
An Analysis of Bu�er Sharing and Prefetching

Techniques for Multimedia Systems�

Raymond T. Ngy and Jinhai Yang

Department of Computer Science

University of British Columbia

Vancouver, B.C., V6T 1Z4

Canada.

Abstract

In this paper, we study the problem of how to maximize the throughput of a

continuous-media system, given a �xed amount of bu�er space and disk bandwidth

both pre-determined at design-time. Our approach is to maximize the utilizations of

disk and bu�ers. We propose doing so in two ways. First, we analyze a scheme that

allows multiple streams to share bu�ers. Our analysis and preliminary simulation re-

sults indicate that bu�er sharing could lead to as much as 50% reduction in total bu�er

requirement. Second, we develop three prefetching strategies: SP, IP1 and IP2. As

will be demonstrated by SP, straightforward prefetching is not e�ective at all. In con-

trast, IP1 and IP2, which prefetch more intelligently than does SP, could be valuable

in maximizing the e�ective use of bu�ers and disk. Our preliminary simulation results

show that IP1 and IP2 could lead to a 40% improvement in throughput.

keywords: bu�er allocation, prefetching strategies, analysis of continuous-media or

multimedia systems

1 Introduction

With the advances in networking, storage, and I/O interface technologies, providing e�ective

multimedia support in database management systems has become a topic of great interest

and value. To support audio and video data, multimedia database management systems

need to deal with several tough issues. First, audio and video data are delay-sensitive. As

recording and playback of video and audio data are continuous operations, a management

�Research partially sponsored by NSERC Grants OGP0138055 and STR0134419, and the CITR Grant

on \Distributed Continuous-Media File Systems."
yPerson handling correspondence. Email: rng@cs.ubc.ca.

1

system, once starts displaying audio or video data, must guarantee that enough resources

are allocated so that the continuity and real time requirements are not violated. Second,

(even compressed) audio and video data consume large amounts of system resources { pri-

marily storage space and bandwidth. Third, a multimedia object may consist of multiple

components: audio, video and text. It is the responsibility of the management system to

ensure that these multiple streams can be synchronized during retrieval.

Many excellent studies regarding the storage and retrieval of audio and video data have

been conducted, such as those reported in [1, 2, 3, 4, 10, 11, 13, 14]. With respect to the

topic area of this paper, these studies can be grouped into two major categories. The �rst

group is primarily concerned with intelligent disk scheduling. Studies in this group include

the sweeping scheme proposed by Chen, Kandlur and Yu [2], the sorting-set algorithm devel-

oped by Gemmel [3], the SCAN-EDF strategy designed by Reddy and Wyllie [11], and the

hard real-time approach analyzed by Tindell and Burns [13]. The second group deals with

constrained block allocation, which limits the distance between successive blocks of a multi-

media stream. Studies in this group include the scattering parameter approach developed by

Rangan and Vin [10], the cluster strategy introduced by Gemmel and Christodoulakis [3, 4],

and the audio data placement work of Yu et. al. [14]. To a large extent, most of these propos-

als aim to minimize seek latencies so as to satisfy the continuity requirements of multimedia

streams. And most of them are developed from a design perspective.

For a large class of applications and systems, however, a good understanding of the

dynamic behaviour of the system is at least as important as the design. For instance,

consider news on-demand systems (e.g. [6]). Such a system typically has highly non-uniform,

and asynchronous arrivals of queries/requests. It is the intent of this paper to investigate

how to provide better dynamic support for such systems. More speci�cally, given a �xed

amount of bu�er space and a �xed disk bandwidth both pre-determined at design time, we

study how to maximize the throughput of a multimedia system, and minimize the response

time of queries, with the guarantee that all continuity requirements will be satis�ed. For a

system with �xed disk bandwidth and bu�er space, the response time of queries are primarily

governed by the utilization of disk and bu�ers. Thus, our approach is to utilize bu�ers and

the disk as e�ectively as possible. In particular, in this paper, we will report:

� a scheme that allows multiple streams to share bu�ers. We will analyze the importance

of bu�er sharing, at varying disk utilization levels and consumption/playback rates of

the streams. Our analyses show that bu�er sharing can lead to a 50% reduction in total

bu�er requirement. Given the fact that audio and video data requires a huge amount

of bu�er space, a 50% reduction indeed represents very substantial savings. Our pre-

liminary simulation results also provide further evidence showing the e�ectiveness of

bu�er sharing.

� three prefetching strategies: SP, IP1 and IP2. As will be demonstrated by Strategy

SP, straightforward prefetching may not be e�ective at all. In contrast, Strategies IP1

and IP2, which prefetch more intelligently than does SP, could be very valuable in

2

within each cycle t1 t2 : : : tn remaining time

disk activities read S1 read S2 : : : read Sn idle

Figure 1: Disk Activities within a Cycle

maximizing disk and bu�er utilizations, as well as system throughput. Our prelimi-

nary simulation results indicate that IP1 and IP2 can lead to a 40% improvement in

throughput.

The organization of the paper is as follows. Section 2 presents a preliminary analysis

on periodic retrieval of multiple streams, and gives several basic equations needed in later

analyses. Section 3 analyzes the importance of bu�er sharing. Section 4 introduces and

analyzes the prefetching strategies. Section 5 presents preliminary simulation results. Section

6 discusses how to support the proposed techniques in a multiple disk environment, and how

to support data streams that are non-contiguously placed on disks.

2 Preliminary Analysis: Periodic Retrieval of Multi-

ple Streams

As observed in [4, 10], the most natural way to process multiple streams simultaneously is

to interleave the reading of the streams in a cyclic fashion. In this paper, we assume that

within all the cycles/periods, streams are read in a �xed order, cf. Figure 1. [2, 3] explore

the bene�t of allowing the reading order to change from one period to another, so as to

minimize total seek time. We will discuss this strategy of variable reading order in greater

details later.

2.1 De�ning Disk Utilization

Let there be n multiple streams denoted by S1; : : : ; Sn. Let the consumption rate 1 of Stream

Si be Pi, and the amount of time reading Si in each period be ti. Then if si;j denotes the

seek (or switching) time from Si to Sj, we have: t1 + : : :+ tn + s1;2 + : : :+ sn;1 � t, where

t denotes the total length of the cycle. To simplify notations, let s = s1;2 + : : :+ sn;1. Then

the disk utilization, �, is given by:

� =
t1 + : : :+ tn + s

t
(1)

Figure 2 summarizes the meanings of the symbols to be used in this paper.

1The consumption rate refers to the rate the data obtained from disk are consumed. For an uncompressed

stream, its consumption rate is the same as its playback rate.

3

Symbol Meaning of Symbol

Bmax maximum number of available bu�ers

B total bu�er consumption of n streams

Bshar total bu�er consumption of n streams with bu�er sharing

Bi bu�er consumption of Stream Si
Bl block size in non-contiguous placement

G seek time between non-adjacent blocks in non-contiguous placement

P total consumption rate of n streams

Pi consumption rate of Stream Si

P
pft

i
consumption rate of Stream Si after prefetching

R maximum disk reading rate

Si the i-th stream

s total switching time within a cycle

si;j switching time between Streams Si and Sj
t length of a cycle

ti reading time for Si within a cycle

Ti length of Stream Si (in seconds)

� disk utilization

Figure 2: Meanings of Symbols Used

2.2 Determining ti

Now let us take a closer look at each Stream Si. The analysis below assumes that apart from

the seek required for switching from Si�1 to Si, no extra seek is needed throughout time ti
when Si is being read. This can be achieved by using the technique of storing data in clusters

proposed in [3], or by storing data contiguously (e.g. such as in a spiral optical disk). In

Section 6.2, we will relax this assumption to handle other situations of data placement.

Within each period, the total amount of data consumed by Si is t � Pi, and the amount

read for Si is ti � R, where R is the maximum disk reading rate. Thus, the continuity

requirement of Si can be expressed as:

ti �R � t � Pi (2)

However, in order to reduce the number of bu�ers used for each stream, we have:

ti �R = t � Pi (3)

From Equation 3, it is easy to see that ti

tj
= Pi

Pj
. In other words, to minimize bu�er consump-

tion, the reading time for each stream should be proportional to its consumption rate. Let P

denote the total consumption rate, i.e. P = P1 + : : :+ Pn. Then by combining Equations 1

and 3, ti can be determined by:

ti = (t � �� s) �
Pi

P
(4)

4

2.3 Determining a Lower Bound of t

The above equation gives the amount of reading time for Si in terms of t, the length of the

cycle. In the following, we establish a lower bound on t, by combining Equations 2 and 4:

t �
s �R

R � �� P
(5)

This equation leads to two interesting observations. First, the equation is valid only if

(R � �� P) > 0. Even if the disk utilization � is set to the maximum 1, it is necessary that

R > P . This is the most obvious admission control criterion. That is, without violating

their continuity requirements, a system cannot admit so many streams that their total con-

sumption rate P exceeds the disk bandwidth. In Section 4, we will show how this constraint

can be relaxed by prefetching.

Second, t is inversely proportional to �. In other words, the longer the length of the

period, the less utilized the disk becomes (for the n streams). This is because as t increases,

the proportion of time wasted in switching (i.e. s

t
) within every cycle becomes smaller. In

other words, a longer period corresponds to a higher percentage of useful work (i.e. data

transfer) done by the disk, and the disk becomes more e�ective. Hence, the proportion of

the time when the disk is idle becomes higher. In Section 4, we will show how to make use

of this relationship between t and � to maximize prefetching.

2.4 Bu�er Requirements of Multiple Streams

Recall from the above analysis that the basic strategy to support multiple streams simulta-

neously is that for each Stream Si, enough data of Si must be read in time ti to cover the

consumption of Si for time t. To achieve this, bu�ers are needed for Si. In particular, the

maximum number of bu�ers is needed right after Si has just �nished reading. Thus, the

number of bu�ers required by Si is: Bi = ti � R � ti � Pi. Combining with Equation 4, we

get:

Bi = Pi � (R � Pi) �
t � �� s

P
(6)

Thus, the total bu�er requirement of the n streams is:

B =
nX

i=1

Bi =
t � �� s

P
�

nX

i=1

Pi � (R � Pi) (7)

Two observations can be drawn from the above equation. First, it is obvious from the

equation that the longer the period length t, the higher the value of B is. Second, if Bmax is

the maximum number of bu�ers available in the system, it is necessary that B � Bmax. By

substituting Equation 7 into B � Bmax, we get an upper bound of the cycle length t:

t �
Bmax � P

� �
P

n

i=1 Pi � (R � Pi)
+

s

�
(8)

5

This equation can be combined with Equation 5 to provide the following admission control

policy.

Admission Control Let S1; : : : ; Sn�1 be all the streams in the current cycle, and Sn be the

stream to be decided whether admission is possible.

1. Compute the lower bound (of t) based on Equation 5 and the upper bound based on

Equation 8.

2. If the lower bound is strictly greater than the upper bound, then it is not possible to

add Sn without violating continuity requirements.

3. Otherwise, Sn can be admitted to form a new cycle, and any value between the lower

and upper bound can be chosen as the length of the new cycle. 2

In Section 4, we will return to this issue of picking a value for t, and analyze in greater

details how to do that to maximize prefetching.

3 Bu�er Sharing and its Bene�ts

Thus far, we have analyzed the handling of multiple streams from the viewpoints of disk

bandwidth and bu�er allocation. As de�ned in Equation 7, the total bu�er requirement of

n streams is based on the assumption that each stream Si occupies Bi bu�ers within each

cycle. However, as will be shown in Figure 3, Si does not need all Bi bu�ers at all times. In

fact, almost always Si's bu�er requirement is less than Bi. Thus, a simple way to minimize

total bu�er consumption and thus to maximize bu�er utilization is to allow the n streams to

share bu�ers. In this section, we will analyze the bene�ts of bu�er sharing at varying disk

utilization levels and consumption rates of the streams.

3.1 Streams with Identical Consumption Rates

3.1.1 A Simple Example

Figure 3 shows a simple situation when there are 3 streams S1; S2; S3 in the cycle, all of which

has the same consumption rate. Thus, by Equation 4, each stream has an equal amount of

reading time, i.e. same ti. Since the cycle length t is normally much larger than the total

switching time s, Figure 3 shows the simpli�ed situation when ti = t=3. Let us consider

the total bu�er requirement at time 4t=3, at which point S1 has just �nished reading and

requires b bu�ers, the maximum number of bu�ers that it ever needs. S2, which is about to

start reading, has run out of data. Thus, the bu�er requirement of S2 is 0. As for S3, there

were b bu�ers at time t, but at time 5t=3, all the data in those bu�ers will be consumed.

Thus, at the current time 4t=3, S3 needs b=2 bu�ers. Hence, the total number of bu�ers

required by all 3 streams is b+ 0 + b=2 = 3b=2. Note that if all the streams have identical

consumption rates, their total bu�er requirement does not change with time. Thus, 3b=2

6

t/3 time

buffers

3b/2

3b

4t/3

b

one cycle t

S S S321

Figure 3: Bu�er Sharing for 3 Streams with Identical Consumption Rates

bu�ers are all the 3 streams need. However, without bu�er sharing, 3b bu�ers are required.

Thus, bu�er sharing gives a 50% reduction in total bu�er consumption.

In the following, we will �rst analyze more formally the situation when all the streams

have the same consumption rate. In particular, we will �rst study the case when the disk

is fully utilized. We will then generalize our analysis to the case when the disk utilization

� is less than 1. In Section 3.2, we will analyze the situation when the streams may have

di�erent consumption rates.

3.1.2 Disk Utilization � = 1

Since the consumption rates are the same, the individual bu�er requirement Bi is the same,

which is equal to b say. Similarly, the reading time ti for each stream is the same, say equal

to t0. Now let us consider the time when Sn has just �nished reading. The following table

shows the bu�er requirement of each stream at that point.

Streams S1 S2 S3 : : : Sn

Bu�ers needed 0 1
n�1

b 2
n�1

b : : : n�1
n�1

b

First, Sn has just �nished reading, thus requiring all b bu�ers. S1 is about to start reading.

Thus, it has 0 bu�ers of data at this point. S2, at an earlier point in time, had b bu�ers

of data which are supposed to cover the consumption of S2 for a period of (n � 1) � t0.

At the point when Sn has just �nished reading, (n � 2) � t0 has elapsed, or alternatively,

S2 will run out of data t0 seconds later. Thus, the current level of bu�ered data for S2 is
t0

(n�1)�t0
b = 1

n�1
b. Similarly, it is not di�cult to see that the current level of bu�ered data for

S3 is
2

n�1
b. Hence, the total number of bu�ers needed is:

Bshar =
nX

i=1

i� 1

n� 1
b =

n

2
b (9)

7

In this case, without bu�er sharing, the total number of bu�ers required is B = nb. Thus,

bu�er sharing reduces total bu�er consumption by 50%.

Example 1 Consider a homogeneous set of streams whose consumption rate is 240KB per

second. (This is based on 24 frames per second where each frame is JPEG compressed to

10KB [12].) Given a disk whose maximum reading rate is 1000KB per second, 4 streams can

be supported simultaneously, provided that there are enough bu�ers. Let the total switching

time be s = 0:1 secs. Furthermore, let us pick the minimum cycle length, which corresponds

to � = 1. Then by Equation 5, t = 2:5 secs. By Equation 6, the maximumbu�er requirement

for each stream is b = 456KB. Thus, without bu�er sharing, about 2MB of bu�er space is

needed. But with bu�er sharing, only 1MB is needed.

Alternatively, if the system only has 1MB of bu�er space, the number of streams that

can be supported simultaneously without bu�er sharing is only 2. With bu�er sharing, the

system can double the throughput and support all 4 streams. 2

3.1.3 Disk Utilization � < 1

The above analysis assumes that the disk utilization � is equal to 1. In the following, we

study the situation when � < 1. In other words, there is an idle period within each cycle (cf:

Figure 1). This complicates the calculation of bu�er requirements at a particular point in

a cycle in that within the idle period, no stream is reading, and all streams are consuming

data. Thus, more bu�ers are needed for each stream. This is reected in the following

table which generalizes the one shown in Section 3.1.2. The table below shows the bu�er

requirement of each stream at the point after Sn has �nished reading:

Streams S1 S2 S3 : : : Sn

Bu�ers needed cb (c+ �

n��
)b (c+ 2�

n��
)b : : : (c+ (n�1)�

n��
)b

where c = 1��

1��=n
, which reects the length of the idle period relative to the length of the cycle.

It is easy to see that when � = 1, the above table reduces to the one shown in Section 3.1.2.

A simple summation of the entries in the table above yields:

Bshar =
nX

i=1

(cb+
(i� 1)�

n � �
b) =

2n � n� � �

2(n� �)
� nb (10)

Notice that when � = 1, 2n�n���

2(n��)
�nb reduces back to nb=2, which is the result obtained before.

Furthermore, it is not di�cult to see that for a �xed n, Bshar decreases as � increases. In

other words, the percentage savings in bu�er space brought about by bu�er sharing increases

as � increases, and achieves its maximum of 50% when � = 1.

Finally, according to Equation 6, b is equal to (R� P

n
) � t���s

n
. Thus, the full equation of

Bshar is:

Bshar = (R�
P

n
) � (t � �� s) �

2n � n� � �

2(n� �)
(11)

8

This equation can replace Equation 7 (and thus Equation 8) in the admission control test

shown in Section 2.4.

3.2 Streams with Di�erent Consumption Rates

So far, we have analyzed bu�er sharing among streams that have the same consumption

rate. In the rest of this section, we analyze the situation for n streams with heterogeneous

consumption rates P1; : : : ; Pn. The major complication here is that with heterogeneous

consumption rates, the time point within a period at which the total bu�er requirement

reaches the maximummay not necessarily be right after Stream Sn has just �nished reading.

In fact, this point of maximum total bu�er requirement may occur right after any Si has

�nished reading. To analyze the situation more thoroughly, we introduce the following

notations. Let BSi stand for the bu�er requirement of Stream Si when bu�ers are shared.

Let BAi stand for the total bu�er requirement of all the streams right after Si has just

�nished reading.

At the beginning of the cycle when S1 is about to start its reading, the bu�er requirements

of all the streams are:

BS1 = 0;

BS2 =
t1

t� t2
B2;

BS3 =
t1 + t2

t� t3
B3;

:::

BSn =
t1 + t2 + :::+ tn�1

t� tn
Bn (12)

The above formulas are easy to get. As S1 is about to start reading, it has no data left,

requiring no bu�er at this moment. The bu�ered data of S2 will last the time t� t2, and its

reading is still t1 time away. Thus, right now the amount of bu�ered data is t1=(t� t2). The

bu�er requirements of all the other streams at this moment can be calculated in a similar

way. Adding up all the above formulas yields:

BA0 =
nX

i=1

BSi =
nX

i=2

P
i�1
j=1 tj

t� ti
Bi (13)

After getting BA0, it is not di�cult to get BA1; BA2, etc. This can be done by setting up

the di�erence equations that computes the di�erence in total bu�er requirement between

the time point Si has just �nished reading and the time point Si+1 has �nished reading. For

instance, at the time point when S1 has �nished reading, the bu�er required by S1 will be

increased from 0 to B1. However, for all the other streams, since t1 time has elapsed, their

bu�er requirements decrease by Bj � t1=(t� tj). Thus, it is obvious that

BA1 = BA0 +B1 �

nX

j=2

t1

t� tj
Bj (14)

9

More generally, we have:

BAi+1 = BAi +Bi+1 �

nX

j=1;j 6=i

ti+1

t� tj
Bj (15)

for all 1 � i � n. Thus, by using Equations 13 and 15, all the values of BA1; : : : ; BAn can

be obtained. The maximum of these values gives the total bu�er requirement when bu�ers

are shared among streams with heterogeneous consumption rates:

Bshar = Max1�i�n fBAig (16)

As an interesting observation, if the streams are served in ascending order of consumption

rates, the maximum value will occur at the point when Sn has just �nished reading. In this

case, BAn will be Bshar, and there is no need to �nd the maximum according to the above

equation.

We can use the general formula above to verify the results presented in previous sections.

If all the consumption rates Pi's are the same, it is easy to see BAi+1 is always greater than

or equal to BAi. That is to say, the maximum bu�er requirement always occurs at the end

of the reading of Sn (cf: Sections 3.1.2 and 3.1.3). In particular, for the same consumption

rate, Equation 13 becomes BA0 =
n�(n�1)

2(n��)
b, where Bi = b for all i. Similarly, Equation 15

becomes BAi+1 = BAi +
n�n�

n��
b. Thus, we have:

Bshar = BAn = BA0 + n �
n� n�

n � �
b =

2n � n�� �

2(n � �)
� nb (17)

This is exactly the same as Equation 10.

3.3 Discussions

Thus far, we have analyzed the bene�t of sharing bu�ers. However, from an implementation

point of view, bu�er sharing is not easy to support. This is because even given Bshar number

of total bu�ers, the bu�er manager needs to keep track of the exact bu�er locations for

each Stream Si. This bookkeeping is complicated by the fact that the bu�er locations for Si

keep changing from one cycle to another. However, since bu�er sharing can lead to a 50%

reduction in total bu�er consumption, in ongoing work we are developing implementation

schemes to support bu�er sharing.

All the analyses presented so far are based on a �xed reading order of streams within

a cycle. [2, 3] explore the bene�t of allowing the reading order to change from one period

to another. The gain is a reduction in total seek time, whereas the price to pay may be a

doubling of bu�er requirement. In future work, we will study whether we can get the best

of both worlds by integrating bu�er sharing with variable reading orders.

In sum, in this section, we have analyzed the bene�ts of bu�er sharing. First we have

considered the situation when all the streams are of identical consumption rate, at varying

10

levels of disk utilization. Then we have extended our analysis to the situation when streams

may have di�erent consumption rates. Our analyses show that bu�er sharing can reduce

total bu�er requirement by as much as 50%. In Section 5, we will provide simulation results

further demonstrating the e�ectiveness of bu�er sharing.

4 Prefetching Strategies

We have argued that for a system with �xed disk bandwidth and bu�er space, the key to

maximizing system throughput is to maximize the utilization of the disk and the bu�er

space. In the previous section, we have studied how bu�er sharing can reduce total bu�er

requirement and improve the utilization of bu�ers. In this section, we will analyze how

prefetching can improve the utilization of the disk. After discussing the general bene�ts of

prefetching, we will present a straightforward prefetching algorithm called SP. But we will

argue that SP may not be e�ective because of its simplicity. We will then introduce two

more intelligent prefetching strategies: IP1 and IP2. In Section 5, we will present simulation

results comparing the e�ectiveness of these three prefetching strategies.

4.1 General Bene�ts of Prefetching

On receiving a new request for a stream (referred to as a new query from now on), the

admission controller that we have discussed so far simply checks if there are enough disk

bandwidth and bu�ers to satisfy the new query, using Equations 5 and 8. If there are

enough resources, the query is activated. Otherwise, the query sits idle in the waiting queue.

Consequently, there are resources { bu�ers and disk bandwidth { that are not utilized at

all 2. For instance, consider the situation mentioned in Example 1. If the disk bandwidth

can support only 4 streams and there are 2MB bu�ering space, bu�er sharing would render

1MB idle. In general, we measure the performance of our system by its throughput and

the response time of queries. But given a system with pre-determined (at design time) disk

bandwidth and amount of bu�er space, the response time of queries are primarily determined

by the utilization of disks and bu�ers. Thus, our goal here is to try to use these resources

as much as possible. More speci�cally, in this section, we explore how data prefetching can

maximize resources utilization, and thus lead to an increase in system throughput.

There are at least 3 ways that prefetching can help a query.

� First, if a query has a consumption rate Pi that is larger than R, then even after a query

is activated (i.e. becoming one of the queries served in a cycle), the query cannot be

consumed immediately without violating the continuity requirements. Thus, to reduce

the time between activation and the beginning of consumption, a system can prefetch

portion of this query while it is still waiting in the waiting queue.

2In this paper, we only consider FIFO as the queueing discipline. It has the advantage of being simple

and fair. Adopting other queueing discipline may require additional work to ensure fairness.

11

time

bytes

prefetched
amount

pf

slope = new rate

slope = original rate

Figure 4: Reducing Consumption Rate by Prefetching

� Second, even if a query Sn+1 has a consumption rate Pi less than R, prefetching portion

of this query before activation may reduce the response time of the query. To see that,

let say that S1; : : : ; Sn are the activated queries. At some point, query S1 has �nished,

and Sn+1 is activated. For reasons apparent later in Section 5.1, the reading order

may become S2; : : : ; Sn+1. If no data has been prefetched for Sn+1, then Sn+1 cannot

be consumed until Sn+1 starts reading, which is at the end of the cycle. However, if

there is su�cient amount of prefetched data of Sn+1, consumption of Sn+1 can start

immediately at the beginning of the cycle. Thus, there is a di�erence in response time

which may be as large as one cycle length.

� Third, prefetching portion of this query before activation has the e�ect of reducing

the e�ective consumption rate of the query after activation. This is illustrated by the

simple diagram in Figure 4. The solid line represents the original consumption curve,

whose slope is given by the consumption rate Pi. If an amount pf is prefetched, then

the new, prefetched consumption rate is given by the slope of the dotted line. A simple

analysis reveals that if Ti is the length of the query, the new, prefetched consumption

rate is given by:

P
pft

i = Pi �
pf

Ti
(18)

Since the new rate is less than the original rate, there is a possibility that the new

rate may pass the admission control test, while the old one may not. Whenever this

happens, the response time of the query is substantially reduced (cf: Example 3 later).

4.2 A Simple Prefetching Strategy: SP

Just like normal data retrieval from disk, prefetching requires both disk bandwidth and

bu�ers. One obvious way to allow prefetching to happen is to dedicate a certain level of

disk bandwidth and bu�ers to prefetching. But this would back�re as it reduces the disk

bandwidth and bu�ers available to activated queries. Thus, we make sure that prefetching

12

is not done at the expense of activated queries. To this end, recall that the cycle length t

for the activated streams/queries S1; : : : ; Sn are bounded below and above respectively by

Equations 5 and 8. If the system does not support prefetching at all, any value between the

upper and lower bounds can be picked as the value of t. However, to support prefetching,

an immediate question to answer is how to pick t so as to maximize prefetching, but not at

the expense of the activated queries.

In fact, setting t to any value between the upper and lower bounds does not have any

inuence whatsoever on the completion times of the activated queries, as the completion

time of a query is determined by its consumption rate and length 3. Thus, as long as a value

is picked between the lower and upper bounds, the activated queries will not be a�ected. Let

us consider setting t to its lower bound. Then as discussed in Section 2.3, this corresponds to

a disk utilization � of 1. In other words, all the disk bandwidth is used up for the activated

queries, and nothing is left for prefetching. On the other hand, consider setting t to its upper

bound. From the point of view of disk bandwidth allocation, this time there is ample room

for prefetching because as discussed in Section 2.3, a longer cycle length corresponds to a

lower disk utilization �. However, as discussed in Section 2.4, the trouble is that all the

bu�ers are used up for the allocated queries. Thus, at the end, no prefetching can be done.

Hence, the question to address is which value of t in between the upper and lower bounds

maximizes prefetching.

There is actually another factor that a�ects the amount of prefetching that can be done.

All the above analysis is based on the assumption that the cycle for the current collection

of activated queries keep on going. Let Tfinish denote the time the next activated query will

have �nished. The range bounding t is only valid before Tfinish, after which the current cycle

has to be changed anyway, and new calculations are required. Thus, the consideration of

Tfinish suggests a simple strategy (referred to as SP) to pick t so as to maximize prefetching.

It equates the amount of data that can be retrieved in time Tfinish with the amount of bu�ers

that are available. This is formalized below. First, it is obvious that the amount of data that

can be prefetched in time Tfinish is: Dpf = Tfinish �R � (1� �). By substituting Equations 3

and 4, we get:

Dpf = Tfinish �R � (1�
s

t
�

P

R
) (19)

On the other hand, according to Equation 7, the bu�ers available for prefetching is given by:

Bpf = Bmax �B = Bmax �
t

R

nX

i=1

Pi � (R � Pi) (20)

To maximize prefetching, SP sets Dpf = Bpf , which is equivalent to:

Tfinish �R � (1 �
s

t
�
P

R
) = Bmax �

t

R

nX

i=1

Pi � (R� Pi) (21)

3This is assuming normal termination, not preempted by such events as user quitting prematurely or

system failures.

13

within each cycle t01 t02 : : : t0
n

remaining time

disk activities read S1 read S2 : : : read Sn prefetch Sn+1

Figure 5: Cyclic Activities with Prefetching

This is a quadratic equation in t in the form of at2 + bt + c = 0. Solving this quadratic

equation in the standard way gives a positive solution v0 (and a negative solution). If v0 falls

within the lower and upper bounds of t, which occurs more often than not, v0 is the value

of t. Otherwise, if v0 is strictly less than the lower bound, t is set to the lower bound. And

if v0 is strictly greater than the upper bound, the upper bound becomes the value of t.

The equations presented above do not assume bu�er sharing, and are based on Equation 7.

Since prefetching is orthogonal to bu�er sharing, a similar set of equations can be derived for

the bu�er sharing case based on Equation 11. Strategy SP is summarized in the following.

Strategy SP Let S1; : : : ; Sn be all the activated queries, as allowed by the admission con-

troller. Let Sn+1 be the query at the head of the waiting queue.

1. Use Equation 21 to determine the length t of the cycle for S1; : : : ; Sn.

2. Use the remaining disk bandwidth and bu�ers to prefetch for Sn+1 at the end of each

cycle.

3. Prefetching stops when an activated query has �nished, or the system has run out of

bu�ers. 2

Figure 5 shows the disk activities within each cycle with prefetching. It di�ers from Figure 1

in two respects. First, its cycle length may be di�erent from that without prefetching.

Thus, the reading times for the activated queries are t01; : : : ; t
0

n
, instead of t1; : : : ; tn. More

importantly, after the activated queries have �nished reading, the disk may no longer be idle,

and may be engaged in prefetching Sn+1.

4.3 Motivation for a More Intelligent Prefetching Strategy

Prefetching Strategy SP maximizes prefetching for the query Sn+1 at the head of the waiting

queue. Doing so, it may minimize the response time of Sn+1. However, as a result, Sn+1

may use up too much system resources, particularly free bu�ers { for its own good, but not

necessarily for the overall bene�t of the system. More speci�cally, SP just lets Sn+1 prefetch

as much as possible, but does not consider whether Sn+1 really needs that much data to

get started once an activated query has �nished. As shown in the example below, too much

prefetched data only occupy bu�er space, without doing any good to system performance.

Example 2 Consider a situation similar to the one described in Example 1. There are 4

activated queries, each with a consumption rate 240KB/s. And there is 1MB of bu�er space

14

left. Now consider a scenario where the query S5 is the only query in the waiting queue with

the same consumption rate. As discussed before, SP would allow S5 to prefetch as much as

possible, using up all 1MB of bu�er space. Eventually, when one of the activated queries has

�nished, S5 would be activated. Let us consider the potential bene�ts of prefetching 1MB

of S5. Among the three general bene�ts of prefetching discussed in Section 4.1, the only

bene�t applicable in this case is to reduce the response time of S5 by at most a cycle length.

However, as calculated in Example 1, 456KB is all that is needed for S5 within a cycle. In

other words, 456KB is su�cient to minimize the response time of S5. Thus, the question

is whether prefetching an extra 544KB can lead to any gain. The answer is no, because

once the consumption of S5 begins, its completion time depends entirely on its length and

its consumption rate. Giving extra bu�ers does not help in any way. And in fact, it can be

harmful to the entire system as there is now 544KB less of bu�er space available. 2

The above example suggests that while maximizing prefetching, the SP's approach of

prefetching just for the query at the head of the waiting queue may not be su�cient. Thus, for

a more e�ective prefetching strategy, the questions to be answered are: a) how to maximize

prefetching, and b) how to determine how much to prefetch for a query in the waiting queue.

The following example shows how looking ahead beyond the query Sn+1 at the head of the

waiting queue can help to determine the amount to prefetch for Sn+1.

Example 3 Consider the situation discussed in the previous example again. There are 4

activated queries with consumption rate 240KB/s each. Suppose there are now two queries

in the waiting queue: S5 and S6 both with consumption rate 240KB/s. Further assume that

the disk has a maximum reading rate of R = 1150KB/s, and there is now 1.5MB of bu�er

space. Now let us consider the time when one of the activated queries has �nished, and

consider two di�erent amounts of prefetched data of S5.

First, assume that 456KB of S5 has been prefetched, which would minimize the response

time of S5. By Equation 18, the new, prefetched consumption rate of S5 is 240�456=30 = 225,

assuming that the total length of S5 is 30 seconds. The question is whether S5 and S6

can be activated simultaneously. The answer is no because the total consumption rate

P = 3 � 240 + 225 + 240 = 1185 > 1150.

Alternatively, assume that 1500KB of S5 has been prefetched. Then, by Equation 18, the

prefetched consumption rate of S5 is 240�1500=30 = 190. In this case, the total consumption

rate P = 3 � 240 + 190 + 240 = 1150 which is � R = 1150. 4 Thus, as long as there are

enough bu�ers to accommodate S6, both S5 and S6 can be activated, reducing drastically

the response time of S6. Thus, the consumption rate of S6 can be used to determine an

appropriate amount to prefetch for S5. 2

4In practice, it is not so simple just to ensure that the total consumption rate is not greater than the

maximum reading rate. As shown later in Strategy IP1, what needs to be done is a full admission control

test. But here we simplify the situation to illustrate the point that prefetching can lead to the activation of

extra queries.

15

The above example shows that prefetching S5 for the appropriate amount can lead to a

gain for S5 and other queries in the waiting queue. It also leads to an interesting question:

how to distribute prefetching among queries in the waiting queue. In other words, given

the same amount of bu�er space available for prefetching, how much of each query in the

waiting queue should be prefetched so as to maximize the reduction in total consumption

rate, thereby maximizing the number of queries that can be activated.

To answer this question, let us consider a \marginal gain" analysis on the bu�ers, quite

similar to the one used in [8]. More speci�cally, for a query Si, with an original consumption

rate Pi, we calculate the reduction in consumption rate we would obtain if we prefetch one

extra KB of Si. By Equation 18, this value is equal to Pi �P
pft

i which is equal to 1
Ti
. Thus,

given queries S1; S2 whose lengths are T1; T2 respectively, prefetching more for the stream

whose length is the shorter between T1 and T2 would result in a sharper drop in the combined

consumption rate of the two streams. In other words, if the combined consumption rate has

to drop below a certain value in order to pass admission control, prefetching more for the

shorter query would require fewer bu�ers than prefetching for the longer one. Consider the

following example.

Example 4 The previous example shows that in order to activate both S5 and S6 after one

other query has �nished, prefetching S5 for 1500KB will do. Suppose the length of S6 is

15 seconds. Then solving the equation P = 3 � 240 + 240 + (240 � pf

15
) = 1150 indicates

that if we prefetch S6 entirely, only an amount pf of 750KB would be su�cient to activate

both S5 and S6. Note that this amount is the bare minimum that allows both queries to be

activated. If there are extra bu�ers, we can do more by prefetching one cycle of S5 as well,

so that not only are they activated, but both S5 and S6 can also be consumed immediately

at the beginning of their �rst cycle. 2

4.4 Prefetching Strategy IP1

The prefetching strategy below, called IP1 which stands for \Intelligent Prefetching," �nds

the shortest query to prefetch, so as to maximize prefetching and the number of queries that

can be activated once an active query has completed.

Strategy IP1 Let S1; : : : ; Sn be all the activated queries, as allowed by the admission

controller. Among them, let Sj (1 � j � n) be the query that will �nish the earliest. Also

let Sn+1; Sn+2; : : : be the queries in the waiting queue, and Bfree be the total number of

bu�ers available to prefetching.

1. Use Equation 21 to determine the length t of the cycle for S1; : : : ; Sn.

2. Initialize target to Sn+1, and candidateSet to Sn+1 as well. Also set finalAmt to 0.

3. (** �rst chance **)

If the combined consumption rate of all the streams in candidateSet is not greater

than the consumption rate of Sj (i.e. Pj �
P

Sk2candidateSet
Pk), go to Step 6.

16

4. (** second chance **)

Otherwise,

(a) Calculate the necessary prefetched consumption rate P
pft

target of target so that all

the streams in candidateSet can possibly be activated when Sj has �nished, i.e.

P
pft

target +
P

Sk 6=target;Sk2candidateSet
Pk � Pj + (1 � �) �R.

(b) Use Equation 18 to calculate the amount that needs to be prefetched in order to

reduce the consumption rate of target to P
pft

target,

i.e. targetAmt = (Ptarget � P
pft

target) � Ttarget.

(c) If targetAmt > Bfree, then go to Step 5 to try the next condition.

(d) Otherwise, use the admission control test given in Section 2.4 to determine if all

streams in candidateSet, including the prefetched one, can get in a cycle with all

the current activated queries except Sj. If the admission control test fails, go to

Step 5.

(e) Otherwise, set finalTarget to target and finalAmt to targetAmt. Go to Step

6.

5. (** third and �nal chance: both Steps 3 and 4 fail **)

(a) Set targetAmt to Bfree.

(b) Use Equation 18 to calculate the prefetched consumption rate P
pft

target of target,

i.e. P
pft

target = Ptarget �
targetAmt

Ttarget
.

(c) Use the admission control test given in Section 2.4 to determine if all streams in

candidateSet, including the prefetched one, can get in a cycle with all the current

activated queries except Sj. If the admission control test fails, go to Step 7.

(d) Otherwise, set finalTarget to target and finalAmt to targetAmt. Go to Step

6.

6. (** try to see if more queries can be activated **)

Consider the next query Snext in the waiting queue that is not in candidateSet. Add

Snext to candidateSet. Compare the length of Snext with the length of target. Set

target to be the stream with the shorter length. Go back to Step 3.

7. (** no more queries can be activated **)

If finalAmt > 0, prefetch finalTarget for the amount finalAmt. 2

In the above strategy, the purpose of candidateSet is to ensure FIFO in the activation

of queries, even though as argued in the \marginal gain" analysis above, it is possible to

prefetch Sk+1 without prefetching Sk. In each iteration of IP1, the stream with the shortest

length in candidateSet is chosen to be the target stream for possible eventual prefetching.

Then there are three possibilities for all the queries in the candidateSet to be activated,

17

Calculate t

Initialization

First Chance

Second Chance

Third Chance

Add New Query

STOP

No

No

No

Yes

Yes

Yes

Figure 6: Control Flow of IP1

once Sj has completed (i.e. the next activated query to �nish). The �rst case is when the

combined consumption rate of all those in candidateSet does not exceed the consumption

rate of Sj . In this case, all queries in candidateSet are guaranteed to be activated once Sj

has completed. In addition, nothing needs to be prefetched in this case 5. Execution then

goes to Step 6 to try to see if more queries in the waiting queue can be activated. A new

target is found, and a new iteration begins.

If the �rst condition fails in Step 3, execution goes to Step 4 to see if the second possibility

would work out. In this case, IP1 tests if a su�cient amount of target can be prefetched

so that all queries in candidateSet can be activated, provided that this amount does not

exceed the number of bu�ers currently available to prefetching (cf. Step 4c). If admission

control in Step 4d veri�es that all queries can be activated with the help of prefetching, both

target and the prefetching amount targetAmt are recorded in the variables finalTarget

and finalAmt. Execution then goes to Step 6 to try to add another query from the waiting

queue to candidateSet, and a new iteration begins.

If both the conditions in Steps 3 and 4 fail, IP1 tries the \last resort." It simply tests

to see if using all free bu�ers to prefetch for target will be su�cient to activate all queries

in candidateSet. If admission control returns a positive answer, all the necessary operations

will be taken in Step 5d and 6, and a new iteration begins.

If all three conditions in Steps 3, 4 and 5 fail, it is an indication that not all queries in

5This is the case as far as query activation is concerned. But if there are enough bu�ers available at the

end, queries in candidateSet may be prefetched so that they can be consumed immediately at the beginning

of their �rst cycle.

18

candidateSet can be activated. More precisely, all but the last added query in candidateSet

can be activated once Sj has completed. Step 7 prepares for this event by prefetching

finalTarget for the amount finalAmt. Figure 6 illustrates the main control ow of IP1.

Notice that as presented above, IP1 is only concerned with maximizing the number of

queries that can be activated. As discussed in the previous example, IP1 can easily include a

Step 8 that would prefetch one cycle worth of data for each query that would be activated, so

that every one can be consumed immediately at the beginning of the �rst cycle. Furthermore,

in the case when no query in the waiting queue can be activated even after Sj has completed

(i.e. Sn+1 is the only query in candidateSet), another thing Step 8 could do is to use SP

to prefetch as much as possible for Sn+1. This would take care of the situation when the

consumption rate of Sn+1 needs to be substantially reduced before Sn+1 can be activated.

Last but not least, the admission control used in IP1 above does not consider bu�er sharing.

Equation 11 can be used in the place of Equation 7 (and thus Equation 8) in admission

control, if bu�er sharing is used.

Example 5 Let us apply Strategy IP1 to the situation discussed in the previous example.

Let us assume that S1 is the activated query that will �nish the earliest. In the �rst iteration

of IP1, S5 alone is considered in Step 3. Since S5 has the same consumption rate as S1, S5

can certainly take the place of S1 and be activated once S1 has completed. Thus, execution

goes to Step 6, in which S6 is added to candidateSet. Since S6's length is shorter than S5's,

S6 becomes the new target.

In the next iteration of IP1, obviously Step 3 fails. Now based on the calculations given

in the previous example, the prefetched consumption rate of S6 is P
pft

target = 190KB/s, and

the prefetched amount is targetAmt= 750KB. Assuming that the admission control test in

Step 4d is passed, finalTarget is set to S6 and finalAmt to 750KB. Then in Step 6, another

query S7 is added from the waiting queue to candidateSet, and a new iteration begins.

Suppose S7 has the same rate and length as S6, and is the new target. It is not di�cult

to verify that Steps 3, 4 and 5 fail in this iteration. Thus, execution goes to Step 7, and the

�nal decision is that S6, which is finalTarget, will be prefetched for 750KB. As discussed

before, if there is a Step 8 in IP1 to minimize response time, S5 will also be prefetched so

that the consumption of S5 can start immediately at the beginning of its �rst cycle. 2

4.5 Prefetching Strategy IP2

As introduced above, Strategy IP1 involves testing three conditions (i.e., Steps 3, 4 and 5)

to �nd out if prefetching can take place. However, a closer examination of these conditions

reveal that the conditions are \heuristic" in that satisfying the conditions does not necessarily

guarantee eventual admissions of the queries in candidateSet. For instance, in Step 4 of IP1,

the values computed in Steps 4a and 4b may not be good enough to pass the test in Step

4d. A similar comment applies to Step 5. The bottom line is that the computation of IP1

may include many failed attempts in admission control, all of which increase the overhead

of running IP1. In developing another intelligent prefetching strategy, which we call IP2, we

19

aim to couple the calculation of the prefetched amount targetAmt together with admission

control. In particular, as will be shown below in IP2, we develop a quadratic equation in

targetAmt so that if there is a positive solution of targetAmt, admission control is guaranteed

to be successful, and thus no additional admission control test is needed.

To develop the quadratic equation and IP2, we need to consider in greater depth some

of the issues related to the prefetched bu�ers. The main issue is the time to release the

prefetched bu�ers, if some of the activated queries/streams have prefetched bu�ers. There

are two natural possibilities. The �rst one is to have the amount of prefetched bu�ers

gradually reduced as the stream is being consumed. This option, however, requires quite

complicated modeling and implementation. The other possibility is to assume that the

amount of prefetched bu�ers does not change until the stream is completely consumed.

Given its simplicity for implementation, we adopt this later option in our analysis.

Let Bpft denote the total amount of prefetched bu�ers belonging to the activated queries.

Then the maximum amount of bu�ers available to prefetching is: Bfree = Bmax �B �Bpft,

where as in previous sections, B denotes the total amount of bu�ers needed for the cyclic

reading of the activated streams, and Bmax denotes the total amount of bu�ers in the system.

To simplify our presentation, we use the variable D to denote targetAmt, the target amount

for prefetching. Then a necessary condition for prefetching to occur is:

D � Bfree = Bmax �B �Bpft (22)

Next, to couple admission control directly in the calculation of D, we consider again the

admission conditions given in Equations 5 and 8. 6 But now two considerations must be

taken into account. First, this is an admission control test to be considered Tfinish time

later, i.e., when one of the activated queries Sj has been completed. Second, the amount of

prefetched bu�ers must be included. These two considerations lead to two modi�cations to

Equations 5 and 8. First, the amount of bu�ers available to cyclic reading is no longer Bmax

in Equation 8. It should instead be Bmax�Bpft+B
pft

j
�D, where Bpft

j
denotes the amount

of prefetched bu�ers of the completed stream Sj. Second, the total consumption rates of all

the queries is no longer P in both equations. It should instead be:

P = (
nX

i=1;i6=j

Pi) + (
X

Sk 6=target;Sk2candidateSet

Pk) + (Ptarget �D=l)

= (
nX

i=1;i6=j

Pi) + (
X

Sk2candidateSet

Pk)�D=l (23)

where l denotes the length of target, the stream to be prefetched. It is not di�cult to

verify that these two modi�cations give rise to a quadratic inequality in D in the form of

aD2 + bD + c � 0, where the coe�cients a; b and c are de�ned by:

a =
s

l2
�

1

l

6Again, if bu�er sharing is used by the system, Equation 11 should be used in the place of Equation 8.

20

b = (
nX

i=1;i6=j

Pi) + (
X

Sk2candidateSet

Pk)�R +
Bmax �Bpft +B

pft

j
+ sR � 2sPtarget

l

c = (Bmax �Bpft +B
pft

j
)(R �

nX

i=1;i6=j

Pi �
X

Sk2candidateSet

Pk)�

s[
nX

i=1;i6=j

Pi(R� Pi) +
X

Sk2candidateSet

Pk(R� Pk)] (24)

We are now in a position to present Strategy IP2.

Strategy IP2 Replace Steps 4 and 5 of IP1 by:

4. Find out whether there exists a positive solution of D subject to Equation 22 and

aD2 + bD + c � 0 where a; b and c are de�ned in Equation 24.

(a) If such a solution cannot be found, go to Step 7.

(b) Otherwise, set finalTarget to target and finalAmt to the maximum positive

solution of D. Go to Step 6. 2

On �rst sight, the above computation of IP2 involving Equations 22 and 24 seems to be

terribly complicated. However, the computing overhead of IP2 is actually much smaller than

that of IP1. This is because by computing D directly, the overhead involved in all the failed

attempts carried out in Steps 4 and 5 of IP1 can now be avoided. What remains to be seen,

however, is whether IP2 is more e�ective than IP1, or vice versa. In the next section, we

will present simulation results that address this issue.

5 Preliminary Simulation Results

5.1 Details of Simulation Package

We have implemented a discrete-event simulation package to evaluate the techniques pro-

posed in this paper. The package runs under Unix on Sparc-stations, and consists of about

5,000 lines of C code. For ease of coding, all the queries to be executed in a simulation are

submitted to the waiting queue at the beginning of the simulation. Thus, the main outputs

of the simulation package do not include response times of queries, but include such statistics

as peak and average disk and bu�er utilizations, and the total time to complete all queries.

Furthermore, to make our simulations as close to reality as possible, we have implemented

the following features in our package.

� As observed in [10], a transient period is required before a new Stream Sn+1 can be

added to a (new) cycle. This is because the new cycle length t0 (for one more stream)

is strictly larger than the current cycle length t. Thus, if we directly serve Sn+1 at

the end of the current cycle, starvation will occur for all the queries S1; : : : ; Sn in the

current cycle, because they only have data bu�ered for a cycle of length t < t0.

21

Our simulation package handles the transient period in two steps. First, the cycle for

S1; : : : ; Sn is gradually increased from a length of t to t0. This is only possible if the disk

utilization � is strictly less than 1 (i.e. there is some free disk bandwidth for increased

data reading). Thus, when a cycle length is picked in admission control, � cannot be

chosen as high as 1. Our simulations indicate that it may take several seconds before

the length changes from t to t0. Once the length of the cycle for S1; : : : ; Sn reaches t0,

Sn+1 can be added to the end of the (transient) cycle, in e�ect starting the new cycle.

� When an activated query has completed, there are two ways to invoke the admission

controller. One way is to wait till that particular cycle ends; the other is to wake up the

controller immediately after the query has �nished (even amidst a cycle). The former

policy, while much easier to implement, does not optimize system performance, espe-

cially when the cycle length is long and the disk utility is low. We have implemented

the latter policy, and found out that system performance is improved.

� As discussed in Section 4.5, there are two ways to release prefetched bu�ers. One way

is to release the bu�ers gradually at the end of each cycle. The other way is to release

the bu�ers when the query has completed. The latter policy has been implemented.

Apart from making our simulation package as close to reality as possible, we have designed

and run our simulations based on real �gures (e.g. minimum and maximum seek times equal

to 5 and 25ms respectively). We will give further details on all the simulations presented

below.

5.2 E�ectiveness of Bu�er Sharing

In Section 3, we have analyzed that bu�er sharing can lead to a 50% reduction in total bu�er

requirement, when the disk utilization � is equal to 1. Here we simulated a situation when

� keeps changing and has an average value less than 1. In this series of simulation, we used

50 queries, each with consumption rate 240KB/s. The lengths of the queries were from 20

to 120 seconds, with the average being 60 seconds. In order to support a su�ciently high

number of concurrent queries, the maximumdisk reading rate was set to R = 2000KB/s. The

graph in Figure 7 shows the minimum bu�er space needed, when the number of concurrent

queries varies from 3 to 7 { with and without bu�er sharing. As expected, in all cases, bu�er

sharing requires less bu�er space than without bu�er sharing. The savings in bu�er space

was between 20% to 40%, depending on the average disk utilization.

5.3 E�ectiveness of Prefetching Strategies

In this series of simulation, we evaluated the e�ectiveness of our prefetching strategies. We

again used 50 queries, each with consumption rate 240KB/s, and length 90 seconds. The

maximum disk reading rate was set to 1000KB/s. The two graphs in Figure 8 show the time

taken to complete the 50 queries and the average disk utilization with varying amounts of

bu�er space. In both graphs, the x-axis is the amount of bu�er space, varying from 5MB to

22

Figure 7: Bene�t of Bu�er Sharing

8.5MB. In Figure 8(a), the y-axis is the total time taken to complete 50 queries using SP,

IP1 and IP2, normalized by the time taken without prefetching. Thus, the horizontal line at

1.0 in Figure 8(a) represents the situation without prefetching. With small amounts of space

available to prefetching, IP1 and IP2 do not lead to any gain in performance. However, as

more and more space becomes available, IP1 and IP2 are able to activate more and more

queries faster than if no prefetching is allowed. Consequently, the total time taken becomes

smaller. As shown in Figure 8(a), IP1 and IP2 could lead to a 30% savings in total time

taken. Alternatively, the throughput of a system using IP1 or IP2 could be 3/7 � 40%

higher.

The performance gain caused by IP1 and IP2 can be best explained by the graph in

Figure 8(b). If no prefetching takes place, the average disk utilization is around 0.8. But as

more bu�er space becomes available to prefetching, IP1 and IP2 are able to better utilize the

disk by prefetching, and the average disk utilization gradually climbs up to 1.0. Moreover,

not shown here, the utilization of bu�ers follows a similar trend.

Unlike IP1 and IP2, the simple prefetching strategy SP does not perform well at all. As

shown in Figure 8(a), not only does it not lead to any reduction in total time taken, but it

may also take longer than if no prefetching is allowed. As analyzed in Section 4.3, this is due

largely to the fact that SP uses up bu�ers in an unwise manner. As shown in Figure 8(b),

the average disk utilization for SP is still higher than if no prefetching is allowed. This is

another indication that while the disk is kept busy by prefetching, the way that SP conducts

prefetching is problematic and totally ine�ective.

Based on our simulations, IP1 and IP2 seem to be equally e�ective. This shows that the

23

(a) relative total time taken (b) average disk utilization

Figure 8: E�ectiveness of SP, IP1 and IP2

heuristic conditions used in IP1 are good enough in most cases. However, we should point

out that the actual times used in executing IP1 and IP2 are not included in the simulation.

As discussed in Section 4.5, IP2 has less computing overhead than IP1. In a real system,

this di�erence in overhead may have some impact on the overall performance of the system.

The series of simulation discussed above did not allow bu�ers to be shared. In another

series of simulation, we allowed bu�ers to be shared, and used the version of admission

control that is based on Equation 11, but not on Equation 7. The results of this series of

simulation were very similar to those presented above. The only di�erence was that bu�er

sharing saved a few hundred KBs of bu�er space, and made it available to prefetching. Thus,

the point when IP1 and IP2 started to show improvement now began a few hundred KBs

earlier than was shown in Figure 8(a).

In yet another series of simulation, we used 50 queries with identical consumption rate

but di�erent lengths. The results led us to the same conclusion: given su�cient amount of

bu�er space, IP1 and IP2 eventually outperform SP and the policy without prefetching, by

utilizing the disk and the bu�ers more e�ectively.

24

6 Further Extensions and Discussions

6.1 Extension to a Multiple Disks Con�guration

In previous sections, we have analyzed bu�er sharing and prefetching strategies in a single

disk environment. In the following, we will discuss how these proposed ideas can be supported

in a multiple disk environment, such as one using a RAID architecture [9].

There are several basic scenarios, depending largely on how the data are placed on disks.

If the data are completely replicated on all the disks (such as for a high degree of fault

tolerance), then we can simply treat all the disks as one logical disk unit whose combined

disk bandwidth is the sum of all individual disk bandwidths. In other words, we can replace

R in all our formulas with Rall =
P
Ri. Similarly, if the data are perfectly stripped on all

the disks, the entire collection of disks can be treated logically as a single disk unit. And

again, replacing R with Rall will be su�cient.

In the following, we will focus our attention on a more complicated situation in which:

a) there is no duplication of data and each stream is stored on only one disk; and b) all disks

share a common pool of bu�ers. On one hand, for the sake of optimizing bu�er utilization,

the number of bu�ers assigned to each disk should not be �xed a priori. But on the other

hand, the bu�er manager should enforce some kind of fairness condition to as to prevent

a particular disk from snapping up all the bu�ers. In the simple multiple disks algorithm

(denoted by SMD) given below, we use the heuristic that no disk can get more than 50% of

the bu�ers in the entire system.

Except for the sharing of a common pool of bu�ers, each disk functions independently.

Thus, the kind of bu�er sharing analyzed in Section 3 can be supported in the current

environment in the same way as in a single disk environment. This is, however, not the

case for prefetching. As shown in Section 4, one of the most di�cult problems in supporting

prefetching is to estimate the number of bu�ers that are available now and that will be

available when the new streams are actually admitted. The estimation becomes even more

complicated when there are multiple disks constantly changing the number of bu�ers in use.

The above problem can be dealt with by the introduction of a reservation scheme. At

any point in time when a disk D wants any number of bu�ers, it sends a request to the bu�er

manager reserving that amount of bu�er space, even if the space will not be needed until

later. The bu�ers are released back to the bu�er manager for public use, when the query

requesting data stored on D is completed. In this way, the bu�er manager has an accurate

record on the number of occupied/reserved bu�ers, until the next event occurs to any of the

disks.

Apart from the estimation issue, there is also a fairness issue surrounding how to support

prefetching in a multiple disks environment. As discussed in Section 4, whenever IP1 or

IP2 is invoked, there is a tendency that a lot of bu�ers will be dedicated to the task. In

an environment where multiple disks share a common pool of bu�ers, how to coordinate

prefetching from more than one disk becomes an important question. While we consider a

25

Figure 9: E�ectiveness of SMD

more thorough study on this question beyond the scope of this paper, Algorithm SMD below

uses the simple policy that at any point in time, only one disk is allowed to prefetch. The

following outlines a simple algorithm for multiple disks.

Outline of Algorithm SMD

1. All the queries are submitted to the waiting queue of the system which provides di-

rectory services. Then the queries are re-submitted to the waiting queues of the corre-

sponding disks.

2. The system bu�er manager uses a reservation scheme to keep track of the bu�ers (to

be) used by each disk. It also enforces some fairness policy, such as not allowing any

disk to get more than 50% of all the bu�ers.

3. The system ensures that the disks take turn to prefetch data. 2

Figure 9 gives some preliminary simulation results showing the e�ectiveness of SMD. In

this simulation, we applied SMD to a 3-disk array. The graph in Figure 9 compares the

total times needed by the 3-disk array and a single disk to complete 150 queries, each with

consumption rate 240KB/s and length 90 seconds. Under SMD, the disk array achieves the

expected speedup.

6.2 Approximation for Non-contiguous Data Placement

Recall from previous sections that for the most part, our analyses are based on contiguous

data placement. The following shows how to use our equations established so far to handle

26

time

bytes

Bl

slope = R

G

Figure 10: Approximating a Reading Curve with Seeks Between Blocks

the case when data are stored in blocks or clusters of size Bl, and the seek time between

adjacent blocks is G. This is a non-contiguous data placement scenario consistent with the

ones proposed in [10, 3].

The solid line in Figure 10 represents the reading curve of a stream of the kind described

above. To use the equations that we have developed so far, we can approximate the given

reading curve by one that assumes contiguous placement. This approximate curve is a

straight line that is always below the original reading curve, but with a slope as large as

possible. The dotted line in Figure 10 represents the approximate curve. By a simple

coordinate-geometry analysis, the dotted line has a slope Rapprox given by:

Rapprox =
Bl

G +Bl=R
(25)

This value can be used to replace R in all the equations that we have encountered so far.

Note that since the approximate reading curve is always below the actual reading curve, at

various points in time, the disk may read faster than approximated. Thus, the continuity

requirement is not violated by the approximation, and there is no need to worry about

starvation. A similar approximation can be applied to other non-contiguous data placement

situations. We omit those analyses here.

In this series of simulation, we aimed to show that non-contiguously placed streams can

be bene�ted by the above approximation, which makes them amenable to bu�er sharing (and

the kinds of prefetching proposed here). In particular, we repeated the simulation described

in Section 5.2 with two di�erent groups of queries. The �rst group consists of streams

(queries) that were non-contiguously placed in blocks of size Bl = 20KB (i.e. roughly one

track), with each block separated by a gap G = 5ms. The second group consists of the

contiguous streams that used Equation 25 to approximate the non-contiguous streams in

the �rst group. Queries of the second group were allowed to share bu�ers. Analogous to

Figure 7, the following table shows the minimum bu�er space (in KB) needed for both kinds

of queries, when the number of concurrent queries varies between 3 and 5.

27

number of concurrent queries 3 4 5

non-contiguous streams 130 360 2520

approx. streams with bu�er sharing 110 250 1420

In all cases, the entries in the table show that it is bene�cial to approximate non-contiguous

streams with contiguous ones, and if allowed to share bu�ers, the approximating streams

can lead to reduction in total bu�er requirement.

6.3 Discussions: Applicability of Prefetching to General Multi-

media Systems

Our preliminary simulation results indicate that appropriate prefetching can lead to increase

in throughput, disk utilization and bu�er utilization. However, in order to have higher

throughputs and thus lower response times of queries, the price to pay is certainly availability

of bu�er space. As shown in our examples and simulation results, we believe that the

price is not high { provided that the streams are short, say below 5 minutes in length. As

far as news on-demand systems are concerned, a large class of news clips falls within this

range. However, a natural question to ask is whether prefetching has a role to play in other

multimedia systems.

Consider multimedia database management systems. We believe that prefetching indeed

has a major role to play in tuning the performance of such systems. This is because for a

large class of applications, the audio and video components tend to be short. For example,

for applications such as the one described in [5], audio and video may not be the only

media, and may work hand-in-hand with other media such as text and images. Audio and

video components may also play the role of annotations or illustrations. Moreover, many

applications may require frequent user interaction.

What about the other extreme: movies on-demand systems? Unlike those cases discussed

above, movies on-demand is concerned with supplying video and audio data to users for

long durations and with relatively little user interaction. By Equation 18, reducing the

consumption rate of a movie by just 1KB/s requires T KB bu�er space, where T is the

length of the query in seconds. For example, if a movie is 90 minutes long, this amount

of bu�er space is already 5.4MB. And to reduce the consumption rate by 50KB/s (as in

Example 5), 270MB of bu�er space is needed! As shown in Equation 18, the amount of

bu�er space needed for prefetching (and IP1, IP2) to work is linearly proportional to the

length of the movie. However, on the positive side, consider the bene�t of prefetching.

Recall that prefetching has the e�ect of activating as many queries (movies) as possible. If

prefetching is not used, and a movieM0 cannot be activated immediately, it has to wait for

an activated movieM1 to �nish. Thus, the waiting time ofM0 depends linearly on the length

ofM1. In other words, if prefetching is the di�erence between whether a movie can or cannot

be activated immediately, the di�erence in response time, like the amount of bu�er space

needed, is linearly proportional to the length of the movies. As an example, this di�erence in

response time may be 30 minutes. Thus, while long queries magnify the bu�er space needed

28

for prefetching to work, they also magnify the bene�ts of prefetching. It is certainly up to

an enterprise to decide which is more important and costly: 270MB or 30 minutes.

Two future developments, we believe, may increase the applicability of prefetching. The

�rst one is the obvious advancement in hardware technology. In a few years, 270MB, for

example, will cost orders of magnitudes lower than it costs now. The second future devel-

opment may be one that is concerned with the time when prefetched bu�ers are released.

The prefetching strategies presented here are based on the assumption that the prefetched

bu�ers of a query are released when the query has completed. Alternatively, prefetched

bu�ers can be released gradually, while the retrieval and consumption of the query are still

going on. This policy would reduce the total number of bu�ers needed by a wide margin.

(A preliminary analysis suggests a reduction of more than 50%.) However, to support this

policy, we would need to introduce a new dimension of time into our analysis and many of

our formulas for prefetching. This is a topic of our ongoing research.

7 Conclusions

Providing e�ective multimedia support in database management systems is a topic of great

interest and value. In this paper, we consider one of the key problems encountered in such

systems. Given a �xed amount of bu�er space and disk bandwidth both pre-determined

at design time, we study how to maximize the throughput of the system. Our approach

is to maximize the utilizations of bu�ers and disk. To achieve this goal, we have �rst pro-

posed a bu�er sharing scheme. Analysis and simulation results indicate that bu�er sharing

could reduce total bu�er consumption by as much as 50%. Second, we have developed the

prefetching strategies IP1 and IP2 which aim to maximize prefetching and the number of

queries that can be activated. Preliminary simulation results show that IP1 and IP2 could

be quite e�ective in maximizing the e�ective use of bu�ers and disk, and could lead to a 40%

increase in system throughput. Finally, we have also outlined how to support the proposed

techniques in a multiple disk environment and with non-contiguous data placement.

In ongoing work, we are studying how to implement the proposed techniques in a dis-

tributed continuous-media �le system [7]. Key issues to be addressed include how to extend

the proposed techniques to support network bu�ering, and how to e�ectively implement

prefetching and bu�er sharing, when the reading orders from one cycle to the next can or

cannot be changed. It is also important to study how to support the proposed techniques

e�ectively in a multiple disk environment.

References

[1] D. Anderson, Y. Osawa and R. Govindan. (1992) A File System for Continuous Media,

ACM Trans. on Computer Systems, 10, 4.

29

[2] M. Chen, D. Kandlur and P. Yu. (1993) Optimization of the Grouped Sweeping Schedul-

ing with Heterogeneous Multimedia Streams, Proc. ACM-Multimedia, pp 235{242.

[3] J. Gemmell. (1993) Multimedia Network File Servers: Multi-channel Delay Sensitive

Data Retrieval, Proc. ACM-Multimedia, pp 243{250.

[4] J. Gemmell and S. Christodoulakis. (1992) Principles of Delay-Sensitive Multimedia

Data Storage and Retrieval, ACM Trans. on Information Systems, 10, 1, pp 51{90.

[5] R. Goldman-Segall. (1990) Learning Constellations: a Multimedia Research Environ-

ment for Exploring Children's Theory-Making, Constructionist Learning, ed. I. Harel,

Cambridge, MA, MIT Media Laboratory.

[6] G. Miller, G. Baber and M. Gilliland. (1993) News On-Demand for Multimedia Net-

works, Proc. ACM-Multimedia, pp 383{392.

[7] G. Neufeld, N. Hutchinson, R. Ng and M. Ito. (1993) A Distributed Continuous-Media

File System, CITR grant proposal.

[8] R. Ng, C. Faloutsos and T. Sellis. (1991) Flexible Bu�er Allocation Based on Marginal

Gains, Proc. ACM-SIGMOD, pp 387{396.

[9] D. Patterson, G. Gibson and R. Katz. (1988) A Case for Redundant Arrays of Inex-

pensive Disks (RAID), Proc. ACM-SIGMOD, pp 109{116.

[10] P. Venkat Rangan and H. Vin. (1991) Designing File Systems for Digital Video and

Audio, Proc. ACM Symposium on Operating Systems Principles, pp 69{79.

[11] A. Reddy and J. Wyllie. (1993) Disk Scheduling in a Multimedia I/O System, Proc.

ACM-Multimedia, pp 225{233.

[12] L. Rowe and B. Smith. (1992) A Continuous Media Player, Proc. 3rd Intl. Workshop

on Network and OS Support for Digital Audio and Video.

[13] K. Tindell and A. Burns. (1993) Scheduling Hard Real-Time Multimedia Disk Tra�c,

Technical Report, University of York, England.

[14] C. Yu, W. Sun, D. Bitton, Q. Yang and R. Bruno. (1989) E�cient Placement of Audio

Data on Optical Disks for Real-Time Applications, Communications of ACM, 32, 7,

pp 862{871.

30

