
Prescriptions:
A Language for Describing
Software Con�gurations

by

Jim Thornton
thornton@cs.ubc.ca

Technical Report 94-18

June 1994

Abstract

Automation of software con�guration management is an important

practical problem. Any automated tool must work from some speci�-

cations of correct or desired con�gurations. This report introduces a

language for describing acceptable con�gurations of common systems,

so that automated management is possible. The proposed language

is declarative, while at the same time there are e�cient algorithms

for modifying a system to conform to a speci�cation in many cases of

practical importance.

Department of Computer Science

University of British Columbia

2366 Main Mall,

Vancouver, BC

CANADA V6T 1Z4

1 Introduction

Correct operation of computing systems depends upon correct con�gura-

tion. Software is an essential part of any computing system, and contributes

a great deal of complexity to the problem of con�guration management. A

typical computing system contains many instances of di�erent software con-

structs such as �les, directories, processes, tables, ports, sockets, mailboxes,

queues, threads, segments, programs, drivers, etc. Each type of construct

has a variety of states it can attain. Thus the software state space of a sys-

tem as a whole is immense. Software states are also subject to frequent and

rapid change. A signi�cant amount of knowledge is frequently required to

understand the relationships between components. Furthermore, software

systems are notoriously fragile. Minor errors in con�guration can seriously

interfere with operation.

The problem is even worse in distributed systems, since there are more items

to manage. When a distributed system is built by linking many autonomous

systems, as is common in practice today, substantial duplication of con�gu-

rations is generally required.

Due to the size of the problem alone, it is no longer possible for humans

to manually manipulate software components to achieve acceptable system

states. Automation has become essential.

Any automated management system must support some means of specifying

desirable or acceptable con�guration states. The speci�cation formalism is

of critical importance in determining what the con�guration management

system will be able to do automatically, as well as the ease with which

features will be accessible. For these reasons, the nature of the speci�cation

language is fundamental to the success or failure of a practical con�guration

management system.

This report introduces a language for describing con�gurations of software

in distributed computing systems. It is a language designed to balance

competing objectives and to be of practical use. The sample application is

the management of large collections of autonomous workstations and servers

running UNIX-like operating systems. The report serves as a preliminary

snap-shot of work in progress.

The body of the report begins with a review of some related work that is

of interest. An introduction is then provided to the problem of describing

1

con�gurations, and the resulting design tension. The language is introduced

and examples provided. Finally the syntax and semantics are presented. The

report concludes with a section on future work. The appendices provide a

grammar for the language, and more example material.

2 Related Work

The problem of software con�guration management has attracted attention

in a variety of contexts. As a result, the work that has been done is quite

varied. The purpose of this section is not to provide a complete survey, but

rather to highlight a few developments which are particularly related to the

work in this report.

The Raven Con�guration Management System (RCMS) [CN94] is a system

developed at UBC as part of an exploration of con�guration management in

general. RCMS supports management of collections of objects in the Raven

[ACN92] object-oriented system. Speci�cations of correct con�gurations are

given as assertions in �rst-order predicate calculus. The predicate calculus

is a powerful, declarative formalism. Since the descriptive language is so

powerful, it is very hard for an automated system to determine what actions

should be taken when the speci�cations are violated. A user of the RCMS

must write short repair programs to accompany speci�cations. A collection

of managed objects is monitored by RCMS, and a repair program is executed

whenever the monitoring detects a violation of a speci�cation. The RCMS

work was an important inspiration for the design of the language described

in this report.

The Moira system [RGL88], from the Athena project at MIT, is directed at

automated maintenance of many pieces of data which parameterize con�g-

urations of typical workstations. Data about various services is maintained

in a central database. The Moira software is capable of generating the

operational �les required by the various services, in the correct formats,

from the central database. The system also handles distribution of �les to

client machines. Moira handles only a part of the con�guration problem,

but it is very interesting for a couple of reasons. First, the usefulness of

Moira demonstrates the importance of descriptive data in common software

con�gurations. Secondly, Moira is an example of how the management of

data does not have to be linked to the idiosyncratic formats so often re-

quired by software. Data can be maintained in a uni�ed database which

2

suits the needs of administrators, then translated automatically to the for-

mats required by software. Moira does not support much automated consis-

tency/correctness checking. Without such checks, Moira can distribute er-

roneous data which prevents the system from working to deliver corrections.

This problem demonstrates the value of consistency checks in speci�cations.

The Depot system [CW92] is designed to maintain third party and locally

developed software in large, heterogeneous environments. The goal is inte-

gration of separately maintained packages into a common hierarchy without

increasing dependence on central servers. Con�gurations may be speci�ed

in a number of ways:

� Listing speci�c collections and paths to their location.

� Providing search paths where the �rst instance of each collection within

a path will be used

� Placing collections in a special directory

� Using a combination of above methods

Depot is capable of performing some consistency checking according to sim-

ple �xed rules based on the application. Support is also provided for moving

collections of software around, which is certainly and important practical

task. The claim is made that simple mirroring of directory hierarchies plus

simple options are easy for both administrators and developers to under-

stand [CW92, p. 157] Depot is a good example of a tool which primarily

addresses the problem of duplicating a con�guration on a large number of

systems. Unfortunately, it is narrow in scope, with a very limited speci�ca-

tion language.

The hobgoblin [RL91] system is a �le and directory auditor. The tool was

created to automatically check conformance of systems to abstract models.

The abstract model is expressed by listing �les and directories and their

properties. Operators are provided to state that a particular �le or direc-

tory must exist, may exist, or must not exist. In addition to existence,

the language permits speci�cation of properties of �les through \attribute

checkers". The attributes which may be speci�ed are mode, owner, group,

size, symlink reference, dates, and the list may be expanded through addi-

tion of external checkers. There is explicit support for describing contents

of directories exclusively, and nesting is supported in descriptions. Finally,

there is a \delta" language, for expressing a speci�cation as a variation of

another speci�cation.

3

An interpreter is capable of checking systems for conformance with hob-

goblin speci�cations. This is an example of a practical use of declarative

speci�cations. Unfortunately, hobgoblin has two limitations which prevent

its use for more general administration. First, the speci�cation language

only handles things of one kind (�les). Secondly, the tool is designed only

for checking conformance to speci�cation. It cannot be used to set up a sys-

tem. The designers have clearly considered removing the second limitation,

as they mention a notion of \enforcers" which would modify �les to achieve

conformance to speci�cation.

The doit solution [Fle92] is a network software management tool designed

to automate the management of software con�gurations on large numbers of

machines. Unlike hobgoblin, doit is intended to set up machines, not check

them for correctness. The speci�cation language is therefore procedural.

Three types of actions may be performed: adding software, deleting software,

executing arbitrary commands. There are variants of each type of action

which cause rebooting of a host some number of actions are performed. The

system uses revision levels to identify what has been done on a particular

machine. Each action has an associated revision level. There are also special

levels for actions that should be performed at the start or end of each run.

Con�gurations for doit are assigned to groups of machines. The groups are

declaratively speci�ed using set logic. The problem with a procedural form of

speci�cation is that it generally precludes any checking. Records of the state

of each machine become very important in this case, and troubleshooting

may be di�cult.

A locally developed system called TANIS (Tagged Attribute Network Infor-

mation Service) [MP] is used to manage machines in the computer science

department at UBC. TANIS is a lot like doit. A \service de�nition" can

consist of a few forms of speci�cation: description of a directory to be cre-

ated, description of a symbolic link to be created, entry for a �lesystem

table, entry for a printer table, description of a �le that should be copied,

etc. Note that most of these are declarative, although no TANIS software is

presently capable of checking conformance. Variables may be incorporated

in speci�cations to achieve machine-independence.

4

3 Describing Con�gurations

In order to build general tools for automated management of software con-

�gurations, there must be a general way of describing con�gurations. Why

promote general solutions? There are a few reasons:

� The problems are pervasive, not restricted to a limited area.

� Each separate solution imposes a learning burden on administrators.

� As a matter of architecture, I believe that systems must eventually be-

come self-describing in order to support high levels of automation in

management. In order to achieve such a situation, a general speci�ca-

tion mechanism may be helpful.

It is simple to write descriptions of con�gurations in natural language. As

an example, consider the con�guration of a shared �lesystem. Under Unix

with NFS, an informal description of the valid con�guration might look

something like the following:

Correct shared �lesystem con�guration

On the server, there must be an entry for the �lesystem in the

/etc/exports database. The directory �eld should contain the

name of the directory where the �lesystem is locally mounted.

The clients list should have an entry for each client, with the name

of the client. On each client, there must be a directory /name,

where name is the name of the shared �lesystem. The directory

must be owned by root.daemon and have mode 0777. An entry is

required in the /etc/fstab database. The node �eld should contain

the name of the server, and the �lesystem �eld should contain the

name of the directory where the �lesystem is locally mounted on

the server. The name of the shared �lesystem must be in the di-

rectory �eld of the fstab database entry. The type is always nfs,

options should include the proper access string plus bg intr, and

the last two �elds should both have the value 0.

The power of natural language is certainly adequate, but there is a price {

we cannot write software to e�ciently use natural language descriptions. We

need a formalism that sacri�ces some power in order to achieve practicality.

This requirement implies a delicate balancing act.

5

Since the limiting factor is the practical usability of the speci�cations, we

need to consider anticipated uses. There are two fundamental operations

which will be performed with speci�cations:

Veri�cation: Checking the distributed system for conformance to speci�-

cation.

Repair: Modifying the distributed system so that it conforms to a speci�-

cation.

For veri�cation, a powerful, declarative formalism like the predicate calcu-

lus is ideal. Unfortunately, repair is easiest if there is a simple procedural

language. The obvious solution when confronted by this tension is to create

a hybrid solution: declarative assertions used for veri�cation, and programs

used for repair. This is exactly the approach taken in RCMS [CN94].

The central motivating assertion of this report is that a single form of speci�-

cation is preferable to a hybrid approach. The language must be declarative,

but at the same time there must be simple and e�cient algorithms for mod-

ifying systems to achieve conformance.

The fundamental realization is that declarative simplicity must be sacri�ced

to achieve e�cient repair. It will be appropriate in some cases to have

automated repair, while in other cases the descriptive power will be more

important. The language must support both situations.

4 A Language of Prescriptions

The language of prescriptions is a language for writing modular descriptions

of con�gurations of distributed systems. The basic unit of description is

called a prescription, and is similar in purpose to a procedure in a traditional

programming language, or a predicate in a logic programming language. All

statements are contained within some prescription. Prescriptions themselves

are found within a larger context, but that is not the subject of this paper.

Prescriptions are intended for automated processing as described in the pre-

ceding section.

The language is designed to combine declarative power with certain limita-

tions necessary to permit automated repair. Here are a few speci�c objec-

tives:

6

1. The language must support both speci�cations suitable for automatic

repair and those which are not. The descriptive power should not be

limited when automated repair is not required.

2. Prescriptions should have a straightforward meaning, both in declara-

tive and procedural senses. Speci�cations should be easily understood

by those who must read them.

3. There must be a syntactic distinction between descriptions suitable for

automated repair, and others.

4. There must be a syntactic distinction between descriptions intended

for repair and others.

In order to describe con�gurations, it is necessary to have some way of

referring to states of individual items. In the language of prescriptions, an

object model is used. Every type of item is represented as an object with a

set of typed attributes. A single syntax is used to identify attributes of all

objects, regardless of the actual form of the item represented. Most objects

directly model software constructs that must be managed. Management

data, however, can also be referenced in the same way. For example, a

�lesystem can be described by a data record whose �elds are addressed as

attributes of an object.

In a typical object-oriented language, objects have methods as well as at-

tributes. Since prescriptions express desired states declaratively, methods

on objects are not represented in the language.1 Note that traditional inher-

itance is useful for handling classi�cation hierarchies. For instance, a plain

�le in UNIX can be considered as one type of �le.

Details of data de�nition, object de�nition, and typing are beyond the scope

of this report.

By way of illustration, consider the following sample prescription:

prescription correctMode(d: Directory, mode: Integer)

{

foreach F: File in d.contents {

(

F.mode = mode

1For implementation purposes of course, methods on objects are required. The point

is that methods do not appear in the language.

7

)

}

}

In natural language, an equivalent description is the following:

Given: A directory d, and a mode mode: The correctMode

con�guration holds when every �le in d has mode mode

Veri�cation processing is straightforward because the description is declar-

ative. In this example, repair is also straightforward, because enough in-

formation is provided. The objects to which repair operations might be

applied are clearly identi�ed, and the corrective action required when the

speci�cation is violated is simple.

4.1 An Extended Example

The extended example presented here is intended to illustrate the use of

the language of prescriptions in a practical context, so that the subsequent

explanation of language details will be easier to place in context.

The example is set in the context of a hypothetical company which will

be called Hedgehog Inc. Hedgehog uses Unix workstations in every area

of operations. All the workstations are connected in a TCP/IP internet,

and all are capable of mounting or exporting �le systems with NFS, and

accessing remote printers via the lpd protocol.

Assume that the company is using a con�guration management system

(CMS) based on the language of prescriptions. Many details of the op-

eration of the system are beyond the scope of this example, and in fact,

the entire report. A few assumptions must be made, however. The con-

�guration management system is distributed, with pieces that run on each

workstation. The CMS comes with object de�nitions for the various con-

structs in Unix systems, like �les and processes. Entries in typical data �les,

like the password �le, also have object representations. The CMS permits

administrators to de�ne tables which are not part of a standard Unix sys-

tem. The entries in these tables may be referenced as objects. Thus all

of the variable data which parameterizes con�gurations can be managed in

a simple database. The CMS allows global identi�ers to be created and

bound to particular objects or tables. The CMS also accepts any number

8

of prescriptions which together describe the acceptable state of the entire

system.

Hedgehog machines are organized by corporate division. The four divisions

are administration, manufacturing, product development, and sales. A few

machines are designated as corporate machines because they serve all divi-

sions.

This example illustrates how �lesystem sharing with NFS might be de-

scribed. Most machines need to mount �lesystems on corporate servers.

In addition, machines in each division generally mount �lesystems on divi-

sion servers. Filesystems are managed in groups by logical purpose. If one

�lesystem in a group is imported to a particular system, all the �lesystems

in the group must be imported to that system. Such a group of �lesystems

is called a logical �lesystem.

The Hedgehog administrators de�ne a few tables to contain variable infor-

mation. In this presentation of the tables, the data type associated with each

attribute is given under the name of the attribute. The base types used in

this example are \String", which is an ordinary sequence of characters, and

\LIST of type", which is an ordinary list aggregate type. The italicized type

names (Machine, Filesystem, Netgroup, Logical) indicate records from other

tables represented by a foreign key. Also note that only a few sample records

are presented for each table.

Netgroup Table

name members

key String LIST of Machine

administration white.hh.com, red.hh.com, blue.hh.com, : : :

development magellan.hh.com, enterprise.hh.com, : : :

corporate gilbert.hh.com, sullivan.hh.com, huey.hh.com, : : :

sales tulip.hh.com, da�odil.hh.com, : : :

TheNetgroup table de�nes groups of machines. An sampleMachine table

is not presented here.

9

Logical Table

name parts root

key String LIST of Filesystem Filesystem

admin admin1, admin2, admin-user admin1

apps licensed, public, source public

corporate corp-users, support support

The Logical table de�nes logical �lesystems in terms of the physical �lesys-

tems they contain. The root attribute identi�es a particular �lesystem from

the parts list as one containing a \root" directory for the entire logical

�lesystem.

Filesystem Table

name server fsname

key String Machine String

admin1 gilbert.hh.com /disk0

corp-users gilbert.hh.com /disk1

support sullivan.hh.com /disk2

licensed gilbert.hh.com /fs/software

public sullivan.hh.com /fs/public

The Filesystem table provides information about individual physical �lesys-

tems.

Mounts Table

fs group access

Netgroup Filesystem String

corporate corporate rw

corporate administration r

corporate development r

corporate sales r

corporate manufacturing r

The Mounts table links logical �lesystems to groups of machines. The

access attribute is a string specifying the type of access that machines in

the group should have to the logical �lesystem.

A number of prescriptions are used to describe parts of �lesystem con�gu-

ration, using parameter values that ultimately come from the tables. For

10

example, the following prescription describes the mounting of a single �lesys-

tem with NFS:

prescription mountsNFS(m: Machine, f: Filesystem,

access: String)

{

require D: Directory <fullPath = "/net/"+f.name> in m.files {

(-- Standard perms for mount points

D.mode = 0755

)

}

require F: FileSysEntry <server = f.server.name,

name = f.fsname>

in m.fileSysTable {

(

F.mountAt = "/net/"+f.name,

F.type = "nfs",

F.options contains access

)

}

}

Even without a complete explanation of the language, it is not di�cult to

understand the meaning of the mountsNFS prescription. It speci�es that

there must be a directory and a �lesystem entry on the machine m. The

directory is identi�ed as /net/name, where name is the name of �lesystem

f . The directory must have the mode 0755. The �lesystem entry, in the

machine's table, is identi�ed by server and name. The required contents of

three other �elds in that entry are speci�ed. The double hyphen (--) token

marks the remainder of the line as a comment.

Since logical �lesystems are important units, there is a prescription which

describes the con�guration of a machine importing a logical �lesystem:

prescription mountsLogical(logFS: Logical, machine: Machine,

access: String)

{

-- Each component physical filesystem is mounted

foreach F: Filesystem in logFS.parts {

11

if (F.server != machine) {

-- Export and import via NFS

mountsNFS(machine, F, access)

exportsNFS(F.server, F, machine, access)

} else {

-- Create local sym links to canonicalize

-- namespace on server

localLinks(machine, F)

}

-- Link to master directory

fsLinks(machine, logFS)

}

}

The mountsLogical prescription relies on a number of other prescriptions.

The �rst of these is the mountsNFS prescription given above. The exportsNFS

prescription from the preceding section is also used. De�nitions of

localLinks and fsLinks follow.

prescription localLinks(m: Machine, f: Filesystem)

{

require S: SymLink <fullPath = "/net/"+f.name> in m.files {

(

S.reference = f.fsname

-- f.fsname is assumed to be absolute pathname to

-- mount point of physical filesystem

)

}

}

prescription fsLinks(m: Machine, logFS: Logical)

{

-- Make link /{name} -> /net/{root}/dir

-- where {name} is name of logical FS

-- {root} is name of physical fs containing root dir

12

-- By convention, root dir for logical FS is /dir on one

-- of physical filesystems

require SymLink <fullPath = "/"+logFS.name> in m.files {

(

reference = "/net/"+logFS.root.name+"/dir"

)

}

}

Finally, prescriptions are needed to link those given above to the data in the

various tables. Every record in theMounts table indicates that a particular

logical �lesystem should be mounted on a particular set of machines. The

following prescription expresses that idea. Assume that the list of records

in the Mounts table are bound to the global identi�er $mounts.

prescription filesystems()

{

foreach M: MountEntry in $mounts {

GroupMountLogical(M.fs, M.group, M.access)

}

}

The GroupMountLogical prescription describes the mounting of a logical

�lesystem on all the machines in a particular group.

prescription GroupMountLogical(logFS: Logical,

group: Netgroup, access: String)

{

-- Each machine in the group mounts the logical filesystem

foreach M: Machine in group.members {

mountsLogical(logFS, M, access)

}

}

The mountsLogical prescription has already been de�ned.

This completes the extended example of �lesystem con�guration at Hedge-

hog Inc. There are a variety of consistency constraints which could be

13

associated with the various prescriptions. The language is capable of ex-

pressing a number of such constraints, but to include them at this point

would require too much explanation. More example material is provided in

appendix B.

5 Syntax

This section describes the syntactic elements of the language. The meaning

of the di�erent pieces of syntax is explained later.

In the syntax illustrations, bold face type is used for tokens that must

appear exactly as shown, while italic type is used for placeholders that must

be replaced by speci�c values dependent on situation. Optional parts are

enclosed in square brackets ([]).

5.1 Lexical Form

Lexically, the language is like many typical programming languages, such as

Pascal or C. A string in the language consists of a series of tokens. As in

C, tokens are identi�ers, keywords, constants of various types, string literals

(really a special form of constant), operators, or other separators[KR88, p.

191]. Also like C, white space characters are signi�cant only as token separa-

tors unless they occur in string literals. Most tokens must be separated from

other tokens by white space. The exceptions are operators and delimiters.

Note that string literals may contain any white space characters, including

newlines. No continuation character is required.

Comments begin with two hyphens and always end at the next line break.

Comments may alternatively be terminated before a line break by another

pair of hyphens. Comments do not nest.

5.1.1 Identi�ers

Local identi�ers are composed of alphabetic characters, digits, the under-

score, and the hyphen. Identi�ers must begin with an alphabetic character.

Global identi�ers are local identi�ers with a dollar sign ($) at the beginning.

14

5.1.2 Keywords

There are a number of keywords in the language:

prescription, narrow, foreach, with, if, require, disallow, in.

5.1.3 Constants

Constants may be written for any of the basic types. The common integer

and character constants have familiar forms. More complex constants are

not discussed in this report.

There are a few special values, which are represented by tokens consisting of

a pound sign (#) followed by a number of uppercase characters. The special

values are #NIL, and #ANY.

5.1.4 String Literals

String literals consist of a series of characters delimited by double quotation

characters ("). The escape character mechanism of C is supported.

5.1.5 Operators

The language provides a relatively large number of operators. Operators

are often composed of special symbols, but are sometimes complete words.

Many common operators are borrowed from C. The list here is not neces-

sarily complete.

Class Sample Operators

Logical Binary && , ||

Logical Unary !

Relational = != < > <= >= =< => contains in

Computational + � � =

5.1.6 Separators

There are a variety of separators:

() [] f g < > , : fj jg

15

5.2 Prescription De�nitions

The syntax of a prescription de�nition is shown below:

prescription [narrow]name (param-def [, : : :]) block

Like a procedure, a prescription has a name and an argument list in which

formal parameters are declared with names and types. The body of one

prescription may contain a statement activating another prescription, sup-

plying values for each parameter. This activation statement is similar to

procedure call. Recursion is permitted.

The optional keyword narrow indicates that the entire prescription is nar-

rowed whenever it is activated. Narrowing is explained later.

5.3 Blocks

A block is a scope unit containing statements, just as in common procedural

languages. Unlike other languages, there are two types of blocks2, distin-

guished by their delimiting tokens. The two block types have the following

names and syntax:

And-block:

f statement [: : :]g

Or-block:

fj statement [: : :]jg

The meaning of these blocks will be described in the section on semantics.

Blocks have the same syntax regardless of the context in which they appear.

Blocks may be nested inside other blocks in two ways. First, a block is itself

a legal statement, and may therefore be directly nested inside another block.

More commonly, blocks appear as part of statements. This is the case with

the block in the foreach statement in the example in section 4. Wherever

a block is required, either type may be supplied.

The language does not support traditional declaration of local or automatic

variables. Thus direct nesting of one block inside another does not serve

to open a new identi�er scope, as it might in a regular programming lan-

guage. The reason for nesting a block directly inside another is related to

2A third type was considered but it has been rejected because of repair di�culties.

16

the meaning of the di�erent types of blocks.

5.4 Statements

Prescriptions contain a series of statements inside a block. There are a few

di�erent statement forms:

Block: As explained earlier, blocks are themselves legal statements.

Prescription: Prescription activation has a syntax like that of function call

in C. Note that prescriptions do not return a value.

Regular: Regular statements are composed of keywords, blocks, logicals,

identi�er declarations, etc. separated by white space. Every regular

statement starts with an identifying keyword. The precise syntax varies

by statement. In the example prescription in section 4, the require

statement is an example of a regular statement consisting of the iden-

tifying keyword require, an identi�er declaration (for E), an object

reference, the keyword in, a data reference, and a block.

Logical: Logical expressions are legal statements. They are described in

the next section.

Narrow: A narrowed statement consists of square brackets around any

other legal statement. Square brackets may be nested, but the e�ect is

the same regardless of the level of nesting. Narrowing has to do with

the processing mode and will be explained later.

Note that narrowing of the entire body of a prescription is indicated

by adding the narrow keyword to the prescription de�nition, not by

adding square brackets around the main block, since a prescription

de�nition must contain a block and not just any statement.

Statements are not separated or terminated by any special token. It is not

possible to select a single token that represents the relationship between

statements in all cases, since that relationship varies with the type of the

containing block.

5.5 Logicals

Logical expressions are used in certain contexts. They have the same syntax

regardless of where they appear:

17

(logical-expression)

The logical expression is composed of relations and standard boolean opera-

tors. A relation is an expression involving a relational operator and various

identi�ers, constants, arithmetic operators, etc. Here is an example logical

containing one relation:

(F.server = machine+".cs")

Note that there is a simple value on the left side of the operator (=) in

this example. When there is only a simple value on the left side of every

relational operator, the logical is in repairable form.

While parentheses are always used to delimit logicals, not everything de-

limited by parentheses is a logical. For example, parameter lists are de-

limited by parentheses. Note also that logicals may include parenthesized

sub-expressions.

5.5.1 Regular Statements

Here is the syntax of each regular statement:

foreach decl in id [with logical]

require decl [ref]in collection block

disallow decl in id [with logical]block

if logical block [else block]block

5.6 Identi�er Declarations

Declaration of local identi�ers occurs in only two contexts. The �rst is in

the formal parameter list of a prescription, and the second is in regular

statements. Note that local identi�ers may not be declared at the start of a

block. There is no reason to do this, since there is no explicit way to assign

a value to a local identi�er. Identi�ers only become bound through pre-

scription activation (in the case of formal parameters) or implicitly through

a statement.

Declarations follow the Pascal style in which the new identi�er(s) appear

prior to a colon (:), which is then followed by a type name.

18

Declaration of global identi�ers, and binding of those identi�ers to values,

is done in the larger context outside individual prescriptions.

5.7 Data References

The language supports references to data. An object-oriented data model

is used for representing managed components and organizational databases

alike. Thus the majority of data references have the form of object attribute

references and the syntax used for structure �eld reference in Pascal. These

data references involve identi�ers, most commonly local identi�ers.

A few special symbols were introduced in section 5.1.3. These symbols

represent special values. Here are the special values presently de�ned:

Identi�er Description

#NIL The non-value

#ANY Wildcard matching any value

5.8 Object References

Some statements include a reference to a particular object which may exist

in a collection of objects. The reference is given by supplying values for one

or more attributes. The attributes selected must comprise a candidate key

for objects in the collection.

These references have a special syntax:

< [attrib=]expression [, : : :]>

For example:

<fullPath = "/net/"+f.name>

The candidate key does not have to be minimal. Thus a reference could in-

clude a value for every attribute. Also note that the attribute name does not

have to be speci�ed, for those cases when there is a standard key involving

only a single attribute.

19

6 Semantics

This section explains the concepts of the language and the meaning of the

various pieces of syntax. To begin we must consider some general concepts

related to processing and meaning.

6.1 Processing Modes

As described in section 3, prescriptions may be processed in two ways. Each

way is described as a processing mode. The modes are:

Verify Examination of described entities only

Repair Modi�cation of described entities as required

The operational distinction between the two modes concerns the possibility

of modi�cation of the distributed system. In the �rst case, managed entities

are examined, but no changes are made. In the second case, changes are

made if necessary.

Unnecessary changes are never made. Suppose that a prescription describes

a con�guration in which a particular �le exists with certain permissions. If

the �le already exists at a time when the prescription is processed in repair

mode, the only possible change is a modi�cation to the permissions of the

�le.

Processing mode is normally inherited across prescription activations. If

prescription A is activated in Repair mode, and contains an activation of a

prescription B, that prescription will also be activated in repair mode. Ex-

plicit narrowing may be used to override this default behaviour, as explained

below.

6.2 Statement Forms

Most statements have only one form. The foreach, disallow and require

statements, however, both have a general form and a more speci�c form with

additional bits of syntax. The optional syntax for the more speci�c form

provides distinguished information to identify the particular object(s) which

are the subject of the statement. For all these statements, the additional

20

information can be used to make veri�cation more e�cient. In the case of

require, however, the additional information is necessary to resolve some

ambiguities and permit automated repair.

For example, consider the following simple use of require:

require F: File in m.files {

(

M.mode = 0755

)

}

The statement says that there must be a �le in the collection with the

mode 0755. If there is no such �le, automated repair is impossible. The

problem is that there is no general way to determine whether the di�culty

is that an object is missing from the collection, and should be added, or that

some object in the collection has the wrong state and should be modi�ed.

The repairable form includes information which unambiguously identi�es the

object that the statement is about, so it is possible to determine whether

the object is missing or mis-con�gured when there is a problem.

The extra form for require meets the objective of providing a syntactic

distinction between statements which are suitable for automated repair, and

those which are not.

There are also two forms of logical statement. The repairable form contains

only relations in which the left side of the operator consists of a single data

value. The non-repairable form may contain relations with general expres-

sions on both sides of the operator (eg. (A+B)=(C+D)). In the repairable

form, each relational expression implicitly identi�es a particular data item

(the one to the left of the operator) as the subject of the relation. The

identi�ed data item is the one that will be modi�ed if necessary to e�ect

repair.

All statements in the language except require and logicals provide enough

information in all forms to enable repair.

6.3 Narrowing

One of the objectives for the language states that there must be a way

to express intentions about automated repair syntactically. Accordingly,

21

the language provides syntax for limiting processing to veri�cation. Such a

limitation is called narrowing.

Narrowing inhibits automated repair. Preventing automatic repair is de-

sirable when a repairable form cannot be written (see the description of

forms above) or when the purpose of a piece of description is to express

constraints or preconditions. For example, imagine a precondition that says

that a �lesystem may not be imported if it contains �les owned by root,

with the setuid bit set in the mode. An automated repair process could

remove o�ending �les, but it is likely that the system administrators would

prefer to have the problem reported as an error so human investigation could

take place.

The language provides two slightly di�erent ways of specifying explicit nar-

rowing. Any statement may be narrowed by enclosing it in square brackets.

Alternatively, any prescription may be declared narrowed by including the

narrow keyword in the prescription de�nition. In this latter case, all acti-

vations of the prescription are narrowed, without the need to enclose them

in square brackets.

Narrowing a�ects the processing performed on statements and prescriptions,

but not their declarative meaning. When narrowed statements or prescrip-

tions are processed, the mode is temporarily changed to Verify if it was

Repair. Normal inheritance of mode across prescription activations still ap-

plies, so prescription activations in a narrowed block are processed in Verify

mode. When explicitly narrowed statements are processed in Verify mode,

the narrowing has no e�ect.

Implicit narrowing is performed on statements which are in a non-repairable

form. A warning should be produced in such cases. The situation is similar

to implicit type coercion in a traditional programming language.

6.4 Truth Value and Execution

The language has a combined declarative/procedural nature. In a declara-

tive sense, a prescription is a straightforward description of a con�guration

state. In procedural terms, there are processing algorithms for prescriptions

which handle both veri�cation and repair.

The meaning of prescriptions must be given in both declarative and proce-

dural terms. The declarative meaning is based on truth values, while the

22

procedural meaning is given by an execution algorithm.

6.4.1 Truth Values

Every prescription and statement has a value of True or False at any point

in time for any mapping of identi�ers to actual items. The value is True if

and only if the described con�guration state holds for the objects referenced

by the identi�ers. The derivation of truth value for every type of statement

in the language will be described shortly.

Determining the truth value of a statement at a point in time requires that

objects referenced by identi�ers be examined. The means of examining

objects varies with the types of the objects. Truth value determination is

the basic purpose of execution.

The processing modes described earlier do not fundamentally a�ect the

declarative meaning of any statement. They do a�ect the execution, how-

ever, and may thus inuence the truth value derived.

6.4.2 Execution

Execution of a prescription or statement is the process of computing a truth

value, possibly including modi�cation of referenced objects in order to obtain

the value True. The execution algorithm for each type of statement will be

described shortly.

Processing mode signi�cantly inuences execution. In Verify mode, the

purpose of execution is to determine the truth value without any side e�ects.

In Repair mode, the purpose of execution is to make changes to objects so as

to obtain the value True at the point of completion of the execution, if at

all possible. In the case of veri�cation, the execution itself does not change

the truth value, but only computes it. In the case of repair, the truth value

at the end may be di�erent from the truth value at the beginning due to

side e�ects of the execution.

Either truth value may be computed in either mode. In Verify mode, of

course, the truth value computed is strictly dependent on the state of the

managed objects. In Repair mode, the value True will be computed if any

automated repair steps can achieve that result, but the value False will be

computed otherwise. Repair failure may be due to inhibitions caused by

23

narrowing, or other problems or errors.

A few general rules capture the main features of the execution algorithms:

1. Statements (and parts of statements, where appropriate) are processed

in order of occurrence.

2. Only the processing required to compute a truth value is performed.

This rule means that not all statements are processed in all cases.

3. Repair is atomic. See the next section for a description of this point.

6.4.3 Atomicity and Side E�ects

Execution in Repair mode can have side e�ects intended to produce the value

True. If all goes well and the repair is successful, there is no problem. If the

repair is unsuccessful, however, and a value of False is computed, there is a

question about outstanding side e�ects. The problem is that the execution

may have failed to complete a repair step after successfully completing earlier

repair steps.

To leave the managed objects in a partially repaired state is undesirable. For

this reason, execution should be atomic with respect to side e�ects. When

execution returns the value False, all objects will be in the same state as

before execution. When execution returns the value True, the described

con�guration state will hold 3.

In a distributed, multi-processing environment, there are some potential

problems with this atomicity policy. It may not be possible or appropriate

to rollback all changes. During execution, other processes may make changes

to objects after those subject to rollback. There may also be a large number

of modi�cations to be reversed. Some modi�cations may not be reversible.

Atomicity is a reasonable goal, but more work is needed.

7 Statement Descriptions

Each type of statement is described here in terms of truth value derivation

and execution.

3This is from the perspective of the execution process. Other processes may interfere

and cause these statements to be false.

24

7.1 Blocks

The meaning and processing of a block is the same regardless of whether it

appears as an independent statement, or as part of another statement.

There are two types of blocks, distinguished by the way a truth value is

derived from the truth values of contained statements. The types are syn-

tactically di�erentiated as described earlier.

7.1.1 Truth Value

The truth value of a block is derived from the truth values of the contained

statement(s). An empty block has the value True.

An And-block has the value True i� every contained statement has the

value True.

An Or-block has the value True i� there is one contained statement with

the value True.

7.1.2 Execution

In Verify mode, statements in the block are processed in order until the

truth value of the block has been determined. In an And-block, processing

stops with the �rst statement to have the value False. In an Or-block,

processing stops with the �rst statement to have the value True.

In Repair mode processing of an And-block, each statement is processed in

order. If the statement is narrowed, it is processed in Verify mode, and exe-

cution of the block stops if the statement has the value False. Statements

which are not narrowed are processed in Repair mode, so they will only have

the value False if all possible automated repair steps were unsuccessful.

Repair mode processing of an Or-block is more complicated. First the block

is executed in Verify mode, to determine whether any repair is required. If

the block has the value False, then a second pass is performed, executing

statements in Repair mode in order. As soon as one has the value True

(implying successful repair), execution of the block ends. If no statement

can be successfully repaired, the block has the value False.

25

7.2 Prescription Activation

A prescription activation serves the same purpose as procedure call in tradi-

tional programming languages. For processing, formal parameter identi�ers

are bound to the supplied actual arguments, and the block given in the

de�nition of the activated prescription is processed with that mapping.

7.2.1 Truth Value

The truth value of a prescription activation is the truth value of the body

block with actual arguments substituted for formal parameters.

7.2.2 Execution

A prescription activation is executed by creating the binding of formal pa-

rameters to actual arguments and executing the body block. Processing

mode is inherited across prescription activation unless the activation is ex-

plicitly narrowed with square brackets, or the prescription is de�ned as nar-

rowed.

7.3 Foreach

The foreach statement is a description of the state of a set of objects from

the collection speci�ed in the in part. The optional with clause allows a

subset of objects to be selected from the collection by attribute value(s).

An identi�er declaration is part of every foreach statement. The declared

type must match the type of the objects contained in the collection. The

scope of the identi�er is limited to the block that acts as the body of the

statement. For processing, the identi�er is successively bound to each object

from the collection which meets the selection criterion (an object meets the

selection criterion if the with logical evaluates to True for that object).

7.3.1 Truth Value

The truth value of a foreach statement is the logical And of the truth

values of the contained block with the declared identi�er bound to the various

26

acceptable members of the collection. For the statement to have the value

True, the block must have the value True for each selected object.

If the collection is empty, the statement has the value True.

7.3.2 Execution

A foreach statement is executed by successively binding the declared iden-

ti�er to members of the collection, then executing the block. When a with

clause is part of the statement, the supplied logical is evaluated for each

member of the collection prior to binding. The object is skipped if the

logical evaluates to False.

In Verify mode, the block is executed with each selected object in turn until

the collection is exhausted or the block has the value False for some object.

In Repair mode, the block is executed for each object in Repair mode. It

will only have the value False if repair is unsuccessful. Should that be the

case for an object, execution of the statement terminates.

7.4 Require

The require statement describes the state of at least one object which must

exist in the collection speci�ed in the in part. The optional object reference

uniquely identi�es the object which is described by the statement and will

be subject to any repair actions taken.

An identi�er is declared in the statement, as in the foreach statement. The

identi�er may be bound to various objects from the collection. The scope

of the identi�er is limited to the block contained in the statement.

7.4.1 Truth Value

The truth value of a require statement is True if there is at least one

member of the collection which can be bound to the identi�er to make the

contained block have the value True. If the optional object reference is

supplied, the referenced object must exist, and the block must have the

value True with the identi�er bound to that object. If the collection is

empty and the block is non-empty, then the statement has the value False.

27

7.4.2 Execution

The form of the statement (with or without an object reference) is signi�cant

for execution. Without an object reference, repair is not possible and the

statement is implicitly narrowed. With an object reference, repair is enabled,

and shortcuts for veri�cation can be taken.

First, consider the case of require without an object reference. Execution

proceeds as with the foreach statement, except that the process can stop

earlier. When an object from the collection is bound to the identi�er, and

the block with that binding has the value True, then the statement has the

value True and execution stops. Due to narrowing, the block is always

executed in Verify mode, and no repair is attempted.

Execution with an object reference is a bit more complicated. The �rst

step is always a search through the collection for the object identi�ed in

the reference. The search algorithm varies depending on the nature of the

collection. In some cases, access to objects by key may be directly supported.

Regardless of the nature of the search, the �rst step terminates when an

appropriate object has been found, or it has been determined that no such

object exists in the collection.

In Verify mode, the absence of the referenced object implies that the state-

ment has the value False, so execution terminates when the object cannot

be found.

In Repair mode, the absence of the referenced object implies that it should

be created. The automated repair action involves the following steps:

1. Assign values to attributes as required by the object reference in the

statement.

2. Assign default values to mandatory attributes which do not have values

after the �rst step.

3. Create a new object with attribute values as determined in the previous

steps, and insert that object into the collection 4.

4. Process the block of the require statement in Repair mode, with the

identi�er bound to the newly created object.

If the search for the referenced object is successful, then the identi�er is

4Creation and insertion may be performed as a single uni�ed action, depending upon

the characteristics of the collection and the objects it contains

28

bound to that object, and the block is processed without change of mode.

In Verify mode, the net e�ect is very similar to processing require without

an object reference, but with the attribute requirements from the reference

speci�ed as logicals in the block instead. The only di�erence is a potential

e�ciency gain in those cases when a search can avoid examination of many

of the objects in a collection.

For automated repair, the object reference provides a critical piece of infor-

mation by identifying which object should be modi�ed or created to e�ect

repair. This information makes it easy to distinguish between a problem

caused by some object having the wrong state, and a problem caused by the

absence of a required object.

7.5 Disallow

The disallow statement describes part of a con�guration in a negative way.

It is a direct opposite to the foreach statement. It is also opposite to the

require statement in the sense that the repair of disallow involves object

destruction, while the repair of require may involve object creation.

The disallow statement implies removal and destruction as the appropriate

repair action for o�ending objects. If destruction is not appropriate, the

only option is to narrow the statement, then deal with the problem objects

manually.5

7.5.1 Truth Value

A disallow statement has the value True i� there is no object in the

speci�ed collection for which the contained block has the value True.

7.5.2 Execution

Execution proceeds as with the foreach statement. In Verify mode, exe-

cution is the same as with foreach, with the sense of the block evaluation

reversed. Thus the processing stops as soon as an object is found for which

the block has the value True.

5This destruction is equivalent to UNIX unlink, rather than active destruction, in cases

where the distinction is signi�cant.

29

In Repair mode, every object in the collection (satisfying the with clause,

if present) is bound to the the identi�er in turn. Any object for which the

block has the value True is destroyed.

7.6 If

The if statement functions like if in traditional programming languages

such as C. The value of the contained logical controls the evaluation of the

entire statement.

7.6.1 Truth Value

When the controlling logical expression evaluates to True, the truth value

of the statement is the truth value of the �rst block. When the controlling

expression is False, the truth value of the second block is the truth value

of the statement. If the expression is False and the optional else block is

omitted, the statement has the value True.

7.6.2 Execution

Execution begins with evaluation of the controlling expression, which is

never subject to repair. Based on the obtained value, execution continues

either with the �rst or second block. Processing is the same in either mode.

7.7 Logical

A logical expression is a legal statement describing the state of objects by

describing the legal values for their attributes. In object-oriented fashion,

the perceptible state of any component is assumed to be entirely represented

by the values of attributes.

Logicals consist of combinations of relations with the standard logical con-

nectives (And, Or, Not). Thus the processing of a logical is similar to the

processing of a block. In the description given here, the details of logical

and relational expression evaluation are not presented.

The objects described in a logical statement are referenced by identi�ers

de�ned outside the statement. These statements always occur inside a block,

30

and a block is never processed unless all identi�ers are bound to objects.

7.7.1 Truth Value

The truth value of the statement is just the truth value of the expression,

when evaluated in a standard way.

7.7.2 Execution

The �rst execution step is always the evaluation of the expression. In Verify

mode, no other action is required. In Repair mode, however, some modi�-

cation of objects is required if the evaluation produces a value of False.

The form of the statement is signi�cant. If the logical contains non-repairable

relations6, then the logical is itself non-repairable and is implicitly narrowed.

The generality of boolean expressions makes automated repair tricky. The

repair process has two phases:

1. Compute a list of attribute value changes which would cause the ex-

pression to have the value True. The modi�cations on the list must

be non-conicting.

2. Apply the changes on the list produced by the �rst phase.

As an example, consider the following abstract situation. The logical is a

simple conjunction of four relational expressions relating integer attributes

to integer constants. It is expressed syntactically as:

(A.a = 1, B.b > 2, C.c < 14, D.d != 5)

Now suppose that the attributes have the following values for a particular

binding of objects to identi�ers:

A.a = 27

B.b = 0

C.c = 85

D.d = 5

6Non-repairable relations are those which do not have a simple value on the left side

of the relational operator. For example, (A+B)=(C+D) is non-repairable.

31

It should be obvious that the logical has the value False. This example

illustrates some of the di�culties of the �rst phase of automated repair.

Note however, that one area of di�culty is avoided, because the expression

is just a conjunction, so each relation must be made true.

The �rst relation is an example of the easy case. The important property

of the relation is that it is de�nite. A single, speci�c value for the attribute

is clearly stated. The change list begins with f A:a 1 g.

The remaining relations are inde�nite. With integers, it is easy to imagine

that the repair algorithm can simply select an appropriate value. Thus the

change list might become f A:a 1, B:b 3, C:c 13, D:d 6 g.

These selections may not be \best" on any reasonable scale of goodness, but

will work. With strings, on the other hand, automatic selection of workable

values becomes more complicated.

While simple conjunctions may turn out to be the most common type of

logical in practice, the repair algorithm must be capable of dealing with

much more complex expressions. When logical Or is used, the question of

which relations to repair may arise. As with Or-blocks, order is signi�cant.

Thus repair is attempted on relations in the order in which they occur.

Negation in logicals does not pose serious problems for repair.

There is no backtracking in the repair algorithms. They may fail to �nd a

solution when one exists, but are never exponential in complexity. Consider

the following case, for instance:

(B.b < 2 * C.c, C.c < D.d - 5)

If the attributes have the following values, there is clearly an assignment

that could be made to e�ect repair:

B.b = 25

C.c = 10

D.d = 10

The simple algorithm without backtracking will not �nd a solution in this

case. It will �rst assign an acceptable value to B.b (say 19), then assign

an acceptable value to C.c (say 4). The second assignment invalidates the

�rst, but the algorithm does not make a second selection. Instead, the repair

attempt would be judged a failure on �nal evaluation of the logical.

32

More powerful solution-�nding algorithms could be applied to speci�cations

written in the language. For con�guration repair, however, this does not

seem to be worthwhile. The simple algorithm will handle most cases in

practice, is easily understood, and is guaranteed not to be exponential.

Once the �rst step of the repair procedure is complete, there may still be

problems which prevent successful repair. For one, the attributes which

must be modi�ed may be dependent attributes. A dependent attribute is

one whose value cannot be changed independently of other attributes or

features of the object. For example, size is a dependent attribute of a �le;

its value is a function of the contents of the �le.

Problems with dependent attributes may at least be identi�ed through static

analysis of logical statements. Other problems may be encountered only at

the time when a repair operation is attempted. Some of these may be due

to the multi-process nature of the system. In the absence of locking, some

process other than the con�guration manager process may have removed an

object that the con�guration manager attempts to modify.

Handling logical statements is at the heart of the problem of automated

repair. There remain open questions about how it can be e�ectively done.

7.8 Narrow

A narrowed statement is simply a statement that has been distinguished for

veri�cation processing only. The truth value is not a�ected by the narrowing.

In a sense, the statement is speci�ed by the author as purely declarative in

function.

Since repair is inhibited for narrowed statements, execution proceeds in Ver-

ify mode.

33

8 Future Work

The language design presented in this report is really only the point of depar-

ture for an exploration of practical con�guration management in distributed

systems. A great deal of work remains to be done. This section summarizes

some of the major open questions and problems.

One of the most obvious limitations of the work presented here is the lack

of validation through implementation and trial with real problems. The set

of examples tried up to this point is too small to justify con�dence that the

language is adequate. In addition, a real implementation is needed so that

unpredictable problems can be uncovered. Ongoing work is addressing these

problems.

The issue of object de�nition and modeling has been largely ignored in this

report. Some de�nition language is required. Also, an object model must

be produced for any conventional system to which the language is to be

applied. Producing such a model will involve a lot of very tricky decisions.

For example, if the target environment is UNIX, we need to decide how

i-nodes should be represented relative to �les and directory entries. There

are also questions about the attributes that should be exposed. A UNIX �le

clearly has a size attribute. It is also reasonable to talk about the checksum

of a �le, although the operating system does not maintain such an attribute.

One feature that will be needed in the de�nition language is a way to identify

properties of attributes that are important for repair. For example, the size

of a �le is a dependent attribute, as noted earlier. That fact needs to be

part of the speci�cation of the �le object, in order that static analysis of

prescriptions can identify logical statements that will pose a problem for

repair. Identi�cation of candidate keys for objects in collections is another

issue.

Related to the problem of object de�nition is the question of typing. In

this report, typing has not been explicitly addressed. In fact, the examples

rely on some tricky interactions between statements and typing through the

inheritance hierarchy. Formal typing rules need to be devised.

The context in which prescriptions exist has been left outside the scope of

this report, although some possibilities are suggested in the examples. Pre-

scriptions are the analogs of procedures in traditional imperative languages.

There needs to be some structure to enclose prescriptions, analogous to a

34

program in a traditional language.

The problem of managing collections of software with support for mobil-

ity needs to be further explored. It is entirely possible that changes or

extensions to the language would be required to adequately support that

application. For example, some use of revision numbers as in doit [Fle92]

may be necessary.

As noted earlier, the desirable goal of atomicity poses some problems which

require further investigation.

35

A Grammar

Here is a BNF grammar for the language described in this document. Non-

terminals appear in italics, speci�c terminal strings appear in bold face,

and general terminals appear as regular text. Comments are not represented

in this grammar, nor are all lexical elements. The grammar here is intended

for human interpretation rather than automatic parser generation.

prescription) prescription id param-list block

j prescription narrow id param-list block

param-list) (decl-list)

j ()

block) f statements g

j fj statements jg

statements) statements statement

j statement

statement) block

j logical

j activation

j regular

j narrow

logical) (rel-exp)

activation) id arg-list

arg-list) (expr-list)

regular) require

j disallow

j foreach

j if

foreach) foreach decl in id block

j foreach decl in id with logical block

require) require decl in id block

j require decl ref in id block

disallow) disallow decl in id block

j disallow decl in id with logical block

if) if logical block

j if logical block else block

narrow) [statement]

ref) < key-exp >

36

decl-list) decl , decl-list

j multi-decl , decl-list

j decl

j muti-decl

decl) id : id

multi-decl) id-list : id

id-list) id , id-list

j id

expr-list) expr , expr-list

j expr

key-expr) key-val , key-expr

j key-val

key-val) id = expr

j expr

rel-exp) relation binary-op rel-exp

j unary-op rel-exp

j (rel-exp)

j relation

relation) simple-value rel-op expr

j expr rel-op expr expr) sub-expr comp-op sub-expr

sub-expr) sub-expr comp-op sub-expr

j value

j (sub-expr)

value) (value)

j simple-value

j global-value

j special-value

j ref

j literal

j size (simple-value)

simple-value) id . simple-value

j id

global-value) $ simple-value

special-value) #NIL

j #ANY

37

B Examples

This appendix carries on from the examples of section 4.1.

B.1 Printer Con�guration

For a slightly di�erent example, consider printer con�guration at Hedgehog.

Every printing service has a server machine on the network, and is accessed

through the server. There are three categories of printing service in the

company.

1. Company wide

2. Department wide

3. Local

Company wide services are available from every workstation. Departmental

printers are only available from workstations assigned to the department

that operates the printer. Local printers are available to workstations that

are physically situated in a certain area, regardless of department. Also,

any workstation may be granted access to any printing service for a special

purpose.

Suppose that the following tables are de�ned:

Printer Table

name alternates host device

key String LIST of String Machine String

color-laser cl, full-color, lwc huey.hh.com /dev/lp1

adminhv admin-high-vol red.hh.com /dev/lp

robin enterprise.hh.com /dev/robin

jay lw310, lw3 tulip.hh.com /dev/lw310

lwsales sales-shared rose.hh.com /dev/ptr/sales

The Printer table contains data describing each individual printing service.

38

Assigned-Printers Table

printer department

Printer Netgroup

color-laser #NIL

adminhv administration

lwsales sales

TheAssigned-Printers table describes the assignment of printers to groups

of machines. A value of #NIL in the department column indicates that the

printer should be assigned to all machines.

Printer-Access Table

printer clients

key Printer LIST of Machine

adminhv gilbert.hh.com, sullivan.hh.com, huey.hh.com

robin enterprise.hh.com

jay tulip.hh.com, da�odil.hh.com, magellan.hh.com

lwsales gilbert.hh.com, tulip.hh.com

The Printer-Access table describes the assignment of printers to individual

machines. This table is used to take care of local printers and special access

requirements.

The following prescriptions describe printer con�gurations based on data

in the tables above. The table describes the assumed binding of global

identi�ers.

Identi�er Binding

$machines LIST of records in Machines table

$printers LIST of records in Printer table

$assigned-printers LIST of records in Assigned-Printers table

$printer-access LIST of records in Printer-Access table

prescription printers()

{

-- Every print service is exported by some host

foreach P: Printer in $printers {

39

foreach M: Machine in $machines

with (M.name = P.host) {

ExportsPrinter(m, P)

}

}

foreach A: Assigned-Printer in $assigned-printers {

if (A.department != #NIL) {

foreach M: Machine in A.department.members {

PrinterClient(M, A.printer)

}

} else {

foreach M: Machine in $machines {

PrinterClient(M, A.printer)

}

}

}

foreach E: Printer-Access in $printer-access {

foreach M: Machine in E.clients

PrinterClient(M, E.printer)

}

}

}

prescription ExportsPrinter(m: Machine, p: printer)

{

require P: PrinterEntry <p.name> in m.printers {

(

P.alternates = p.alternates,

P.mx = 0

P.lp = p.device

P.sd = "/var/spool/printers/"+p.name

)

}

}

prescription PrinterClient(m: Machine, p: printer)

{

40

if (m != p.host) {

require P: PrinterEntry <p.name> in m.printers {

(

P.alternates = p.alternates,

P.rm = p.host.name,

P.rp = p.name,

P.mx = p.maxSize,

P.sd = "/usr/spool/"+p.name

)

}

}

}

B.2 Integrity Constraints

As noted in section 4.1, there are various consistency constraints which could

be applied with some of the example prescriptions. In this section, a number

of constraints are expressed in the language.

With consistency constraints, it is often the case that only veri�cation pro-

cessing is desired. When a problem is detected, it should be reported to a

human administrator who can take action. Thus narrowing is used exten-

sively in the following examples.

When a machine is to mount a �lesystem via NFS (as described by the

mountsNFS prescription, for example) the machine should be functioning as

an NFS client. To check that a machine is operating as an NFS client, one

can check for the presence of certain processes. Here is a prescription that

describes the client con�guration:

prescription narrow nfsclient(m: Machine)

{

require P: Process in m.processes {

(P.name = "rpc.statd")

}

require P: Process in m.processes {

(P.name = "rpc.lockd")

}

require P: Process in m.processes {

41

(P.name = "ypbind")

}

require P: Process in m.processes {

(P.name = "(biod)")

}

}

Another possible constraint is that imported �lesystems should not contain

�les with the setuid mode bit set. The following prescriptions express that

constraint for a �lesystem:

prescription narrow setuid-safe(f: Filesystem)

{

foreach D: Directory in f.server.files {

foreach N: File in D.contents {

(N.mode.setuid = 0, N.mode.setgid = 0)

}

}

}

It is important to note that the body block in the setuid-safe prescription

is repairable (as can be determined by inspection). If the narrow keyword

were removed, the prescription could be processed in Repair mode. In that

case, the repair algorithm would attempt to unset any setuid or setgid bits

set on �les in the �lesystem.

The above two constraints deal with managed items directly. It is also pos-

sible to express constraints involving only data, as the following prescription

illustrates.

prescription narrow check-logical() {

foreach L: Logical in $logicals {

foreach F: Filesystem in L.parts {

disallow Q: Logical in $logicals {

(Q != L, Q.parts contains F)

}

}

}

}

42

The constraint expressed by the above prescription is that a given physical

�lesystem should be part of only one logical �lesystem. Note that if the

prescription were processed in Repair mode (after removal of the narrow

keyword), the only repair action that might be taken would be destruction of

a Logical, ie. a record in the Logical table. Since that form of automated

repair is unlikely to be appropriate, narrowing is used.

There are also some consistency constraints which apply to the problem

of printer con�guration. For example, we might want to ensure that the

device attribute of a record in the Printer table always refers to a valid

device special �le. The following prescription expresses the constraint for a

particular device d on a particular server s.

prescription narrow device-check(s: Machine, d: String)

{

(d ~= "^/*")

require C: CharSpecial <fullPath = d> in s.files {

require D: DeviceDriver in s.installedDevices {

(D.name = "Printer", D.minor = C.minor,

D.major = C.major)

}

}

}

The �rst logical statement in the above prescription uses the ~=, borrowed

from the Perl language. The operator compares a string against a regular

expression.

It is almost certainly the case that there are reasonable constraints which

cannot be expressed in the language.

43

References

[ACN92] Don Acton, Terry Coatta, and Gerald Neufeld. The Raven Sys-

tem. Technical Report TR-92-15, Department of Computer Sci-

ence, UBC, September 1992.

[CN94] Terry Coatta and Gerald Neufeld. Distributed Con�guration Man-

agement Using Composite Objects and Constraints. In Second In-

ternational Workshop on Con�gurable Distributed Systems, Pitts-

burgh, 1994.

[CW92] Wallace Collyer and Walter Wong. Depot: A tool for Manag-

ing Software Environments. In Proceedings of the Sixth System

Administration Conference (LISA VI), page p. 153. USENIX As-

sociation, Berkeley, CA, October 1992.

[Fle92] Mark Fletcher. doit: A Network Software Management Tool. In

Proceedings of the Sixth System Administration Conference (LISA

VI), page p.189. USENIX Association, Berkeley, CA, October

1992.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming

Language. Prentice Hall, Englewood Cli�s, NJ, 2nd edition, 1988.

[MP] Marc Majka and George Phillips. tanis - system for boot-time

machine con�guration. Department of Computer Science, UBC.

online manual.

[RGL88] Mark A. Rosenstein, Daniel E. Geer, Jr., and Peter J. Levine.

The Athena Service Management System. In Usenix Conference

Proceedings, Winter 1988.

[RL91] Kenneth Rich and Scott Leadley. hobgoblin: A File and Direc-

tory Auditor. In Proceedings of the Fifth Large Installation Sys-

tems Administration Conference, page p. 199. USENIX Associa-

tion, Berkeley, CA, September 1991.

44

