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Abstract 
This thesis introduces the concept of a connection strength (CS) between the nodes in a 

propositional Bayesian network (BN).  Connection strength generalizes node independence from 

a binary property to a graded measure.  The connection strength from node A to node B is a 

measure of the maximum amount that the belief in B will change when the truth value of A is 

learned.  If the belief in B does not change, they are independent (zero CS), and if it changes a 

great deal, they are strongly connected (high CS). 

Another concept introduced is the link strength (LS) between two adjacent nodes, which is an 

upper bound on that part of their connection strength which is due only to the link between them 

(and not other paths which may connect them).  Calculating connection strengths is 

computationally expensive, while calculating link strengths is not.  A linear complexity 

algorithm is provided which finds a bound on the connection strength between any two nodes by 

combining link strengths along the paths connecting them.  Such an algorithm lends substance to 

notions of an "effect" or "influence" flowing along paths, and "effect" being attenuated by 

"weak" links, which is terminology that has appeared often in the literature, but only as an 

intuitive idea. 

An algorithm for faster, approximate BN inference is presented, and connection strengths are 

used to provide bounds for its error.  A system is proposed for BN diagrams to be drawn with 

strong links represented by heavy lines and weak links by fine lines, as a visualization aid for 

humans.  Another visualization aid which is explored is the CS contour map, in which 

connection strengths from one node to the rest are represented as contour lines super-imposed on 

a regular BN diagram, allowing the viewer to quickly assess which nodes that node influences 

the most (or which nodes influence it the most).  A non-trivial example BN is presented, some of 

its connection strengths are calculated, CS contour maps are constructed for it, and it is displayed 

with link strength indicated by line width. 
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1 Introduction 
Bayesian networks (BNs), also called belief networks or probabilistic causal networks, consist of 

graphs in which each node represents a variable of interest, and the links between the nodes 

indicate the probabilistic dependencies between them.  This thesis is restricted to BNs composed 

only of binary nodes (which are nodes representing variables that take on one of two values), and 

generally speaking we will interpret their value to mean that some proposition is TRUE or FALSE.  

Using a BN we can capture the relationships between our uncertain beliefs in the propositions, 

and then if we learn the truth value of one or more of the propositions, we can use BN inference 

algorithms to find updated beliefs for each of the other propositions, and updated relationships 

between the propositions. 

Uncertain reasoning is very common for humans, and will conceivably be common in future 

machines.  Chapter 2 provides some examples of situations requiring uncertain reasoning.  Then 

it makes an argument in favor of using probabilities for such reasoning (in machines), and 

provides a well-known set of axioms for doing so.  However, probabilistic reasoning can be 

extremely computationally expensive, and even quite small problems can be outside the range of 

practicality, unless we have some technology for taking advantage of the fact that generally our 

beliefs in some propositions are independent of our beliefs in others (Pearl88, Cooper90).  This 

is the primary purpose of the BN graph.  Chapter 2 goes on to show how BNs represent these 

independencies, and provides a non-trivial example of a BN.  Some BN inference algorithms are 

also discussed, and it is pointed out that the BN inference problem is NP-hard (Cooper90). 
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Connection strength (CS) is a generalization of independence.  Instead of simply indicating 

whether one proposition is independent of another, it provides a graded measure of how much 

our belief in one proposition can change when we learn the truth or falsity of another.  Chapter 3 

defines connection strength and explores some of its properties.  It also introduces the concept of 

link strength (LS), which is a sort of "local connection strength" between two adjacent nodes of a 

BN.  Link strength provides an upper bound on that part of the connection strength between two 

adjacent nodes that is due to the single link between them, and not due to any other paths from 

one of them to the other. 

Computing the connection strength between two nodes is generally even more computationally 

expensive than regular BN inference, but a link strength can be found very quickly using only 

the conditional probabilities stored at a single node.  Chapter 4 presents an algorithm which uses 

link strength values to find a bound for the connection strength between any two nodes in time 

linear in the number of links in the BN.  The algorithm can be viewed as a summation over 

alternative paths between the nodes, which lends substance to notions of an "effect" flowing 

along paths, and "effect" being attenuated by "weak" links, which is terminology that has often 

appeared in the literature as an intuitive idea, but which has never been substantially formalized. 

Using independence information allows BN inference algorithms to solve medium-sized BN 

problems in a reasonable amount of time.  Using connection strengths we can determine which 

nodes are nearly independent, and then by assuming that they are independent, we can solve 

larger-sized BN problems in reasonable time, while obtaining approximate results.  In Chapter 5 

an algorithm is given which quickly provides bounds on the maximum error made during such 

an approximation. 

Another application of link strengths explored in Chapter 5, is to display them on BN diagrams 

as a visualization aid for humans.  For example, the width of the line representing a link can be 

used to indicate its link strength, with finer lines for weaker links, and thicker lines for stronger 

links.  The example BN of Chapter 2 is redrawn in such a manner to illustrate this.  BNs have 

been praised as a great tool for humans to visualize probabilistic relations, and displaying link 

strength extends that tool by providing graded, rather than binary, independence information. 
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Another visualization aid for BNs are CS contour maps, which indicate how much some node 

(termed the "origin node") can effect each of the other nodes in the network, and are created by 

drawing "iso-CS" lines over the BN diagram.  Each line separates nodes which are more strongly 

connected to the origin node, from those less strongly connected.  Chapter 5 contains a CS 

contour map for the example BN of Chapter 2.  It also contains a contour map based on CS 

bounds calculated by the algorithm developed in Chapter 4.  By comparing the two contour 

maps, the bounds may be compared with the true values. 

Wellman90 introduces the concept of qualitative probabilistic networks (QPNs), which are 

networks with the same underlying topology as BNs, and whose purpose is to determine the 

direction of change in belief of one proposition when we learn the truth of another.  We can 

consider connection strength as determining the maximum magnitude, and QPNs as determining 

the sign, of the same quantity.  In fact, many of Wellman's results can be obtained from the 

connection strength equations, simply by modifying them to retain sign information (e.g. 

removing absolute value functions).  This is briefly discussed in the "Further Work" section at 

the end of the thesis. 

Notation is explained as it is introduced, but it is also summarized in Appendix A.  Readers who 

are already familiar with BNs can skip the next chapter and go straight to chapter 3, using 

Appendix A as a guide for notation definitions they may have missed. 
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2 Bayesian Networks 
This chapter provides a brief introduction to probabilistic reasoning and Bayesian networks 

(BNs), and states a number of well-known results which will be used later.  It does not contain 

any original results, and so it may be skipped by the knowledgeable reader.  Two good 

introductory books for Bayesian networks and related topics are Pearl88 (a "must read" for a 

thorough introduction) and Neapolitan90 (easier to read, has more how-to information and has 

more recent results, but generally doesn’t have the depth of analysis). 

2.1 When do we Reason With Uncertainty? 

Reasoning with uncertainty is the process of combining items of uncertain knowledge to obtain 

uncertain conclusions.  Uncertain knowledge is knowledge which one would be willing to 

retract, or consider less certain, upon receiving knowledge (certain or uncertain) to the contrary.  

There are not many things we know that we wouldn't be willing to retract given enough evidence 

to the contrary, so much of our reasoning can be considered reasoning with uncertainty. 

In this thesis, the main purpose of studying uncertain reasoning will be to produce computer-

based automated systems, although some of the results may apply to other intelligent agents.  In 

constructing an automated system, we must decide which of its information it should treat as 

uncertain.  We may want it to treat some information as certain, even though it doesn't hold in all 

cases (or we don't know if it does), just to make the system simpler, or give it a more predictable 

behavior.  On the other hand, we may want it to consider much of what it learns, based on 

limited or imperfect observations, as uncertain information.  Generally speaking, as the 
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sophistication of our automated systems increase, a larger percentage of their knowledge should 

be treated as uncertain, since many of these systems will be more adaptable, will be learning 

more, and will be working in less well-defined domains in an autonomous manner. 

There are numerous particular situations where an automated system may need to reason with 

uncertainty.  Any approximate measurement is information with uncertainty.  So combining 

uncertain or approximate observations, such as physical measurements, which have a 

redundancy in the observations for the purposes of increasing the accuracy or detecting a totally 

erroneous observation, requires some form of reasoning with uncertainty.  The reasoning may be 

as simple as taking the mean of the set of measurements, or it may involve a complex analysis.  

Any situation in which we have information coming from multiple sources, which may agree or 

conflict to varying degrees, requires reasoning with uncertainty.  Examples are sensor fusion in a 

robot (i.e. combining sensory data), or merging news reports from different agencies. 

In some reasoning situations, much of the knowledge involved is nearly certain, and we can gain 

huge computational savings by treating it the same way we treat knowledge that is certain.  

However, when we learn something that casts doubt on some piece of it, we may have to revert 

the status of that piece back to "uncertain,"  or even to "false,"  and suitably modify the status of 

related pieces.  The methods of default reasoning or nonmonotonic logic have traditionally been 

used to do this. 

Some "inverse" problems (such as diagnosis, machine vision, machine hearing, and other 

recognition problems) don't have a unique solution.  Reasoning with uncertainty can help to find 

the most probable solutions to these problems. 

Problems in which an agent learns generalizations from case data are examples of reasoning with 

uncertainty.  Usually, the more cases the agent sees the more certain he becomes about the 

generalizations.  When the generalizations are applied to predict unknown values in a new case, 

more reasoning with uncertainty is required, both because the generalization is uncertain, and 

because its applicability to the new case may be uncertain. 

We may even use reasoning with uncertainty for problems that can be stated in purely logical 

(i.e. certain) terms, such as theorem proving.  Often, these types of problems can be considered 
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to involve some kind of search, and they can be solved far more quickly if we use suitable 

heuristics to guide the search to examine the most probable candidates first.  But as the use of 

heuristics becomes more sophisticated, it becomes difficult to combine conflicting heuristics, 

and so it is useful to think of the heuristics as uncertain knowledge.  Then, we can use reasoning 

with uncertainty to direct the search of the theorem prover (or other strictly logical reasoning-

with-certainty system). 

2.2 Using Probability for Uncertain Reasoning 

There are a number of mathematical systems available for reasoning with uncertainty, and there 

has been considerable controversy over which is "best."   These systems include subjective 

probability, fuzzy logic, belief functions (e.g. Dempster-Shafer), certainty factors, non-numerical 

probabilities, and default logic.  This thesis uses a system based on subjective probability, that is 

often called "Bayesian probabilistic reasoning,"  and some approximations to Bayesian reasoning 

will also be considered. 

de Finetti provides an argument in favor of subjective probabilities based on the notion of 

coherence (F. P. Ramsey and L. J. Savage have also done similar work).  An agent is offered a 

number of betting options and his choices are analyzed.  If he acts as though his beliefs were 

governed by rules other than those of probability, it is possible to arrange a series of bets with 

him (called a Dutch book) in which he is guaranteed to lose money regardless of how events 

unfold. 

Cox46 derives the rules of probability without any of the machinery of gambling or decisions, 

based only on meeting a list of desirable properties for an ideal agent to reason with uncertainty.  

The proof is more complex than the de Finetti proof, but seems to have broader applicability.  

Below is the list of desired properties from which all the axioms of probability theory can be 

derived.  Since this thesis is built upon the theory of probability, these may be considered the 

assumptions about reasoning with uncertainty made by this thesis. 

1. Clarity:  Propositions must be defined precisely enough so that it would be 

theoretically possible to determine whether they are indeed true or false. 
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2. Scalar Continuity:  A single real number is both necessary and sufficient for 

representing a degree of belief. 

3. Completeness:  Some degree of belief can be meaningfully assigned to any 

well-defined proposition. 

4. Context dependency:  The belief assigned to a proposition can depend on the 

belief in other propositions. 

5. Hypothetical conditioning:  There exists some function that allows the belief 

in a conjunction of two propositions to be calculated from the belief in the first 

proposition, and the belief in the second proposition given that the first is true. 

6. Complementarity:  The belief in the negation of a proposition is a 

monotonically decreasing function of the belief in the proposition itself. 

7. Consistency:  There will be equal belief in propositions that are logically 

equivalent. 

Cox46 originally proved that the probability axioms follow from these properties, but Tribus69 

weakened the hypothetical conditioning requirement, and the solution of the "associativity 

equation" in Aczel66 may be used to remove the differentiability assumptions required by Cox.  

The list 1-7 was taken (with some modifications) from HorvitzHeckermanLanglotz86, who 

clearly state and name the desired properties, and use the results to compare existing uncertainty 

systems. 

Some people have argued for uncertainty systems that violate one of the properties 1-7, or that 

have internal inconsistencies.  For example, the Dempster-Shafer theory violates the 

combination of 2, 3, and 6.  One justification for doing this is that some way of representing total 

ignorance about a proposition is required.  Property 3 requires that we specify a belief for every 

proposition and property 2 requires that it be only a single number, which appears to preclude 

any representation of ignorance.  Bayesians have pointed out that for decision theory a 

representation of ignorance is not required, although for learning and communication it may be.  

Sometimes using Bayesian probabilities for beliefs about real-world frequencies, instead of just 
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beliefs about the occurrence of a single event, will handle these situations.  Otherwise, true 

Bayesian probabilities can be augmented with a confidence measure (such as an "equivalent 

sample size", which may be considered as roughly equivalent to the number of relevant cases 

used to form a learned BN), which can be combined with the probability when necessary to 

provide enough information for someone with different priors to update their priors.  The issue 

remains controversial, but without doubt the Bayesian method is suitable for a very large class of 

uncertainty problems. 

Fuzzy logic appears to violate property 1, but the primary complaint of the fuzzy logic 

community is that probabilities can not represent all the different types of uncertainty that arise.  

They distinguish between vagueness (fuzziness, haziness, etc.), and ambiguity (nonspecificity, 

variety, etc.).  Bayesians do claim to be able to handle these types of uncertainty using only 

probabilities (for example, see Cheeseman86). 

Expert systems based on simple evidential support may be misled when they use transitivity to 

chain rules.  For example, if B provides support for C, and C provides support for D, a support 

based system may increase support for D upon observing B, which may be inappropriate.  An 

example from Pearl88 is that "wet grass" may provide support for "rained last night,"  and 

"sprinkler on" may provide support for "wet grass."   Each of these two rules work fine by 

themselves but chaining them suggests that "sprinkler on" supports "wet grass" which in turn 

supports "rained last night."   However, if we see the sprinkler on we should probably decrease 

our belief that it rained last night, instead of increasing it. 

A good example of the ad hoc nature of certainty factors, and the confusion resulting in trying to 

apply them, is the transcript of email exchanges of the MYCIN developers (BuchananS84, pp. 

221-232).  Later, Heckerman (1986) analyzed certainty factors and showed that (when the 

inconsistencies were removed) they were equivalent to using probabilities, but with certain 

independence assumptions being implicitly made.  In cases where these assumptions are 

inappropriate, using certainty factors may produce misleading results.  By comparing the system 

to a probabilistic one, it became clearer where the deficiencies were, and how serious they were. 
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Proponents of default reasoning are often concerned with the numbers normally used in 

probabilistic reasoning, and ask "Where do these numbers come from?"  The numbers represent 

subjective beliefs, not exact real-world frequencies, so the reasoning agent is simply 

summarizing his beliefs with the numbers.  In fact, given a series of observations from nature, it 

seems easier to find probabilities (either as frequencies or doing Bayesian reasoning over priors 

on frequencies), than to decide on a set of default rules.  Nevertheless, default reasoning can be a 

very valuable way of reasoning with uncertainty, since it sometimes has significant 

computational advantages, and can reduce the information rate considerably during 

communication. 

It is dangerous to assume that a proof like the one by Cox completely defines the "best" system 

to use.  It is always difficult to foresee what types of systems will be successful in the future, 

partly because the nature of the problems being solved keeps changing.  However, the proof is 

useful for understanding the fundamental differences between uncertainty systems, and if one is 

willing to accept the properties 1-7, it indicates that probability is the system to use. 

Doing complete probabilistic reasoning is generally very computationally expensive (see section 

2.6), so it is reasonable to look for alternatives.  Sometimes the most appropriate algorithm is as 

simple as taking the average of a few values, or using a majority vote scheme.  The approach 

advocated in this thesis is to start with a normative theory for combining uncertain information, 

and then use a simplified scheme, when appropriate, to improve the computational speed or 

overall complexity of the reasoning.  However, it should be considered an approximation to 

using probabilities, and should be judged based on how similar its results are to those of full 

scale Bayesian reasoning.  One of the applications of "link strength" is to indicate when it is 

appropriate to take a certain type of computational shortcut in probabilistic reasoning, and 

provide a bound on the resulting inaccuracy. 

2.3 Axioms of Probability Theory 

Here is a set of axioms for probability theory equivalent to those derived by Cox (and also 

compatible with other axiomatizations of probability, such as the Kolmogorov axioms): 



 

 
- 10 - 

1.  P(a|a)  =  1 2.3:1 

2.  P(¬a|b)  =  1  –  P(a|b) 

3.  P(a, b|c)  =  P(a|b, c)  P(b|c) 

where P(x,y|z) means the probability that propositions x and y are both true, given that 

proposition z is true.  For notational convenience we use P(x) to mean P(x|T) where T is a 

tautology that is always true.  Upper case letters refer to propositional variables, and lower case 

to their value.  +b stands for b=TRUE, ¬b stands for b=FALSE, and sometimes +b is written 

simply as b if that does not result in confusion.  For more notational details see Appendix A. 

From these few axioms, together with propositional logic and arithmetic, we can generate the 

entire mathematical structure of probability theory.  If we are willing to accept using these 3 

simple axioms for a system to reason with uncertainty, and we require that it is consistent, then 

we are bound to accept using probability theory. 

Below is a list of a few theorems that I will use later.  For their proofs, or alternate (but 

equivalent) axiomatizations of probability theory, see an elementary text such as Lindley65.  

This is Bayes theorem: 

P (a|b, c)  =  P (b|a, c) 
P (a|c)
P (b|c)  2.3:2 

This is the reasoning by cases theorem: 

P(a|c)  =  P(a|b, c) P(b|c)  +  P(a|¬b, c) P(¬b|c) 2.3:3 

This is the independence theorem: 

P (a, b|c) = P (a|c)  P (b|c)    iff A is independent of B given C 2.3:4 

where independence is defined as: 

P (a|b, c) = P (a|c)   iff A is independent of B given C,  providing 2.3:5 
                                   b and c are consistent  
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Theorem 2.3:6:  In each of the above theorems, all the probabilities are conditioned on the 

proposition c.  Since it could be equivalent to any logical formula, they all hold with c replaced 

by any vector of truth values, c. 

The full joint probability distribution (FJD) specifies a probability for every possible conjunction 

involving every proposition of interest (or its negation).  For example, if an agent knew only 

about the propositions A, B, and C, his FJD would consist of the probabilities P(abc), P(ab¬c), 

P(a¬bc), P(a¬b¬c), P(¬abc), P(¬ab¬c), P(¬a¬bc), and P(¬a¬b¬c).  Supplying an FJD for a 

problem completely specifies the problem probabilistically.  Sometimes I will refer to the FJD of 

a problem or an agent, when I want to indicate the complete probabilistic specification, although 

it may not be represented in any table.  Obviously, if the FJD were stored in a table, the size of 

the table would be exponential in the number of base propositions.  We must take advantage of 

independencies between propositions to more efficiently represent an FJD. 

2.4 Representing Independencies 

Using just the axioms and theorems of the previous section we can do probabilistic reasoning.  

That is, given beliefs for a set of propositions and their conjunctions (or relations), we can 

combine them with new items of certain (or uncertain) knowledge about the propositions or their 

relations, to obtain new beliefs for any of the propositions, or any logical formula of the 

propositions. But unless we exploit the fact that under some conditions our belief in some of the 

propositions will be independent of some others, then for even a moderately sized problem, the 

computational cost will be astronomical.  We could represent all the independencies as a list of 

triples, each one of the form I (X, Y| z), where X, Y, and Z are sets of propositions, and 

I (X, Y| z) means that if Z is precisely the set of propositions we know the truth value of, then X 

is independent of Y (i.e. further knowledge of whether the propositions in X are true won't 

change our beliefs in any of the propositions in Y). However, this list would be impossibly large 

and awkward to deal with since the number of possible sets for each of X, Y, and Z is 

exponential (the power sets) in the number of base propositions. 
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Once some independencies are known, generally others must follow to be consistent with the 

axioms of probability.  So we could keep a partial list of independencies, and generate the others 

as needed, using the graphoid axioms (Pearl88): 

 Symmetry I (X, Y | z)   ⇒   I (Y, X | z) 

 Decomposition I (X, Y ∪ W | z)   ⇒   I (X, Y | z) 

 Weak Union I (X, Y ∪ W | z)   ⇒   I (X, Y | z  ∪ w) 

 Contraction I (X, Y | z)  &  I (X, W | z  ∪ y)   ⇒   I (X, Y ∪ W | z) 

However using these axioms to generate required independence information would generally 

turn out to be a major computational task in itself.  Instead we use a dag (directed acyclic graph) 

to represent the independencies, and by using a simple and very fast algorithm called d–

separation, we can use the dag to quickly find independence information. 

We require that the dag not represent any independency that isn't in the original FJD.  

Unfortunately, due to the limited representational power of dags, the result is that sometimes not 

all the independencies of the FJD can be represented by a dag.  Since we are using the 

independence information to speed computation, the fact that it sometimes misses an 

independency means that sometimes we will do a little more computation than necessary, but 

since it never reports an independency when there isn't one, the computation will never be in 

error. 

In the dag representation, each proposition of interest is represented by a node in a graph.  

Directed arcs (called links in this thesis) connect the nodes.  The graph may be constructed by 

choosing any total ordering for the nodes, starting with no links, and then stepping through the 

ordering and adding links to each node N as it is encountered.  The links to add to node N are 

determined by examining each node preceding node N in the ordering, and adding a link from it 

to N if N is not independent of that node given all the other nodes preceding N (for all values of 

those other nodes).  This process will be examined again in section 3.8, and in section 2.5 I give 

an example which shows how our natural knowledge of causality normally makes the process 

much easier. 
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The dag that results can be used to regenerate the independence information via the d-separation 

algorithm.  In general, its structure will depend on the total ordering of the nodes that we started 

with.  In order to create the simplest model, and to represent as many independencies as possible, 

it is desirable to chose an initial total ordering that will minimize the number of links in the final 

dag.  In models of physical causation, generally placing propositions about causes before 

propositions about their effects will result in a smaller dag.  An example of a dag to represent 

independence appears in figure 2.5:1. 

The graph created by the above algorithm never has any cycles (i.e. paths that return to their 

starting point following the direction of the links), but it may have loops (paths that return to 

their starting point ignoring the direction of the links).  A graph without loops is called singly-

connected, and one with loops is called multiply-connected.  The nodes with links going to a 

node N are called the parents of N, and the nodes at the end of links leaving N are called the 

children of N.  The definitions of ancestors, descendants, siblings, etc. follow in the natural way. 

The recent heightened interest in using normative probabilistic systems to reason with 

uncertainty, and the construction of a number of practical systems, is due in a large part to 

exploiting the independencies represented by a dag description of the FJD.  One of the 

contributions of this thesis is to provide a criterion for when it is appropriate to exploit "near-

independencies" as well, and to generalize the d-separation algorithm to discover them. 

2.4.1 d-Separation Algorithm 

The d-separation algorithm is used to determine the independencies represented by a dag.  It is 

an algorithm which allows dags to represent independencies in a manner consistent with the 

graphoid axioms (and therefore the axioms of probability). 

Say X, Y, and Z are disjoint subsets of nodes in the dag.  We will use the d-separation algorithm 

to determine if X and Y are independent given Z ("given Z" means the same thing as "having 

evidence for Z,"  which means the truth values of all the propositions in Z are known by the 

reasoning agent). 
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A node is termed converging with respect to a path, iff it is a node along the path in which both 

the links to enter and to leave the node are directed toward the node (e.g. the third node B from 

the left in figure 2.4). 

A path is blocked by Z iff: 

 1.  It has a non converging node in Z, or 

 2.  It has a converging node N that is not in Z, and N has no descendants in Z. A path that 

is not blocked is called active.  Figure 2.4 illustrates some blocked and active paths.  In each case 

A is a node from X, C is a node from Y, and B is in Z iff it is shaded. 

Z d-separates X from Y iff all paths from X to Y are blocked by Z.  If there is any active path 

from X to Y, then X and Y are not d-separated by Z. 

If Z d-separates X from Y, then X and Y are independent given Z.  That is, if you know Z, 

further knowledge of X will not shed any light on Y, and vice versa.  It is important that Z 

include all the nodes for which you have knowledge, since some of the nodes in Z may block all 

the paths from a node in X to a node in Y, but others may form new paths. 

You can check your ability to apply the d-separation algorithm by trying to find all the active 

paths from node V to node Q in the BN of figure 2.6:2, where the shaded nodes are the ones for 

which you have knowledge.  The only two active paths are the marked ones. 
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A

B

C

A

B

C

A

B

C

A

B

C

D

Blocked Paths

A

B

C

A

B

C

A

B

C

A

B

C

D

Active Paths

B Node without evidence= B Node with evidence=
 

Figure 2.4 - Each case indicates whether the displayed path between A and C is 
active or blocked.  A node with "evidence" is one whose truth value is known.  In 
each case there may be other links connected to A, B, C, or D, so there may be other 
paths between A and C which may be active or blocked. 

2.5 Bayesian Networks 

We can use the dag representation of independence introduced in the previous section, together 

with a set of conditional probabilities at each node, to provide a complete representation of any 

particular FJD.  We call the resulting structure a Bayesian network (BN). 

In the common definition of a BN, nodes represent any kind of variable of interest, but since this 

thesis is restricted to the study of binary nodes, our nodes represent propositions (or variables 

that can take on one of two states). 

To construct a BN, a dag may be determined as described in the previous section.  Then, a 

number of conditional probabilities called the node conditional probabilities (NCPs), are 

attached to each node.  These are the probabilities that the proposition of the node is TRUE given 

each of the different TRUE/FALSE combinations of its parents.  For example, if the node B had 

the single parent A, its NCP would be {P(b|a), P(b|¬a)}, if it had parents A and W its NCP would 

be {P(b|aw), P(b|a¬w), P(b|¬aw), P(b|¬a¬w)}, and if it had no parents its NCP would be {P(b)}.  
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These probabilities are subjective probabilities, which are unique for the reasoning agent 

constructing and using the BN.  They measure to what degree the agent would believe the child 

proposition if he knew the truth about the parent propositions.  When appropriate, they 

correspond to frequencies in the real world, but that is not required.  The purpose of BN 

inference is simply to tell the agent how to change beliefs when he observes certain evidence.  

The structure of the links is often called the topology of the BN to distinguish it from the 

conditional probability information. 

The FJD is easily reconstructed from the BN representation via the equation: 

P(v)  =  
V

x

∈Χ

ΧΡ∏ ))(|( π  2.5 

where V is the set of nodes in the BN, P(v) is a probability from the FJD for the vector of truth 

values v (one value for each node in V), X is a node, π(X) is a vector of values (consistent with 

v) for the parents of X, and P(x|π(X)) is an NCP for X, where both x and π(X) are consistent 

with v.  In other words, the joint probability of a setting of TRUE/FALSE values for all the nodes, 

is simply the product over the nodes, of the NCP from each node which is consistent with the 

setting. 

A single FJD can generally be represented by several different BNs, but if the BN must satisfy a 

given total ordering for the nodes, then it will be unique.  Any propositional FJD can be 

represented by some BN having one node for each propositional variable of the FJD.  A BN 

uniquely  (and therefore unambiguously) determines an FJD.  Every possible BN determines 

some FJD, so it is impossible to construct an inconsistent BN no matter what its NCPs or its 

topology (providing its acyclic). 

The direction of each link in a BN is significant.  A link from node A to node B may always be 

reversed in direction, but if it was already in its optimal orientation, then the reversal usually 

requires the addition of extra links from the parents of A going to B, and from the parents of B 

going to A, to avoid indicating independencies that don't exist.  Once the extra links have been 

added, the BN doesn't represent all the independencies it did before the link reversal.  Also, with 

the links in a non-optimal direction our knowledge is less modular, in that adding new variables 
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(nodes) will generally require adding a great many new links.  In those problems where the 

variables are causally related, the optimal direction for links is generally the direction of 

causality (e.g., the direction of time). 

An example BN is shown in figure 2.5:1, and its NCPs are shown in figure 2.5:2.  This BN 

represents the relationships between the beliefs of Jim, who is a fictitious character that lives in a 

small community which also contains Hank, Tom, Molly, and Gale.  The NCPs are the 

subjective probabilities of Jim only.  For example, the NCPs of node MT represent Jim's belief 

of what Molly thinks (notice that in this example it mirrors what Jim himself believes, since the 

NCPs of node MT are the same as the NCPs of node TD, but this is not required). 

Each node should specify a proposition precisely to the user of the BN, in order to satisfy the 

clarity condition (see section 2.2) of probabilistic reasoning.  For example, "Tom" must refer to a 

particular person, so including a last name may help, "a big donation" must refer to a particular 

range of donation sizes, so including dollar amounts may help, and "lots of cars" must refer to a 

particular range in number of cars, so providing numbers may help.  Perfectly describing each 

node to someone completely unfamiliar with the situation may require an endlessly long 

description, but any description is adequate as long as it produces in the mind of the BN builder 

and the BN users a proposition of adequate preciseness for the task at hand. 

It may appear that most of the important causes for many of the nodes have not been included.  

For example "Park is approved", has only "Molly elected mayor" as a parent.  Surely there are 

many more important factors, such as the need for a park, the existence of necessary funds, the 

availability of land, etc.  However, the purpose of using probabilities and reasoning with 

uncertainty is to be able to reason without explicitly accounting for all these factors.  The 

probabilities themselves summarize the missing factors (if all factors were accounted for, 

perhaps the NCPs would consist of only 0s and 1s).  In building a BN we need include only 

those factors we know of and suspect are relevant, and the uncertainty in the inference results 

will reflect our lack of knowledge.  If Jim were an actual person he would probably know of 

many more factors that were relevant to his real-life questions involving these nodes, so he could 

add nodes and links for them to expand our example BN, and thereby generally increase the 

expected certainty of his conclusions. 
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HM:  Hank moves 
away sometime in 
the next 5 years

TC:  Tom just 
bought a new 
BMW car

TM:  Tom moves 
next door to Hank 
next year

CV:  Tom's 
cousin is 
visiting him

TW:  Tom is 
currently 
fairly wealthy

HT:  Lots of 
traffic on 5th 
street last year

SW:  Tom's 
hardware store 
did well last year

CP: Lots of cars are 
usually parked in 
front of Tom's  store

GT:  Gale told Molly 
that lots of cars are 
usually parked in 
front of Tom's store

TD:  Tom makes big 
donation to Molly's 
campaign

MM:  Molly gets 
elected mayor

PA:  Neighborhood 
park is approved

PC:  Neighborhood 
park is constructed 
next year

VU:  Hank's property 
value goes up more 
than 20% in two years

DT:  Traffic more than 
doubles on Hank's 
street next year

FW:  5th street 
is widened next 
year

CD:  A new BMW 
is parked in Tom's 
driveway

TA:  Tom can afford to 
move to an expensive 
neighborhood next year

TR:  Tom told 
Molly he is rich

TF:  Tom told Molly 
he will donate 
campaign funds

MR:  Molly thinks 
Tom is rich

MT:  Molly thinks Tom 
is going to make big 
campaign donation

MD:  Molly decides 
to run for mayor

Figure 2.5 - Example BN. 
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P(cp|+sw,+ht) = 0.8 
P(cp|+sw,-ht) = 0.7 
P(cp|-sw,+ht) = 0.7 
P(cp|-sw,-ht) = 0.2 

P(ht) = 0.7 
 
P(sw|+ht) = 0.7 
P(sw|-ht) = 0.6 

P(gt|+cp) = 0.1 
P(gt|-cp) = 0.002 
 
P(tw|+sw) = 0.7 
P(tw|-sw) = 0.3 
 
P(tr|+tw) = 0.1 
P(tr|-tw) = 0.05 

P(mt|+tf,+mr) = 0.8 
P(mt|+tf,-mr) = 0.5 
P(mt|-tf,+mr) = 0.1 
P(mt|-tf,-mr) = 0.02 

P(td|+tf,+tw) = 0.8 
P(td|+tf,-tw) = 0.5 
P(td|-tf,+tw) = 0.1 
P(td|-tf,-tw) = 0.02 

P(tc|+tw) = 0.3 
P(tc|-tw) = 0.1 
 
P(cv) = 0.01 

P(cd|+cv,+tc) = 0.95 
P(cd|+cv,-tc) = 0.90 
P(cd|-cv,+tc) = 0.90 
P(cd|-cv,-tc) = 0.05 

P(ta|+tw,+tc,+td) = 0.800 
P(ta|+tw,+tc,-td) = 0.802 
P(ta|+tw,-tc,+td) = 0.810 
P(ta|+tw,-tc,-td) = 0.812 
P(ta|-tw,+tc,+td) = 0.300 
P(ta|-tw,+tc,-td) = 0.302 
P(ta|-tw,-tc,+td) = 0.310 
P(ta|-tw,-tc,-td) = 0.312 

P(tm|+ta) = 0.3 
P(tm|-ta) = 0.05 
 
P(md|+mt) = 0.7 
P(md|-mt) = 0.5 

P(mm|+md,+td) = 0.5 
P(mm|+md,-td) = 0.3 
P(mm|-md,+td) = 1e-7 
P(mm|-md,-td) = 1e-7 

P(pa|+mm) = 0.7 
P(pa|-mm) = 0.4 
 
P(pc|+pa) = 0.9 
P(pc|-pa) = 1e-5 

P(fw|+ht,+mm,+pc) = 0.52 
P(fw|+ht,+mm,-pc) = 0.50 
P(fw|+ht,-mm,+pc) = 0.42 
P(fw|+ht,-mm,-pc) = 0.40 
P(fw|-ht,+mm,+pc) = 0.15 
P(fw|-ht,+mm,-pc) = 0.15 
P(fw|-ht,-mm,+pc) = 0.12 
P(fw|-ht,-mm,-pc) = 0.10 

P(dt|+fw) = 0.8 
P(dt|-fw) = 0.2 

P(vu|+pc,+dt) = 0.80 
P(vu|+pc,-dt) = 0.82 
P(vu|-pc,+dt) = 0.50 
P(vu|-pc,-dt) = 0.51 

P(hm|+pc,+vu,+dt,+tm) = 0.12 
P(hm|+pc,+vu,+dt,-tm) = 0.13 
P(hm|+pc,+vu,-dt,+tm) = 0.10 
P(hm|+pc,+vu,-dt,-tm) = 0.11 
P(hm|+pc,-vu,+dt,+tm) = 0.11 
P(hm|+pc,-vu,+dt,-tm) = 0.12 
P(hm|+pc,-vu,-dt,+tm) = 0.09 
P(hm|+pc,-vu,-dt,-tm) = 0.10 
P(hm|-pc,+vu,+dt,+tm) = 0.31 
P(hm|-pc,+vu,+dt,-tm) = 0.33 
P(hm|-pc,+vu,-dt,+tm) = 0.30 
P(hm|-pc,+vu,-dt,-tm) = 0.31 
P(hm|-pc,-vu,+dt,+tm) = 0.31 
P(hm|-pc,-vu,+dt,-tm) = 0.32 
P(hm|-pc,-vu,-dt,+tm) = 0.29 
P(hm|-pc,-vu,-dt,-tm) = 0.30 

P(tf|+tr,+tw) = 0.60 
P(tf|+tr,-tw) = 0.15 
P(tf|-tr,+tw) = 0.20 
P(tf|-tr,-tw) = 0.05 

P(mr|+tr,+gt) = 0.71 
P(mr|+tr,-gt) = 0.70 
P(mr|-tr,+gt) = 0.31 
P(mr|-tr,-gt) = 0.30 

 

Figure 2.5:2 - Node conditional probabilities (NCPs) for the example BN in figure 
2.5:1. 

This BN can be used to find Jim's initial beliefs in each proposition, and what those beliefs 

become if he finds out the truth value of one or more of the nodes.  For example, if Jim found out 

that Tom's hardware store did well last year, we can use it to find his new beliefs in each 

proposition (for example, whether Hank is going to move away in the next 5 years).  Then, if he 

later read in the newspaper that Molly was elected mayor, we could obtain a new set of beliefs 

for each node (for example, whether Tom told Molly he will donate campaign funds).  The 

actual beliefs calculated for this example are given at the end of the next section. 
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2.6 Bayesian Network Inference 

The most studied BN inference problem is: Given a BN and evidence for some of its nodes, what 

are the posterior probabilities of its other nodes?  Evidence is some ideal observation, or the 

receiving of some certain information, on the truth of one or more node propositions (uncertain 

evidence is dealt with in section 2.7).  With respect to a particular BN, evidence items may be 

inconsistent with each other.  For example, if B is a child of A with P(b|a) = 1, and we obtain 

evidence a=TRUE and b=FALSE, we say the evidence is inconsistent.  This indicates that the 

evidence is not possible given the BN model (which often indicates a fault with the model, not 

the evidence).  Evidence will never be inconsistent for a BN which does not have any zeros in its 

NCPs.  Inconsistent evidence is not allowed in BN inference, and throughout this thesis, whether 

it is explicitly stated or not, we assume evidence is consistent. 

Occasionally in this thesis I will refer to BN inference in a dynamic sense, which implies a 

situation where a stream of  evidence items constantly arrive to a BN, and we update the beliefs 

of each node as they arrive.  So we may speak of the belief at a node as rising and falling through 

time.  A primary feature of this situation is that evidence always accumulates, no item is ever 

retracted.  As the amount of evidence monotonically increases, some quantities of interest will 

monotonically increase (or decrease), while others will vary up and down. 

Once we have received evidence for a BN, we can use one of two different systems for taking it 

into account.  We can do evidence absorption to modify the BN to one specific for that evidence 

state, by modifying the network topology and NCPs (often extensively), so that the nodes for 

which we have evidence no longer appear in the network, and the new network represents the 

original BN conditioned on the evidence.  Or we can use the system of belief updating, which 

leaves the BN structure unchanged, but marks the nodes for which we have evidence with the 

state of the evidence (these become known as evidence nodes and are usually drawn shaded on a 

BN diagram), and then uses algorithms designed to handle the evidence "in place" to find 

posterior probabilities.  These two systems of dealing with evidence are entirely equivalent in 

semantics; the only differences are ones of representation and computation. 
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The normal way of creating a new BN by evidence absorption is through link reversals and node 

absorption (Shachter86, Shachter88).  First, all links pointing to evidence nodes are reversed, 

one by one, using a system based on Bayes rule, which modifies the NCPs at (only) the two 

nodes at each end of the link.  Each reversal may result in new links pointing to the evidence 

node, since during a reversal the nodes at each end of the link gain all the parents the other has.  

Eventually though, each evidence node is guaranteed to have only links leaving it (links between 

evidence nodes may simply be deleted), and then that evidence node is absorbed.  That is, it is 

removed from the network and all the NCPs of its child nodes are collapsed by one dimension to 

the value of the evidence.  If it is desired to remove a node which does not have evidence, we 

reverse links so that it has only links entering it, and none leaving it, and then we just delete the 

node.  Later a process called probability propagation may be used on this new BN to calculate 

the posterior probabilities (i.e. belief at each node). 

There are a number of methods for belief updating, which computes the new beliefs after 

receiving evidence without creating a new BN.  Generally, they take much better advantage of 

independencies than evidence absorption, and so require less computation.  Some of them use a 

compiled secondary structure for efficiency, and some of them operate on just the original BN.  

Some of them produce approximate results, and some exact.  Pearl developed a fast algorithm for 

BN updating when the network is singly-connected called belief propagation (Pearl88), which 

can find posteriors in O(N) time, where N is the number of nodes in the network, and as a 

parallel algorithm with a processor for each node, in O(d) time, in which d is the diameter of the 

network.  Multiply-connected networks pose a much greater computational problem. 

The reasoning by assumptions algorithm (Pearl88) finds a set of nodes (called cut nodes), such 

that if they were instantiated with evidence some active paths would become blocked and the 

network would become singly-connected.  Then it solves the singly-connected problem multiple 

times, once for each possible instantiation of the cut nodes.  The final beliefs are found as a 

weighted sum of the beliefs in each of these sub-calculations, with the weighting for each 

instantiation being the probability that the cut nodes would be instantiated that way (using 

equation 2.3:3).  Since all combinations of evidence at the cut nodes must be considered, the 

algorithm is exponential in the number of cut nodes.  It is not very efficient, but is mentioned 

here for its conceptual value. 
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Some of the most efficient and popular exact algorithms currently known are the clique tree 

algorithms (Lauritzen&Spiegelhalter88), especially those using a junction tree  (Jensen&OA90).  

They create a secondary structure which is a singly-connected graph in which each node 

corresponds to the Cartesian product of a few nodes from the original BN.  Evidence propagation 

may be accomplished by message passing between the nodes of this new tree.  The 

computational complexity depends very much on the state-space size of the new nodes, which in 

turn depends on the connectivity of the original BN. 

Cooper has shown general BN inference to be NP-hard by reducing the 3SAT problem to a BN 

inference problem (Cooper90).  This is a worst-case result, but often even the average case 

requires exponential time to find exact results.  So for large BN applications, some sort of 

approximation algorithm is often necessary for BN inference. 

Although the BN inference algorithms described above will find the posterior probabilities for 

any node, given a set of evidence at any other nodes, it is useful to dissect BN inference into 

predictive reasoning, diagnostic reasoning, and intercausal reasoning ("intercausal" is derived 

from HenrionDruzdel90).  Predictive reasoning finds the belief at a node which is a descendent 

of a node with evidence, and diagnostic reasoning finds the belief at an ancestor of an evidence 

node.  Intercausal reasoning propagates the effect of evidence between common parents of a 

node with evidence.  Figure 2.6:1 illustrates the three types. 
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E

Predictive

E

Diagnostic

E

Intercausal

Q

Q

Q

 

Figure 2.6:1 - The three types of reasoning in BN inference.  The shaded nodes are 
nodes with evidence.  In each case we wish to find the change in belief at node Q 
due to evidence at node E. 

Any of these three types of reasoning may be combined for more complex inference.  Although 

BN inference is not normally subdivided along the paths from an evidence node to a query node 

(i.e. a node whose updated belief we wish to find), it is sometimes useful to do so.  Suermondt92 

does this to generate explanations of BN inference, and I will do it to study BN sensitivity.  

Figure 2.6:2 shows the paths of reasoning from node V to query node Q, given that some 

previous evidence has arrived to the network at the shaded nodes. 
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A

V

Q

B

C

D

F

Diagnostic

Intercausal

Predictive

Intercausal

Predictive

 

Figure 2.6:2 - Combination of different types of reasoning.  There are only two 
active paths from V to Q: the path V,A,B,C,Q and the path V,D,F,Q.  The first path 
contains diagnostic, intercausal, and predictive reasoning, while the second contains 
only predictive and intercausal reasoning.  The shaded nodes are nodes with 
evidence, V is a varying node (or node with new evidence), and Q is a query node. 

2.6.1 Virtual Evidence 

In cases where we obtain evidence for a node, but the evidence is not certain, we can make use 

of the concept of virtual evidence to handle it using the regular machinery of BN updating 

(Pearl88).  For instance, suppose we wanted to process uncertain information that node A is true.  
We make a new node that is a child of node A and call it Av.  To add this node we must supply 

two new probabilities: the probability that Av is TRUE given that A is TRUE, and the probability 

that Av is TRUE given that A is FALSE.  These two probabilities measure the degree of 

uncertainty of the evidence.  If one of them is 0, then we have the limiting case of the evidence 
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being certain; We don't allow them both to be 0, which would be inconsistent.  To do updating 
with the virtual evidence, node Av is marked as a node with certain evidence of TRUE, and  

regular BN updating is used to adjust the beliefs of the rest of the nodes in the network. 

We may have several independent pieces of uncertain evidence for the node A, which may 

conflict or agree with each other.  In this case we simply add a new child node, and its two 

probabilities, for each piece of evidence (see figure 2.6.1).  Then regular BN updating will 

handle finding the belief for node A and the rest of the nodes in the network whether the 

evidence items conflict with each other or support each other. 

A

C

D
AV1 AV2 AV3

P(av1|a)
P(av1|¬a)

P(av2|a)
P(av2|¬a)

P(av3|a)
P(av3|¬a)  

Figure 2.6.1 - Three items of virtual evidence for node A are represented as three 
child nodes.  The two parameters for each child specify the certainty of the evidence.  
The subnetworks C and D simply illustrate that A is part of a larger BN. 

2.6.2 Inference on BN Example 

We can use any one of the algorithms described earlier to find beliefs for the example BN given 

in the last section.  Initially Jim does not know the truth value of any of the nodes in the 

example.  By doing probability propagation we can find his belief in any node: 

 P(sw) = 0.670 P(tf) = 0.160 P(gt) = 0.0695  

 P(mm) = 0.179 P(pc) =  0.40821 P(hm) = 0.2304 



 

 
- 26 - 

If he finds out that Tom's hardware store did well last year, then we can find his new beliefs for 

each node by doing evidence updating: 

 P(sw|sw) = 1 P(tf|sw) = 0.184 P(gt|sw) = 0.0777  

 P(mm|sw) = 0.183 P(pc|sw) =  0.409 P(hm|sw) = 0.2302 

If he reads in the newspaper that Molly was elected mayor (and believes it with certainty), then 

once again we can find his new beliefs for each node by doing evidence updating: 

 P(sw|sw,mm) = 1 P(tf|sw,mm) = 0.286 P(gt|sw,mm) = 0.0778  

 P(mm|sw,mm) = 1 P(pc|sw,mm) =  0.630 P(hm|sw,mm) = 0.188 

It may seem strange that finding out Tom's hardware store did well would change Jim's belief in 

something so distantly related as whether Hank was going to move or not (even though it only 

changed from 0.2304 to 0.2302).  Whenever there is an active path from one node of a BN to 

another, evidence at one of the nodes can change the belief at the other node.  In a very large 

BN, it is quite reasonable for every node to be connected to every other node, with many of the 

connections being active paths.  Knowledge of different subject areas may be connected along 

their boundaries.  In the example BN, the links between the nodes were quite natural, and it 

would be natural for there to be a link from "Tom's hardware store did well" to a node called 

"Tom opens grocery store" to "Tom eats more lettuce" to, etc., providing nodes ever more 

weakly connected to "Hank moves", yet if Jim received evidence for any one of these nodes, his 

belief in all of them will change somewhat.  The point is that the beliefs at very distant nodes 

will change almost imperceptibly, and if we have a way of measuring what that change will be, 

or of guaranteeing that it is less than some bound, we may want to ignore finding new beliefs for 

those distant nodes, thereby greatly simplifying the computational burden. 



 

 
- 27 - 

3 Connection and Link Strengths 

3.1 Connection Strength Definition 

Given two nodes, A and B, in a propositional Bayesian network, the connection strength (CS) 

from node A to node B is defined as the difference in the resulting belief at node B, between the 

situation where A receives evidence TRUE, and the situation where A receives evidence FALSE.  

Formally: 

CS (A,B)  =  d (P(b|+a),  P(b|¬a)) 3.1:1 

where d is a distance measure to determine the amount of change, or degree of difference, 

between two probabilities (examples will be given), which for all x, y, z ∈  [0,1], satisfies: 

1. Zero:  d (x, x)  =  0 3.1:2 

2. Symmetry:  d (x, y)  =  d (y, x) 

3. Triangle Inequality:  d (x, z)  ≤  d (x, y)  + d (y, z) 

4. Monotonicity:  For any given x,  d(x, y) increases monotonically as y moves away from 
x.  Formally:  x ≤ y ≤ z   ⇒   d (x, y)  ≤  d (x, z)  and  d (y, z)  ≤  d (x, z) 

5. No-maxima:  Along any line segment in (X,Y), d(x,y) reaches its maximum at an 
endpoint.  Formally:  d(λa + (1-λ)b, λc + (1-λ)d)  ≤  max (d(a,c), d(b,d))   for all 
a,b,c,d,λ ∈  [0,1]. 

The first three conditions are the well known Hausdorff postulates of many distance semi-

metrics, and are the requirements of a probability metric as defined in Zolotarev83.  There has 

been some research on probability metrics (see Zolotarev83) but it appears to be mostly 
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concerned with distributions defined over continuous variables.   Actually the zero and 

symmetry requirements are not needed for the crucial proofs.  Without symmetry, all theorems 

except 3.1 and the lower bound of 3.4:3 are valid.  The "zero" requirement may be removed, but 

it is very useful, since terms that equal zero are dropped from equations in the path based 

methods of section 4.4 and beyond.  A further condition on d which is recommended, based on 

the semantics of probability, is:  Invertability:  d (x, y)  =  d (1 – x, 1 – y).  Specific distance 

measures will be discussed later. 

3.1.1 Connection Strength and Virtual Evidence 

CS(A,B) was defined as the difference in belief at B as the belief in A switched from true to false 

(due to evidence at A).  But what if the belief at A changed from partway between certainly-true 

and certainly-false to somewhere else between true and false?  How much would the belief at B 

change?  If the change in belief at A was due to evidence at nodes that are independent of B 

given A, we can guarantee that the change in belief at B will be less than (or equal)  to CS(A,B) 

as defined by equation 3.1:1.  An example of evidence that is independent of B given A, is 

virtual evidence for the node A.  So, as various items of virtual evidence arrive for node A, the 

belief in A will vary between true and false, and this will cause the belief in B to vary 

somewhere between true and false, but the maximum variation at B will always be less than (or 

equal)  CS(A,B).  Formally:  

Theorem 3.1:  Equation 3.1:1 defining connection strength is equivalent to: 

CS (A,B)  =  
21 a,a

max
vv

  d (P(b|av1),  P(b|av2)) 3.1:3 

and: 

CS (A,B)  =  
21 a,a

sup
vv

  d (P(b|av1),  P(b|av1, av2)) 3.1:4 

where av1 is some virtual (or nonexistent) evidence for A, av2 is other evidence (possibly virtual) 

for A, "sup" means the least upper bound, and the distance measure d is assumed continuous for 

3.1:4.  The equivalence of 3.1:1, 3.1:3, and 3.1:4 is proved in Appendix C. 
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These equations allow a slightly different defining statement for connection strength.  CS(A,B) 

is a measure of the most the belief in B could be changed by receiving new (possibly virtual) 

evidence at A, whatever that evidence is, and whatever other (possibly virtual) evidence has 

already been received at A. 

3.2 ∆P Connection Strength 

To completely define connection strength we must supply a probability distance measure d.  One 

possibility which satisfies the requirements (3.1:2) is simply the difference function: 

dp (P1, P2)  =  | P1 – P2 | 3.2:1 

This definition is a degenerate case (applied to a binary variable, rather than a mulitstate or 

continuous variable) of what is called the Kolmogorov metric, also known as the uniform metric 

or variation norm (see Zolotarev83). 

Connection strength defined using this distance measure for probabilities will be called ∆P 
connection strength, and denoted  CSp. 

3.2.1 Single Link Example 

First we consider a very simple BN consisting of only two binary nodes and a single link 

between them: 

P(a) P(b|+a)
P(b|¬a)

A B

 

 
Figure 3.2 - Simple BN example. 

Three numerical parameters are needed to define this BN:  P(a),  P(b|+a)  and  P(b|¬a).  As an 

example we take  P(a) = 0.3,  P(b|+a) = 0.5  and  P(b|¬a) = 0.75. 
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If evidence TRUE is observed at A, then the belief at B (by this we mean the probability that B is 

TRUE given the evidence) will be P(b|+a), and if evidence FALSE is observed then it will be 

P(b|¬a).  Using equation 3.1.4 for connection strength, and the distance measure of equation 

3.2:1, for this simple BN we obtain: 

 CSp (A,B) = | P(b|+a) – P(b|¬a) | 3.2:2 

This is a measure of "the most node A can affect the belief at node B."   As a visualization aid 

one can imagine a situation in which a steady stream of virtual evidence is arriving for A, but no 

evidence arrives for B.  As each piece of evidence arrives, our belief in A will change, and as a 

consequence our belief in B will also change.  In general, the belief at B will rise and fall, but 
will be restricted within a certain envelope.  CSp measures the maximum width of this envelope 

for any series of virtual evidence items at A.  For the example parameters, CSp (A, B) = 

| 0.75 - 0.5 |  =  0.25,  so we would say the connection strength from A to B was 0.25. 

3.2.2 Range of ∆P Connection Strengths 

Consider a BN in which P(b|+a) = P(b|¬a).  In that case, whether evidence of TRUE, evidence of 

FALSE, or no evidence, is observed at A, the belief at B remains constant at P(b|+a) = P(b|¬a) = 

P(b), providing no evidence is observed for B.  Also, whatever evidence is observed at B, 

providing there is no evidence observed for A, the belief at A will remain constant at P(a).  So B 

is actually independent of A, and normally the BN would be drawn without a link connecting the 
two nodes.  The connection strength in this case is  CSp(A,B) = 0.  ∆P connection strength 

between two nodes is zero if and only if the two nodes are independent of each other. 

Consider a BN in which P(b|+a) = 1, and P(b|¬a) = 0.  Then, observing evidence TRUE at A 

results in a belief of 1 at B (i.e., the knowledge that B is TRUE).  Observing evidence FALSE at A 

results in the knowledge that B is FALSE.  In this case the connection strength is 1.  ∆P 

connection strength is 1 if and only if direct evidence for the first node deterministicly defines 

the value of the second. 

∆P connection strength varies from 0 for the weakest connections (actually independence) to 1 

for the strongest connections (deterministic dependence): 
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0   ≤   CSp (X, Y)   ≤   1 3.2:3 

3.3 ∆O Connection Strength 

We have defined a connection strength based on the absolute difference of probabilities,  d (P1, 

P2) = |P1 – P2|.  But sometimes an absolute difference of probabilities does not capture what we 

want as a measure of the "distance" between two probabilities.  For example, suppose we are 

calculating a probability approximately, and we want to measure how close our estimation, P*, is 

to the value calculated exactly, P.  We will call the distance between these two probabilities "the 
error" of the estimation,  e = d (P*, P).  We may want to specify an upper bound em on this error, 

and look for an algorithm which is guaranteed to calculate the estimate with an error less than 

this bound.  This is an application of connection strength that we will be considering. 

We can use the absolute difference function as a distance measure for calculating an error in 

probabilities, but sometimes this will lead to unsatisfactory results.  For example, suppose an 

approximate algorithm estimated the probability for rain tomorrow as 0.61, when an exact 

algorithm with the same information would have calculated the probability to be 0.60.  We 

would likely consider the approximate algorithm to have performed well, and the action that we 

take based on its estimate will not be misguided.  However, if the approximate algorithm 

estimated the probability for severe flood each month in some area as 0.0001, when the exact 

algorithm yielded 0.01, we would say the approximate algorithm failed, and the action we took 

based on its result – building a house which will probably be destroyed in about 10 years – was 

misguided. 

In both cases the absolute difference between the estimate and the exact value is about 0.01, but 

that difference is more significant in the case of the smaller probabilities (of course it is because 

the maximum utility values are larger in the small probability example, but that is often the 

case).  It seems that what we need for this problem is a relative measure of error. 

One might imagine using a "percent difference" distance measure, such as d (P1, P2) = 

|P1 - P2| / P1.  Then the error of the approximate algorithm estimating the probability for rain 

would be only 1.7%, whereas that of flood probability would be 99%, which nicely distinguishes 
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between the two cases.  However it suffers from a couple of problems.  The proposition whose 

probability we are estimating may just as well have been defined in the logical inverse, Q' = ¬Q, 

so that the probability associated with it becomes one minus what it would otherwise be,  P(Q') = 

1 – P(Q).  Therefore, the distance measure should treat probabilities which are close to 1 in the 
same way that it treats probabilities close to 0, i.e.  d (P1, P2)  =  d (1 – P1, 1 – P2).  For example, 

the approximate algorithm estimated the probability for no flood at 0.9999, while the exact 

algorithm yielded 0.9900, which is a percent difference of only 1%. 

One way to deal with this would be to use the percent difference in P for probabilities less than 

0.5, and use the percent difference in 1 – P for probabilities greater than 0.5.  However, this is 

somewhat messy, especially when measuring differences between probabilities which straddle 

0.5.  A more elegant solution is to use the percent difference of odds ratios (there are also other 

important reasons to use odds ratio which will be discussed later).  The odds ratio of proposition 

A is defined as the probability that A is TRUE, divided by the probability A is FALSE: 

O (a) = 
P (a)

P (¬a)   =  
P (a)

1 – P (a)  3.3:1 

O (b|a) = 
P (b|a)

P (¬b|a)   =  
P (b|a)

1 – P (b|a)  

Odds ratios apply only to propositions, but occasionally we will loosely refer to the odds ratio of 

a probability P, by which we mean the quantity  P / (1 – P). 

As two probabilities, P1 and P2, approach 0, the percent difference in the odds ratios of P1 and 

P2 approaches the percent difference of P1 and P2, and as P1 and P2 approach 1, the percent 

difference in the odds ratios of P1 and P2 approaches the percent difference of  1 – P1  and  1 – 

P2.  Percent difference of odds ratios satisfies d (P1, P2)  =  d (1 – P1, 1 – P2), and is numerically 

close to percent difference of probabilities for small probabilities. 

We need to make another refinement to our relative distance measure.  Instead of a percent 

difference we use a factor difference, which is the ratio of the two quantities.  For example, a 5% 

difference corresponds to a factor difference of 1.05.  The advantage of this is symmetry.  If 
quantity X1 changes by 5% in going to X2, it doesn't change by –5% going from X2 to X1 (it 
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changes by 1/1.05 – 1  =  –4.76 %). However, if X1 changes by a factor of 1.05 in going to X2, 

then X2 changes by a factor of 1/1.05 going to X1.  To define a distance measure we are 

interested only in the magnitude of the change in going from one quantity to the other, not its 

direction, so if a factor difference is less than 1, we use its inverse instead.  We denote the factor 
difference between P1 and P2 as 21/PP  where the double vertical bars are similar to the vertical 

bars of absolute value (since x  = max (x, 1/x) is to multiplication what |x| = max (x, –x) is to 

addition). 

This gives us a proposed relative distance measure for two probabilities P1 and P2 as: 

dc (P1, P2)      =    
2

2

1

1

1
 

1 Ρ−
Ρ

Ρ−
Ρ     =    

)1(
)1(

12

21

Ρ−Ρ
Ρ−Ρ  3.3:2 

Finally, we take the logarithm of dc to provide a true distance measure, which we will denote as 

do.  do and dc values can always be recovered from each other, and do  satisfies 3.1:2, so it is a 

suitable distance measure (dc does not satisfy the zero condition or the triangle inequality 

condition).  do turns out to be the absolute difference of log odds ratios: 

do (P1, P2)    =    | log  dc (P1, P2) |    =    |log 
P1

 1 – P1
   –  log 

P2
 1 – P2

 | 3.3:3 

Absolute difference of log odds ratio has been in widespread use for variety of purposes.  The 

reason for the long discussion in getting to here was to show some of the reasons it is better than 

some of the alternatives. 

Any base of logarithm may be used, as long as the usage is consistent.  This thesis assumes that 

natural logarithms are used, but makes a note on how an equation or result should modified to 

accommodate some other logarithm base in the few cases where this is necessary.  To get a feel 
for natural logarithm do values, when they are small, they are close to percent values.  This is 

because for small x, loge(x) ≈ 1 + x.  Thus, a do of 0.05 corresponds to approximately a 5.1% 

difference in odds ratio.  If the probabilities are small, this in turn corresponds to approximately 

a 5.1% difference in probability. 
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If one of the probabilities P1 or P2 is 0 or 1, the denominator of a fraction in 3.3:3 will become 0, 

or we will end up with log 0, which is also undefined.  Throughout this thesis I use arithmetic 

defined on the real numbers augmented by infinity, i.e. the set ∪ℜ  {∞}.  The following rules 

are observed: 

x / 0   =   ∞,     for all x > 0, x / ∞   =   0,     for all x ≠ ∞, 

0 / 0,     ∞ / ∞,    ∞ – ∞,    and    ∞ * 0     are undefined, 

and in general for a function f(x), we define    f  (∞)   as   ∞→x
lim  f (x) 

Furthermore, the do measure between equal probabilities is defined to always be 0, even if the 

probabilities are both 0 or both 1.  With these refinements we can express do as: 

do (P1, P2)  =  





  0 P1 = P2
  ∞ P1=0,P2=1 or P1=1,P2=0

|log 
P1

 1 – P1
  –  log 

P2
 1 – P2| otherwise

  3.3:4 

The definition of do satisfies the requirements of a probability metric as described at the 

beginning of section 3.2.  Connection strength defined using the do distance measure for 

probabilities (i.e. the absolute difference of log odds ratios) will be called ∆O connection 
strength, and denoted CSo. 

3.3.1 Single Link Example 

We return to the example of figure 3.2 to calculate the ∆O connection strength from A to B.  In 
section 3.2 we found CSp (A, B) = 0.25.  By equations 3.3.4 and 3.1:4 we find:  

CSo (A, B)  = |log 
P(b|a)

1 – P(b|a)   –  log 
P(b|¬a)

1 – P(b|¬a) | 3.3:5 

CSo (A, B)  =  |log 
0.75
0.25   –  log 

0.5
0.5 |  ≈   1.10 
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3.3.2 Range of ∆O Connection Strengths 

∆O connection strength varies from 0 for the weakest connections (actually independence) to ∞ 

for the strongest connections (potentially deterministic dependence): 

0   ≤   CSo (X, Y)   ≤   ∞ 3.3:6 

Note that if  CSo (X, Y) = ∞,  Y may be deterministic for only one value of X (such as in the 

case:  given that X is true, Y is true, but given X is false, Y is uncertain).  This differs from ∆P 

connection strength, where a strength of 1 indicates  complete deterministic dependency. 

Although log odds ratio is a monotonic function of probability, ∆O connection strength is not a 

monotonic function of ∆P connection strength.  Two nodes with a weak ∆P connection strength 
(CSp close to 0) may have a strong ∆O connection strength (CSo very large).  More precisely, for 

any two nodes X and Y, in any BN: 

2 log 
1 + CSp (X, Y)
1 – CSp (X, Y)       ≤      CSo (X, Y)      ≤      ∞ 3.3:7 

where the CSo values can be anywhere in the range, depending on the particular BN.  

Conversely: 

0      ≤      CSp (X, Y)      ≤      
eCSo (X, Y)/2 – 1
eCSo (X, Y)/2 + 1  3.3:8 

If CSo was defined using a logarithm of some base other than e, then in the equation above, e 

should be substituted with the actual base used. 

For small values of CSp we can make the approximation: 

CSo    ≈    4 CSp            for small CSp 3.3:9 

CSo    ≥    4 CSp            for all CSp 
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3.4 An Alternate Definition of Connection Strength 

The connection strength from node A to node B could have been defined as:  The maximum 

change in belief at B as we go from a state of no evidence at A to a state with some evidence at 

A, that is:  

CS' (A,B)   =   max  (d(P(b), P(b|+a)),   d(P(b), P(b|¬a))) 3.4:1 

which is equivalent to: 

CS' (A,B)   =   
1a

max
v

 d (P(b),  P(b|av1)) 3.4:2 

where av1 is virtual evidence for A. 

This quantity can be bounded above and below using the original definition of connection 

strength, and the original definition is more workable in most situations, so it is preferred. 

Theorem 3.4:  For any two propositional variables A and B, and for any evidence e (or no 

evidence e), connection strength defined by equation 3.4:1 can be bounded above and below as: 

1
2   CS (A,B|e)    ≤    CS' (A,B|e)    ≤    CS (A,B|e) 3.4:3 

This is proved in Appendix C. 

3.5 Conditional Strength and Maximal Strength 

In a situation where a stream of evidence arrives for a BN (items of evidence arrive sequentially 

through time), it is sometimes useful to consider connection strength dynamically.  The 

conditional connection strength CS (A, B|e) is a measure of the maximum effect on node B of 

evidence at A given the (possibly virtual) evidence e that has already arrived to other nodes of 

the network, and no other evidence.  More formally: 

CS (A, B|e)  =  d (P(b|+a, e),  P(b|¬a, e)) 3.5:1 
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CS (A, B|e)  =  
21 aa

sup
vv ⋅  d (P(b|av1, e),  P(b|av1, av2, e)) 3.5:2 

where e is the evidence seen thus far, and, as with the CS definition, av1 is some (possibly 

virtual) evidence for A, av2 is some other consistent evidence (possibly virtual) for A, and d is a 

continuous distance measure satisfying 3.1:2.  Equation 3.5:2 is equivalent to 3.5:1 (the proof is 

similar to that of theorem 3.1). 

We define maximal CS as the maximum value that conditional CS may take upon receiving 

further evidence consistent with the evidence already received, and denote it as CSM: 

CSM (A, B|e)    =   ee ≈+

max    CS (A, B|e, e+) 3.5:4 

where e is the evidence seen thus far and e+ is evidence consistent with e (the ≈  symbol means 

"consistent with"). 

Conditional strength may increase or decrease upon gathering more evidence, but maximal 

strength always remains constant or decreases.  At all points in time conditional CS is always 

less than or equal to maximal CS.  The following are some easily proved relationships, which are 
true for all nodes A and B, and consistent evidence e and e+, in any BN: 

CS (A, B|e)    ≤    CSM (A, B|e)    ≤    CSM (A, B) 3.5:5 

CSM (A, B|e, e+)    ≤    CSM (A, B|e) 3.5:6 

e
max  CS (A, B|e)    =    e

max  CSM (A, B|e)    =    CSM (A, B) 3.5:7 

CSM  (A, B|e)  =  ee ≈+,a,a
sup

2v1v
 d (P(b|av1, e, e+),  P(b|av1, av2, e, e+)) 3.5:8 

3.6 Connection Strength in Complex BNs 

I gave an example of calculating connection strength in a simple two node BN, but how do we 

find the connection strength between the nodes A and B in a complex BN, where there are 
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multiple paths between A and B, and each path consists of multiple links?  Connection strength 

may be computed from its definition (3.5:1) by the methods of BN inference: 

CS (A, B|e)  =  d (P (b|+a,  e),  P (b|¬a, e)) 

We instantiate the BN with evidence e and +a, and then using the techniques of BN updating 

discussed in section 2.6, we find the posterior probability  P (b|+a,  e).  We repeat this, but instead 

with evidence e and ¬a, to find P (b|¬a, e), and then use the above equation to find CS (A, B|e). 

Since BN inference can be NP-hard (Cooper90), calculating CS in this manner can be quite 

expensive.  Alternatively, we can find bounds on CS quickly by local calculations using the 

concept of link strength.  This will be explored in Chapter 4. 

3.7 Commutivity of Connection Strength 

Given a value for the ∆P connection strength from node A to node B, can we use only this 

information to determine what the connection strength from node B to node A is?  It turns out 

that the ∆P CS in one direction does not even constrain the ∆P CS in the reverse direction (unless 

it is 0 or 1, in which case the CS in the reverse direction will be the same).  More precisely, for 
any value of CSp(A,B) in (0,1), and any value CSp(B,A) in (0,1), there is some BN with these 

connection strengths. 

However, the ∆O connection strength in one direction always equals the strength in the reverse 

direction.  In other words: 

Theorem 3.7: ∆O connection strength is commutative (proved in Appendix C): 

CSo (A, B)  =  CSo (B, A) 3.7:2 

This means that for any two nodes A and B, in any BN, the maximum amount that evidence at 

node B can effect the belief at node A, is the same as the maximum amount that evidence at node 
A can effect the belief at node B, provided "effect" is measured by do.  This is a very useful 

result and later we will see how it gives CSo significant advantages over CSp.  Conditional and 
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maximal connection strength based on odds ratio is also commutative (these are proved in 

Appendix C): 

CSo (A, B | e)   =   CSo (B, A | e) 3.7:3 

CSMo (A, B | e)   =   CSMo (B, A | e) 3.7:4 

As a stream of evidence is obtained for a network, CSo(B,A|e) may change, but CSo(A,B|e) will 

also change so that they will remain equal.  In extreme cases the new evidence may d-separate A 
and B (so CSo goes from some number to 0), or it may connect A and B with an active path 

when they were d-separated (so it goes from 0 to some larger number, possibly even infinity).  In 
any case CSo will remain commutative. 

3.8 Link Strength Definition 

For each link in a BN we can supply a single number, called the link strength (LS), which is a 

measure of the maximum amount that evidence at the parent node of the link can effect the belief 

at the child, given that all the other parents of the child have some evidence.  So the link strength 

of A → B is defined as: 

LS (A → B)   =   })A{)B(C( −∏∈c
max    CS (A, B|c) 3.8:1 

where C(B) is the set of parents of B.  The strength of the A → B link in figure 3.8 is the 

maximum value of connection strength from A to B as all the parents C1, C2,..., Cn take on 

various evidence.  Computing the LS from equation 3.8:1 can be done completely locally; it 

requires knowledge only of the NCP at B. 



 

 
- 40 - 

A B

C1

Cn

 

Figure 3.8 - These nodes may be embedded in a larger BN.  The only nodes shown 
are B and all its parents, since these are the nodes required to define the link strength 
of the link from A to B. 

Given its parents, B is independent of the rest of its ancestors, so equation 3.8:1 is equivalent to: 

LS (A → B)   =   })A{)B(C( −∏∈ +a
max    CS (A, B|a) 3.8:2 

where C+(B) is the set of all ancestors of B. 

We can still speak of an A → B link strength, even if there is no link from A to B (that is, A is 

not a parent of B).  If A is a descendent of B, then adding a link from A to B would create a 

cycle, and so in that case LS(A → B) is undefined.  But, if A is not a descendent of B, and is not 

a parent of B, it will be independent of B given B's parents, so by equation 3.8:1, LS(A → B) is 

zero.  In this case we sometimes say there is a null link from A to B, although of course it 

wouldn't count as a link to the d-separation algorithm, and normally we wouldn't draw it on a BN 

diagram. 

The range of conceivable LS values is the same as that of CS, so LSp values vary from 0 for null 

links to 1 for the strongest links (potentially deterministic dependence), and LSo values vary 

from 0 for null links to infinity for the strongest links: 

0  ≤  LSp  ≤  1 0  ≤  LSo  ≤  ∞ 3.8:3 

Recalling the algorithm described in section 2.4 used to construct the dag of a BN, we can view 

it slightly differently now.  We are given a FJD and we wish to construct a BN to represent it.  

First we choose a total ordering for the nodes.  Using equation 3.8:1 on the FJD and the ordering, 
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we can find the LS between any pair of nodes.  We put a link between those nodes (in the 

direction from the node earlier in the ordering to the later one) if the LS is greater than zero.  

After doing this for every pair of nodes we have the completed dag. 

3.9 Comparing Link and Connection Strengths 

A fundamental difference between CS and LS is that CS is defined with respect to a FJD, 

whereas LS is defined with respect to a FJD and an ordering on the nodes. For a given 

probabilistic specification, the CS between two nodes will be the same regardless of what BN is 

used to represent that specification.  But LS values between two nodes will generally be different 

depending on the particular BN used to represent the FJD. 

Figure 3.9:1 shows an example of the invariance of CS, and the dependence of LS, on the 

particular BN ordering.  Both BNs represent the same FJD, but the total order used in (a) is A, B, 

C while the order in (b) is A, C, B.  The ∆O link strengths, which are written along the links, are 

different between (a) and (b), but the connection strengths, which appear to the right, are the 

same for (a) and (b). 

Notice that link B → C has reversed in going from (a) to (b) and its link strength remains the 

same.  If any BN is modified by reversing a link, say B → C, the only link strengths that will 

change are links going to B or to C, and if the ∆O measure for link strength is used, the strength 

of the link being reversed won't change. 
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A C

B
P(b|+a) = 0.7

P(a) = 0.5

P(c|+a) = 0.59A C

B

P(c|+a+b) = 0.5

CS (A, B)  =  2.233

1.386

P(c|+a¬b) = 0.8
P(c|¬a+b) = 0.3
P(c|¬a¬b) = 0.1

P(c|¬a) = 0.14

P(b|¬a) = 0.2

(a)

(b)

CS (B, C)  =  0.714
CS (A, C)  =  2.179

CS (A, B)  =  2.233
CS (B, C)  =  0.714
CS (A, C)  =  2.179

1.386

P(a) = 0.5

P(b|+a+c) = 0.5432
P(b|+a¬c) = 0.8537
P(b|¬a+c) = 0.4286
P(b|¬a¬c) = 0.1628

2.179

3.40

3.584

2.233

 

Figure 3.9:1 - These two BNs represent the same FJD.  Link strengths are different 
in each, but connection strengths are the same.  The link strengths (LSo) are 
displayed alongside the link, and the connection strengths (CSo) are to the right.  
The total order in (a) is A, B, C, while in (b) the B → C link has been reversed, so it 
is A, C, B. 

Another fundamental difference between CS and LS is that LS is local measure which can be 

computed very quickly, while CS is a global measure which may be very difficult to compute.  

Consider the BN in figure 3.9:2. 

C

A

Z

B
 

Figure 3.9:2 - A BN to illustrate the global nature of CS and the local nature of LS. 

Calculating an exact value for CS(A,B) involves all the nodes in the network, since evidence at 

A can change the belief at B by the active path through Z.  However, calculating LS(A → B) 
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involves only the nodes A, B, and C since taking the maximum with C having evidence blocks 

this active path.  In fact, it really only involves the NCP at B. 

For any BN, calculating a precise value for the unconditional CS between two nodes involves all 

their ancestors, and calculating a precise value for the conditional CS between two nodes 

involves all their ancestors, and all the ancestors of every node with evidence.  Also, in general, 

this calculation is of exponential complexity.  Calculating the LS between two nodes involves 

only the NCP of the child node, and the complexity is linear with the number of NCP 

probabilities (or better than this, depending on how the NCP probabilities are represented). 
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4 Using Link Strength to Bound 
Connection Strength 

4.1 ∆P Serial Combination 
 

Link strengths may be combined by local operations to provide bounds on the connection 

strength of widely separated nodes.  This allows for fast algorithms to find a limit on the degree 

to which evidence at one node can affect the belief at another.  For a simple example, consider 

the following BN with two links in series: 

P(a) P(b|+a)
P(b|¬a)

A B

P(c|+b)
P(c|¬b)

C

 

Figure 4.1 - A three node BN in which we want to find the CS from A to C given 
the link strengths of A → B and B → C. 

We wish to find a bound on the ∆P connection strength from A to C given only the ∆P strengths 

of the two links A → B and B → C.  Actually, in this case we can find an exact relation, not just a 

bound (the proof is in Appendix C): 
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Theorem 4.1:  For any three propositional variables A, B, and C, where A and C are 

independent given B: 

CSp (A, C)  =  CSp (A, B)  CSp (B, C) 4.1 

If node A is the only parent of B, and B is the only parent of C (as in figure 4.1), then the 

definition of link strength matches that of connection strength and we obtain: 

CSp (A, C)  =  LSp (A → B)  LSp (B → C) 

This rule was reported in Henrion89 in a different form.  It also corresponds to the "shrinkage 

factor" of Markov net analysis (Howard71, p. 20).  It can be chained for longer paths as long as 

the arrows all point in the same direction.  Since each ∆P link strength is less than one, the effect 

of evidence can only get attenuated (or unchanged) by intermediate links; it can never be 

amplified. 

4.2 ∆O Serial Combination 

Consider the BN in figure 4.1 once again. This time we want to find a bound on the ∆O 

connection strength from A to C, given only information on the ∆O strengths from A to B, and 

from B to C.  Below is the tightest bound that can be placed with only this information (see 

Appendix C for the derivation): 

Theorem 4.2:  For any three propositional variables A, B, and C, where A and C are 

independent given B: 

tanh (1
4  CSo(A, C))   ≤   tanh (1

4  CSo(A, B))   tanh (1
4  CSo(B, C)) 4.2:1 

where tanh is the hyperbolic tangent function: 

tanh (x)  =   
ex – e–x

ex + e–x  4.2:2 

When x ≥ 0, which is the domain of ∆O connection and link strengths, tanh(x), stays within the 

range [0, 1], and increases strictly monotonically as x increases (see figure 4.2:1).  If the 
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logarithms used to define CSo and LSo are not natural logarithms, the multiplying constants 1/4 

in equation 4.2:1 change to another constant dependent on the logarithm base, but otherwise the 

equation remains the same. 

2 4 6 8 10

0.2

0.4

0.6

0.8

1

 

Figure 4.2:1 - Graph of tanh(x/4).  It starts out quite linear and then asymptotically 
approaches 1. 

If node A is the only parent of B, and B is the only parent of C (as in figure 4.1), then the 

definition of link strength matches that of connection strength and we obtain: 

tanh (1
4  CSo(A, C))   ≤   tanh (1

4  LSo(A → B))   tanh (1
4  LSo(B → C)) 

First, consider a case in which LSo(B → C) = 0 in the BN of figure 4.1, so B is independent of C.  

Then, by equation 4.2:1 tanh (1
4  CSo(A, C)) = 0, which implies CSo(A, C) = 0, so C is 

independent of A.  Second, consider a case in which LSo(B → C) = ∞, so B and C are potentially 

deterministicly related.  Then, tanh (1
4  LSo(B → C)) = 1, and so CSo(A, C) ≤ LSo(A → B).  In 

general, when links A → B and B → C are in series, we can consider the link B → C as 

attenuating the effect of the link A → B on C.  The degree of attenuation is always between that 

of the first case (independence leading to complete attenuation), and that of the second case 

(determinism leading to no attenuation). 

Equation 4.2:1 can be chained for longer paths, resulting in a product with one term for each 

link.  Since tanh(x), stays within the range [0, 1], the effect of evidence can only get attenuated 

(or unchanged) by intermediate links. 
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For small x, tanh (x) ≈  x, and for all x ≥ 0,  tanh (x) ≤ x, so from equation 4.2:1 we can form the 

following bound: 

CSo(A, C)    ≤    14   LSo(A → B)  LSo(B → C) 4.2:3 

which is valid for all values of LSo, but only forms a reasonably tight bound when both LSo 

values are small (say LSo ≤ 2).  Using equation 3.3:9, we can see that the equation above, and 

therefore the ∆O serial link strength equation (4.2:1), approaches the ∆P serial link strength 
equation (4.1) when the links are weak (small LSo values). 

4.2.1 Empirical Test of Bound Tightness 

Some bounds provided in the field of computer science are notorious for being so far above 

values actually obtained in practice, that the bound is almost useless.  A simulation was done in 

which 200000 BNs of the topology in figure 4.1 were generated, with NCP values drawn from a 

uniform distribution on [0,1].  In each case the bound on CS(A,C) given by equation 4.2:1 was 

compared to the true value of CS(A,C), and frequency histograms of the results appear in figures 

4.2:2 and 4.2:3.  Of course, in some applications the actual distribution of NCPs may be very 

different, which could lead to very different results on the tightness of the bound, but at least we 

can see that for this example application, the bound for CS given by equation 4.2:1 is usually not 

far above the true value of CS. 
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Figure 4.2:2 - Frequency histogram of the amount that the bound calculated from 
LS(A → B) and LS(B → C) exceeded the actual value of CS(A,C) in 200000 cases 
of random BNs with the structure of Figure 4.1 and uniformly generated NCPs.  
Notice the point on the vertical axis at a height above 5, and the point to the left of 
the axis at a height of zero.  The same graph is drawn with different scales below. 
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Figure 4.2:3 - Expanded scales of graph in Figure 4.2:2. 

4.3 Fundamental Sensitivity Equation 

Now we wish to find a method we can use to find bounds on connection strength in a BN of 

arbitrary complexity.  Sometimes we can break a probability problem down into two simpler 

problems by assuming that some proposition is true, solving the problem, then assuming it is 

false, and re-solving the problem.  Then we say the solution for the case where we don't know 
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the value of the proposition is somewhere between the solutions for the proposition being true 

and being false. 

For example, this method will work to find posterior probabilities.  The posterior probability for 

a proposition Q in the case that we don't know the value of proposition Z, will be between the 

values it would have if we believed Z were true or Z were false.  In fact the weighted average of 

these two bounds (weighted by the probabilities of Z being true or false) is actually the 

probability of Q for the case we don't know Z, which is the basis for the reasoning by 

assumptions method described in section 2.6.  So we always have the following two relations: 

P(q|+v¬z)  ≤  P(q|+v)  ≤  P(q|+v+z)     or     P(q|+v+z)  ≤  P(q|+v)  ≤  P(q|+v¬z) 4.3:1 

P(q|¬v¬z)  ≤  P(q|¬v)  ≤  P(q|¬v+z)     or     P(q|¬v+z)  ≤  P(q|¬v)  ≤  P(q|¬v¬z) 4.3:2 

We might be tempted to think connection strength will behave in the same way, since it is just 

the distance between the two posterior probabilities bounded in the two expressions above.  That 

is, since 4.3:1 and 4.3:2 hold, we might expect the following to hold: 

d (P(q|+v), P(q|¬v))   ≤   d (P(q|+v+z), P(q|¬v+z))    or     

d (P(q|+v), P(q|¬v))   ≤   d (P(q|+v¬z), P(q|¬v¬z)) [false] 4.3:3 

or equivalently: 

d (P(q|+v), P(q|¬v))   ≤   z
max   d (P(q|+vz),  P(q|¬vz))  [false] 4.3:4 

CS (V, Q)   ≤   z
max   CS (V, Q|z)  [false] 4.3:5 

But these equations do not hold.  The reason I've presented this line of thought is to warn that the 

connection strength for the case when a proposition Z is unknown is not bounded by the 

strengths for the cases when Z is true and when Z is false, as it is for a number of other 

probabilistic quantities (like belief, odds ratio belief, expected utility, most probable explanation, 

etc.).  A trivial example to illustrate is shown in figure 4.3:1.  When Z is unknown CS(V,Q) may 

be nonzero, but when Z is known, whether it is true or false, it d-separates V from Q so 

CS(V,Q|+z) and CS(V,Q|¬z) are zero. 
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QV Z
 

Figure 4.3:1 - CS(V,Q) may be nonzero, but CS(V,Q|+z) and CS(V,Q|¬z) are both 
zero, so they don't provide bounds for CS(V,Q). 

However, there is an equation similar to equation 4.3:5 that we can use to decompose connection 

strength problems. 

Theorem 4.3:  For any three propositional variables V, Q, and Z, we can decompose the 

connection strength from V to Q on cases of Z as follows: 

CS (V, Q)    ≤ z
max  CS (V, Q | z)   +    

 CS (V, Z)  *  min (CS (Z, Q | +v),  CS (Z, Q | ¬v),  CS (Z, Q)) 4.3:6 

where * is a generalized multiplication corresponding to the serial combination rule.  If the ∆P 

measure is used for connection strength, it is regular multiplication, but for the ∆O measure it is 

the ∆O serial combination rule: 

x * y   =   4 tanh–1 (tanh (1
4   x)   tanh (1

4   y)) 4.3:8 

Since all connection strength problems can be decomposed using equation 4.3:6, it is called the 

fundamental sensitivity equation within this thesis.  It is proved in Appendix C.  Notice that it is 

similar to the more traditional style of decomposition equation given by 4.3:5, but with the 

addition of an extra term. 

To help visualize the fundamental equation, consider the BN of figure 4.3:2.  Varying evidence 

at node V will create a varying belief at the query node Q.  We are interested in decomposing the 

effect on Q by cases of Z.  We can consider equation 4.3:6 as composed of two parts, each 

corresponding to one of the active paths from V to Q. The first part is z
max  CS(V,Q|z), and this 

corresponds to the link from V to Q, since Z is given and therefore the other path is blocked.  

The second part is CS(V,Z) * CS(Z,Q), which corresponds to the serial connection of the two 

links V → Z and Z → Q.  Together they provide a limit on how much the node V can effect the 

belief at Q. 
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V

P(v)

P(z|+v)
P(z|¬v)

Z

Q

P(q|+v,+z)
P(q|+v,¬z)
P(q|¬v,+z)
P(q|¬v,¬z)

 

Figure 4.3:2 - A BN to help visualize the terms of the fundamental equation.  This 
equation can be considered to consist of a term for the V → Q path in parallel with a 
serial combination of terms for V → Z and Z → Q. 

The fundamental equation applies to any 3 variables of any BN.  They may be connected like the 

BN in figure 4.3:2, or they may be scattered through a large network with no links between 

them. 

4.4 Example of Finding CS by Fundamental Equation 

Suppose we have the BN of figure 4.4:1 and we wish to find the connection strength from node 
X1 to node X3. 

X0

X2

X1

X4

X3

 

Figure 4.4:1 - A BN for which we wish to find the CS from node X1 to X3. 
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The fundamental equation implies both the following two equations, which we will use to solve 

this problem: 

CS (V, Q)   ≤   z
max  CS (V, Q|z)   +   CS (V, Z)  *  CS (Z, Q) 4.4:1 

CS (V, Q)   ≤   z
max  CS (V, Q|z)   +   CS (V, Z)  *  v

max  CS (Z, Q|v) 4.4:2 

Using equation 4.4:2 with X1 as V, X3 as Q, and X0 as Z: 

CS (X1, X3)   ≤   
0x

max  CS (X1, X3|x0)   +   CS (X1, X0)  *  
1x

max  CS (X0, X3|x1) 4.4:4 

Now we find bounds on the three terms of the equation above, one by one, by using the 

fundamental equation repeatedly.  For the first term: 

0x
max  CS (X1, X3|x0)   ≤    4.4:5 

 
20 x,x

max  CS (X1, X3|x0,x2)   +  
0x

max  CS (X1, X2|x0)  *  
10 x,x

max  CS (X2, X3|x0,x1) 

The first term in the equation above (4.4:5) matches the definition of link strength for the 
X1 → X3 link: 

LS (X1 → X3)   = })X{)X(C(
max

13 −∏∈c  CS (X1, X3|c)   = 
20 x,x

max CS (X1, X3|x0,x2) 4.4:6 

The other terms in equation 4.4:5 are also link strengths, so we may rewrite equation 4.4:5 as: 

0x
max CS (X1, X3|x0)   ≤   LS (X1 → X3)   +   LS (X1 → X2)  *  LS (X2 → X3) 4.4:7 

The second term of equation 4.4:4 is CS (X1, X0).  If we are using the ∆O measure of CS, then 

this is equivalent to CS (X0, X1), which is the link strength from X0 to X1.  For the last term of 

equation 4.4:4 we get: 

1x
max CS (X0, X3|x1)   ≤    4.4:8 

 
21 x,x

max CS (X0, X3|x1,x2)   + 
1x

max  CS (X0, X2|x1)  *  
10 x,x

max CS (X2, X3|x0,x1) 
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Each of the terms in the above equation is a link strength, so we may write it as: 

1x
max CS (X0, X3|x1)   ≤   LS (X0 → X3)   +   LS (X0 → X2)  *  LS (X2 → X3) 4.4:9 

Combining all of this we finally get our bound for CS (X1, X3): 

CS (X1, X3)  ≤ LS ( 31XX )   +    4.4:10 

 LS ( 21XX )  *  LS ( 32XX )  +   

 LS( 01XX )  *  (LS ( 30XX )   +   LS ( 20XX )  *  LS ( 32XX )) 

By examining the BN in figure 4.4:1, we can see how the equation above can be considered as 
having terms for all of the paths from X1 to X3.  The first line corresponds to the link straight 

from X1 to X3.  The second line corresponds to the path from X1, through X2, to X3 (i.e. the 

X1 → X2 and X2 → X3 links in series).  The last line corresponds to the paths from X1 through 

X0, then either straight to X3 or from X0 to X2, then to X3. 

Notice that X4 was not involved at all in finding CS (X1, X3).  For any BN, finding CS (Xi, Xj), 

where i and j indicate the position of the nodes in the total order, does not involve any nodes Xk, 

where k>i and k>j, since there are no active paths from Xi to Xj through Xk (they all have at 

least one converging node). 

Because of this, equation 4.4:10 can be used to find the connection strength from node 1 to node 

3 in any BN.  The nodes that come after node 3 are irrelevant.  Equation 4.4:10 was developed 

for a fully connected network (i.e. every two nodes are connected by a link).  If we wish to use it 

for a network that is not fully connected, then we just use a link strength of 0  between nodes 

with no link connecting them, as described in section 3.9. 

For example, we can use equation 4.4:10 to find a bound on CS(X1,X3) for the BN in figure 
4.4:2.  Setting  LS ( 21XX ) = 0  and  LS ( 30XX ) = 0, we obtain: 

CS (X1, X3)  ≤ LS ( 31XX )   +   LS( 01XX )  *  LS ( 20XX )  *  LS ( 32XX ) 4.4:11 

This consists of two parallel paths, one straight from X1 to X3, and the other consisting of 3 links 

in serial: X1 to X0, then to X2, and finally to X3.  The path from X1 through X4 to X3 does not 

appear because it is blocked by the converging node X4. 
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P(x2|+x0) = 0.92
P(x2|¬x0) = 0.3

P(x0) = 0.3

P(x1|+x0) = 0.45
P(x1|¬x0) = 0.64

P(x3|+x1+x2) = 0.3
P(x3|+x1¬x2) = 0.05
P(x3|¬x1+x2) = 0.7
P(x3|¬x1¬x2) = 0.2

P(x4|+x1+x3) = 0.9
P(x4|+x1¬x3) = 0.1
P(x4|¬x1+x3) = 0.2
P(x4|¬x1¬x3) = 0.8

X0

X2

X1

X4

X3

 

Figure 4.4:2 - A BN like that in figure 4.4:1, but with fewer links.  We can use the 
equation developed for bounding CS(X1,X3) of the BN in 4.4:1 to bound CS(X1,X3) 
of this BN. 

Using the numbers provided we obtain: 

LSo (X1 ← X0) =  LSo (X0 → X1)  =  do (P(x1|+x0), P(x1|¬x0))  =  do (0.45, 0.64)  =  0.776 

LSo (X0 → X2) =  do (P(x2|+x0), P(x2|¬x0))  =  do (0.92, 0.30)  =  3.29 

LSo (X1 → X3) =  max (do (P(x3|+x1+x2), P(x3|¬x1+x2)),  do (P(x3|+x1¬x2), P(x3|¬x1¬x2))) 
 =  max (do (0.3, 0.7),  do (0.05, 0.2))  =  1.69 

LSo (X2 → X3) =  max (do (P(x3|+x2+x1), P(x3|¬x2+x1)),  do (P(x3|+x2¬x1), P(x3|¬x2¬x1))) 
 =  max (do (0.3, 0.05),  do (0.7, 0.2))  =  2.23 

CSo (X1, X3) ≤  LSo (X1 → X3)  +  LSo (X1 ← X0) * LSo (X0 → X2) * LSo (X2 → X3) 

 =  1.69  +  0.776 * 3.29 * 2.23 
 =  1.69  +  4 tanh-1 (tanh(0.776 / 4) tanh(3.29 / 4) tanh(2.23 / 4)) 
 =  1.95 

So the bound we calculate is CSo (X1, X3) ≤ 1.95.  In actual fact CSo (X1, X3) = 1.543. 

We can repeat the calculation to find a bound on ∆P connection strength, but the calculation of 
the "backwards" connection strength CSp (X1, X0) is more difficult than in the ∆O case, since in 

the ∆O case it was just the same as CSo (X0, X1) which is LSo (X0 → X1).  Actually, this time we 
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can easily find CSp (X1, X0) using Bayes rule, but in the general case finding "backwards" CSp 

link strength involves nonlocal calculations. 

4.5 Path Based Methods 

Most researchers have been reluctant to attach formal significance to the paths of a BN.  It seems 

that on an intuitive level they make use of ideas like "effect" or "influence" "flowing" along the 

paths of a BN, and will speak of "weak paths,"  "strong links,"  etc., but do not formally define 

these concepts. 

One reason for this may be that paths are not intrinsic to the probabilistic model (the FJD), but 

are an artifact of the BN factoring process.  So if a BN had been constructed with a different total 

ordering for the nodes, its path structures could have turned out completely different.  One can 

observe the same effect in the operation of "link reversal", which does not change the FJD 

represented by a BN, but can add or remove links, thereby changing the paths of the BN. 

Another reason for avoiding paths could be due to concerns that they lead to an over-simplistic 

view of the BN. There is a tendency for beginners to think of a BN as a sort of constraint 

network, with the belief of a child node given as a function of the beliefs of its parents.  Or, if 

they are a bit more sophisticated, they may think the belief in a node can be given as a function 

of the beliefs in the nodes of its Markov boundary (i.e. its parents, children, and parents of its 

children). 

Actually, to express the belief in a node as a function, it must be expressed as a function of the 

joint beliefs of its Markov boundary nodes (i.e. the beliefs in the Cartesian product of their 

values).  Thinking in terms of paths can obscure this.  For example, consider the BN of figure 

4.5:1.  When there is no evidence, the beliefs at A, B, C, and D are all 1/2.  If we get evidence 

TRUE for A, the beliefs at B and C remain at 1/2, but the belief at D changes to 3/4.  Thinking in 

terms of a constraint network, or "flow of influence along paths,"  it is hard to see how a change 

at A can create a change at D without changing the beliefs at B or C.  Of course, it is the joint 

belief in B and C which has changed (BEL(+b+c) changes from 1/4  to  3/8,  BEL(+b¬c) changes 

from 1/4  to  1/8,  etc.).  So we must be careful with the path concept. 
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A D

B

C

P(a) = 1/2

P(b) = 1/2

P(c|+a+b) = 3/4

P(d|+b+c) = 1

P(c|+a¬b) = 1/4
P(c|¬a+b) = 1/4
P(c|¬a¬b) = 3/4

P(d|+b¬c) = 0
P(d|¬b+c) = 0
P(d|¬b¬c) = 1

P(b|+a)

P(d|+a) = 3/4
P(d|¬a) = 1/4

But

= P(b|¬a) = 1/2
P(c|+a) = P(c|¬a) = 1/2

P(b) = P(c) = P(d) = 1/2

And

 

Figure 4.5:1 - Evidence at A changes the belief at D, but not at B or C. 

There are only a few examples of previous research that make extensive use of paths in BNs.  

The most obvious example is the d-separation algorithm itself.  It finds independence 

information by tracing active and blocked paths.  Since connection strength can be considered 

the "degree of independence" it is not surprising that bounds for it can be found using a path 

based method as well. 

Suermondt92 uses paths to generate explanations of BN inference for a human user.  He 

considers some paths more significant than others if breaking a link along one of them results in 

a significant change in the inference result.  That way he can prioritize "chains of reasoning" in 

presenting the explanation.  Intuitively he considers something "flowing" along paths, although 

he is wary of going to far with this line of thought, as is evident from the quote, "Such an image, 

in which probabilistic updates are treated analogously to electrical currents, is simplistic, and is 

invalid in many cases; we cannot predict in a definitive manner the combined effects of evidence 

transmission along multiple chains by analyzing the chains separately, since there are often 

unpredictable synergistic effects."   He doesn't arrive at any of the central results of this thesis, 

since he measures changes in belief due to breaking a link by doing full Bayesian inference with 

the link in place, then again with the link broken, and then compares the beliefs produced in each 

case (similar to the method mentioned in section 3.6, but breaking links instead of instantiating 

nodes).  This can be very expensive when there are many links to try breaking, and worse when 

one considers combinations of links.  Of course his method is much more precise than just the 
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bounds calculated in this thesis, but the methods of this thesis could be used as a pre-screening 

phase to eliminate obviously weak paths from consideration (since the main purpose is to leave 

out very weak paths from the explanation). 

Wellman90 uses the paths in a BN to do qualitative probabilistic inference.  The purpose is to 

answer the question, "if the belief in this node increases (say through virtual evidence), will the 

belief in this other node increase or decrease?"  He traces "influence" along paths to arrive at the 

answer.  This is discussed in greater detail in section 6.1:1. 

4.5.1 The CS Path Algorithm 

We can simplify using the fundamental equation to find connection strength bounds, by using it 

to develop a path-based algorithm.  The resulting formulation is also intuitively more appealing. 

We will find an expression for a bound on the ∆O connection strength from node Xv to node Xq, 

that is CSo(Xv,Xq), for a fully connected BN.  The expression will be entirely in terms of link 

strengths.  Later the solution for any BN can be generated simply by setting the link strengths of 

missing links to 0 in that expression. 

We start by providing a total ordering for the nodes of the BN consistent with its dag, and we 
label the nodes X0, X1, ..., Xn where a lower index corresponds to earlier in the total order.  

Since we are assuming the BN is fully connected, the parents of node Xi will be {Xj | 0 ≤ j < i}.  

To find CSo(Xv,Xq) we first apply the fundamental equation (version 4.4:1) to it, with Z = X0, 

and obtain: 

CS (Xv, Xq)   ≤   CS (Xv, X0)  *  CS (X0, Xq)   +  
0x

max  CS (Xv, Xq|x0) 

Now we apply version 4.4:1 of the fundamental equation again, this time with Z = X1, to the last 

term of the above equation.  Then we repeat the process until its been done with Z = Xj, for j=0 

to j=v–1.  The result is the expansion shown below.  Each line corresponds to one application of 
the fundamental equation (used with Z = Xj, j having the value shown in the rightmost column) 

to the last term of the line above it.  The resulting bound is the sum of products in the left hand 

column. 
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CS (Xv, Xq)  ≤ 

CS (Xv, X0)  *  CS (X0, Xq)   +    
0x

max CS (Xv, Xq|x0) j=0

0x
max CS (Xv, X1|x)  *  

0x
max CS (X1, Xq|x)   +    

10 x,x
max CS (Xv, Xq|x0,x1) j=1

        )x,x(
max

10=x CS (Xv, X2|x)  * )x,x(
max

10=x CS (X2, Xq|x)   +          )x,x,x(
max

210=x CS (Xv, Xq|x) j=2

•   •   •  

 )x,.,x(
max

2v0 −=x CS(Xv,Xv–1|x)  * )x,.,x(
max

2v0 −=x CS(Xv–1,Xq|x)   +     )x,.,x,x(
max

1v10 −=x CS(Xv,Xq|x) j=v–1

 

We can express the above sum of products as: 

CS (Xv, Xq)   ≤ ∑
−

=
−=

1v

0j
1j0 )x,.,x(

max
x  CS(Xv,Xj|x)  * )x,.,x(

max
1j0 −=x CS(Xj,Xq|x)   + 4.5:1 

 )x,.,x(
max

1v0 −=x CS(Xv,Xq|x) 

Since this derivation is for ∆O connection strength, which is commutative, we can reverse the 

order of the CS arguments in the first factor of the first line.  Also, we can include the second 

line in the sum by increasing the range of its index, so we get: 

CS (Xv, Xq)   ≤  ∑
=

−=

v

0j
1j0 )x,.,x(

max
x  CS(Xj,Xv|x)  * )x,.,x(

max
1j0 −=x CS(Xj,Xq|x) 4.5:2 

The CS expressions in the above equation are all of the form )x,.,x(
max

1j0 −=x CS(Xj,Xq|x),  some 

with j or q replaced by v.  We can generate an expansion to solve for these expressions in the 
same way that we did for CS (Xv, Xq).  It appears below, with each line formed by expanding the 

last term of the line above it using version 4.4:2 of the fundamental equation (with Z = Xk, k 

having the value shown in the rightmost column), to form the sum of products shown in the left 

hand column. 
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)x,.,x(
max

1j0 −=x CS(Xj,Xq|x)  ≤ 

 )x,.,x,x(
max

1j10 −=x CS(Xj,Xj+1|x) * )x,.,x,x(
max

j10=x CS(Xj+1,Xq|x) +    )x,x,.,x,x(
max

1j1j10 +−=x CS(Xj,Xq|x) k=j+1

 )x,x,.,x(
max

1j1j0 +−=x CS(Xj,Xj+2|x) * )x,.,x(
max

1j0 +=x CS(Xj+2,Xq|x)  +  )x,x,x,.,x(
max

2j1j1j0 ++−=x CS(Xj,Xq|x) k=j+2

•   •   •  

)x,.,x,x,.,x(
max

2q1j1j0 −+−=x CS(Xj,Xq-1|x) * )x,.,x(
max

2q0 −=x CS(Xq-1,Xq|x)  +  )x,.,x,x,.,x(
max

1q1j1j0 −+−=x CS(Xj,Xq|x) k=q–1

We can express the above sum of products as: 

     )x,.,x(
max

1j0 −=x CS(Xj,Xq|x)  ≤ ∑
−

+=
−+−=

1q

1jk
1k1j1j0 )x,x,x,.,x(

max
x CS(Xj,Xk|x)  * )x,.,x(

max
1k0 −=x CS(Xk,Xq|x)   + 

 )x,.,x,x,.,x(
max

1q1j1j0 −+−=x CS(Xj,Xq|x) 

Once again we must evaluate the two factors in the sum of products above.  The first factor of 

the product matches the link strength definition.  The second factor is of the same form as the 

expression being bounded, but with the j index at least one larger, so it may be bounded 

recursively using the same equation.  Folding the second line into the sum, we obtain the 

following recursive equation: 

     )x,.,x(
max

1j0 −=x CS(Xj,Xq|x)   ≤  








=∞

〈=∑
+= −

qj

qj)|,ΧCS(Χ)x,.,x(
max*)xxLS(

q

1jk
qk

1k0
kj xx                4.5:3 

This equation can be used to bound each of the CS expressions of equation 4.5:2. 

Now we modify equations 4.5:2 and 4.5:4 to suit the case of a network that is not fully 

connected, by setting the appropriate link strengths to zero.  The range of the summation is 

reduced to only include nonzero terms.  Also, we use a notation in which C+(X) are the ancestors 

of X, C*(X) are the ancestors of X and the node X, and S(X) are the successors (children) of X. 

CS (Xv, Xq)   ≤  ∑
+∩∈

+ Χ∏∈
)(ΧC)C*(ΧΧj

vj
j

qv

)|,ΧCS(Χ)(C(
max xx  *  )X(C

max
j

+∏∈x  CS(Xj,Xq|x) 
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   )X(C
max

j
+∏∈x CS(Xj,Xq|x)   ≤  









=∞

∈ΧΧ∏∈
+

Χ∩Χ∈Χ

+∑
qj

qj
)(*C)(S

qk
k

kj

ΧΧ

)(ΧCΧ)|,(CS)(ΧC
max)*ΧΧLS(

qjk

xx  

The expression )X(C
max

j
+∏∈x CS(Xj,Xq|x), appears repeatedly in the above equations so we define 

a quantity termed "the strength of all forward paths from Xj to Xq", and denote it with the letter 

F, as follows: 

F(Xj,Xq)    =   )X(C
max

j
+∏∈x CS(Xj,Xq|x) 4.5:6 

We substitute this into our two CS bounding equations.  Also, since they no longer rely on the 

total order, and we don't need integer indexes for the nodes, we can rename all the nodes from 
Xa style to A style for notational aesthetics.  This gives: 

CS (V, Q)   ≤   ∑
+∩∈ )Q(C)V(*CJ

 F(J,V)   *   F(J,Q) Q∉C*(V) 4.5:7 

 

F(X,Y)   ≤  






=Χ∞

≠Χ∑
∩Χ∈Κ

Y

Y)Y,K(F*)ΧΚLS(
)Y(*C)(S                                                                    4.5:8 

With the two equations above we can now bound the connection strength between any two nodes 

of any BN, using only link strength values.  The following written description may help to make 

the above equations more intuitive. 

Specification 4.5:  A bound on the ∆O connection strength from node V to node Q, when Q is 

not an ancestor of V, is given by: 

The strength of all forward paths from V to Q, plus the sum over every node, J, which is an 

ancestor of both V and Q,  of the strength of all backwards paths from V to J, multiplied by the 

strength of all forward paths from J to Q. 

The "strength of all forward paths from X to Y" is bounded by the sum over all X's children, K, 

which are ancestors of Y (or Y itself), of: 
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The strength of the link from X to K, multiplied by the strength of all forward paths from 

K to Y. 

The "strength of all backward paths from V to J" is the same as the "strength of all forward paths 

from J to V".  In the above, the term "multiply" is used in its generalized sense to mean serial 
combination as described in section 4.2.  To find a bound on CSo(V,Q) when Q is an ancestor of 

V, we use the above algorithm to find a bound on CSo(Q,V), which is equal to CSo(V,Q). 

4.6 Complexity of Path Algorithm 

Using equations 4.5:7 and 4.5:8 directly in a recursive manner to find a bound for connection 

strength results in an algorithm of exponential worst case complexity.  However, the same values 

are being repeatedly calculated and so by doing a "bottom up" evaluation instead, the complexity 

becomes linear in the number of links. 

The bottom up algorithm to find a bound for CS(V,Q) involves calculating F(J,V) and F(J,Q) 

values for a number of nodes J, and storing those values with the nodes to aid in calculating 

further F(J,V) and F(J,Q) values.  Once these values have been calculated for all the required 

nodes, equation 4.5:7 is used to combine them, yielding the desired bound.  This yields the 

following algorithm, in which the descendants of a set of elements is defined as the set of all the 

descendants of the elements (and C* represents all ancestors, and S* all descendents):   

Algorithm 4.6 - To find a bound on CSo(V,Q): 

1. If Q is an ancestor of V, switch V and Q, and find the equivalent connection strength 

CS(Q,V). 

2. Starting with J = Q, and working J backwards through a total order on the nodes 

consistent with the dag, calculate F(J,Q) values for all J falling in the set:   

S*(C*(V)) ∩ C*(Q)  using equation 4.5:8. 
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3. Starting with J = V, and working J backwards through the total order, calculate F(J,V) 

values for all the nodes falling in the set:   S*(C*(Q)) ∩ C*(V)  using equation 

4.5:8. 

4. Use equation 4.5:7 to sum up products of F(J,V) and F(J,Q) values, yielding the bound 

on CS(V,Q). 

The following property holds for the above algorithm (proved in Appendix C): 

Lemma 4.6:  When calculating each new F(J,Q) in step 2, all the subcalculations of F(K,Q) that 

are required, will already be calculated.  The same holds for step 3. 

To determine the complexity of algorithm 4.6, a good estimate is provided by the number of 

generalized multiplications required.  The CS(V,Q) bound is formed only by generalized 

multiplications and additions, and the number of additions will be slightly less than the number 

of multiplications, since the only additions that are required are those to add one product to 

another.  The following theorem supplies the number of multiplications needed (proved in 

Appendix C): 

Theorem 4.6:  The number of generalized multiplications required to find a bound on CSo(V,Q) 

using algorithm 4.6, is the number of links between the ancestors of Q which are also 

descendants of ancestors of V, plus the number of links between the ancestors of V which are 

also descendants of ancestors of Q, that is: 

Number multiplies   = Number links between (S*(C*(Q)) ∩ C*(V))   +    

 Number links between (S*(C*(V)) ∩ C*(Q)) 

Clearly this will be less than the number of links between ancestors of V, plus the number of 

links between ancestors of Q. 

Depending on the representation of the BN, extra computation may be required to determine 

which nodes are the required descendants, ancestors, etc., but even when doing this, the overall 

complexity is linear in the number of links between ancestors of V and Q. 
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The space requirements are minimal.  On top of what is required for the BN and control of the 

algorithm, only | S*(C*(V)) ∩  C*(Q) |   +   | S*(C*(Q)) ∩  C*(V) | real numbers must be stored 

(i.e. linear in the number of ancestor nodes of V and Q). 

4.7 Dealing With Evidence 

We may wish to find a bound for a conditional connection strength, that is, a bound for a 

connection strength after the BN has received some evidence.  If we are automatically modifying 

the network to incorporate the evidence as it arrives using evidence absorption (see section 2.6), 

then we can simply use the methods of the previous section on the new BN.  However, if we 

want to find a CS bound when knowing that the evidence is present, but not propagated, we need 

some new techniques. 

Link strengths were defined by maximizing CS over all states of the other parents of the child in 

the link.  If the evidence received at the BN is for one of those parents, that maximum may be 

reduced.  Consider the example BN in figure 4.7:1: 

A B

E

C
 

Figure 4.7:1 - Evidence at node E restricts the CS(A,C) bound. 

Say we are finding a bound on CS(A,C) with no evidence at node E.  This is provided by 

CS(A,C)   ≤   LS(A→B) * LS(B→C)   =  e
max  CS(A,B|e) * CS(B,C) 

where * is the serial combination operator.  However, if we receive evidence that E is true, then 

a bound for the conditional connection strength, CS(A,C|+e) is provided by: 

CS(A,C|+e)   ≤   LS(A→B|+e) * LS(B→C|+e)   =   CS(A,B|+e) * CS(B,C) 
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This new bound for CS will be less than or the same as the original bound since 

CS(A,B|+e)  ≤  max(CS(A,B|+e), CS(A,B|¬e)).  Often when evidence is received it will improve 

CS bounds in this manner. 

Another way in which receiving evidence can lower the CS bound, is if the evidence is for a 

nonconverging node which is right on an active path.  The evidence blocks the active path, so the 

CS contribution from that path drops to zero, giving a lower overall CS value, and a lower value 

for the CS bound. 

Although receiving evidence often lowers CS values, it may increase CS values by creating new 

active paths through converging nodes which have received the evidence.  Consider the example 

BN in figure 4.7:2: 

A

C

E

 

Figure 4.7:2 - BN with evidence at E, for which we wish to find the CS from A to C 
via the intercausal path through E. 

Without any evidence at E, CS(A,C) = 0, and the CS(A,C) bound calculated by active paths is 

also zero.  But once evidence TRUE arrives for E, an active path from A to C is created.  The 

strength of this path is d(P(c|+a+e), P(c|¬a+e)), and it is termed an intercausal link strength, 

since reasoning from A to C is intercausal reasoning, as defined in section 2.6.  For ∆O 

connection strength it turns out to be (proved in Appendix C): 

CSo(A,C|+e)   =   LSo(A→+e←C)   =   | log 
P(+e|+a+c) P(+e|¬a¬c)
P(+e|+a¬c) P(+e|¬a+c)  | 4.7:1 

where the LS(A→+e←C) is a notation invented to denote an intercausal link strength from A to C 

when E has evidence TRUE.  It is defined by the equation above. 

As an example, we can put all these techniques together to find a bound on CS(A,D|e,f) in the 

BN of figure 4.7:3: 
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A B

E

F

C D

 

Figure 4.7:3 - BN with evidence at E and F, for which we wish to find a bound on 
the CS from A to D. 

The active paths from A to D are A,B,C,D and A,F,C,D.  Each one of them forms one of the two 

terms in the bounding equation below: 

CS(A,D|e,f)   ≤   [(LS(A→B|e) * LS(B→C|e)  +  LS(A→f←C))]  *  LS(C→D|f) 
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5 Applications 

5.1 BN Link Display 

The first application of link strength that we consider is as a visualization aid for humans.  BN 

diagrams have been praised as a great tool for people to visualize probabilistic relationships, and 

this tool may be improved by displaying the links according to their strengths.  That way 

someone viewing the BN doesn't just get information about node independence, but also about a 

"degree of independence".  An extremely weak link is very nearly an independence, but this 

information is lost if it is drawn exactly the same as the rest of the links.  One possibility is to 

draw stronger links with thicker (or darker) lines and weaker links with thinner (or lighter) lines.  

Viewing a BN can be much more meaningful if one sees a skeleton of very heavy lines 

corresponding to definitions and constraints, followed by slightly lighter lines for less certain 

rules, and so on, down to faint lines corresponding to very weak dependencies, and of course the 

absence of links indicating independencies. 

When using the ∆O link strength measure, we must represent the zero-to-infinity scale of LSo 

with a finite width line.  Graphical display of infinite scales is commonly accomplished using the 

mapping:    W  =  x / (x + α),    where  W  is proportional to the width of the line, and  α  is an 

adjustable scale parameter.  This is approximately linear in x for x « α, and approaches 1 as x 

approaches infinity. 

Another possibility is to use   W = tanh (x / α),   which is also linear in x for x « α, and 

approaches 1  as x approaches infinity (see graph of figure 4.2:1).  This mapping is 
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recommended (with α = 4), since it corresponds closely to serial combinations of links.  That 

way the human viewer can easily imagine the minimum attenuation of a chain of links as the 

product of the attenuations of each of the links.  So two 50% width lines in series correspond to a 

25% width line (or smaller) connection. 

Using this scheme, it takes a bit more work to mentally combine the ∆O strength of parallel 

paths.  For example two 50% width lines would combine to form, at most, an 80% width 

connection (2 x 4tanh-1(0.5) = 4tanh-1(0.8)).  However, for the finer lines, simple addition of line 

width can be used to approximately combine parallel paths.  For example, two 25% width lines 

combine in parallel to form, at most, a 47% width connection, which is very nearly 50%. 

This measure used for the width of the line turns out to be the absolute value of the statistical 

measure of association known as the coefficient of colligation, or Yule's Y (not to be confused 

with Yule's Q, which is in more common usage).  The original invention of this measure had 

nothing to do with the chaining between variables that we use it for here, or so it appears from 

reading the paper in which it was introduced.  For a description of Yule's Y see Appendix B, and 

for the original paper, see Yule1912. 

Figure 5.1 shows the same BN as figure 2.5, but with the link strengths printed beside each link, 

and the links drawn in different widths to show their strengths according to the formula: 

Width   =   


 0 LSo = 0
max ((0.2mm),  (2mm) x tanh (LSo / 4)) otherwise   

At a glance one can get an idea of which dependencies are always of minor importance.  It must 

be remembered that each link strength represents the amount that the parent node can effect the 

child, maximized over all possible beliefs for the other parents.  Furthermore, ∆O link strength 

was used, so any effects that bring a belief close to 0 or 1 are considered very significant. 
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HM:  Hank moves 
away sometime in 
the next 5 years

TC:  Tom just 
bought a new 
BMW car

TM:  Tom moves 
next door to Hank 
next year

CV:  Tom's 
cousin is 
visiting him

TW:  Tom is 
currently 
fairly wealthy

HT:  Lots of 
traffic on 5th 
street last year

SW:  Tom's 
hardware store 
did well last year

CP: Lots of cars are 
usually parked in 
front of Tom's  store

GT:  Gale told Molly 
that lots of cars are 
usually parked in 
front of Tom's store

TD:  Tom makes big 
donation to Molly's 
campaign

MM:  Molly gets 
elected mayor

PA:  Neighborhood 
park is approved

PC:  Neighborhood 
park is constructed 
next year

VU:  Hank's property 
value goes up more 
than 20% in two years

DT:  Traffic more than 
doubles on Hank's 
street next year

FW:  5th street 
is widened next 
year

CD:  A new BMW 
is parked in Tom's 
driveway

TA:  Tom can afford to 
move to an expensive 
neighborhood next year

TR:  Tom told 
Molly he is rich

TF:  Tom told Molly 
he will donate 
campaign funds

MR:  Molly thinks 
Tom is rich

MT:  Molly thinks Tom 
is going to make big 
campaign donation

MD:  Molly decides 
to run for mayor

Figure 5.1 - Example BN showing link strengths.  This is the same BN as in figure 2.5, 
except the links have been drawn thicker to indicate LS as: width = (2mm) * tanh (LS/4),  
with a 0.2mm minimum.  The LS values also appear beside the link. 
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5.2 Connection Strength Contours 

If there is a particular node for which evidence may arrive (called the origin node), we may draw 

an iso-CS contour map over the BN to indicate the maximum effect which that evidence can 

have on each of the other nodes.  Each contour represents a particular value of CS, and is drawn 

so as to separate nodes on its one side which are more strongly connected to the origin node (i.e. 

have a greater CS), from those on its other side which are less strongly connected to the origin 

node (i.e. have a lesser CS).  The purpose is for a human to quickly assess which nodes could be 

affected by the evidence, and by how much.  It also helps to visualize the "neighborhood" of a 

node, and provide a sense of locality.  Figure 5.2:1 shows an iso-CS contour map with the node 

SW as the origin node.  Of course, the map would be different if some other node was the origin. 

If ∆O connection strength is used to draw the contours, then the contour map may also be 

interpreted in another way.  Instead of measuring the degree to which evidence at the origin node 

effects each of the other nodes, it can be interpreted to measure the degree to which evidence at 

each of the other nodes can effect the origin node.  This is due to the commutivity of ∆O 

connection strength.  One possible application of this is the following.  We have a query node 

and we want to know which nodes to gather evidence at to best form a belief for the query node.  

Gathering evidence at a node that has very little effect on the query node is generally useless.  So 

we can use the contours as indicators of levels of desirability for gathering evidence at each of 

the nodes (and trade that off with the cost of gathering evidence at that node). 

Using the methods of the previous chapter, a contour map may be drawn that is based on the CS 

bounds calculated from link strengths, instead of the actual CS values.  Such a contour map may 

be constructed very quickly (of complexity linear in the product of number of links and number 

of nodes).  It may be used to immediately eliminate parts of the network as being irrelevant to 

some particular evidence, or some particular query, given a desired level of accuracy.  Figure 

5.2:2 shows such a contour map calculated for the node SW, using bounds produced by 

algorithm 4.6.  It is interesting to compare it with figure 5.2:1, which is based on the exact CS 

values.  For each node the actual CS value is less than the bound, as we would expect.  For nodes 

close to SW the bound is very close to the actual value (equal for TW and HT), whereas for 

distant nodes the bound is less tight (greater by a factor of about 12 for the most distant node, 
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HM).  It is interesting to notice that, at least for this example, even in areas where the bound is 

loose, the shapes of the contours for the bound are quite similar to the contours for the actual 

value. 

This example does not show it well, but if the BN is composed of a dendritic skeleton of strong 

links with the "flesh" filled in by a network of weak links, then the contours will tend to follow 

the skeleton in a manner similar in appearance to the contours of a topographic map following 

the valleys of a dendritic river system, with the origin node at the point where the river meets the 

ocean. 
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HM:  Hank moves 
away sometime in 
the next 5 years

TC:  Tom just 
bought a new 
BMW car

TM:  Tom moves 
next door to Hank 
next year

CV:  Tom's 
cousin is 
visiting him

TW:  Tom is 
currently 
fairly wealthy

HT:  Lots of 
traffic on 5th 
street last year

SW:  Tom's 
hardware store 
did well last year

CP: Lots of cars are 
usually parked in 
front of Tom's  store

GT:  Gale told Molly 
that lots of cars are 
usually parked in 
front of Tom's store

TD:  Tom makes big 
donation to Molly's 
campaign

MM:  Molly gets 
elected mayor

PA:  Neighborhood 
park is approved

PC:  Neighborhood 
park is constructed 
next year

VU:  Hank's property 
value goes up more 
than 20% in two years

DT:  Traffic more than 
doubles on Hank's 
street next year

FW:  5th street 
is widened next 
year

CD:  A new BMW 
is parked in Tom's 
driveway

TA:  Tom can afford to 
move to an expensive 
neighborhood next year

TR:  Tom told 
Molly he is rich

TF:  Tom told Molly 
he will donate 
campaign funds

MR:  Molly thinks 
Tom is rich

MT:  Molly thinks Tom 
is going to make big 
campaign donation

MD:  Molly decides 
to run for mayor

Figure 5.2:1 - Example BN showing the connection strength contours for the node SW.  
This is the same BN as in figure 5.1, with contours drawn to show the CS between each 
node and the node SW.  The CS values appear below each node.

0.0

0.386

0.506

� 0.442

1.15

0.413

0.290

1.69

0.599

0.0375

0.3820.6850.819

0.325

0.090

0.0159

0.0147

0.00377

0.0769

0.139

0.0345

0.00502

0.08
0.4

1.0 1.0

0.4

0.4

0.4

0.08

0.08

0.08

0.01



 

 
- 72 - 

HM:  Hank moves 
away sometime in 
the next 5 years

TC:  Tom just 
bought a new 
BMW car

TM:  Tom moves 
next door to Hank 
next year

CV:  Tom's 
cousin is 
visiting him

TW:  Tom is 
currently 
fairly wealthy

HT:  Lots of 
traffic on 5th 
street last year

SW:  Tom's 
hardware store 
did well last year

CP: Lots of cars are 
usually parked in 
front of Tom's  store

GT:  Gale told Molly 
that lots of cars are 
usually parked in 
front of Tom's store

TD:  Tom makes big 
donation to Molly's 
campaign

MM:  Molly gets 
elected mayor

PA:  Neighborhood 
park is approved

PC:  Neighborhood 
park is constructed 
next year

VU:  Hank's property 
value goes up more 
than 20% in two years

DT:  Traffic more than 
doubles on Hank's 
street next year

FW:  5th street 
is widened next 
year

CD:  A new BMW 
is parked in Tom's 
driveway

TA:  Tom can afford to 
move to an expensive 
neighborhood next year

TR:  Tom told 
Molly he is rich

TF:  Tom told Molly 
he will donate 
campaign funds

MR:  Molly thinks 
Tom is rich

MT:  Molly thinks Tom 
is going to make big 
campaign donation

MD:  Molly decides 
to run for mayor

Figure 5.2:2 - The example BN of figure 5.1, with contours showing the connection 
strength bound for the node SW.  The contours are drawn for the calculated CS bound 
between each node and the node SW.  The CS bound values appear below each node.
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5.3 Approximate Inference 

Recall the "reasoning by assumptions" algorithm for BN inference, introduced in section 2.6.  In 

it we instantiate some node (say node Z) to one of its values in order to simplify the network 

(generally to reduce the active path connectivity), do the BN inference with the simplified 

network, repeat the process with Z instantiated to its other value, and then combine the two 

solutions by taking their weighted average (weighted by the probabilities that Z would take on 

each of its two values). 

But now suppose that node Z is distant enough from the nodes whose belief we wish to find (i.e. 

the query nodes), that instantiating Z to some value has almost no effect on their beliefs.  In that 

case the two solutions will be almost the same, and their weighted average won't be that different 

from either one of them.  So we could save some time by only computing one of the solutions, 

and recognizing that the beliefs that it provides are approximate.  This suggests the following 

algorithm: 

Algorithm 5.3:1:  To compute the posterior probabilities of the nodes in the set Q given 

evidence e for the nodes in E, instantiate the node Z to one of its values, then use any standard 
BN inference algorithm to find P(qi|z,e), and finally consider it an approximation for P(qi|e), for 

all Qi ∈  Q.  Node Z can be any node not in E, and will normally be chosen so that the particular 

BN inference algorithm to be used can find  P(qi|z,e)  more quickly than  P(qi|e), which is often 

the case if, for example, Z blocks active paths from nodes in Q to their ancestors or nodes in E. 

When we use an algorithm that produces approximate results, we usually need some kind of 

bound on how accurate we can expect the approximation to be.  That is provided by the 

following theorem (which follows directly from theorem 3.4): 

Theorem 5.3:1:  When using algorithm 5.3.1, a bound on the error of the approximation,  

e = d(P(q|z,e), P(q|e)),  is: 

e   ≤   CS (Z, Q|e) 

for any node Q ∈  Q, where d is the distance measure used for the definition of CS. 
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Although instantiating one node may result in faster BN inference, usually we want to instantiate 

a set of nodes to block many active paths.  There are two different advantages we could gain 

from this.  We could make the network singly connected (or more singly connected), and/or we 

could prune off large parts of the network.  For example consider the BN in figure 5.3: 

Z1 Z2 Zn

Q

G

H
 

Figure 5.3 - Z1, Z2,..., Zn block all active paths from subnetwork G to subnetwork 
H. 

Instantiating the nodes Z1, Z2,..., Zn cuts off the subnetwork G from Q and its subnetwork H.  So 

a BN inference algorithm finding the belief of Q can ignore the whole subnetwork G.  Clearly, 

this may result in a major computational saving.  In fact, the computational savings may be 

arbitrarly large, depending on the size and complexity of G.  An approximation algorithm which 

instantiates multiple nodes is algorithm 5.3:2, which is essentially the same as algorithm 5.3:1, 

except Z is now a set of nodes. 

Algorithm 5.3:2:  To compute the posterior probabilities of the nodes in the set Q given 

evidence e for the nodes in E, instantiate all the nodes in Z to one of their values, creating the 
tuple of values z, then use some standard BN inference algorithm to find P(qi|z,e) and consider it 

an approximation for P(qi|e), for all Qi ∈  Q.  The nodes in Z can be any nodes not in E, and will 

normally be chosen so that the particular BN inference algorithm to be used can find P(qi|z,e)  

more quickly than  P(qi|e). 

Theorem 5.3:2:  When using algorithm 5.3:2, a bound on the error of the approximation: 
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e    =   d(P(q|z1,z2,...zn,e),  P(q|e)) 

is given by: 

e    ≤   CS (Z1, Q|e)  +  CS (Z2, Q|z1,e)  +  ...  +  CS (Zn, Q|z1,z2,...,zn-1,e) 

for any node Q ∈  Q, where d is the distance measure used for the definition of CS. 

This theorem is proved in Appendix C. 
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6 Conclusion 
The major contributions of this thesis have been to introduce and explore connection and link 

strengths, to show the commutivity of ∆O connection strength, to find an algorithm (and its 

complexity) which determines connection strength bounds based only on link strength values 

and the BN graph topology, to explore the significance of paths in a BN, to provide an algorithm 

for approximate inference based on near independencies (and its error bound), to introduce and 

demonstrate the use of link strengths to display degree-of-independence on a BN diagram, and to 

introduce and demonstrate connection strength contour maps. 

6.1 Further Work 

6.1.1 Qualitative Probabilistic Networks 

Algorithm 4.6 provides a way to calculate a bound on CS values, that is, it calculates the 

maximum magnitude of the change of belief at one node due to evidence at another.  But we may 

also be interested in the direction of the change; do the beliefs increase or decrease?  By 
removing the absolute value signs in the definition of CSo and CSp we can retain the information 

on the direction of the change.  Equations 4.5:7 and 4.5:8, used by algorithm 4.6, must be 

modified to handle the signs of LS and CS values separately from the magnitudes.  They must 

produce a number of the same magnitude as they do now, but the combination of signs must be 

as follows:  A positive plus a positive is a positive, a negative plus a negative is a negative, a 

positive plus a negative is an unknown sign, and an unknown sign plus anything is an unknown 
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sign.  For the serial combination rule:  A positive times a positive is a positive, a positive times a 

negative is a negative, a negative times a negative is a positive, and an unknown times anything 

is an unknown. 

In the above additions, the sign is handled separately from the magnitude, because actually 

interval arithmetic is being performed, where the intervals are always from zero to the positive or 

negative CS values (since they are actually bounds, the true value may be anywhere from zero to 

the bound).  Exploiting this, we could modify equations 4.5:7 and 4.5:8 to produce a tighter 

bound in cases which involve the sum of a positive CS with a negative CS, since the magnitude 

of their sum will be bounded by the maximum of their magnitudes, which is less than the sum of 

their magnitudes (which is what must be used in the absence of sign information). 

Wellman90 introduces qualitative probabilistic networks, which have the same dag structure as 

BNs, but contain only sign information along the links instead of NCPs (and may optionally 

contain hyperedges providing the sign of synergies, etc.).  Their purpose is to predict in which 

direction a belief at one node will change given evidence at another node.  It appears that adding 

sign information to CS as described above, will produce the same qualitative results as those of 

Wellman (while also providing magnitudes), but more work remains if it is desired to account 

for synergies in the way Wellman does. 

6.1.2 Greater Computation for Tighter Bounds 

This thesis presented a way to find a bound on CS, by combining quantities that could be 

calculated locally at the scale of a single link.  But if we separate the nodes of a BN into small 

disjoint groups, then the interactions between two groups may be expressed solely in terms of the 

links between the nodes in the Markov boundaries of the two groups.  For each group, we can do 

full BN reasoning to find exact connection strengths between the nodes of the group, then use 

the methods of this thesis to find bounds on CS between the nodes in the Markov boundaries of 

the different groups.  That way we can find a bound on the CS between any two nodes of the 

original BN.  The larger we make the groups, the tighter the bound will be, but the longer it will 

take to compute (because full BN inference will be required on larger groups).  If the groups are 

so small they are just single nodes, the CS bounds calculated will be those of algorithm 4.6.  If a 
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group is so large that it includes the whole BN, then the CS values will be exact.  By varying the 

group size we will be provided with a continuum of CS bounding algorithms from completely 

global and slow algorithms which produce exact results, to completely local and fast algorithms 

which produce loose bounds. 

 

6.1.3 Multistate Nodes 

An obvious next step would be to try to extend the results of this thesis to BNs composed of 

nodes that can take on more than two values.  Any multistate node BN can be modeled by a 

binary one by replacing each multistate node with a number of binary nodes, each binary node 

representing the proposition that the multistate node takes on one of its values.  So, many of the 

proofs in this thesis will extend to BNs composed of multistate nodes, but whether practical 

algorithms and reasonably tight bounds can be produced has yet to be determined.  Also, it may 

be desirable to generalize the definition of CS for multistate nodes in some other way. 
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A Notation and Nomenclature 
When naming nodes in a Bayesian net, upper case letters, such as "A,"  refer to single nodes, and 

bold upper case, such as "A ,"  to a set of zero or more nodes.  Since each node represents a 

propositional random variable, the names of the random variables are also denoted upper case, 

and the values that it can take on are labeled "TRUE" and "FALSE."   "+a" denotes that the value of 

node A is TRUE, "¬a" denotes that the value of node A is FALSE, and "a" stands for the value of 

node A (TRUE or FALSE).  Sometimes "+a" is written simply as "a,"  if that does not result in 

confusion.  A vector of values for all the nodes in the set E, is written bold lower case, as "e ."  

Conditional probabilities are written in the form  "P(+b|¬a,+c),"  which means "the probability 

that B is TRUE, given that A is FALSE and C is TRUE."   "O(+b|¬a,+c)" is the odds ratio that B is 

TRUE, given that A is FALSE and C is TRUE, i.e. O(+b|¬a,+c) = P(+b|¬a,+c) / P(¬b|¬a,+c).  If we 

say "the belief at node B is x" we mean  P(b=TRUE|e) = x, where e is the evidence seen so far. 

"C(B)"  denotes the set of parents (conditional predecessors) of node B,  "C+(B)"  is the set of all 

ancestors of B, and "C*(B)"  is the set of all ancestors of B, including B.  Likewise  "S(B)"  is 

the set of B's children (successors), and "S*(B)"  the set of all descendents.  "C*(B)", where B is 

a set of nodes, is defined as the set of all descendents of all the nodes in B.  Likewise for C+(B), 

S*(B), etc. 

A BN link from node A to node B is denoted as "A→B" or "B←A" or " AB" or " BA ."   If A is 

not a parent of B, the preceeding link notation may still be used, providing that adding a link 

from A to B does not create a cycle in the BN, and the link represented is considered a null link 

from A to B. 
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The Cartesian product is formed with the "Π" symbol, which takes a set of variables as its 

argument, and represents the set of all vectors formed with each of the variables taking on one of 

its possible values.  As an example, for propositional variables A and B: 

Π {A, B}   =   {+a+b,  +a¬b,  ¬a+b,  ¬a¬b}. 

Abbreviations 

BN -  Bayesian net. 

CS - Connection strength. 

FJD -  Full joint (probability) distribution.  Consists of a probability for every conjunction 

consisting of all the primitive propositions (nodes).  The term is also used to indicate 

the complete probabilistic model. 

LS - Link strength. 

NCP -  Node conditional probability (ies).  The probability of a node proposition being true, 

conditioned on its parents.  Also called the "link matrix" in Pearl88. 
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B Conventional Statistical 
Measures of Association 
There is a broad array of standard statistical measures of association.  Historically they have 

been defined simply by searching through equations to find one that meets certain desiderata 

(although in the last few decades there has been a move to define measures according to some 

optimality criterion).  The following have been mentioned by the statistical community as 

desirable qualities for a measure of association: 

1. Range: The measure of association should range from 0 to 1, or -1 to 1. 

2. Endpoints: A measure of association of 0 should correspond to independence, while 1 should 
indicate full association (and -1 indicate reverse full association, if that value can be obtained).  
Full association is defined by some to mean deterministic dependence (all conditional 
probabilities of the contingency table are 0 or 1), and by others to mean that at least one of the 
conditional probabilities of the contingency table is 0 or 1. 

3. Monotonicity: The measure of association should vary monotonically and continuously with P(xy)-
P(x)P(y). 

4. Symmetry: For two binary variables X and Y, the measure of association given as a function of 
P(x|y) and P(x|¬y), should be the same as the same function of P(y|x) and P(y|¬x). 

Here are the most common measures of association as they would be applied to the case of two 

binary variables, X and Y, and written in the probabilistic notation used in this thesis. 

Cross Ratio:     C  =  
P(y|x) P(¬y|¬x)
P(¬y|x) P(y|¬x)   =  

P(y|x) [1 - P(y|¬x)]
[1 - P(y|x)] P(y|¬x)  

Log cross ratio:    L  =  log (C) 
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Coefficient of association (Yule's Q):    Q = 
C - 1
C + 1  

Coefficient of colligation (Yule's Y):    Y  =  
C - 1
C + 1  

Root mean square contingency:  r = 
χ2

N  = [P(x|y) - P(x|¬y)] [P(y|x) - P(y|¬x)]  

Coefficient of contingency (Pearson):    c = r / r2 + 1  

Difference coefficient (J. H. Edwards):     E = P(y|x) - P(y|¬x) 

Ratio coefficient (J. H. Edwards):     F = P(y|x) / P(y|¬x) 

Mutual information:     I = P(x) P(y|x) log 
P(y|x)
P(y)    +  (1 - P(x)) P(y|¬x) log 

P(y|¬x)
P(y)    +  

P(x) (1 - P(y|x)) log 
1 - P(y|x)
1 - P(y)    +   

(1 - P(x)) (1 - P(y|¬x)) log 
1 - P(y|¬x)

1 - P(y)   
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C Proofs 

Theorem 3.1  -  Equivalence of CS Definitions 

Theorem 3.1:  The following 3 definitions of CS are equivalent: 

CS (A,B)  =  d (P(b|+a),  P(b|¬a)) 3.1:1 

CS (A,B)  = 
2v1v a,a

max  d (P(b|av1),  P(b|av2)) 3.1:3 

CS (A,B)  = 
2v1v a,a

sup  d (P(b|av1),  P(b|av1, av2)) 3.1:4 

where av1 is some virtual (or nonexistent) evidence for A, av2 is other consistent evidence 

(possibly virtual) for A, "sup" means the least upper bound, and the distance measure d is 

assumed continuous for 3.1:4. 

To prove that 3.1:3 and 3.1:4 are equivalent to 3.1:1, it is first useful to prove the following 

property of the distance measure: 

Lemma 3.1:5:  For the distance measure defined in 3.1:2 and any a, c, x, y ∈   [0,1]: 

If    a ≤ x ≤ c   and   a ≤ y ≤ c   then   d (x, y)  ≤  d (a, c) 3.1:5 

Proof of lemma 3.1:5: 

By the monotonicity requirement on d: 
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a ≤ x ≤ c   ⇒    d (a, x)  ≤  d (a, c) 

a ≤ y ≤ c   ⇒    d (a, y)  ≤  d (a, c) 

Either:   a ≤ x ≤ y   or   a ≤ y ≤ x 

So, by monotonicity and symmetry of d: 

Either  d(x,y)  ≤  d(a,y)    or    d(y,x) = d(x,y)  ≤  d(a,x) 

But both   d (a, y)   and   d (a, x)   are   ≤ d (a, c),   so   d (x, y)  ≤  d (a, c).    

Proof that 3.1:3 is equivalent to 3.1:1: 

Decomposing P(b|av1) on cases of A (by 2.3:3) we get: 

P(b|av1)  =  P(b|a, av1) P(a|av1) + P(b|¬a, av1) P(¬a|av1) 

Since av1 is virtual evidence for A, B is independent of av1 given A.  So P(b|a,av1) = P(b|a).  

Also substitute  α = P(a|av1), to get: 

P(b|av1)  =  P(b|a) α + P(b|¬a) (1 – α) 

α = P(a|av1) is restricted to [0,1], and as it varies from 0 to 1, P(b|av1) will vary linearly from 

P(b|¬a) to P(b|+a).  So at all times it is bounded by these limits: 

P(b|¬a)  ≤  P(b|av1)  ≤  P(b|+a)    or    P(b|+a)  ≤  P(b|av1)  ≤  P(b|¬a) 

By an identical argument for av2: 

P(b|¬a)  ≤  P(b|av2)  ≤  P(b|+a)    or    P(b|+a)  ≤  P(b|av2)  ≤  P(b|¬a) 

By lemma 3.1:5: 

d (P(b|av1),  P(b|av2))  ≤  d (P(b|+a),  P(b|¬a)) 

So CS(A,B) defined by 3.1:3 is always less than or equal CS(A,B) defined by 3.1:1.  But in 3.1:3 
the max runs over all values of av1 and av2, which includes the possibility av1 = +a  and  av2 = 
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¬a,  which will give it the value of CS(A,B) defined by 3.1:1, and therefore its maximum value.  

So each equation assigns the same value to CS(A,B).    

Proof that 3.1:4 is equivalent to 3.1:1: 

This proof is the same as the one above, with av1,av2  substituted for av2, except for the last 

paragraph, which becomes:  CS(A,B) defined by 3.1:4 is always less than or equal CS(A,B) 
defined by 3.1:1.  In 3.1:4 the max runs over all values of av1 and av2, which doesn't include the 

possibility  av1 = +a  and  av1,av2 = ¬a, because that would be inconsistent evidence. 

However, av1 and av2 can come arbitrarily close to this, and since there are no discontinuities in 

the system (the probability equations are linear and the distance measure was required to be 
continuous for this proof),   d (P(b|av1),  P(b|av1, av2)) can come arbitrarily close to CS (A,B) 

defined by 3.1:1, with the appropriate choice of av1 and av2.  By replacing "max" by "sup" to 

mean the lowest upper bound, we can write the expression as an equality, and have CS(A,B) 

defined by 3.1:4 exactly equivalent to CS(A,B) defined by 3.1:1.    

Theorem 3.4  -  Alternate CS Definition 

Theorem 3.4:  If an alternate connection strength CS' is defined as: 

CS' (A,B|e)   =   max  (d(P(b|e), P(b|+a,e),   d(P(b|e), P(b|¬a,e)) 3.4:1 

then for any two propositional variables A and B, and for any evidence e (or no evidence e), 

connection strength defined by equation 3.4:1 can be bounded above and below as: 

1
2   CS (A,B|e)    ≤    CS' (A,B|e)    ≤    CS (A,B|e) 3.4:3 

To prove the lower bound the following lemma is useful: 

Lemma 3.4:  For a distance measure, d, satisfying the triangle inequality (of 3.1:2): 

max (d(x,y),  d(y,z))    ≥    
1
2   d(x,z) 
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Proof of lemma 3.4: 

Whether  d(x,y)  or  d(y,z)  is greater: 

max (d(x,y), d(y,z))   ≥   min (d(x,y), d(y,z)) 

Adding  max (d(x,y), d(y,z))  to each side: 

2 max (d(x,y), d(y,z))   ≥   max (d(x,y), d(y,z))  +  min (d(x,y), d(y,z)) 

But: 

max (d(x,y), d(y,z))  +  min (d(x,y), d(y,z))   =   d(x,y)  +  d(y,z) 

By the triangle inequality of 3.1:2: 

d(x,y)  +  d(y,z)   ≥   d(x,z) 

Combining the above: 

2 max (d(x,y), d(y,z))   ≥   d(x,y)  +  d(y,z)   ≥   d(x,z) 

Dividing each side by 2: 

max (d(x,y), d(y,z))   ≥   
1
2   d(x,z)         

Proof of lower bound in 3.4:3: 

If we substitute  P(b|+a,e)  for x,  P(b|e)  for y,  and  P(b|¬a,e)  for z  in lemma 3.4, we obtain: 

max (d(P(b|+a,e), P(b|e)),  d(P(b|e), P(b|¬a,e)))   ≥   
1
2   d(P(b|+a,e), P(b|¬a,e)) 

By the symmetry of d (required by 3.1:2) 

max (d(P(b|e), P(b|+a,e)),  d(P(b|e), P(b|¬a,e)))   ≥   
1
2   d(P(b|+a,e), P(b|¬a,e)) 

Substituting, by the definition of  CS  (i.e. 3.1:1),  and the definition of  CS' (i.e. 3.4:1): 
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CS' (A,B|e)   ≥   
1
2   CS (A,B|e)        

Proof of upper bound in 3.4:3: 

Decomposing P(b|e) on cases of A (by 2.3:3) we get: 

P(b|e)  =  P(b|+a,e) P(+a|e) + P(b|¬a,e) (1 – P(+a|e)) 

P(+a|e) is restricted to [0,1], and as it varies from 0 to 1, P(b|e) will vary linearly from P(b|+a,e) 

to P(b|¬a,e).  So at all times it is bounded by these limits: 

P(b|+a,e)  ≤  P(b|e)  ≤  P(b|¬a,e)    or    P(b|¬a,e)  ≤  P(b|e)  ≤  P(b|+a,e) 

By the monotonicity requirement on d ( 3.1:2) 

d(P(b|e), P(b|+a,e))   ≤   d(P(b|+a,e), P(b|¬a,e))   and    

d(P(b|e), P(b|¬a,e))   ≤   d(P(b|+a,e), P(b|¬a,e)) 

Since both left hand sides in the above are less than  d(P(b|+a,e), P(b|¬a,e)),  the maximum of 

them must also be less than  d(P(b|+a,e), P(b|¬a,e)): 

max (d(P(b|+a,e), P(b|e)),  d(P(b|e), P(b|¬a,e)))   ≤   d(P(b|+a,e), P(b|¬a,e)) 

Substituting, by the definition of  CS  (i.e. 3.1:1),  and the definition of  CS' (i.e. 3.4:1): 

CS' (A,B|e)   ≤   CS (A,B|e)        

Theorem 3.7  -  Commutivity of CSo 

Theorem 3.7:3:  For any two propositional variables A and B, and any evidence e: 

CSo (A, B|e)  =  CSo (B, A|e) 3.7:3 

and from this it also follows that: 

CSo (A, B)  =  CSo (B, A) 3.7:2 

CSMo (A, B|e)  =  CSMo (B, A|e) 3.7:4 
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Proof of 3.7:3 and 3.7:2:  By definition of CS (equations 3.5:1 and 3.3:3): 

CSo (A, B|e)   =   | log 
O(+b|+a, e)
O(+b|¬a, e)   | 

By the definition of odds ratio (equation 3.3:1): 

CSo (A, B|e)   =   | log 
P(+b|+a, e) P(¬b|¬a, e)
P(¬b|+a, e) P(+b|¬a, e)   | 

By 4 applications of Bayes rule (equation 2.3:2): 

CSo (A, B|e)   =   | log  
P(+a|+b, e) 

P(+b|e)
P(+a|e) P(¬a|¬b, e) 

P(¬b|e)
P(¬a|e)

P(+a|¬b, e) 
P(¬b|e)
P(+a|e) P(¬a|+b, e) 

P(+b|e)
P(¬a|e)

   | 

Canceling common factors: 

CSo (A, B|e)   =   | log 
P(+a|+b, e) P(¬a|¬b, e)
P(+a|¬b, e) P(¬a|+b, e)   | 

By the definition of odds ratio (equation 3.3:3): 

CSo (A, B|e)   =   | log  
O(+a|+b, e)
O(+a|¬b, e)   | 

By definition of CS (equation 3.5:1): 

CSo (A, B|e)   =   CSo(B, A|e) 

Which proves 3.7:3.  Note that when CSo (A, B|e) is infinity (using infinity as described in 

section 3.3), the result still holds.  There is a problem when P(+a|e) = 0 or P(¬a|e) = 0 in the third 

step of the proof, since then these factors cannot be canceled from the numerator and 
denominator.  However, in that case we simply define the CSo values in both directions as 0, 

since the node A is independent of all other nodes in the network (in one direction this follows 
from do (0, 0) = 0, and in the other it is equivalent to saying P(b|+a) = P(b|¬a) when one of them 

is undefined). 

Equation 3.7:2 follows from the simple case when the evidence e is absent or irrelevant.    
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Proof of 3.7:4:  By equation 3.7:3 

For any e+ ≈ e:   CSo (A, B|e, e+)  =  CSo (B, A|e, e+) 

So:  

ee ≈+

max CS (A, B|e, e+)  =  ee ≈+

max CS (B, A|e, e+) 

But by equation 3.5:4: 

ee ≈+

max CS (A, B|e, e+)  =  CSMo (A, B|e) 

So:  

CSMo(A,B|e)   =   CSMo(B,A|e)       

Theorem 4.1  -  ∆P Serial Chaining 

Theorem 4.1:  For any three propositional variables A, B, and C, where A and C are 

independent given B: 

CSp (A, C)  =  CSp (A, B)  CSp (B, C) 4.1 
 

Proof of Theorem 4.1:  Using the reasoning-by-cases theorem (2.3:3): 

P(c|a)   =   P(c|a,+b)  P(+b|a)   +   P(c|a,¬b)  P(¬b|a) 

Since  I(A,C|b),  we know that  P(c|a,b) = P(c|b): 

P(c|a)   =   P(c|+b)  P(+b|a)   +   P(c|¬b)  P(¬b|a) 

If we subtract a version of this equation with a=FALSE, from a version of it with a=TRUE we 

obtain: 

P(c|+a) – P(c|¬a)   =   P(c|+b)  (P(+b|+a) – P(+b|¬a))   +   P(c|¬b)  (P(¬b|+a) – P(¬b|¬a)) 

Replacing  P(¬b|a)  with  1–P(+b|a),  and simplifying, we obtain: 
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P(c|+a) – P(c|¬a)   =   (P(c|+b) – P(c|¬b))  (P(+b|+a) – P(+b|¬a)) 

Taking the absolute value of each side: 

| P(c|+a) – P(c|¬a) |   =   | P(c|+b) – P(c|¬b) |    | P(+b|+a) – P(+b|¬a) | 

By the definition of ∆P connection strength this equation is equivalent to: 

CSp (A, C)  =  CSp (A, B)  CSp (B, C)    

Theorem 4.2  -  ∆O Serial Chaining 

Theorem 4.2:  For any three propositional variables A, B, and C, where A and C are 

independent given B: 

tanh (1
4  CSo(A, C))   ≤   tanh (1

4  CSo(A, B))   tanh (1
4  CSo(B, C)) 4.2:1 

Proof of Theorem 4.2:  Using the reasoning-by-cases theorem (2.3:3): 

P(c|a)   =   P(c|a,+b)  P(+b|a)   +   P(c|a,¬b)  P(¬b|a) 

Since  I(A,C|b),  we know that  P(c|a,b) = P(c|b): 

P(c|a)   =   P(c|+b)  P(+b|a)   +   P(c|¬b)  P(¬b|a) 

Now we convert from probabilities to odds ratio, using O=P/(1–P), divide an A=TRUE version of 

the resulting equation with an A=FALSE version, and then simplify: 

O(c|+a)
O(c|¬a)    =   (1 + O(b|¬a) + O(c|b) + O(b|¬a) O(c|¬b)) 

 (O(b|a) O(c|b) + O(c|¬b) + O(c|b) O(c|¬b) + O(b|a) O(c|b) O(c|¬b)) / 
 ((1 + O(b|a) + O(c|b) + O(b|a) O(c|¬b)) 
 (O(b|¬a) O(c|b) + O(c|¬b) + O(c|b) O(c|¬b) + O(b|¬a) O(c|b) O(c|¬b))) 

We define  O(x|+y)/O(x|¬y)  as  C(x|y),  substitute where appropriate in the above equation, and 

simplify: 
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 C(c|a)   =   (1 +  C(c|b) O(b|a) +  O(c|b) +  O(b|a) O(c|b)) 
 (C(b|a)  C(c|b) +  C(c|b)  O(b|a) +  C(b|a)  C(c|b)  O(c|b) +  O(b|a)  O(c|b)) / 
 ((C(b|a) +  C(c|b)  O(b|a) +  C(b|a)  O(c|b) +  O(b|a)  O(c|b)) 
 (C(c|b) +  C(c|b)  O(b|a) +  C(c|b)  O(c|b) +  O(b|a)  O(c|b))) 

The above expression for C(c|a) can be broken down into the composition of two functions: 

 C(c|a)   =   
(C(b|a) C(c|b) f1 + 1) (f1 + 1)
(C(b|a) f1 + 1) (C(c|b) f1 + 1)  C4.2:1 

where 

f1   =  
1 + O(c|b)

(C(c|b) + O(c|b)) O(b|a)  C4.2:2 

Now we must find the maximum value that C(c|a) can take for a given C(b|a) and C(c|b), so we 
maximize it with respect to O(b|a) and O(c|b).  We are really interested in the maximums of CSo, 

which is the absolute value of the log of C(c|a), so we want to find all maxima of  C(c|a) which 

are greater than 1, and all minima less than 1. We assume  C(b|a) and  C(c|b) are finite and 

nonzero, and we will check the infinity and zero cases for maxima and minima at the end. First 

we maximize with respect to  O(b|a), then with respect to  O(c|b). 

First we check the boundaries of O(b|a).  At O(b|a) = 0 and O(b|a) = ∞, we get C(c|a) = 1, so 

there are no maxima or minima of interest at the boundaries.  Next we check for discontinuities 

(i.e. the numerator or denominator equals zero).  All the quantities in f1 are greater than or equal 

0, so f1 = (1 + O(c|b)) / (( C(c|b) +  O(c|b))  O(b|a)) is greater than or equal 0.  The denominator 

of  C(c|a) is (C(b|a) f1 + 1) ( C(c|b) f1 + 1) which therefore must be 1 or greater.  The numerator 

of  C(c|a) is ( C(b|a)  C(c|b) f1 + 1) (f1 + 1) which must also be 1 or greater.  So there are no 

discontinuities in our domain of interest.  Also, since it is a "rational" function, the derivative 

won't have discontinuities in places where the function doesn't. 

Next we take the derivative with respect to O(b|a), and check the zeros of the derivative for 

maxima.  We do this in two steps using the chain rule for derivatives: 

C(c|a)   =  g1(C(b|a),  C(c|b),  f1(C(c|b), O(b|a), O(c|b))) 

d[C(c|a)]
d[O(b|a)]    =   

d[C(c|a)]
d[f1]   

d[f1]
d[O(b|a)]  
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So the maxima/minima will occur when either derivative equals zero. 

d[f1]
d[O(b|a)]    =   –

1 + O(c|b)
(O(b|a))2 (C(c|b) +  O(c|b))  

This is zero when O(b|a) is infinity (which is at the boundary and has already been checked). It is 

not zero when O(c|b) is infinity (there it is -1).  It is zero when O(c|b) = -1, but that is not an 

allowed value for O(c|b), so there are no maxima of interest when this derivative is zero.  We try 

the other derivative in the product: 

d[C(c|a)]
d[f1]     =   –

(C(b|a) – 1) (C(c|b) – 1) (C(b|a) C(c|b) f12 – 1)
(1 + C(b|a) f1)2 (1 + C(c|b) f1)2   

Zeros are of this derivative are at  C(b|a) = 1,  C(c|b) = 1,  f1 = ∞,  and  C(b|a) C(c|b) f12 = 1.  

When  C(b|a) = 1  or  C(c|b) = 1,  we find that C(c|a) = 1, so they do not correspond to maxima 

of interest.  f1 is infinite only if O(b|a) = 0 (which we have already considered).  So the only 

interesting roots are at  C(b|a) C(c|b) f12 = 1.  One of the roots of this equation is always 

negative, so it doesn't correspond to a valid solution.  The other root is: 

f1m   =   
C(b|a) C(c|b) (1 + O(c|b))

C(c|b) + O(c|b)   

Substituting this back in equation C4.2:1, yields: 

C(c|a)m   =   






1 + C(b|a) C(c|b)

C(b|a) + C(c|b)

 2
  C4.2:4 

which is a suitable maxima. 

We have left to the end the task of checking for possible maxima or minima at  C(b|a) or C(c|b) 

taking a value of 0 or ∞.  When we substitute  C(b|a) = 0 into the formula for  C(c|a) we get  

C(c|a) = 1/ C(c|b) and for  C(b|a) = ∞ we get  C(c|a) = C(c|b).  These are the same values we get 

from C4.2:4, so that formula will do in all cases.  So the value of C(c|a) given by equation C4.2:4 

truly is the maximum value C(c|a) can take given values of C(b|a) and C(c|b), and we may 

rewrite it as an inequality which always holds: 
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C(c|a)   ≤   






1 + C(b|a) C(c|b)

C(b|a) + C(c|b)

 2
  C4.2:5 

We can use equation 3.3:3 to express things in terms of CSo: 

CSo(A, C)   =   | log C(c|a) | 

CSo(A, B)   =   | log C(b|a) | 

CSo(B, C)   =   | log C(c|b) | 

If we make the above substitutions in equation C4.2:5, and then simplify, we obtain: 

tanh (1
4  CSo(A, C))   ≤   tanh (1

4  CSo(A, B))   tanh (1
4  CSo(B, C)) 

which is the equation to be proved.    

Theorem 4.3  -  Fundamental Equation 

Theorem 4.3:  For any three propositional variables V, Q, and Z, we can decompose the 

connection strength from V to Q on cases of Z as follows: 

CS (V, Q)   ≤   z
max CS (V, Q | z)   +  CS (V, Z)  *  v

min CS(Z,Q|v) 

where * is a generalized multiplication corresponding to the serial combination rule for the 

particular distance measure, d, used to define CS. 

Lemma 4.3:   For any real numbers  x1, x2, y1, y2, and z,  if 

z   ≤   x1  +  y1          and         z   ≤   x2  +  y2 

then 

z   ≤   max(x1, x2)  +  min (y1, y2) 

Proof of Lemma 4.3: 
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There are four possible cases.  If  x1 ≥ x2  and  y1 ≤ y2,  then 

max(x1, x2)  +  min (y1, y2)  =  x1 + y1  ≥  z     by the first given equation 

If  x1 ≥ x2  and  y1 ≥ y2,  then 

max(x1, x2)  +  min (y1, y2)  =  x1 + y2  ≥  x2 + y2  ≥  z     by the second given equation 

and similarily for the other two cases.    

Proof of Theorem 4.3: 

We can analyze the propositional variables V, Q, and Z by constructing a BN for them, which 

appears in figure C.1.  Since this is a fully connected BN, it can represent any probabilistic 

relationship between the 3 variables, with the right choice of NCP values.  So even if these three 

variables are originally from a different BN where they are connected up in a different way, and 

perhaps with many other nodes involved, the BN of figure C.1 can represent their relationships 

within the other BN with no loss of generality.  So we need only prove equation 4.3:6 for the BN 

of figure C.1. 

V

Z

Q

 

Figure C.1 - Fully connected BN representing the probabilistic relationship between 
V, Z, and Q with no loss of generality. 
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W

Z

Q

U

 

Figure C.2 - A new BN which is the same as the one in figure C.1, except the V 
node has been split into U and W.  This BN is defined to have the same NCPs as the 
one in figure C.1. 

The BN in figure C.2 is the same as C.1 (has the same connections and the same NCPs), except 

the node V has been replaced with two nodes: U and W.  In general C.2 will produce different 

inference results from those produced by C.1, because the active path from Q to Z through V has 

been broken.  However, in those cases where U and W both have evidence, and that evidence is 

the same for both of them, then inference using C.2 will produce the same beliefs as C.1 (with V 

receiving the same evidence as U and W).  Since in the calculation of CS(V,Q) the only values 

of interest are the beliefs at Q when V has evidence, we will obtain the same values from C.2  

(giving both U and W the same evidence as V).  Even though some of the intermediate 

calculations may be different, the results will be the same because P(q|+v) = P(q|+u,+w) and 

P(q|¬v) = P(q|¬u,¬w).  So we need only prove equation 4.3:6 for the BN of figure C.2. 

By the definition of CS (3.1:1): 

CS(V,Q)   =   d(P(q|+v), P(q|¬v))   =   d(P(q|+u,+w), P(q|¬u,¬w)) 

By the triangle inequality of d (3.2:2): 

d(P(q|+u,+w), P(q|¬u,¬w))  ≤  d(P(q|+u,+w), P(q|+u,¬w)) + d(P(q|+u,¬w), P(q|¬u,¬w)) 

Substituting in the above the definition of conditional CS (3.5:1): 

CS(V,Q)   ≤   CS(W,Q|+u)  +  CS(U,Q|¬w) 

Similarily we can derive: 

CS(V,Q)   ≤   CS(W,Q|¬u)  +  CS(U,Q|+w) 
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Invoking lemma 4.3 on the two equations above: 

CS(V,Q)   ≤   u
max CS(W,Q|u)  +  w

min CS(U,Q|w) C4.3:1 

The second term in the above equation can be evaluated as a three node BN consisting of two 

links in serial, similar in form to the BN of figure 4.1.  The techniques of section 4.1 or section 

4.2 can be used (or similar techniques for other distance measures) to provide a bound for it.  We 

express that bound in the general form: 

w
min CS(U,Q|w)   ≤   w

min  [CS(U,Z|w)  *  CS(Z,Q|w)] 

where  *  is the serial combination rule, which depends on the particular distance measure being 

used.  Since W is independent of U and Z, CS(U,Z|w) = CS(U,Z), and the * operator is 

monotonically increasing w.r.t. both arguments, we may move the min operator in: 

w
min CS(U,Q|w)   ≤   CS(U,Z)  *  w

min CS(Z,Q|w) 

Returning to notation using V instead of U and W: 

w
min CS(U,Q|w)   ≤   CS(V,Z)  *  v

min CS(Z,Q|v) C4.3:2 

Now we examine the first term of C4.3:1.  Expressing it in terms of the d measure: 

u
max CS(W,Q|u)   =   u

max d(P(q|+w,u), P(q|¬w,u)) C4.3:3 

We evaluate  d(P(q|+w,u), P(q|¬w,u))  by reasoning by cases on Z (2.3:3): 

d(P(q|+w,u), P(q|¬w,u))   =   d(P(q|+w,+z,u) P(+z|+w,u) + P(q|+w,¬z,u) P(¬z|+w,u), 
   P(q|¬w,+z,u) P(+z|¬w,u) + P(q|¬w,¬z,u) P(¬z|¬w,u)) 

Q is independent of U given Z, so  P(q|w,z,u) = P(q|w,z).  Also, Z is independent of W given U  

so  P(z|w,u) = P(z|u).  Substituting these in: 

d(P(q|+w,u), P(q|¬w,u))   =   d(P(q|+w,+z) P(+z|u) + P(q|+w,¬z) P(¬z|u),   
    P(q|¬w,+z) P(+z|u) + P(q|¬w,¬z) P(¬z|u)) 

Substituting  λ  for  P(+z|u),  and  1–λ  for  P(¬z|u),  we obtain: 
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d(P(q|+w,u), P(q|¬w,u))   =    
 d(P(q|+w,+z) λ + P(q|+w,¬z) (1–λ),  P(q|¬w,+z) λ + P(q|¬w,¬z) (1–λ)) 

By the no-maxima requirement on d (3.1:2): 

d(P(q|+w,u), P(q|¬w,u))   ≤    
 max (d(P(q|+w,+z), P(q|¬w,+z)), d(P(q|+w,¬z), P(q|¬w,¬z)) 

By the definition of conditional CS (3.5:1): 

d(P(q|+w,u), P(q|¬w,u))   ≤   z
max CS(W,Q|z) 

Substituting it back into C4.3:3, and switching W to V notation, we obtain: 

u
max CS(W,Q|u)   ≤   z

max CS(V,Q|z) C4.3:4 

Combining C4.3:1, C4.3:2, and C4.3:4, gives us the result to be proved: 

CS (V, Q)    ≤   z
max CS (V, Q | z)   +  CS (V, Z)  *  v

min CS(Z,Q|v)       

Theorem 4.6  -  Path Complexity 

Lemma 4.6:  When calculating each new F(J,Q) in step 2 of algorithm 4.6, all the 

subcalculations of F(K,Q) that are required, will already be calculated.  The same holds for step 

3. 

Theorem 4.6:  The number of generalized multiplications required to find a bound on CSo(V,Q) 

using algorithm 4.6, is the number of links between the ancestors of Q which are also 

descendants of ancestors of V, plus the number of links between the ancestors of V which are 

also descendants of ancestors of Q, that is: 

Number multiplies   = Number links between ( S*(C*(Q)) ∩  C*(V))   +    

 Number links between (S*(C*(V)) ∩  C*(Q)) 
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Proof of Lemma 4.6:  Each time we use equation 4.5:8 to find a value for F(X,Y), we end up 

finding values for F(X,Y), and each F(K,Y) where K∈S(X) ∩  C*(Y) (whether or not X=Y).  If 

we apply the equation recursively, we end up finding F(K,Y) values for all K∈K, where K is 

given by: 

K  =  X  ∪   (S(X) ∩  C*(Y))  ∪   (S(S(X) ∩  C*(Y)) ∩  C*(Y))  ∪   . . . 4.6:3 

It is a property of ancestor/descendent relations, that if a node W isn't an ancestor of another 

node Z, it can't have a successor or descendent which is an ancestor of W. That is: 

W ∉  C*(Z)      implies     S(W) ∉  C*(Z)     and      S*(W)  ∩  C*(Z)  =  Ø  4.6:4 

Using 4.6:4, we can simplify 4.6:3 to: 

K  =  S*(X) ∩  C*(Y) 4.6:5 

When we use equation 4.5:7 to find a bound on CS(V,Q), we have to find a value of F(J,Q) for 

all J∈C*(V) ∩  C+(Q).  Since we will find these values using equation 4.5:8, that requires using 
equation 4.5:8 to find F(K,Q) for all K∈KQ  where KQ is given by 4.6:5, substituting 

C*(V) ∩  C+(Q) for X, and Q for Y: 

KQ  =  S*(C*(V) ∩  C+(Q))  ∩   C*(Q) 4.6:6 

We can simplify the above using 4.6:4 to get: 

KQ  =  S*(C*(V))  ∩   C*(Q) 4.6:7 

So when finding all the F(J,Q) values in step 2, all the recursive F(K,Q) values that need to be 

found will be in the set above.  Since step 2 specifies that we find the F(J,Q) values in reverse 

order of J, and equation 4.5:8 finds F(J,Q) values using only F(K,Q) values for which K succeeds 

J, completion of step 2 will require only F(K,Q) values from the set above which have already 

been found. 

The same type of argument, but with V substituted for Q, and Q for V, serves to show that step 3 
requires finding only F(K,V) values in which K is an element of the set KV below: 

KV  =  S*(C*(Q))  ∩  C*(V) 4.6:8 
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Furthermore, step 3 also specifies that we find the F(J,V) values in reverse order of J, so by the 

same reasoning as the step 2 case, completion of step 3 will require only F(K,V) values from the 

set above which have already been found.    

Proof of Theorem 4.6:  Equation 4.5:8 is invoked to find each value of F(X,Q) where 

X ∈  S*(C*(V)) ∩  C*(Q) as stated by equation 4.6:7.  Each time it is invoked it performs one 

multiply for each link leaving X and going to a node in C*(Q).  Since the node that the link goes 

to will be in S*(C*(V)) as well (because by definition it must go to a successor), we can say that 

one multiply is performed for each link leaving a node in S*(C*(V)) ∩  C*(Q) and going to a 

node in S*(C*(V)) ∩  C*(Q).  Or, in other words, the number of multiplies required is the 

number of links between the nodes in S*(C*(V)) ∩  C*(Q). 

Equation 4.5:8 must also be invoked to find each value of F(X,V) where X ∈  S*(C*(Q)) ∩  

C*(V) as stated by equation 4.6:8.  By reasoning similar to the last paragraph, we can say that 

the number of multiplies required to do this is the number of links between the nodes in  

S*(C*(Q)) ∩  C*(V). 

Finally, we must add on the number of multiplies required by equation 4.5:7 in step 4.  This will 

be |C*(V) ∩  C+(Q)|, which is one multiply for each term of the sum.  However, if we don't count 

all those multiplications that are with a connection strength from a node to itself, done in steps 2 

and 3 above (which don't really need to be done, since they yield the original number, and are 

present simply to terminate the recursion), then this quantity will be absorbed, leaving us with 

the sum of the two quantities from the two paragraphs above: 

Number multiplies   = Number links between ( S*(C*(Q)) ∩  C*(V))   +    

 Number links between (S*(C*(V)) ∩  C*(Q)) 

 

Theorem 4.7:1  -  Intercausal Link Strength 

Theorem 4.7:1:  If A and C are both parents of E, and I(A,C|), then if E receives evidence TRUE, 

the CS from A to C is bounded by: 
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CSo(A,C|+e)   =   | log 
P(+e|+a+c) P(+e|¬a¬c)
P(+e|+a¬c) P(+e|¬a+c)  | 4.7:1 

 

Proof of Theorem 4.7:1:  By Bayes rule (2.3:2): 

P(c|a,e)   =   P(e|a,c)  
P(c|a)
P(e|a)  

If we form the ratio of this equation with c=TRUE, to it with c=FALSE we obtain: 

P(+c|a,e)
P(¬c|a,e)    =   

P(e|a,+c)
P(e|a,¬c)  

P(+c|a) P(e|a)
P(¬c|a) P(e|a)  

Canceling P(e|a) and using the definition of odds ratio, we obtain the following well known (e.g. 

Pearl88) equation, which holds for either value of A and either value of E: 

O(+c|a,e)   =   
P(e|a,+c)
P(e|a,¬c)   O(+c|a) 

If we form the ratio of this equation with a=TRUE, to it with a=FALSE we obtain: 

O(+c|+a,e)
O(+c|¬a,e)    =   

P(e|+a,+c) P(e|¬a,¬c)
P(e|+a,¬c) P(e|¬a,+c)  

O(+c|+a)
O(+c|¬a)  

Since I(A,C|), we know that  O(+c|+a) = O(+c|¬a), so we can cancel these factors. 

O(+c|+a,e)
O(+c|¬a,e)    =   

P(e|+a,+c) P(e|¬a,¬c)
P(e|+a,¬c) P(e|¬a,+c)  

Next we take the absolute value of the logarithm of both sides. 

| log 
O(+c|+a,e)
O(+c|¬a,e)  |   =   | log 

P(e|+a,+c) P(e|¬a,¬c)
P(e|+a,¬c) P(e|¬a,+c)  | 

By the definition of CS using the do measure, the left hand side is CS(A,C|e): 

CS(A,C|e)   =   | log 
P(e|+a,+c) P(e|¬a,¬c)
P(e|+a,¬c) P(e|¬a,+c)  | 

The equation we set out to prove is just a special case of the above with e=TRUE.    
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Theorem 5.3:2  -  Approx. Inference Error Bound 

Theorem 5.3:2:  When using algorithm 5.3:2, a bound on the error of the approximation: 

e    =   d(P(q|z1,z2,...zn,e), P(q|e)) 

is given by: 

e    ≤   CS (Z1, Q|e)  +  CS (Z2, Q|z1,e)  +  ...  +  CS (Zn, Q|z1,z2,...,zn-1,e) 

for any node Q ∈  Q, where d is the distance measure used for the definition of CS. 

Lemma 5.3:  For any two propositional variables, Z and Q, and any evidence e: 

CS(Z,Q|e)   ≥   d(P(q|e), P(q|z,e)) 

Proof of Lemma 5.3:  By the definition for an alternate CS  (3.4:1): 

CS'(Z,Q|e)   =   max (d(P(q|e), P(q|+z,e)),  d(P(q|e), P(q|¬z,e))) 

The result of a "max" function is greater than either of its arguments, so: 

CS'(Z,Q|e)   ≥   d(P(q|e), P(q|z,e)) 

By theorem 3.4,  CS(Z,Q|e)  ≥  CS'(Z,Q|e),  so: 

CS(Z,Q|e)   ≥   d(P(q|e), P(q|z,e))      

Proof of Theorem 5.3:2:  By the triangle inequality on d (required by 3.1:2): 

d(P(q|e), P(q|z1,...,zn-1,e))  +  d(P(q|z1,...,zn-1,e), P(q|z1,...,zn,e))    
 ≥   d(P(q|e), P(q|z1,...,zn,e)) 

The first term of the above can be substituted with an upper bound (i.e. a number guaranteed to 

be greater or equal) provided by the same equation with an index of n that is one lower, to yield. 

d(P(q|e), P(q|z1,...,zn-2,e))  +  d(P(q|z1,...,zn-2,e), P(q|z1,...,zn-1,e))  +   
d(P(q|z1,...,zn-1,e), P(q|z1,...,zn,e)) ≥   d(P(q|e), P(q|z1,...,zn,e)) 

This process can be repeated n-2 times to yield: 
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∑
=

n

1i

d(P(q|z1,...,zi-1,e), P(q|z1,...,zi,e))   ≥   d(P(q|e), P(q|z1,...,zn,e)) 

Each term of the sum can be bounded by lemma 5.3, by substituting Zi for Z and   z1 &...& zi-

1 & e   for e, to yield: 

∑
=

n

1i

CS(Zi,Q|z1,...,zi-1,e)   ≥   d(P(q|e), P(q|z1,...,zn,e)) 

If we define:   e    =   d(P(q|z1,z2,...zn,e), P(q|e)),  then we obtain the bound: 

e    ≤   CS (Z1, Q|e)  +  CS (Z2, Q|z1,e)  +  ...  +  CS (Zn, Q|z1,z2,...,zn-1,e)      


