph G1

7

Example 3 Consider the program P discussed in Example 1. Qd consists of all 4 clauses

in P . Figure 3 shows the DC-graph G1 corresponding to Qd. For convenience, arcs are

labeled by the clause numbers used in Example 1. Furthermore, the label 2,3 of the arc from

E to B is a shorthand notation that represents two arcs from E to B with labels 2 and 3

respectively. Notice that G1 contains a cycle between A and B. 2

This example only illustrates how DC-graph G1 looks like. We will show in Example 4 how

G1 can be constructed, after Algorithm Incr has been presented. However, before we can

present the algorithm, we need the following concept.

3.2 Self-sustaining Cycles

De�nition 1 Let A1

Cl1
�! A2

Cl2
�! : : :

Cli�1
�! Ai : : :An

Cln
�! A1 be a cycle in DC-graph G, where

A

Cl

�! B denotes an arc from A to B with label Cl. If there does not exist any arc from

outside the cycle to some Ai with label Cli�1 (i.e. 6 9B
Cli�1
�! Ai for some B 62 fA1; : : : ; Ang),

then the cycle is called self-sustaining. 2

As shown in the above example, G1 contains the cycle A
Cl2
�! B

Cl1
�! A. This cycle is not

self-sustaining because of the arc C
Cl1
�! A (or the arc E

Cl2
�! B). The existence of this arc

justi�es why Clause 1 should be deleted, and why A should remain a node in the graph. On

the other hand, if the arcs C
Cl1
�! A and E

Cl2
�! B were removed, the cycle A

Cl2
�! B

Cl1
�! A

became self-sustaining. Then for the sake of achieving the kind of incrementality depicted

in Figure 2, Clause 2 should be restored (i.e. no longer be kept in Qd). This would cause

node B to disappear from the graph, which in turn leads to the restoration of Clause 1 and

the disappearance of node A. Example 5 below will give further details as to why all these

actions are necessary. In general, if there exists a self-sustaining cycle in a DC-graph, all the

clauses involved in the cycle need to be restored, and all the nodes of the cycle need to be

removed. We are now in a position to present Algorithm Incr.

3.3 Algorithm Incr

Algorithm Incr Input P = hQ;Qdi, the DC-graph G corresponding to Qd, and a clause

Cl � A1 _ : : : _ Am B1 ^ : : : ^Bn to be added to P .

1. For each Bi that does not appear in Q and Qd (i.e. appearing in P the �rst time), add

to graph G a node Bi and an arc from the root to node Bi.

2. For each Bi that is a node,

(a) For each Aj where 1 � j � m,

(i) If Aj does not appear in Q, Qd and G, add node Aj to G.

(ii) If there is a node Aj in G, add an arc from node Bi to node Aj labeled Cl.

If there is originally an arc from the root to node Aj, remove that arc.

8

(b) Add Cl to Qd.

3. If there is no such Bi in the previous step,

(a) Add Cl to Q.

(b) For each Aj that appears as a node in G where 1 � j � m , call Subroutine

Remove(Aj).

4. For each self-sustaining cycle in G, call Subroutine Remove(D), where D is some atom

in the cycle. 2

Subroutine Remove Input atom (node) A.

1. Remove from graph G node A and all the arcs pointing to A.

2. For each arc initially originating from A in G (i.e. A
Cl

�! B),

(a) Remove the arc from G.

(b) If there does not exist another arc pointing to B with label Cl (i.e. 6 9D
Cl

�! B

for some D),

(i) Remove Cl from Qd, and add it to Q.

(ii) Call Subroutine Remove(B) recursively.

3. For each clause Cl in Qd such that A appears in the body of Cl, if all atoms in the

body of Cl do not appear as nodes in G, remove Cl from Qd, and add it to Q. 2

Hereafter, we use the notation incr(hQ;Qd; Gi; Cl) = hQ
out
; Q

out

d
; G

out
i to denote the fact

that when Algorithm Incr is applied to inputs Q (the original set of retained clauses), Qd (the

original set of delete clauses), G (the DC-graph corresponding to Qd), and Cl (the clause

to be inserted), the outputs are Qout (new set of retained clauses), Qout

d
(new set of deleted

clauses), and G
out (new DC-graph). Moreover, we abuse notation by using ; to denote an

empty DC-graph, i.e. the DC-graph with the root node only.

Example 4 Apply Algorithm Incr to the 4 clauses in the program P discussed in Exam-

ple 1. In Figure 4, the �rst DC-graph (labeled (i)) is graph Gr1 where incr(h;; ;; ;i; Cl1) =

h;; fCl1g; Gr1i. This is the case because nodes B and C are added in Step 1 of Algorithm

Incr, node A and the two arcs pointing to A are added in Step 2a. Steps 3 and 4 are not

needed in this case.

Similarly, the second graph in Figure 4 is DC-graph Gr2 where incr(h;; fCl1g; Gr1i; Cl2) =

h;; fCl1; Cl2g; Gr2i. This time, node E is added in Step 1 of Algorithm Incr, and the four

arcs pointing from A and E to B and D are added in Step 2a. Notice that even though

there is a cycle in Gr2, the cycle is not self-sustaining. It is also not di�cult to verify that

sizeopt(fCl1; Cl2g) = h;; fCl1; Cl2gi.

Similarly, the third graph in Figure 4 is produced by applying Algorithm Incr to add

Cl3 to Gr2, and the fourth one (called G1 in Example 3) is produced by applying Incr to

9

�

�

	

m

�

�

	

�

�

	

m m m

�

�

	

m m m

m m

m

m m

m

m m

m m

m

m m

��� ��� ? @
@R

��� ?@
@R

?
-

�

?

�
���

�
��

B
B
B
B
B
BBN?

�
���

B
B
B
B
B
BBN ?

-
�

�
��

��� ?

-
�

?�
��

�
���

B
B
B
B
B
BBN?

�

C
C
C
C
C
C
C
C
CCW

root

C

root root

C E F

(i) (ii) (iii) (iv)

root

C E F

A B

D
1 3

1

2,4 2

2,3

2

A

111

2

3

2,3

2

1

2

D

B

C E

D

A B

1

2

2

2
2

1
A B

1

1

Figure 4: Applying Algorithm Incr to Add Clauses 1, 2, 3 and 4

Cl4 and the third graph. Finally, the graphs in Figure 5 show the DC-graphs obtained by

applying Algorithm Incr to insert the 4 clauses in the reverse order. As expected, the fourth

DC-graphs in Figure 4 and Figure 5 are the same. Later we will show that inserting the

clauses in di�erent orders give identical end result. 2

�

�

	

�

�

	

�

�

	

m m

�

�

	

m m m

m m

m

m m

m

m

mm

m

m

mm

? @
@R

��� ?@
@R

?
-

�

?

�
���

�
��

B
B
B
B
B
BBN

�
���

B
B
B
B
B
BBN ?

-
�
��

?

B
B
B
B
B
BBN

@
@R

?

�
�
�
�
�
�
�
�
��� �

�7
�
�7

�
�
�
�
�
�
�
�
���

root root root

E F

(i) (ii) (iii) (iv)

root

C E F

A B

D
1 3

1

2,4 2

2,3

2

A

11

2

3

2,3

2

D

B

E

AA

2,4

B

F

D

4

3 3
D

4

Figure 5: Applying Algorithm Incr to Add Clauses 4, 3, 2 and 1

The above example only demonstrates the situation when an inserted clause ends up

being added to the set Qd (i.e. Qd keeps growing). Obviously, this is not always the case, as

an inserted clause may indeed end up being added to the set Q. This addition may trigger

a series of node removals and the shrinkage of Qd.

10

Example 5 Now consider program P
0, that is by adding Clauses 5 and 6 discussed in

Example 2. Let us add Clause 5 �rst. Steps 1 and 2 of Algorithm Incr are not invoked.

But in Step 3a, the clause is added to Q, and Subroutine Remove(C) is called. In Step 1

of Subroutine Remove, node C and the arc from the root to C are removed. As for the

arc from C to A labeled Cl1, this arc is removed. But because of the existence of the arc

from B to A labeled Cl1, Subroutine Remove is not called recursively. Furthermore, Step 3

of Remove does not cause any change, and control returns to Algorithm Incr. As for Step

4 of Algorithm Incr, even though there is a cycle from between A and B, this cycle is not

self-sustaining because of the arc from E to B with label Cl2. Thus, Algorithm Incr halts. In

functional terms, we have incr(h;; fCl1; : : : ; Cl4g; G1i; Cl5) = hfCl5g; fCl1; : : : ; Cl4g; Gr5i,

where Gr5 is the �rst DC-graph shown in Figure 6. Before we proceed, note that it is not

di�cult to verify that sizeopt(fCl1; : : : ; Cl5g) = hfCl5g; fCl1; : : : ; Cl4gi.

�

�

	

m m

�

�

	

m

m m

m

m m

m

�

�

	

m

? @
@R

@
@R

-
�

?�
��

�
���

B
B
B
B
B
BBN ?

-
�
��

�

@
@R

E F

root

F

A B

D
3

1

2,4 2
A

2

3

2,3

2

D

B

2,4

root

(ii)(i)

1

F

root

(iii)

Figure 6: Applying Algorithm Incr to Add Clauses 5 and 6

Now let us add Clause 6. Steps 1 and 2 of Algorithm Incr are not invoked. But in Step

3a, the clause is added to Q, and Subroutine Remove(E) is called. In Step 1 of Subroutine

Remove, node E and the arc from the root to E are removed. As for the arc from E to B

labeled Cl2, this arc is removed. But because of the existence of the arc from A to B labeled

Cl2, Subroutine Remove is not called recursively. Similarly, the arc from E to B labeled

Cl3 and the arc from E to D labeled Cl2 are deleted without recursively calling Remove.

Furthermore, Step 3 of Remove does not cause any change, and control returns to Algorithm

Incr. The second DC-graph in Figure 6 shows the situation at this point.

However, unlike the above situation for Clause 5, this time the cycle between A and B is

self-sustaining. Thus, in Step 4 of Algorithm Incr, Subroutine Remove(B) is called 2. Step

1 of Remove(B) causes node B and the two arcs from F and A to B to be deleted. In Step

2, the arc from B to A is also removed; Clause 1 is moved from Qd to Q; and this time

2It is not di�cult to verify that the result is the same, if Remove(A) is called �rst.

11

Subroutine Remove(A) is invoked recursively. In Step 1 of Remove(A), node A is erased.

In Step 2, the arc from A to D is removed; Clauses 2 and 4 are moved from Qd to Q; and

Subroutine Remove(D) is called recursively.

Step 1 of Remove(D) erases node D, and Step 3 causes no change. Control now returns

to Step 3 of Remove(A). As there is no longer any clause in Qd with A in the body, control

returns to Step 3 of Remove(B). Again as there is no longer any clause in Qd with B in

the body, the executions of Remove(B) and Algorithm Incr are now completed. In functional

terms, we have incr(hfCl5g; fCl1; : : : ; Cl4g; Gr5i; Cl6) = hfCl1; Cl2; Cl4; Cl5; Cl6g; fCl3g; Gr6i,

where Gr6 is the last DC-graph shown in Figure 6.

As shown in Example 2, we have sizeopt(fCl1; : : : ; Cl6g) = hfCl1; Cl2; Cl4; Cl5; Cl6g; fCl3gi,

verifying once again the incremental nature of Algorithm Incr. As detailed above, this is

due largely to Step 4, without which the �nal situation would be as shown in the second

DC-graph of Figure 6, but not as in the third graph. 2

Example 6 Thus far, we have not seen a situation in which Step 3 of Subroutine Remove

is needed. But given the third graph in Figure 6, let us consider adding the clause F A

to the existing program. Since A appears in Q, Step 3 of Algorithm Incr adds the clause to

Q and calls Remove(F). Now in Step 3 of Remove(F), Clause 3 { which is in Qd, but does

not appear as a label in G { is correctly inserted into Q from Qd. 2

3.4 Correctness Proof: Incrementality of Algorithm Incr

In the remainder of this section, we present one of the key results of this paper { the theorem

proving the incremental property of Algorithm Incr (cf. Theorem 1). This property has been

veri�ed several times in the previous examples. But before we can prove the theorem, we

need the following lemmas.

Lemma 2 Let P be the set fCl1; : : : ; Clng. Then:

1. Let sizeopt(P) = hQ;Qdi. It is the case that Q [Qd = P and Q \ Qd = ;.

2. Let incr(: : : incr(h;; ;; ;i; Cl1); : : : ; Cln) = hPn; Pn;d; Gni. It is the case that Pn[Pn;d =

P and Pn \ Pn;d = ;.

Proof Outline For Part 1, as shown in Algorithm SizeOpt, Q is initialized to P , and Qd

to ; in Step 1. Afterwards, the only place where a clause is removed is in Step 3. More

speci�cally, as shown in Steps 3a and 3b, whenever a clause is removed from Q, that clause

is added to Qd. Thus, it is obvious that Part 1 of the lemma is true.

For Part 2, let us prove by induction on n. When n = 1, it is obvious that Subroutine

Remove is not invoked in Algorithm Incr. If Cl1 is of the form A1_ : : :_Am , then by Step

3, P1 = fCl1g and P1;d = ;. Otherwise, Cl1 is of the form A1 _ : : : _ Am B1 ^ : : : ^ Bu.

Then by Step 2, P1 = ; and P1;d = fCl1g. Hence, in both cases, P1 [P1;d = fCl1g and

P1 \ P1;d = ;.

12

Now assume that Part 2 of the lemma is true for n = k � 1. There are two cases. First,

consider the case when Subroutine Remove is not called. Then Steps 2 and 3 are the only

places when a clause is either added to Pk or Pk;d. Notice that the conditions of Steps 2

and 3 are mutually exclusive to each other. Thus, given the induction assumption that

Pk�1 [Pk�1;d = fCl1; : : : ; Clk�1g and Pk�1 \ Pk�1;d = ;, it is the case that Pk [Pk;d =

fCl1; : : : ; Clkg and Pk \ Pk;d = ;.

Second, consider the case when Subroutine Remove is invoked. The two places in Remove

when a clause is moved around are Steps 2a and 3. More speci�cally, whenever a clause is

deleted from Pk�1, it is immediately added to Pk. Thus given the induction assumption, it is

necessary that regardless of how many times Remove is invoked, Pk [Pk;d = fCl1; : : : ; Clkg

and Pk \ Pk;d = ;. 2

The lemma above shows that for both Algorithm SizeOpt and Algorithm Incr, the set of

retained clauses and the set of deleted clauses partition the original program P . The lemma

below shows that node A appears in a DC-graph if and only if all clauses with A in the heads

have already been deleted.

Lemma 3 Let incr(: : : incr(h;; ;; ;i; Cl1); : : : ; Cln) = hPn; Pn;d; Gni. Then for any atom A,

A appears as a node in Gn i� there does not exist any clause in Pn with A in the head.

Proof Outline Prove by induction on n. When n = 1, it is obvious that Subroutine Remove

is not invoked in Algorithm Incr. If node A appears in the DC-graph, the node must be

added in Step 2a. Then by Step 2c, Cl1 is added to P1;d, and is not in P1. Conversely, if Cl1
appears in P1, then it must be added to P1 in Step 3a. In that case, Step 2a is not executed,

and A does not appear in the DC-graph. Now assume that the lemma is true for n = k� 1.

There are 2 cases.

Case 1 Subroutine Remove is not called.

For any atom A, there are two subcases.

Case 1.1 A does not appear in the head of Clk.

If A does not appear in the body of Clk, then A appears as a node in Gk i� A appears

as a node in Gk�1, as Subroutine Remove is not invoked. By the induction assumption, A

appears in Gk i� there does not exist any clause in Pk�1 with A in the head. Since A is not

the head of Clk, it is necessary that there does not exist any clause in Pk with A in the head.

Now consider the case when A appears in the body of Clk. If A appears in either Pk�1

or Pk�1;d, then A appears as a node in Gk i� A appears as a node in Gk�1. The situation is

exactly the same as the one considered in the previous paragraph. Otherwise, if A appears

for the �rst time, then node A is added to Gk in Step 1. But obviously Pk still does not

contain any clause with A in the head.

Case 1.2 A appears in the head of Clk.

There are two subcases, depending on whether Step 2 or 3 is executed. If Step 3 is executed,

then Clk is in Pk by Step 3a. But then Step 3b guarantees that Gk does not contain node

A. On the other hand, if Step 2 is executed instead, there are two more subcases. If A

appears in either Pk�1 or Pk�1;d, then A appears as a node in Gk i� A appears as a node in

Gk�1. The situation is then similar to the one considered in the �rst paragraph of Case 1.1.

13

Otherwise, if A appears for the �rst time, then node A is added to Gk in Step 2a. But then

Clk is added to Pk;d in Step 2b, but not added to Pk. By the induction assumption, since

node A does not appear in Gk�1, there is no clause in Pk�1 with A in the head. Thus, as Clk
is added to Pk;d, there is no clause in Pk with A in the head. This completes the analysis of

Case 1.

Case 2 Subroutine Remove is invoked.

For any atom A, there are two subcases.

Case 2.1 Remove(A) is invoked.

There are three places where Remove(A) can be invoked. If Remove(A) is called from Step

3b of Incr, then in Step 3a a clause with A in the head is added to Pk. If Remove(A) is called

recursively in Step 2b of Remove(B) for some B, B
Cl

�! A is the only arc pointing to A with

label Cl for some clause Cl with A in the head. Then in Step 2b of Remove(B), Cl is moved

from Pk�1;d to Pk. Finally, if Remove(A) is called from Step 4 of Algorithm Incr, A is in a

self-sustaining cycle. Step 2 of Remove(A) recursively causes all nodes in the self-sustaining

cycle be removed. Thus, at least one clause with A in the head is moved from Pk�1;d to Pk.

Case 2.2 Remove(A) is not invoked.

The analysis for this case is very similar to the one for Case 1. This completes the proof of

this lemma. 2

We need one more lemma before we can prove Theorem 1. This lemma requires the following

concept.

De�nition 2 Let A be a node in a DC-graph G. The rank of A in G, denoted by rank(A),

is de�ned recursively as follows:

1. If there is an arc from the root to A, rank(A) = 0.

2. Let B1;1; : : : ; B1;u1; : : : ; Bm;1; : : : ; Bm;um be all the nodes that have arcs pointing to A,

such that: a) fCl1; : : : ; Clmg are all the labels of these arcs, and b) for all 1 � j � m,

Bj;1; : : : ; Bj;uj
are all the nodes that have arcs pointing to A with label Clj. Then

rank(A) = 1 +max
m

j=1(min
uj

i=1 rank(Bj;i)). 2

Example 7 Consider the DC-graph G1 introduced in Figure 3. The nodes with rank = 0

are C;E and F . Now consider rank(A). There are the arcs from C and B pointing to A,

both with label Cl1. Thus, rank(A) = 1 + minfrank(C); rank(B)g. Since rank(C) = 0,

it is obvious that rank(A) = 1 + rank(C) = 1. Now consider rank(B) and all the arcs

pointing to B. This time there are two di�erent labels: Cl2 and Cl3. For Cl2, there are

the arcs from A and E to B. Based on an analysis similarly to the one for rank(A),

the minimum corresponding to Cl2 is rank(E) = 0. For Cl3, there are the arcs from E

and F to B. Thus, the minimum based on Cl3 is minfrank(E); rank(F)g = 0. Hence,

rank(B) = 1 +maxf0; 0g = 1, where the two zeros correspond to Cl2 and Cl3 respectively.

Similarly, it is not di�cult to verify that rank(D) = 1 + rank(A) = 2. Now compare the

ranks with the sets S0; S1 and S2 discussed in Example 1. The interesting thing here is that

for all atoms A, rank(A) = k i� A 2 Sk. This property will be proved formally in the lemma

below. 2

14

Notice that if a DC-graph contains a self-sustaining cycle, rank assignments to atoms in

the cycle are not well-de�ned. For example, consider the self-sustaining cycle between A

and B in the second DC-graph in Figure 6. Then rank(B) depends on rank(A) which

in turn depends on rank(B). Thus, both ranks are not well-de�ned because of the cyclic

dependency. Fortunately, since Step 4 of Algorithm Incr removes all self-sustaining cycles, all

DC-graphs produced by Incr do not contain any self-sustaining cycle. Then by De�nition 1,

for the non self-sustaining cycle A1

Cl1
�! A2

Cl2
�! : : :

Cli�1
�! Ai : : :An

Cln
�! A1, there must exist

atom Ai such that there exists arc B
Cli�1
�! Ai for some atom B 62 fA1; : : : ; Ang. Thus, in

determining rank(Ai), for Clause Cli�1, minfrank(B); rank(Ai�1)g is always well-de�ned

(cf. the previous example). Thus, there is no cyclic dependency on rank assignments.

Lemma 4 Let incr(hQ;Qd; Gi; Cl) = hQout
; Q

out

d
; G

out
i. Then for all nodes A 2 G

out,

rank(A) = n i� A 2 Sn, where the sets S0; : : : ; Sn; : : : are the ones produced by apply-

ing Algorithm SizeOpt directly on Q
out
[Q

out

d
.

Proof Outline Prove by induction on n. When n = 0, rank(A) = 0 i� there is an arc from

the root to A. This arc is created in Step 1 of Algorithm Incr. If this arc is not removed in

Step 2b, it must be the case that A does not appear in the head of any clause in Qout
[Q

out

d
.

Then when applying Algorithm SizeOpt directly on Q
out
[Q

out

d
, it is necessary that A 2 S0.

Assume that the lemma is true for n = k � 1. We prove the if and only-if part separately.

Case 1 rank(A) = k

By De�nition 2, rank(A) = 1 + max
m

j=1(min
uj

v=1 rank(Bj;v)). That is, among the clauses

Cl1; : : : ; Clm that are the labels of all the arcs pointing to A, there exists one clause Clj
where 1 � j � m such that rank(A) = k = 1 + (min

uj

v=1 rank(Bj;v)). More speci�cally, Clj
must be of the form : : :A : : : : : :^ Bj;1 ^ : : :^Bj;uj

^ : : :. Among these uj atoms, let i be

the one so that rank(Bj;i) = min

uj

v=1 rank(Bj;v). In other words, rank(Bj;i) = k� 1. By the

induction assumption, Bj;i 2 Sk�1. Thus, in Step 3 of Algorithm SizeOpt, Clj is removed,

and A is added to the set R. By applying a similar argument, it is obvious that all clauses

Cl1; : : : ; Clm must be removed at some iteration of Algorithm SizeOpt. More speci�cally,

since Clj corresponds to the maximum \minimum-rank", Clj must be the last clause deleted

with A appearing in the head. Thus, there must not exist any retained clause with head A.

Hence, in Step 5 of Algorithm SizeOpt, A is kept in the set Sk.

Case 2 A 2 Sk

As shown in Algorithm SizeOpt, there must exist a clause Clj of the form : : :A : : :

: : : Bj;i : : :, such that this is (one of) the last clause with A in the head, and Bj;i is in Sk�1.

By the induction assumption, rank(Bj;i) = k� 1. Now among all Bj;1; : : : ; Bj;uj
that appear

in the body of Clj and that appear as nodes in the DC-graph, suppose there exists Bj;l such

that rank(Bj;l) < k � 1. By the induction assumption, Bj;l 2 Sw where w < k � 1. In that

case, by Step 3 of Algorithm SizeOpt, the clause Clj must have been deleted earlier, and

should not exist for deletion in the current iteration. This is a contradiction. Thus, it is

necessary that rank(Bj;i) = min

uj

v=1 rank(Bj;v). By applying a similar argument, for every

clause Clw among Cl1; : : : ; Clm with A in the heads, there exists an iw for 1 � w � m such

that rank(Bw;iw) = min

uw
v=1 rank(Bw;v). But since Clj is the last clause to be deleted, it

15

is necessary that rank(Bj;i) = rank(Bj;ij
) = maxfB1;i1; : : : ; Bm;img. Hence, it is necessary

that rank(A) = 1 + rank(Bj;i) = k. 2

Now we are in a position to present the theorem that proves the incremental property of

Algorithm Incr.

Theorem 1 Let P be a program consisting of clauses Cl1; : : : ; Cln. Let sizeopt(P) =

hQ;Qdi, and let incr(: : : incr(h;; ;; ;i; Cl1); : : : ; Cln) = hPn; Pn;d; Gni. Then: Q = Pn and

Qd = Pn;d.

Proof Outline Given Lemma 2, it su�ces to prove Qd = Pn;d. Let Cl � : : :A : : :

B1 ^ : : : ^ Bm be a clause in Qd.

Case 1 No clause in Q with A in the head

Then all clauses with A in the head are in Qd, and for some k, A 2 Sk. By Lemma 4, this is

true i� rank(A) = k. By Lemma 3, this is possible i� all clauses with A in the heads have

been deleted, i.e. in Pn;d.

Case 2 exists some clause in Q with A in the head

Cl is in Qd i� there exists Bj where 1 � j � m such that Bj 2 Sk for some k. By Lemma 4,

this is true i� rank(Bj) = k. There are now two subcases depending on whether node Bj

appears in the DC-graph when Cl was inserted by Algorithm Incr.

Case 2.1 Node Bj already created

Then by Step 2c of Algorithm Incr, Cl is added to the set of deleted clauses.

Case 2.2 Otherwise

Suppose Cl does not represent the �rst time Bj appears. Let Cl1 be the clause when Bj

�rst appears. Since there does not exist node Bj in the DC-graph, Bj must be in the head

of Cl1, as ensured by Step 1 of Algorithm Incr. Furthermore, because of Step 2, and because

there does not exist node Bj in the graph, Cl1 must be added to the set of retained clauses

in Step 3. But notice that in Algorithm Incr and Subroutine Remove, once a clause is put

into the set of retained clauses, it will never be removed. In other words, Cl1 must be in

Pn. However, by Lemma 3, Bj cannot be a node in the graph Gn, and rank(Bj) cannot be

equal to k. This is a contradiction. Hence, it is necessary that Cl represents the �rst time

Bj appears. Thus, in Step 1 of Algorithm Incr, a node for Bj is created, and the situation

is exactly the same as in Case 2.1.

Combining Cases 2.1 and 2.2, it is necessary that Cl was once added to the set of deleted

clauses. Now since Bj is a node in the DC-graph, Step 3 of Subroutine Remove will never

remove Cl from the set of deleted clauses. Hence, it is necessary that Cl is in Pn;d. This

completes the proof of the theorem. 2

Corollary 1 Given clauses Cl1; : : : ; Cln, Algorithm Incr produces the same end result re-

gardless of the order Cl1; : : : ; Cln are inserted. 2

4 Further Optimizations

In the previous section, we have presented Algorithm Incr and showed that it achieves the

kind of incrementality shown in Figure 2. In this section, we will develop several ways to

16

optimize this algorithm, and the expansion and computation of an partial instantiation tree.

4.1 Algorithm IncrOpt

A complexity analysis on Algorithm Incr reveals that Step 4 plays a considerable role in

determining the e�ciency of Incr. It involves �nding each and every self-sustaining cycle

that may exist in the DC-graph. As shown in Example 5, this is the crucial step that leads to

the incremental property of Algorithm Incr. However, the following lemma shows that from

the point of view of computing minimal models, self-sustaining cycles need not be detected,

and can be left in the graph.

Lemma 5 Let Q be a set of retained clauses and Qd be a set of deleted clauses maintained

in the DC-graph G. Let A1

Cl1
�! A2

Cl2
�! : : :

Cli
�! Ai+1 : : : An

Cln
�! A1 be a self-sustaining cycle

in G. M is a minimal model of Q [fCl1; : : : ; Clng i� M is a minimal model of Q.

Proof Outline As introduced in Section 3.1, for all 1 � i � n, Cli is a clause with Ai+1 in

the head and Ai in the body. Since A1; : : : ; An are nodes in DC-graph G, none of A1; : : : ; An

appears in Q. Thus, given any minimal model M of Q, none of A1; : : : ; An is contained in

M . Then it is easy to see that M is a model of Cl1; : : : ; Cln. Hence, M is a minimal model

of Q [fCl1; : : : ; Clng i� M is a minimal model of Q. 2

The above lemma motivates the following algorithm.

Algorithm IncrOpt Exactly the same as Algorithm Incr, but without Step 4 of Incr. 2

Hereafter we use the notation incropt(hQ;Qd; Gi; Cl) = hQout
; Q

out

d
; G

out
i for Algorithm

IncrOpt in exactly the same way as we use incr(hQ;Qd; Gi; Cl) = hQ
out
; Q

out

d
; G

out
i for Incr.

The corollary below follows directly from Lemma 1, Theorem 1 and Lemma 5.

Corollary 2 Let P be a program consisting of clauses Cl1; : : : ; Cln, and let incropt(: : : incropt(

h;; ;; ;i; Cl1); : : : ; Cln) = hPn; Pn;d; Gni. M is a minimalmodel of P i�M is a minimalmodel

of Pn. 2

As far as supporting minimal model computation is concerned, Algorithm IncrOpt is more

preferable than Algorithm Incr. The reasons are threefold.

� First, as discussed above, IncrOpt does not check for self-sustaining cycles. While cycle

detection takes time linear to the number to edges in the graph, checking all cycles

to see whether they are self-sustaining takes considerably more time. Thus, by not

checking self-sustaining cycles, IncrOpt is more e�cient than Incr.

� Second, it is easy to see if incropt(hQ;Qd; Gi; Cl) = hQ
out

opt
; ; G

out

opt
i and incr(hQ;Qd; Gi;

Cl) = hQout
; ; i, then it is necessary that Qout

opt
� Q

out. More precisely, IncrOpt keeps

all clauses in self-sustaining cycles deleted. Thus, the size of the program Q
out

opt
may be

much smaller than that of Qout. The implication is that �nding the minimal models

based on Q
out

opt
may take considerably less time than �nding the minimal models based

on Q
out.

17

� The third reason why Algorithm IncrOpt is more preferred applies only to programs P

that are de�nite (i.e. no disjunctive heads). The following lemma shows that for such

programs P , Algorithm IncrOpt directly �nds the least model of P .

Lemma 6 Let P be a de�nite program consisting of clauses Cl1; : : : ; Cln, and let incropt(: : :

incropt(h;; ;; ;i; Cl1); : : : ; Cln) = hPn; Pn;d; Gni. The least model of P is the set fAjA is the

head of a clause in Png.

Proof Outline Prove by induction on n. When n = 1, if Cl1 is of the form A , Step 3 of

IncrOpt adds Cl1 to P1. Then it is obvious that the least model of Cl1 is the set fAg. On

the other hand, if if Cl1 is of the form A B1 ^ : : : ^ Bm, Step 2 of IncrOpt adds Cl1 to

P1;d, and P1 becomes empty. Then it is easy to see that the least model of Cl1 is the empty

set. Now assume that the lemma is true for n = k � 1. There are two cases.

Case 1 Clk is added to Pk;d.

This must occur in Step 2 of IncrOpt, and Clk is of the form A B1 ^ : : : ^Bm such that

there exists a Bj for 1 � j � m that appears as a node in the DC-graph Gk. There are two

subcases. First, Bj may be added as a node in Step 1 of IncrOpt, in which case Bj appears

for the �rst time and must not be in the least model of Cl1; : : : ; Clk. Alternatively, Bj may

be a node in DC-graph Gk�1. Then according to Lemma 3, Bj cannot be the head of a clause

in Pk�1. By the induction assumption, Bj is not in the least model of Cl1; : : : ; Clk�1, and

hence not in the least model of Cl1; : : : ; Clk. By combining the two subcases, it is necessary

that the least model of Cl1; : : : ; Clk is the same as the least model of Cl1; : : : ; Clk�1. By the

induction assumption, the latter is the set fAjA is the head of a clause in Pk�1g. But since

Clk is added to Pk;d, it is necessary that Pk = Pk�1.

Case 2 Clk is added to Pk.

Let Clk be of the form A B1 ^ : : : ^ Bm. There are again two subcases depending on

whether Subroutine Remove is invoked. First, consider the subcase when Remove is not

called. Then Pk = Pk�1 [Clk, and thus fBjB is the head of a clause in Pkg is equal to

fAg [fBjB is the head of a clause in Pk�1g. Moreover, Clk is added to Pk in Step 3 of

IncrOpt. This is possible only if all Bj 's do not occur as nodes in Gk�1. Then according to

Lemma 3, all Bj's occur as heads of clauses in Pk�1. By the induction assumption, all Bj's

are in the least model of Cl1; : : : ; Clk�1. Thus, A is in the least model of Cl1; : : : ; Clk.

Now consider the subcase when Subroutine Remove is called. A clause Cl may be added

to Pk in Step 2b or 3 of Remove. If Cl is added in Step 2b, Cl is of the form B

A ^ B1 ^ : : : ^ Bm where A occurs as the head of a clause in Pk, and thus is in the least

model based on the analysis for the �rst subcase. Moreover, due to the condition of Step

2b, B1; : : : ; Bm must all be in the least model as well. Thus, B has to be in the least model.

Alternatively, if Cl is added in Step 3 of Remove, this is possible only if all atoms in the

body of Cl are not in the DC-graph, and are in the least model. Hence, the head of Cl must

also be in the least model. 2

The lemma above shows that when applying Algorithm IncrOpt to a de�nite program, once

IncrOpt completes its execution, no further processing is needed to compute the least model.

18

This is not the case for Algorithm Incr and Algorithm SizeOpt, as shown in the following

example.

Example 8 Consider the de�nite program fA B;B A;C ;D Cg. All 4 clauses

remain if either Algorithm Incr or Algorithm SizeOpt is applied. The application of a least-

model solver is then needed to compute the least model fC;Dg. But if Algorithm IncrOpt

is used instead, only the clauses C and D C remain, whose heads directly give the

least model.

One may wonder whether the above lemma can be generalized to disjunctive programs

in the following sense. If P is a disjunctive program consisting of clauses Cl1; : : : ; Cln, and

incropt(: : : incropt(h;; ;; ;i; Cl1); : : : ; Cln) = hPn; Pn;d; Gni, then is it true that for all atoms

A that appears in the head of a clause in Pn, A occurs in some minimal model of P ? The

answer is no. Consider P = fA _ B ; A ; C Bg. Applying IncrOpt does not cause

any change. Thus, the set of atoms appearing in the heads is fA;B;Cg. However, B and C

are not contained in the (unique) minimal model of P . 2

According to Corollary 1 and Lemma 5, when using Algorithm IncrOpt, di�erent orders of

inserting the same collection of clauses do not a�ect the �nal DC-graph, and the �nal sets

of retained and deleted clauses. However, di�erent orders may require di�erent execution

times { depending largely upon how many times Subroutine Remove is invoked. If Remove

is not called at all when inserting a clause A1 _ : : : _Am B1 ^ : : : ^Bl, the complexity of

Algorithm IncrOpt is O(ml). Otherwise, if a is the number of nodes (atoms) in the current

graph, then the worst case complexity of recursively calling Remove is O(alN), and that of

IncrOpt is O(ml+ alN). It is then tempting to conclude that the complexity of IncrOpt for

inserting n clauses is O(n(ml+ alN)). However, this is incorrect because during the process

of inserting the n clauses, Remove(A) for all atoms A can only occur at most once. Thus,

for inserting n clauses, the complexity of IncrOpt should be O(nml + al(N + n)).

On the other hand, if Algorithm SizeOpt is used directly, then there are (N+n) clauses 3.

The worst case complexity of Algorithm SizeOpt for (N+n) clauses is O(ml(N+n)2). Thus,

comparing the complexity �gures of Algorithm SizeOpt and IncrOpt does not provide any

clear conclusion, as the comparison depends on the magnitude of a, the number of atoms

in a DC-graph, relative to the magnitudes of N;n; l and m. In Section 5, we will present

experimental results evaluating the e�ectiveness of Algorithm IncrOpt.

4.2 Heuristics: Ordering Clauses to be Inserted

The above coarse-grained complexity analysis of Algorithm IncrOpt reveals that given n

clauses to be inserted, the most e�cient order is the one that minimizes the number of times

Subroutine Remove needs to be called. In the following, we discuss three possible ways

to insert n clauses. The most obvious way is to use IncrOpt to insert the clauses in an

arbitrary order (e.g. textual order). For lack of a better name, we will refer to this strategy

3Based on Figure 2, the analysis here assumes that P consists of N clauses, and P�j consists of n clauses.

19

as IncrOptArb. To the other extreme, another way to insert n clauses is to really try to

minimize the number of times Subroutine Remove will be called. The following algorithm

uses a heuristic order that attempts to do that.

Algorithm IncrOptOrder Let Cl1; : : : ; Cln be the clauses to be inserted.

1. Initialize R to all the facts among Cl1; : : : ; Cln, and S to ;.

2. For each clause Cl 2 R,

(a) Call Algorithm IncrOpt with Cl.

(b) If Cl is not added to the DC-graph, then for each atom A in the head of Cl, add

all the clauses not considered so far with A in the body to S.

3. If S is not empty, set R to S and S to ;. Go to Step 2.

4. Apply IncrOpt on each of the clauses not considered so far in an arbitrary order. 2

Example 9 Suppose the six clauses of P and P
0 in Examples 1 and 2 are to be inserted.

Clause 5 is the �rst one considered. Since IncrOpt does not add Clause 5 to the DC-graph,

Clauses 1 and 6 are added to the set S and inserted in the next iteration of IncrOptOrder.

While Clause 1 is added to the DC-graph, Clause 6 is not, which causes Clauses 2 and 3

to be considered in the third iteration. This time both clauses are added to the DC-graph.

Then Step 4 of IncrOptOrder applies IncrOpt to Clause 4, the only clause remaining.

Notice that if Clause 5 is inserted after Clause 1, then node C created during the insertion

of Clause 1 will need to be removed. Similarly, if Clause 6 is inserted after Clause 2, then

node E will need to be removed. To prevent all these unnecessary insertions/removals from

happening, IncrOptOrder inserts facts �rst and follows Step 2b. 2

One possible weakness of Algorithm IncrOptOrder is that there may be too much overhead

involved in implementing Step 2. The following algorithm represents a compromise. It

inserts the facts among the n clauses �rst, but leaves the remaining clauses to be inserted in

whatever order.

Algorithm IncrOptFact Let Cl1; : : : ; Cln be the clauses to be inserted. Apply Algorithm

IncrOpt �rst to all the facts among the clauses. Then apply Algorithm IncrOpt to the

remaining clauses in an arbitrary order. 2

In Section 5, we will present experimental results evaluating the e�ectiveness of these three

algorithms.

4.3 Avoiding Redundant Node Expansion

As described in Section 2.1, for each conict-set uni�er � of a node in a partial instantiation

tree, there is a child node processing P [P�. The lemma below attempts to reduce the

time taken to expand a partial instantiation tree by not expanding those nodes that can be

20

predicted to be identical to nodes that have already been generated. It gives 3 su�cient

conditions which are very easy to implement. Without loss of generality, it assumes that

substitutions in conict-set uni�ers are represented in solved form [19]. That is, for a set of

(substitution) equations, the equations are of the form Xj = tj, and all variables appearing

in the left-hand-side of the equations cannot appear in the right-hand-side of any equation.

For the following lemma, we use the notation L(�) and R(�) to denote the set of all variables

appearing in the left-hand-side and right-hand-side of � respectively. We also use the notation

P

�

) P1 to denote the fact that the node for program P is the parent of the node for P1,

and � is the conict-set uni�er, i.e. P1 = P [P�.

Lemma 7 1. Given P
�

) P1 and P1

�

) P2, it is necessary that P2 = P1.

2. Given P
�1
) P1

�2
) P2, and P

�2
) P3

�1
) P4, P4 = P2 if:

L(�1) \ L(�2) = ;, L(�1) \ R(�2) = ;, and R(�1) \ L(�2) = ;.

3. Given P
�1
) P1

�2
) P2

�1
) P3, P3 = P2 if L(�1) \R(�2) = ;.

Proof Outline For space considerations, we only show a proof outline for Part 3. By

de�nition, P3 = P2 [P2�1. Substituting P2 = P1 [P1�2 into (P2 [P2�1), we get P1 [P1�2
[P1�1 [P1�2�1. Since L(�1)\R(�2) = ;, P1�2�1 = P1�2. Then it is straightforward to verify

that by substituting P1 = P [P�1, P3 = P2. 2

As an example, consider again the program P discussed in Section 2.1. As shown in

Figure 1, P2, which is de�ned by P = P [P�2, has two child nodes corresponding to the

conict-set uni�ers �1 and �2. Then according to the the �rst part of the above lemma, there

is no need to expand the node P3 = P2 [P2�2, because P3 is identical to P2. And by the

second part of the lemma, there is no need to expand the node P6. In the next section, we

will present experimental results showing the e�ectiveness of the optimizations described by

the lemma.

5 Implementation Overview and Experimental Eval-

uation

In this section, we will present experimental results evaluating the e�ectiveness of the pro-

posed algorithms and optimizations. But before we do that, we will �rst give an overview of

the implementation of these algorithms and optimizations, as well as the implementation of

the entire framework that includes both the evaluation and partial instantiation phases.

5.1 Implementation Overview of the Proposed Algorithms and

Optimizations

For our experimentation, we implemented Algorithms IncrOpt (and thus trivially IncrOp-

tArb), IncrOptOrder and IncrOptFact in C. We also implemented two versions of Algorithm

21

SizeOpt. One is a straightforward encoding of the algorithm presented in 2.2 in C. The other

one tries to minimize searching by extensive indexing. Unfortunately, in all the experiments

we have carried out so far, the version with extensive indexing requires so much overhead to

set up the indices that the straightforward version takes much less time. Thus, for all the

experimental results reported later for Algorithm SizeOpt, the straightforward version was

used.

Recall that in our incremental algorithms, a DC-graph is used to organize the deleted

clauses. Each arc in the graph represents a deleted clause. However, not every deleted

clause has a corresponding arc in the graph. Given a deleted clause Cl � A1 _ : : : _Am

B1 ^ : : : ^ Bn, if all of A1; : : : ; Am do not appear in the graph, then this clause would not

appear as a label of an arc. In our implementation of the incremental algorithms, we set up

a virtual node so that there is an arc from the appropriate node of an atom appearing in

the body to the virtual node. More precisely, a virtual node is an atom that appears both

in the heads of some clauses in Q and in the heads of some clauses in Qd. In this way, each

deleted clause has a corresponding arc in the DC-graph. This simpli�es the construction and

maintenance of DC-graph, and makes the implementation more e�cient. This is because

with the use of virtual nodes, Step 3 of Subroutine Remove can be skipped. Finally, to further

speed up the maintenance of DC-graphs, a counter is kept for each clause which records the

number of times the clause appears as an arc in the graph. If this counter decreases to zero,

the clause is removed from Qd, and put back to Q.

5.2 Implementation Overview of the Entire Framework

Apart from the proposed algorithms and optimizations, we also implemented the entire par-

tial instantiation framework that given an input logic program, computes the entire partial

instantiation tree. The entire system was written in C running under the UNIX environ-

ment, and has roughly 3000 lines of code. In the following, we summarize the main aspects

of the implementation, and highlight how we tried to make the implementation as space and

run-time e�cient as possible.

5.2.1 Major Data Structures

There are four major data structures used in the system: a term table, an atom table, a

clause table, and a partial instantiation tree structure. First, all the terms are organized in

a global term table, in which each term is identi�ed by an index. Associated with each term

are such pieces of information as the type (i.e., constant, variable or function), arity, name,

and pointers to the parameters of the term. At the root node of the partial instantiation

tree, the term table only consists of those terms that are in the original program. When a

child node is created, new terms generated via uni�cation are added to the end of the term

table. Note that when a child node and its subtree have been fully expanded, the part of

the term table corresponding to the entire subtree can be thrown away. This leads to two

implementation decisions. First, the expansion of a partial instantiation tree is conducted

22

in a depth-�rst manner. Second, the term table is implemented as a stack. These decisions

help to minimize the run-time space requirement of our system.

Every atom is stored in a global atom table which keeps track of such information as the

name, arity, and the terms (represented by their indices to the term table) that appear in

the atom. Like the term table, the atom table is organized as a stack. Similarly, there is a

global clause table/stack which records for each clause the atoms appearing in the clause, in

the form of indices to the atom table. Recall that when a child node is to be created, the

program P at the parent node will be instantiated to P [P�. To facilitate the comparisons

of the clauses in P� with the existing clauses in P , atom indices in the clause table are kept

in ascending order.

Last but certainly not the least, there is a partial instantiation tree structure. Apart from

the usual parent and children pointers, each node has pointers to the set of uni�ers, the true

and false sets, and the appropriate DC-graphs. It also contains indices to the clause, atom

and term tables. Again once a subtree has been fully expanded, as much space previously

occupied by its nodes as possible is freed for future reuse.

5.2.2 Generation of New Clauses

Given a program P in a parent node and a conict-set uni�er �, the program in the child

node P [P� is obtained by �rst getting all the appropriate uni�ed terms T�. There are three

possibilities for T�. It may be T itself, the same as some existing term in the term table,

or an entirely new term. In the latest case, the new term is added to the term table, and a

pointer from T to T� is created. This kind of pointers will assist in the (possible) insertion

of a new, uni�ed atom A� into the atom table. This insertion in turn creates a pointer from

atom A to A�. Again this kind of pointers facilitates the insertion of uni�ed clauses to the

clause table.

It is obvious that in generating a child node, a lot of comparisons for terms, atoms

and clauses need to be made. In particular, to check whether a term/atom/clause is new

or not, it is compared with every term/atom/clause in the appropriate tables. Thus, our

implementation of the tables as stacks does not only reduce run-time memory space require-

ment, but also minimizes the time taken for comparisons. Furthermore, as discussed above,

comparisons are facilitated by keeping atom indices in ascending order in the clause table.

5.2.3 Uni�cation

In partial instantiation, generating the conict-set uni�ers is a key step at each node. Thus,

the e�ciency of the uni�cation algorithm is one of the key factors determining the overall

performance of the system. Among the uni�cation algorithms that have been proposed so far

(e.g., [7, 19]), we chose to implement the version developed by Martelli and Montanari [19],

with a few optimizations. For instance, a key optimization is to keep all the variables

appearing in the left-hand-sides of substitution equations in sorted order. Thus, uni�ers can

23

be compared more e�ciently.

In the remainder of this section, we will report experimental results evaluating the e�ec-

tiveness of our proposed algorithms and optimizations. All run-times are in milliseconds, and

were obtained by running the experiments in a SPARC-LX Unix time-sharing environment.

5.3 IncrOptFact vs IncrOptOrder vs IncrOptArb

In this series of experiments, we compared the e�ectiveness of the heuristics described in

Section 4.2. The following results are very representative of all the experiments we conducted.

The times below count the time taken for each algorithm to process 20 clauses. At most 5

atoms appear in the head of each clause, and at most 10 appear in the body. All atoms in

the heads and bodies, as well as their numbers, are randomly generated.

IncrOptFact IncrOptArb IncrOptOrder

time (ms) 3.5 3.6 150.6

Recall that IncrOptOrder tries to minimize the number of times Subroutine Remove needs

to be called by �rst inserting the facts, and then partially ordering the insertion of the

remaining clauses. Clearly shown above, the strategy back�res as it requires too much

overhead. Inserting a set of clauses in arbitrary order, as shown in the third column of the

above table, performs surprisingly well. However, IncrOptFact is considered to be the best,

not so much because it outperforms IncrOptArb by a wide margin, but rather because it

is very simple to implement, and almost always performs better than IncrOptArb. In the

remainder of this section, we will only report the results of IncrOptFact.

5.4 Same Number of Disjunctive Clauses: IncrOptFact vs SizeOpt

In this series of experiments, we compared the e�ectiveness of our incremental algorithm

IncrOptFact with the original algorithm SizeOpt. For each algorithm, we report i) the total

time taken to process the 20 clauses used in Section 5.3, ii) the number of clauses deleted,

and iii) the time taken to �nd the minimal models.

IncrOptFact SizeOpt

processing time for 20 clauses (ms) 3.54 0.33

rules deleted 19 0

time to �nd minimal models (ms) 49.17 83.61

total time taken (ms) 52.71 83.94

For just the time taken to process the 20 clauses, our incremental algorithm IncrOptFact

takes more time than SizeOpt, primarily for maintaining DC-graphs. But as shown above,

the extra time is worth spending because IncrOptFact manages to delete 19 more clauses

than SizeOpt. This is all due to the fact that, as described in Section 4.1, IncrOptFact

deletes all the clauses in self-sustaining cycles. Consequently, the times taken for the two

24

algorithms to �nd the (same collection of) minimal models di�er by a wide margin. This

clearly demonstrates the importance of deleting more rules, whose impact is multiplied in

model computations. At the end, the total time taken by IncrOptFact is only about 60% of

the time taken by SizeOpt.

5.5 Same Number of De�nite Clauses: IncrOptFact vs SizeOpt

Based on the results of the previous set of experiments for disjunctive clauses, we surely

can predict that for de�nite clauses, IncrOptFact again outperforms SizeOpt. Moreover,

Lemma 6 presents a stronger reason for us to believe that IncrOptFact will perform even

better. The lemma shows that for de�nite clauses, our incremental algorithms can obtain

the least model by simply obtaining the heads of all the clauses not deleted. Indeed, our

belief is con�rmed by this series of experiments, in which each test program contains 100

randomly generated de�nite clauses. The following table reports the run-times for a typical

program.

IncrOptFact SizeOpt

processing time for 100 clauses (ms) 9.22 0.73

rules deleted 89 17

time to �nd least model (ms) 5.76 580.06

total time taken (ms) 14.98 580.79

The processing time taken by IncrOptFact is longer than that by SizeOpt. But again In-

crOptFact deletes many more clauses, and requires a minimal amount of time to obtain the

least model. In contrast, SizeOpt is much less e�ective in deleting clauses, and requires the

invocation of the least model solver whose run-time dominates the entire process.

5.6 Partial Instantiation Trees: IncrOptFact vs SizeOpt

Thus far, we have only compared IncrOptFact with SizeOpt in those situations where both

algorithms are required to process the same number of clauses. But recall that our incremen-

tal algorithms are designed for a slightly di�erent purpose: to expand partial instantiation

trees e�ciently. As described in Section 2.1, if program P in a node N gives rise to conict-

set uni�ers �1; : : : ; �m, then N has m child nodes, each corresponding to P [P�j. Thus, as

shown in Figure 2, the acid test of the e�ectiveness of our incremental algorithms is between

the time taken for our incremental algorithms to process the clauses in P�j and the time

taken for SizeOpt to process all the clauses in P [P�j. Given the results of the previous series

of experiments, we expect IncrOptFact to outperform SizeOpt even more in the expansion

of partial instantiation trees. This conjecture is con�rmed by the following experiment that

fully expands the instantiation tree of the program discussed in Section 2.1.

By applying the heuristics of avoiding redundant node expansion discussed in Section 4.3,

our algorithm only needs to process 5 nodes (i.e., the root node, and Nodes 1, 2, 4 and 5),

25

as compared with 11 that would be needed otherwise (cf: Figure 1). This demonstrates the

usefulness of the heuristics. The following table compares IncrOptFact with SizeOpt for the

expansion of 5 nodes only. In other words, the total run-time taken by SizeOpt to expand

11 nodes would be even higher than the time recorded below. Each entry in the table below

gives two run-times: i) the time taken to process the clauses in P�j by IncrOptFact, or in

P [P�j by SizeOpt; and ii) the time taken to �nd the least model.

IncrOptFact SizeOpt

Node 1 (ms) 0.67/5.47 0.33/45.88

Node 2 (ms) 0.02/5.57 0.34/45.86

Node 3 (ms) 0.02/5.57 0.34/53.95

Node 4 (ms) 0.02/5.49 0.34/49.19

Node 5 (ms) 0.02/5.57 0.34/52.88

total (processing time/model solving time) 0.75/27.67 1.69/247.76

total (processing time + model solving time) 28.42 249.45

As expected, the processing time of IncrOptFact for the �rst node is relatively long (i.e.

0.67ms), whereas the processing times for subsequent nodes are much shorter (i.e. 0.02ms).

This reects the bene�t of being incremental. At the end, the total processing time of

IncrOptFact is 0.75ms, less than 50% of that of SizeOpt. Furthermore, as shown in pre-

vious experiments, IncrOptFact requires much less time in �nding least models. Thus, the

conclusion is very obvious and convincing: the time taken to expand the 5 nodes by using

IncrOptFact is merely over 10% of the time taken by using SizeOpt.

6 Conclusions

The objective of this paper is to study how to optimize the expansion of partial instantia-

tion trees for computing minimal and least models. Towards this goal, we have developed

Algorithm Incr which is formally proved to be incremental. We have further optimized Incr

to delete clauses in self-sustaining cycles, to partially order clauses to be inserted, and to

avoid expanding redundant nodes. Those optimizations lead to several algorithms, among

which experimental results indicate that IncrOptFact gives the best performance. More im-

portantly, when compared with the original algorithm SizeOpt, IncrOptFact can give very

signi�cant improvement in run-time e�ciency.

In ongoing work, we investigate the optimal order to expand nodes in partial instantiation

trees, in terms of both space and time e�ciency. In situations where it is not desirable or too

costly to generate an entire partial instantiation tree, we will study how to generate portions

of the tree selectively.

26

References

[1] F. Bancilhon, D. Maier, Y. Sagiv and J. Ullman. (1986) Magic Sets and Other Strange

Ways to Implement Logic Programs, Proc. ACM-PODS, pp 1{15.

[2] F. Bancilhon and R. Ramakrishnan. (1986) An Amateur's Introduction to Recursive

Query Processing Strategies, Proc. ACM-SIGMOD, pp 16{52.

[3] C. Bell, A. Nerode, R. Ng and V.S. Subrahmanian. (1992) Implementing Deductive

Databases by Linear Programming, Proc. ACM-PODS, pp 283{291.

[4] C. Bell, A. Nerode, R. Ng and V.S. Subrahmanian. (1992) Mixed Integer Programming

Methods for Computing Nonmonotonic Deductive Databases, to appear in: Journal of

ACM.

[5] J. Blakeley, N. Coburn and P. Larson. (1989) Updating Derived Relations: Detecting

Irrelevant and Autonomously Computable Updates, ACM TODS, 14, 3, pp 369{400.

[6] J. Blakeley, P. Larson and F. Tompa. (1986) E�ciently Updating Materialized Views,

Proc. ACM-SIGMOD, pp 61{71.

[7] R. Boyer and J. Moore. (1972) The Sharing of Structure in Theorem-proving Programs,

Machine Intelligence, 7, pp 101{116.

[8] Buning and Lowen. (1989) Optimizing Propositional Calculus Formulas with Regard to

Questions of Deducibility, Information and Computation, 80.

[9] S. Ceri and J. Widom. (1991) Deriving Production Rules for Incremental View Main-

tenance, Proc. VLDB, pp 577{589.

[10] V. Chandru and J. Hooker. (1991) Extended Horn Sets in Propositional Logic, Journal

of the ACM, 38, 1, pp 205{221.

[11] G. Dong and R. Topor. (1992) Incremental Evaluation of Datalog Queries, Proc. ICDT.

[12] M. Gelfond and V. Lifschitz. (1988) The Stable Model Semantics for Logic Program-

ming, in: Proc. 5th International Conference and Symposium on Logic Programming,

ed R. A. Kowalski and K. A. Bowen, pp 1070{1080.

[13] A. Gupta, I. Mumick and V.S. Subrahmanian. (1993) Maintaining Views Incremen-

tally, Proc. ACM-SIGMOD, pp 157{166.

[14] J. Harrison and S. Dietrich. (1992) Maintenance of Materialized Views in a Deductive

Database: An Update Propagation Approach, Workshop of JICSLP.

[15] R. E. Jeroslow. (1988) Computation-Oriented Reductions of Predicate to Propositional

Logic, Decision Support Systems, 4, pps 183{187.

27

[16] V.Kagan, A. Nerode and V.S. Subrahmanian (1993) Computing De�nite Logic Pro-

grams by Partial Instantiation, to appear in: Annals of Pure and Applied Logic.

[17] V.Kagan, A. Nerode and V.S. Subrahmanian (1994) Computing Minimal Models by

Partial Instantiation, draft manuscript, submitted to a technical journal for publica-

tion.

[18] J. Lobo, J. Minker and A. Rajasekar. (1992) Foundations of Disjunctive Logic Pro-

gramming, MIT Press.

[19] A. Martelli and U. Montanari. (1982) An E�cient Uni�cation Algorithm, ACM Trans.

on Programming Languages and Systems, 4, 2, pp 258{282.

[20] A. Nerode, R. Ng and V.S. Subrahmanian. (1992) Computing Circumscription by Lin-

ear Programming, to appear in: Information and Computation.

[21] O. Shumeli and A. Itai. (1984) Maintenance of Views, Sigmod Record, 14, 2, pp 240{

255.

[22] A. van Gelder, K. Ross and J. Schlipf. (1988) Unfounded Sets and Well-founded Se-

mantics for General Logic Programs, in Proc. ACM-PODS, pp 221-230.

[23] O. Wolfson, H. Dewan, S. Stolfo and Y. Yemini. (1991) Incremental Evaluation of

Rules and its Relationship to Parallelism, Proc. ACM-SIGMOD, pp 78{87.

[24] C. Zaniolo. (1988) Design and Implementation of a Logic-based Language for Data-

Intensive Applications, Proc. of the International Conference on Logic Programming

(eds. K. Bowen and R. Kowalski), pps 1666-1687, MIT Press.

28

