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Abstract

Consider a triangle whose three vertices are grid points. Let k denote the number of

grid points in the triangle. We describe an indexing of the triangle: a bijective mapping

from f0; . . . ; k�1g to the grid points in the triangle. Computing such a mapping is a fun-

damental subroutine in �ne-grained parallel computation arising in graphics applications

such as ray-tracing. We describe a very fast indexing algorithm: after a preprocessing

phase requiring time proportional to the number of bits in the vertices of the triangle, a

grid point in the triangle can be computed in constant time from its index. The method

requires only constant space.

1 Introduction

Consider a triangle whose vertices are points on a two-dimensional grid. Let k be the number

of grid points, or \pixels", that lie in the interior of the triangle or on its boundary. By

an indexing of the points in a triangle we mean a labeling of the points in the triangle

with the integers from 0 to k � 1. Given an integer in this range an indexing algorithm

determines the coordinates of the corresponding point in the triangle. The standard indexing

algorithm used in computer graphics is the so-called scan-conversion ([2]). Figure 1(a) shows

the order in which this routine encounters the pixels of a triangle as it is �lled or drawn into

a graphical frame bu�er. The intended purpose of scan-conversion is to render a triangle, not

to determine an indexing; but because it is so simple, scan-conversion is probably the fastest

sequential algorithm for listing the indices of all points in a general triangle.

However, scan-conversion falls short as an indexing algorithm for two reasons. First, to

index a particular point, say the kth, requires time at least linear in k because it entails

scanning the previous k � 1 points. Even if only one point is desired, the cost could be the

same as that to scan the entire triangle! Fast indexing of single points is key to parallel

applications such as ray-tracing on �ne-grained machines like the Connection Machine [4]

where each point contained in a triangle is to be assigned to a distinct processor. The available

processors may assign themselves unique integer indices using parallel pre�x or some other

machine speci�c load distribution technique, and subsequently compute the corresponding

points via an indexing algorithm.

Let k be the number of points in the triangle. If each of k processors uses scan-conversion,

then the total parallel work is 
(k2). Even if one processor is dedicated to the distribution

of points, and computes the scan-conversion indexing only once, the delay before the last

processor receives its point is the time of scan-conversion, 
(k). Ideally we would like to have

an indexing that could be computed in constant time so that the total parallel work is �(k),
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Figure 1: (a) Indexing of points by scan-conversion; (b) skinny triangle on which scan-

conversion performs poorly.

and the maximum delay is constant. Unfortunately, the scan-conversion algorithm cannot be

adapted to such a parallel implementation.

Another drawback of scan-conversion is that it performs poorly on certain skinny triangles

such as the one shown in Figure 1(b). In fact, scan-conversion is extremely ine�cient even as

a sequential algorithm for �lling such triangles! The reason is that scan-conversion's running

time is proportional not just to the number of points in the triangle, but to the maximum

of that quantity and the number of scan-lines intersected by the triangle. Therefore, a

triangle that is very skinny and angled 45 degrees to the scan-lines results in a running time

proportional to the length of its longest side, even when it contains few points. Consequently,

scan-conversion is ill-suited to indexing | and to �lling | these skinny triangles.

The algorithm presented in this paper has neither of the de�ciencies of scan-conversion. It

provides an indexing computable in constant time per point and is thus ideally suited to par-

allel applications. Also, it performs �lling in time proportional to the number of points drawn

instead of to the triangle dimensions, so it is well suited to �lling skinny triangles. Further-

more, our algorithm is only slightly more complicated than scan-conversion; full pseudo-code

is included in this paper. Our algorithm has some other advantages over scan-conversion:

it can easily be inverted, i.e., given the coordinates of a point, we can compute its index in

constant time. This is useful for compact storage of point sets. Also our method allows one

to generate a point in the triangle uniformly at random in constant time. Note that it is easy

enough to generate approximately uniform pseudo-random points having 
oating-point co-

ordinates and then to round to the nearest integer coordinates ([3]). However, once rounded,

the points are not generated uniformly at all.

The remainder of this paper is organized as follows. The next section introduces pre-

liminary de�nitions and notation. In Section 3 we solve the indexing problem for a special

subclass of triangles. In Section 4 we show that the ideas used in the special case can be

modi�ed to yield a fast and simple indexing algorithm for general triangles.

2 Preliminaries

The notation (ab), (abc) and (abcd) is used to denote the line segment (ab) (including end-

points), the triangle with vertices a, b, c and the parallelogram with vertices a, b, c and d.

The vertices of a triangle or parallelogram are assumed not to be colinear. These vertices
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are assumed to be grid points on a two dimensional grid. Throughout the remainder of this

paper the term point refers to a grid point. We describe the position of points with respect to

a �xed Cartesian coordinate system. Such a system is de�ned by taking a (grid) point p to

be the origin and assigning coordinates (1; 0) and (0; 1) to the two neighboring (grid) points

on the two grid lines that intersect at p.

We say that a point is in the triangle (abc) (in the parallelogram (abcd)) if it either

lies in the interior of the triangle (parallelogram) or it lies on the boundary. Let k denote

the number of points in triangle (abc). We want a fast algorithm for computing a bijective

mapping from f0; . . . ; k� 1g to the (grid) points in the triangle. This algorithm has as input

an integer in the range 0 . . . k � 1 and returns the coordinates of the corresponding point in

the triangle. We denote the coordinates of a point P by a pair (xP ; yP ).

We shall use a few facts from elementary number theory. We �rst note that for any two

distinct points a and b the line segment (ab) contains gcd(jxb�xaj; jyb�yaj)+1 evenly spaced

points. The following result will also be needed ([5]):

Theorem 1 Let u; v and w be integers with uv 6= 0. The linear diophantine equation ux+

vy = w has an integer solution (x; y) if and only if gcd(juj; jvj) divides w. If this is the

case then all solutions of the equation are of the form x = x0 + �v=gcd(juj; jvj) and y =

y0 � �u=gcd(juj; jvj) where � is an arbitrary integer and (x0; y0) is a particular solution to

the equation. 2

We can compute a particular solution to the linear diophantine equation by modifying the

Euclidean algorithm. We �rst observe that a particular solution can easily be expressed in

terms of a solution to an equation of the form ux+ vy = gcd(u; v) where u and v are positive

integers. The following procedure computes a solution (x; y) to this equation; we assume that

x; y and r are global variables. An alternative nonrecursive formulation of this algorithm is

given in [1, page 301].

solve(u; v)f

if v = 0 then fx := 1; y := 0; g

else f solve(v; u mod v);

r := x;

x := y;

y := r � ybu=vc; gg

The algorithm terminates because the second argument decreases at each iteration. It pro-

duces the correct result (x; y) because xv+y(u mod v) = g implies yu+(x�ybu=vc)v = g for

v > 0. The running time is linear in the number of bits in u and v (just as for the Euclidean

algorithm).

3 A Special Case

We �rst study the indexing problem for right triangles that have two sides lying on grid lines.

The reason for doing so is two-fold: �rst, we shall see that the indexing problem is nontrivial

even for this simple case; second, the study of this class of triangles provides a convenient

vehicle for introducing the main ideas used for solving the general case.

Without loss of generality the sides (ab) and (ac) lie on (orthogonal) grid lines, (bc) facing

the right angle. For convenience we choose a as the origin of the coordinate system with the

next grid points on (ab) and (ac) having coordinates (1; 0) and (0; 1). This will ensure that
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Figure 2: Triangle (abc) with sides (ab) and (ac) on grid lines.

all points in (abc) have nonnegative coordinates. Note that yb = xc = 0. An example of such

a triangle is depicted in Figure 2.

We observe that any indexing of (abc) induces a linear ordering on the points in (abc) in

the obvious way, i.e., a point precedes another point if it has a smaller index. We may thus

rephrase our problem in terms of linear orders: we would like to determine a linear order on

the points in (abc) such that a point can be computed quickly from its rank in the linear

order.

A natural order on the points in (abc) is the lexicographic ordering of the points by their

coordinates. Note that a and b are the �rst and last point in this ordering. To compute a

point from its rank (index), we would need a formula for calculating the number of points

P in the triangle with xP � i. Routine calculation shows that this number is given by
Pi

j=0 1+ b
yc(xb�j)

x
b

c. Unfortunately, there is no simple closed form for this expression (except

for i = xb). This fact makes the ordering unsuitable for fast indexing. The same applies to

ordering the points by y coordinate �rst and then by x coordinate.

A new idea is needed at this point. Let d be the re
ection of a about m, the midpoint of

(bc) (which may not be a grid point). As we shall see shortly, it is helpful to study the problem

of indexing the points in the rectangle (abcd). Although the lexicographical ordering was not

suitable for indexing points in (abc) it provides a very fast indexing of the points in rectangle

(abcd). Because the number of points P in (abcd) with xp � i is equal to (i+ 1)(yc + 1), the

ith point in (abcd) has coordinates: xp = b
i

yc+1
c and yp = i� xp(yc + 1).

The re
ection aboutm naturally partitions the points in (abcd) other thanm into disjoint

pairs of points that are re
ections of each other. Let k denote the number of points in

rectangle (abcd). The lexicographic ordering of the k points has the following important

property: the set R comprising the �rst bk=2c points in the ordering contains exactly one

point of each pair. We say that a set of points in rectangle (abcd) is nice if it has this property.

Thus, R is a nice set of points. We now make two important observations. First, the indexing

of the points in R using the method given in the last paragraph provides a simple indexing

method for any nice set S: to generate the ith point in S, generate the ith point in (abcd)

and re
ect this point about m if it lies outside S. Second, the set T of points in triangle

(abc) that do not lie on line segment (mb) is a nice set of points. As we have just explained

this implies a simple method for generating points in T . To generate all points in (abc) we

�rst generate those in T and then generate the points on (bm) in the obvious way.

From this discussion we obtain the following algorithm for computing the ith point in

triangle (abc). We assume that the quantities k = (yc + 1)(xb + 1) and gbc = gcd(jxbj; jycj)

4



a b

c

1

2

0

3

4

5

6

7

8

9

10

11

12

13 14

15

m

d

Figure 3: Indices of points generated by Index.

have been precomputed.

Index(i)f

if i < bk=2c then

/* generate ith point in T */

fxp := b
i

yc+1
c;

yp := i� xp(yc + 1);

if P lies outside (abc) re
ect P about m; g

else /* generate the point with index i� bk=2c on (bm) */

fj := i� bk=2c;

xp := xb � j � xb=gbc;

yp := j � yc=gbc; gg

Figure 3 shows the ordering in which the points in the triangle of Figure 2 are generated

by Index. Note that the points with indices 12 and 13 are obtained by re
ecting the points

with coordinates (1; 5) and (1; 6) in R.

This indexing method is very fast: precomputing gcd(jxbj; jycj) (using the Euclidean al-

gorithm) takes time proportional to the number of bits in the binary representations of the

integers xb and yc. The number of steps required by Index is a small constant (depending

on the particular implementation), assuming b
i

yc+1
c can be computed in constant time.

4 The General Case

We now consider a triangle (abc) in general position. Again we let a be the origin of a

Cartesian coordinate system with the neighboring grid points to the right and above a having

coordinates (1; 0) and (0; 1). Figure 4 shows an example of such a triangle. The possibility

that none of the three sides lie on a grid line seems to complicate the indexing problem.

Fortunately, many of the ideas introduced in the last section can be applied here after some

modi�cations.

Let d be the re
ection of a about the midpointm of (bc). We shall �rst study the indexing

problem for the parallelogram (abcd). The points in (abcd) other than m are naturally

partitioned into disjoint pairs of points that are re
ections of each other about m. As before

we de�ne a set of points to be nice if it contains exactly one point from each pair. Note

that the set of points in (abc) that do not lie on (bm) is again a nice set of points. By an
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Figure 4: A triangle in general position.

observation in the last section all that remains to be done is to develop a fast indexing method

for some �xed nice set of points.

It turns out, somewhat surprisingly, that there is such a set of points having a very simple

structure. This is best understood by considering a new coordinate system having a as its

origin and basis vectors ab and ac. We call the coordinates of a point in this system skew

coordinates. Note that the skew coordinates of points b, c and d are (1; 0), (0; 1) and (1; 1),

respectively.

Consider the lexicographic ordering of the points in (abcd) by their skew coordinates. Let

k be the number of points in (abcd) and let R denote the set comprising the �rst bk=2c points

in the lexicographic ordering. It is not di�cult to see that R is a nice point set.

It is less obvious that the points in R can be indexed quickly. This can be seen by

carefully examining the distribution of those points. First we prove that all points in (abcd)

lie on equidistant lines parallel to (ac). For this we use basic analytic geometry and some

elementary number theory. The equation of a line parallel to (ac) is of the form

xcy � ycx = �: (1)

Since we are interested only in those lines containing grid points, we may assume that � is

an integer. Let gc = gcd(jxcj; jycj). By Theorem 1, Equation 1 has a solution if and only if

gc divides �. In this case we may rewrite Equation 1 as

xc

gc
y �

yc

gc
x = r (2)

for some integer r. Let D = xcyb�ycxb. Note that jDj is the area of parallelogram (abcd). As

we shall see this quantity will play an important role in the indexing procedure. Substituting

coordinates for a and b in Equation 2 we deduce that the lines containing points of (abcd)

correspond to the integer values of r between D
gc

and 0. Note that the distance separating

two consecutive points on such a line is no larger than the distance from a to c. Thus each

such line contains at least one (grid) point in (abcd). We have thus shown that the points of

(abcd) lie on a family of equidistant lines parallel to (ac). Let L denote the set of these lines.

From the above discussion it follows that jLj =
jDj

gc
+1. Figure 5 shows the lines in L for the

parallelogram associated with the triangle in Figure 4. Note that in this example jLj = 15 in

accordance with our formula.

Next we examine the distribution of points on these lines. We distinguish two types of lines

in L: those intersecting each of (ab) and (cd) in a (grid) point, termed of type 1, and those
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Figure 5: Equidistant lines in L containing the points in (abcd).

that intersect neither one in a grid point, termed of type 2. Note that each line in L is either of

type 1 or type 2. Let gb = gcd(jxbj; jybj). There are exactly gb+1 equally spaced lines of type

1 corresponding to gb+1 equally space points on (ab). Each type 1 line contains gc+1 points

while each line of type 2 contains gc points. Since there are gb+ 1 lines of type 1, the total

number of points in (abcd) is k = (gb+1)(gc+1)+(jLj�gb�1)gc = gb+gc+1+ jxcyb�ycxbj.

The lines of type 1 are represented by dashed line segments in Figure 5 while those of type 2

are depicted by solid line segments. In this example there are three lines of type 1 containing

three points each. The remaining twelve lines of type 1 have 2 points each. Thus we have

k = 33 in this example which agrees with our formula.

Type 1 and type 2 lines alternate in a regular pattern. We order the lines in L in increasing

order of their distance from (ac). Any two consecutive lines of type 1 are separated by the

same number of type 2 lines. Let us call the set consisting of a type 1 line and the following

type 2 lines up to (excluding) the next type 1 line a group. We note that one group consists

of line segment (bd) containing gc+1 points while the other gb groups contain (k�gc�1)=gb

points each.

Ordering the lines in L by increasing distance from (ac) induces an ordering of the groups.

The points on each line are ordered according to the lexicographic order of their skew co-

ordinates or, equivalently, in increasing order of their distance from (ab). Based on these

orderings we number the groups, the lines within each group, and the points on each line

with nonnegative integers starting at 0. Each point in (abcd) is thus uniquely determined by

the group index, the line index within this group, and the point index of the point on this

line. Let the variables group, line and point denote these quantities. As an example consider

the center of the parallelogram depicted in Figure 5. It is the second point of the �rst line in

the second group and thus satis�es group = 1, line = 0 and point = 1.

In view of the above discussion these quantities are easily computed from the index i of

a point in (abcd):

group := bi � gb=(k � gc� 1)c;

j := i� group � (k � gc� 1)=gb;

if j � gc then f line := 0;

point := j;g

else f line := b(j � gc� 1)=gcc+ 1;

point := (j � gc� 1) mod gc; g

Having computed group, line and point for the point P with index i in (abcd) we still have
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to determine the actual coordinates of P . If F is the �rst point having the same group and

line index as P (thus satisfying point = 0) then we can express the coordinates of P simply

as xP = xF + point � xc=gc and yP = yF + point � yc=gc. We are thus left with the problem

of computing the coordinates of F . For this we take another look at Equation 2. The jth

line in L (in increasing order of distance from (ac)) corresponds to setting r = sign(D) � j.

Since there are (jLj � 1)=gb =
jDj

gb�gc
lines per group, the index of the unique line with given

group and line values is j = group �
jDj

gb�gc
+ line and the corresponding r-value in Equation 2

is r = sign(D) � (group �
jDj

gb�gc
+ line) = group � D

gb�gc
+ sign(D) � line.

To compute the point F we �rst compute a particular solution of Equation 2 for this

value of r using the procedure solve described in Section 2. Having computed a particular

point (x0; y0) on the given line, we can compute F as follows. If y1 is the y-coordinate of

(x0; y0) in the skew coordinate system then the point F satis�es xF = x0 � by1 � gcc � xc=gc

and yF = y0 � by1 � gcc � yc=gc. Note that y1 =
x
b
y0�x0yb

x
b
yc�y

b
xc
.

In summary we have described how to compute the group, line and point values corre-

sponding to the ith point in (abcd) and how to compute the coordinates of the point speci�ed

by these values. We have thus given a method for indexing the points in a particular nice set,

namely the set of the �rst bk=2c points in (abcd) arranged in lexicographic order of their skew

coordinates. To compute the ith point in triangle (abc) we now proceed exactly as described

in the last section. The resulting procedure has the same complexity as in the special case:

after precomputation time proportional to the number of bits in the vertices of the triangle,

the point with a given index can be computed in constant time (assuming the 
oor function

takes constant time).
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Appendix

We now give the full pseudo-code for the function Index derived in the last section. We

assume that the following quantities have been precomputed: k = gb+ gc+1+ jDj (number

of points in (abcd)), gb = gcd(jxbj; jybj), gc = gcd(jxcj; jycj), gbc = gcd(jxc � xbj; jyc � ybj),

D = xcyb � ycxb, a solution (x; y) to the equation xc
gc
y � yc

gc
x = 1.

Index(i)f

if i < bk=2c then f/* generate ith point in triangle (abc) */

group := bi � gb=(k � gc� 1)c;

j := i� group � (k � gc� 1)=gb;

if j � gc then f xP = group � xb=gb+ j � xc=gc;

yP = group � yb=gb+ j � yc=gcg;

else f line := b(j � gc� 1)=gcc+ 1;

point := (j � gc� 1) mod gc;

r = group � D
gb�gc

+ sign(D) � line;

x0 := rx;

y0 := ry;

xP = x0 � b
x0yb�y0xb

D
� gcc � xc=gc+ point � xc=gc;

yP = y0 � b
x0yb�y0xb

D
� gcc � yc=gc+ point � yc=gcg;

if P lies outside (abc) re
ect P about m g;

else f/* generate the point with index i� bk=2c on (bm) */

j := i� bk=2c;

xP := xb + j � (xc � xb)=gbc;

yP := yb + j � (yc � yb)=gbc; gg
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