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A new method is presented for performing rapid and accurate numerical estimation. It is derived from principles
arising in an area of cognitive psychology called preattentive processing. Preattentive processing refers to an initial
organization of the human visual system based on operations believed to be rapid, automatic, and spatially parallel.
Examples of visual features that can be detected in this way include hue, intensity, orientation, size, and motion. We
believe that studies from preattentive vision should be used to assist in the design of visualization tools, especially
those for which high speed target, boundary, and region detection are important. In our present study, we investigated
two known preattentive features (hue and orientation) in the context of a new task (numerical estimation) in order
to see whether preattentive estimation was possible. Our experiments tested displays that were designed to visualize
data from simulations being run in the Department of Oceanography. The results showed that rapid and accurate
estimation is indeed possible using either hue or orientation. Furthermore, random variation of one of these features
resulted in no interference when subjects estimated the numerosity of the other. To determine the robustness of our
results, we varied two important display parameters, display duration and feature di�erence, and found boundary

conditions for each. Implications of our results for application to real-word data and tasks are discussed.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User Interfaces{
ergonomics, screen design (graphics, colour); I.3.6 [Computer Graphics]: Methodology and Techniques{
ergonomics, interaction techniques

General Terms: Experimentation, Performance

Additional Key Words and Phrases: boundary detection, cognitive psychology, colour, estimation, icon, human
vision, multidimensional data, Munsell, orientation, preattentive, scienti�c visualization, target detection

1. INTRODUCTION

This paper describes three experiments that investigate the ability of humans to perform high-speed visual

estimation. This work is part of an ongoing study of techniques which allow rapid and accurate visualization

of large multidimensional datasets.

Scienti�c visualization in computer graphics is a relatively new �eld of research. The term \visualization"

was used by a 1987 panel sponsored by the National Science Foundation (NSF) discussing how to apply

computer science to data analysis problems (McCormick et al., 1987). The panel de�ned the \domain of

visualization" to include the development of general purpose tools and the study of research problems that

arise in the process.

A variety of methods have been used to convert raw data into a more usable visual format. Both Tufte
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(Tufte, 1990) and Collins (Collins, 1993) provide an interesting review of pre-computer visualization tech-

niques. Many current systems are now being extended to provide user interaction and real-time visual-

ization of results (Bell and O'Keefe, 1987; Hurrion, 1980). Specialized visualization software tools such

as the Application Visualization System, apE, VIS-5D, and the Wavefront Data Visualizer (Hibbard and

Santek, 1990; Upson, 1989; Vande Wettering, 1990) have been developed for computer graphics worksta-

tions. Diverse solutions for displaying high-dimensional datasets in a low-dimensional environment such

as the computer screen have been proposed (Enns, 1990a; Enns, 1990b; Grinstein et al., 1989; Pickett and

Grinstein, 1988; Ware and Beatty, 1988).

A recent update on the NSF visualization report described current research being performed at a number

of academic institutions (Rosenblum, 1994). Although many visual presentation techniques have been

studied (e.g. volume visualization, 
uid 
ow, and perceptual visualization), much less work has focused

on formulating guidelines for their design. Our work is intended to address this more general issue.

We began by trying to explicitly take advantage of the built-in processing of the human visual system.

Preattentive vision refers to those visual operations that can be performed prior to focusing attention on

any particular region of an image. We hypothesized that results from research on preattentive processing

could be used to assist in the design of visualization tools. Here, we use \visualization tools" to refer to

software programs which display data values on a computer screen using simple visual features such as

colour, shape, and size. Such tools, if properly designed, should allow users to perform certain types of

visual analysis very rapidly and accurately. Tasks of interest include the detection of an element with a

unique characteristic, the grouping of similar data elements, and the estimation of the relative number of

elements with a given value or range of values. We asked the following speci�c questions:

� Can results from the existing literature on preattentive processing be used to build visualization

tools which can rapidly and accurately perform simple tasks such as target detection or boundary

detection?

� Can these results be extended to include rapid and accurate numerical estimation?

� How does changing the parameters of display duration and perceived feature di�erence a�ect a user's

ability to perform numerical estimation?

� Can results from our controlled experiments be applied to real-world data and tasks?

Previous work in preattentive processing can be applied directly to visualization tools in which high-speed
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(a) (b)

Fig. 1. Examples of two target detection tasks: (a) target can be detected preattentively because it has a unique feature

\�lled"; (b) target cannot be detected preattentively because it has no visual feature unique from its distractors

target and boundary detection are important. Results from our study show that preattentive processing

can be extended to include high-speed visual estimation. They also point to important boundary conditions

on this ability. We found a sharp increase in estimation error when displays were presented for less than

100 milliseconds, when orientation di�erences were less than 15�, and when hue di�erences in Munsell

space were less than one and a half steps. We used our results to build a tool for visualizing data from

salmon migration simulations conducted in the Department of Oceanography. Reports from users of this

visualization tool are consistent with our experimental �ndings.

Before describing our experiments and results, we provide a brief introduction to research on preattentive

processing.

2. PREATTENTIVE PROCESSING

Vision researchers have been working to explain how the human visual system analyses images. One

very interesting result has been the discovery of a limited set of visual properties that are processed

preattentively (i.e. without the need for focused attention). Typically, tasks which can be performed

on large multi-element displays in less than 200 to 250 milliseconds are considered preattentive. This is

because eye movements take at least 200 milliseconds to initiate. Random locations of the elements in the

displays ensure that attention cannot be prefocused on any particular location. Subjects report that these

tasks can be completed with very little e�ort.
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(a) (b)

Fig. 2. Region segregation by form and hue: (a) hue boundary is identi�ed preattentively, even though form varies in the two
regions; (b) random hue variations interfere with the identi�cation of a region boundary based on form

A simple example of a preattentive task is the detection of a �lled circle in a group of empty circles

(Figure 1a). The target object has the visual feature \�lled" but the empty distractor objects do not (all

non-target objects are considered distractors). A viewer can tell at a glance whether the target is present

or absent.

A conjunction target item is one that is made up of two or more features, only one of which is contained

in each of the distractors (Triesman, 1985). Figure 1b shows an example of conjunction search. The target

is made up of two features, �lled and circular. One of these features is present in each of the distractor

objects (�lled squares and empty circles). Numerous studies show that the target cannot be preattentively

detected, forcing subjects to search serially through the display to �nd it.

One explicit goal of visualization is to present data to human observers in a way that is informative and

meaningful, on the one hand, yet intuitive and e�ortless on the other. Multidimensional data visualization

is concerned with the question \How can we display high-dimensional data elements in a low-dimensional

environment, such as on a computer screen or the printed page?" This goal is often pursued by attaching

\features" such as hue, intensity, spatial location, and size to each data element. Features are chosen to

reveal properties of data elements as well as relationships among them. An ad hoc assignment of features

to individual data dimensions may not result in a useful visualization tool. Indeed, too often the tool

itself interferes with the viewer's ability to extract the desired information due to a poor choice of feature
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Feature Author

line (blob) orientation Jul�esz & Bergen (1983); Wolfe (1992)

length Triesman & Gormican (1988)

width Jul�esz (1985)

size Triesman & Gelade (1980)

curvature Triesman & Gormican (1988)

number Jul�esz (1985)

terminators Jul�esz & Bergen (1983)

intersection Jul�esz & Bergen (1983)

closure Enns (1986); Triesman & Souther (1985)

colour (hue) Triesman & Gormican (1988); Nagy & Sanchez (1990);

D'Zmura (1991)

intensity Beck et al. (1983); Triesman & Gormican (1988)


icker Jul�esz (1971)

direction of motion Nakayama & Silverman (1986); Driver & McLeod (1992)

binocular lustre Wolfe & Franzel (1988)

stereoscopic depth Nakayama & Silverman (1986)

3-D depth cues Enns (1990)

lighting direction Enns (1990)

Fig. 3. A list of two-dimensional features that \pop out" during visual search, and a list of authors who describe preattentive

tasks performed using the given feature

assignment. Direct tests of preattentive vision are often required to determine exactly how di�erent features

will interact within a visualization environment.

A good example of this problem is shown in Figure 2. In the �rst display, hue is used to divide the elements

into two groups (i.e. a red group and a blue group). Form varies randomly from element to element. Tests

show it is easy for subjects to identify the hue boundary as either vertical or horizontal. In the second

display, the data-feature mapping has been reversed. Form is used to group the elements, and hue varies

randomly across the array. It is much harder for subjects to identify the form boundary in these displays.

Moreover, it would be di�cult to guess beforehand which data-feature mapping would have provided the

best performance. Previous studies in preattentive processing could be used to predict the outcome.

The visual interference discussed above is known as feature domination. It was originally described in

research by Callaghan (Callaghan, 1984; Callaghan, 1989). She found that varying hue within a display

region interfered with boundary identi�cation based on form (Figure 2b). It took subjects signi�cantly

longer to identify a boundary as horizontal or vertical, relative to a control array where hue was held

constant. However, random variation of form did not interfere with hue segregation (Figure 2a). A
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hue boundary could be identi�ed preattentively, regardless of whether form varied or not. Callaghan

found a similar asymmetry in feature domination between intensity and hue (Callaghan, 1984). Variation

of intensity interfered with hue segregation. However, variation of hue did not interfere with intensity

segregation.

Feature domination is one example of a result which should be carefully considered when designing visual-

ization tools, particularly those which are used to display data regions or boundaries. Studies are currently

being conducted to see whether this e�ect extends to other visualization tasks, such as target detection or

numerical estimation.

Figure 3 lists some of the visual features which have been used to perform preattentive tasks. Literature

on preattentive processing describes in detail the various properties of the features, and the tasks for which

they can be used. These results can be applied directly to visualization tools which need to perform

high-speed target, boundary, or region detection.

A number of scientists have proposed competing theories to explain how preattentive processing occurs, in

particular Triesman's feature integration theory (Triesman, 1985), Jul�esz' texton theory (Jul�esz and Bergen,

1983), Quinlan and Humphreys' similarity theory (Quinlan and Humphreys, 1987), and Wolfe's guided

search theory (Wolfe, 1994). Although the di�erences in these theories have potentially very important

consequences for the actual cognitive operations involved, they need not concern us here, since our interest

is in the use of visual features that all of these theories agree can be preattentively processed.

3. SALMON MIGRATION SIMULATIONS

The experimental displays we tested were motivated by the need to examine data generated from salmon

migration simulations being run in the Department of Oceanography at the University of British Columbia

(Thomson et al., 1992; Thomson et al., 1994). Salmon are a well-known type of �sh that live, among other

areas, on the western Canadian coast. After a period of feeding and growth in the open ocean, salmon

begin their migration run. This consists of an open ocean stage back to the British Columbia coast and

a coastal stage back to a freshwater stream to spawn. Salmon almost always spawn in the stream where

they were born. Scientists now know salmon �nd their stream of birth using smell when they reach the

coast. The methods used to navigate from the open ocean habitat to the coast are still being researched.

Oceanography's simulations are studying the causal e�ects of ocean currents on sockeye salmon migration

patterns. Data representing local ocean current patterns (stream function) and latitudes where each salmon
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arrived at the B.C. coast (latitude of landfall) were examined during the simulations.

Simulation results are printed on paper using numbers to represent stream function and landfall. Oceanog-

raphers perform a number of di�erent analyses on their data. An investigation of their techniques found

that many of them corresponded to what appeared to be boundary detection and region size estima-

tion tasks. The oceanographers are interested in using computer-based visualization techniques to browse

rapidly through these results. We modeled our experimental task around one of the analysis problems

oceanography wanted to study, numerical estimation. This allowed us to increase the likelihood that any

application we designed based on our results would be relevant to real-world problems and data.

4. EXPERIMENT 1: PREATTENTIVE NUMERICAL ESTIMATION

Target detection, boundary detection, and grouping have been studied extensively in the preattentive

processing literature (Duncan and Humphreys, 1989; Jul�esz, 1981; Jul�esz and Bergen, 1983; M�uller et al.,

1990; Triesman, 1985; Triesman and Gormican, 1988). These results can be extended directly to the

visualization problem at hand. Our study sought to go beyond what is known at present by exploring

another common task, numerical estimation. We addressed speci�c instances of two general questions

about preattentive features and their use in visualization tools:

� Question 1: Is it possible for subjects to rapidly and accurately estimate the relative number of

elements in a display within the constraints of preattentive vision? Under what conditions is this

possible for the well-studied features of hue and orientation?

� Question 2: Does encoding an independent data dimension with a task-irrelevant feature interfere

with a subject's estimation ability? If so, which features interfere with one another and which do

not?

Estimation is often needed during the analysis of visual displays. If the task is preattentive, visualization

tools can be designed which allow users to perform high-speed visual estimation. We decided to examine

two preattentive features, hue and orientation. These features are commonly used in existing visualization

software. Both hue and orientation have been shown to be preattentive by Triesman, Jul�esz, and others

(Jul�esz and Bergen, 1983; Triesman, 1985). Moreover, Callaghan's research has shown that hue exhibits a

strong interference e�ect over form (or orientation) during certain preattentive tasks. Understanding how

hue and orientation interact in a preattentive visualization environment is important. If a visualization tool
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is being used to display multiple independent data values, interference among features must be eliminated.

If a visualization tool is being used to investigate a speci�c relationship, the \strongest" feature should

be used to encode that relationship. Secondary features used to encode additional data values must not

interfere with the task-relevant feature.

4.1 Method

We designed experiments which investigated numerical estimation using either hue or orientation. Two

unique orientations were used, 0� rotation and 60� rotation. Two di�erent hues, H1 and H2, were chosen

from the Munsell colour space. This allowed us to display two-dimensional data elements as coloured,

oriented rectangles (Figure 5).

We restricted our experiments to two dimensions and two unique values per dimension for a number of

reasons. First, focusing on two-dimensional data elements allowed us to test for hue interference e�ects

which had been found by Callaghan in other preattentive tasks. Second, most of the preattentive literature

related to our questions has itself been limited to two unique values per feature. This is due in part to

the fact that each feature space (in our case, hue and orientation) needs to be divided into values which

can be easily distinguished from one another. This is easy to do when only two values are required. True

multidimensional visualization tools need to display more than simple two-dimensional data elements. The

issues involved in extending our results to more complex datasets are considered in the \Discussion" section

of this paper.

The Munsell colour space was originally proposed by Albert H. Munsell in 1898 (Birren, 1969). It was

later revised by the Optical Society of America in 1943 to more closely approximate Munsell's desire for a

functional and perceptually balanced colour system. A colour from the Munsell colour space is speci�ed

using the three \dimensions" hue, value, and chroma (Figure 4). Hue refers to ten uniquely identi�able

colours such as red, blue, or blue-green. Individual hues are further subdivided into ten subsections. The

number before the hue speci�es its subsection (e.g. 5R, 2B, or 9BG). Value refers to a colour's lightness

or darkness. It ranges from one (black) to nine (white). Chroma de�nes a colour's strength or weakness.

Greys are colours with a chroma of zero. A chroma's range depends on the hue and value being used. A

Munsell colour is speci�ed by \hue value/chroma". For example, 5R6/6 would be a relatively strong red,

while 5BG9/2 would be a weak cyan.

For our experiments, we chose a pair of hues H1 and H2 which satis�ed the following two properties:
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Fig. 4. Munsell colour space, showing its three dimensions hue, value, and chroma (from Munsell: A Grammar of Color, New

York, New York: Van Nostrand Reinhold Company, 1969)

� Property 1: The perceived intensity of H1 and H2 was equal (i.e. the hues were isoluminant).

� Property 2: The perceptual discriminability of H1 and H2 was equal to the perceptual discriminability

of a rectangle rotated 0� and one rotated 60� (where perceptual discriminability is explained below).

One feature of the Munsell colour space is that colours with the same value are isoluminant. Property 1

was satis�ed by picking hues that had the same value in Munsell space. We chose value 7, because that

slice through Munsell space provided a large number of displayable colours for a variety of di�erent hues.

Property 2 was satis�ed by running a set of calibration tests involving a simple target detection task.

Subjects were asked to detect the presence or absence of a rectangle rotated 60� in a �eld of distractor

rectangles rotated 0�. Both the target and distractor rectangles were coloured 5R 7/8. Accuracy in this

task was very high (approximately 98%), so the average correct response time (RT = 569 milliseconds)

was used as a measure of discriminability.

The test was then modi�ed to make hue the feature that varied between target and distractor. In the second

test, the target was a rectangle coloured 10RP7/8. The distractors were rectangles coloured 5R 7/8. This

made the target half a \hue step" from the distractors in Munsell space. Both the target and distractor
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rectangles were rotated 0�. The average reaction time for detection was computed from the trials in which

subjects responded correctly. The hues used for the target and distractors during the second test were

very similar. Because of this, accuracy was lower (approximately 74%) and average correct response times

were larger (RT = 943 milliseconds) than in the test using orientation.

A stepped series of tests were then run with increasingly large hue di�erences. In each successive test,

the target was moved another half \hue step" away from the distractors (i.e. 5RP 7/8, 10P7/8, and so

on). This process continued until accuracy and average correct response time were equal to or below that

measured for the orientation test. A target coloured Munsell 5PB7/8 satis�ed this criteria (accuracy was

100%, RT = 560 milliseconds). The result was two isoluminant hues (Munsell 5R 7/8 and Munsell 5PB7/8)

having a perceptual discriminability equal to that of a 60� rotation counter-clockwise from horizontal.

Our design allowed us to display data elements with two dimensions D1 and D2 (encoded using hue and

orientation). Both D1 and D2 were two-valued (encoded using H1 and H2 or 0
� and 60� rotation). This is

a very simple example of the general multidimensional visualization problem. In our experiments, D1 and

D2 corresponded to the landfall and stream function values being studied by the oceanographers.

The experiment was divided into four conditions run in separate blocks of trials: B1, B2, B3, and B4. The

task-relevant data dimension (i.e. the dimension the subject was asked to estimate) varied within each

block, as did the task-relevant feature (i.e. the feature used to encode the task-relevant dimension). This

gave us the following design:

� Condition B1: The task-relevant feature was hue, used to represent landfall; the task-irrelevant

feature was orientation, used to represent stream function (Figure 5a).

� Condition B2: The task-relevant feature was orientation, used to represent landfall; the task-irrelevant

feature was hue, used to represent stream function (Figure 5b).

� Condition B3: The task-relevant feature was hue, used to represent stream function; the task-

irrelevant feature was orientation, used to represent landfall (Figure 5c).

� Condition B4: The task-relevant feature was orientation, used to represent stream function; the

task-irrelevant feature was hue, used to represent landfall (Figure 5d).

Varying the task-relevant data dimension between landfall and stream function allowed us to study the

e�ect of di�erent spatial distributions during estimation. Landfall values tended to separate into a small
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(a) (b)

(c) (d)

Fig. 5. Examples of a single data frame from each of the four experimental conditions (in each frame 58% of the rectangles are

targets): (a) condition B1 (landfall represented by hue), user estimates the percentage of elements coloured blue; (b) condition

B2 (landfall represented by orientation), user estimates the percentage of elements rotated 60�; (c) condition B3 (stream

function represented by hue), user estimates the percentage of elements coloured blue; (d) condition B4 (stream function

represented by orientation), user estimates the percentage of elements rotated 60�
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number of tightly clustered spatial groups. Stream function values were generally divided into two spatial

groups, but with a number of outliers scattered throughout the display. Varying the task-relevant feature

allowed us to study the di�erence between estimation using hue and estimation using orientation. Data

were taken directly from the salmon migration simulations. This meant the data values for some trials

were modi�ed slightly to meet statistical requirements for the experiment. For example, in conditions B1

and B2 landfall values were modi�ed to ensure that the following conditions held:

1. An equal number of trials had a given percentage of data elements with a landfall value of \north"

(i.e. 4 trials where 5-15% of the data elements had a value of \north", 4 trials where 15-25% of

the data elements had a value of \north", and so on up to 85-95%). This allowed us to compare

estimation ability across a uniform range of percentages.

2. Any dependence that might have existed between landfall and stream function was removed. This

ensured subjects could not infer information about the task-relevant dimension by examining the

task-irrelevant dimension.

For each trial in the experiment, subjects were shown a display similar to Figure 5 for 450 milliseconds.

The screen was then cleared, and subjects were asked to estimate the number of elements in the display

with a speci�ed feature, to the nearest 10%. For example, in conditions B1 and B3 subjects were asked to

estimate the number of rectangles coloured blue, to the nearest 10%. In conditions B2 and B4 they were

asked to estimate the number of rectangles oriented 60�.

Within a condition, trials were divided equally between control trials, where the task-irrelevant feature was

�xed to a constant value (Figure 6), and experimental trials, where the task-irrelevant feature varied from

element to element. Better performance in control versus experimental trials would suggest that using a

task-irrelevant feature to encode an independent data dimension interferes with estimation based on the

task-relevant feature. We tested both for orientation interfering with hue estimation and for hue interfering

with orientation estimation.

At the beginning of the testing session, subjects were shown a sample display frame. The experiment

procedure and task were explained. Subjects were then shown how to enter their estimations. This was

done by typing a digit on the keyboard between 1 and 9, which corresponded to the interval they estimated

contained the target feature: interval 1 (5-15%), interval 2 (15-25%), and so on up to interval 9 (85-95%).

Subjects were told no trial would contain less than 5% or more than 95% of the target rectangles.

12



(a) (b)

(c) (d)

Fig. 6. Examples of control displays representing landfall: (a) condition B1, estimation using hue, stream function represented

by constant 0� orientation; (b) condition B1, estimation using hue, stream function represented by constant 60� orientation;

(c) condition B3, estimation using orientation, stream function represented by constant red hue; (d) condition B3, estimation
using orientation, stream function represented by constant blue hue
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Subjects began the experiment with a set of nine practice trials, one for each of the nine possible intervals.

In one trial 10% of the rectangles were targets, in another 20% were targets, and so on up to 90%. These

practice trials were designed to calibrate the subjects' responses and to give them an idea of the experiment

procedure and the speed of the trials. If subjects estimated correctly, they moved immediately to the next

trial. If they estimated incorrectly, the trial was redisplayed, and they were told the correct answer. Next,

subjects completed a second set of practice trials. This phase consisted of 18 trials presented in a random

order, two for each of the nine possible intervals. This phase was designed to run more like a real experiment

block. Trials in which the subjects estimated incorrectly were not redisplayed; subjects were simply told

whether their estimate was right or wrong.

Finally, subjects completed two experiment conditions, either B1 and B3 (conditions testing hue estimation)

or B2 and B4 (conditions testing orientation estimation). Each condition consisted of 72 control trials and

72 experimental trials presented in a random order. Subjects were provided with an opportunity to rest

after every 48 trials. Data from all four phases were saved for later analysis.

Twelve subjects with normal or corrected acuity and normal colour vision were tested. The experiments

were conducted on a Macintosh II microcomputer equipped with a 13-inch RGB monitor and video hard-

ware capable of displaying 256 colours. The software used was designed and written by Enns and Rensink

to run preattentive psychology experiments (Enns and Rensink, 1991).

4.2 Results

The main dependent variable examined was estimation error, de�ned as the absolute di�erence between

the subject's interval estimate and the correct interval containing the percentage of target elements present

in the display. Statistical analyses using t-tests and analysis of variance (ANOVA) F -tests revealed the

following �ndings:

1. Average estimation error was less than one interval (�10%) over all four conditions. Standard

deviation of error was also less than one interval. Subject responses were all clustered close to the

correct interval, suggesting that rapid and accurate numerical estimation can be performed under

these conditions.

2. Subjects estimated equally well using either hue or orientation, suggesting that there is no subject

preference for either feature in the estimation task.
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3. Subjects' estimates were more accurate when the task-relevant data dimension was landfall, suggest-

ing that there is evidence of a preference for the spatial arrangement of elements in the estimation

task.

4. Accuracy did not di�er between control and experimental trials during either hue or orientation

estimation. Thus, there was no evidence of feature domination in this task.

Figure 7 graphs mean estimation error across nine intervals for the experimental subsections of all four

conditions. ANOVAs showed that mean error was a�ected by the interval being estimated in each condition

(all p-values < 0:05; F -values for control and experimental trials in condition B1 were F (8; 207) = 3:49,

F (8; 207) = 11:0 and F (8; 423) = 12:05; in B2 they were F (8; 207) = 6:13, F (8; 207) = 5:99 and F (8; 423) =

16:52; in B3 they were F (8; 207) = 3:27, F (8; 207) = 4:84 and F (8; 423) = 9:45; and in B4 they were

F (8; 207) = 5:34, F (8; 207) = 4:05 and F (8; 423) = 13:41). In each condition the shape of the average

error graph was symmetric, with a maximum at the middle intervals and a minimum at either extreme.

This phenomenon is often referred to as \end e�ect" and is simply thought to re
ect the fact that, when

subjects have less than perfect information, there is greater freedom of choice in guessing at the center of

a scale than at either end.

We investigated whether a subject's estimation ability di�ered depending on the feature being estimated.

Trials were combined into two groups: trials where subjects estimated using orientation, and trials where

subjects estimated using hue. Individual t-tests comparing control and experimental subsections yielded

no evidence of any di�erences in mean error (all p-values > 0:05; t-values for control and experiment

subsections were t(862) = 0:36, t(862) = 1:43 and t(1726) = 0:45 respectively). There appears to be no

feature preference during estimation.

Spatial distribution of data may a�ect a subject's estimation ability. For example, it may be easy to perform

estimation if the data elements cluster into two distinct groups. It may be more di�cult to estimate if

the data elements are distributed randomly throughout the display. Subjects estimated using two di�erent

data dimensions (landfall and stream function) during the experiment. Both dimensions tended towards

their own distinctive spatial patterns. A di�erence in mean error across the task-relevant dimension would

indicate that estimation ability might depend, at least in part, on the spatial distribution of the data being

displayed. Trials were combined into two groups: trials where landfall was the task-relevant dimension

(conditions B1 and B2), and trials where stream function was the task-relevant dimension (conditions B3

and B4).
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Fig. 7. Graph of average error (absolute di�erence between a subject's interval estimate and the correct interval) as a function

of estimation interval for experimental subsections of conditions B1, B2, B3 and B4

Our t-tests revealed that accuracy was generally higher for the trials where landfall was the task-relevant

dimension (t(862) = 2:06; p < 0:05, t(862) = 1:73; p < 0:10, and t(1726) = 1:84; p < 0:10 for control

and experimental subsections respectively). Additional experiments that explicitly control the change in

spatial distribution are needed before we can state speci�cally its e�ect on the estimation task.

Finally, we examined the question of feature domination during estimation. We found no signi�cant

interference e�ects from the task-irrelevant feature in any of the four conditions. We computed t-values

to compare mean error across control and experimental subsections for conditions that used hue as the

task-relevant feature. The results showed no evidence of di�erence in mean error (all p-values > 0:05;

t(862) = 0:03 and t(862) = 0:21 for conditions B1 and B3 respectively). Tests for conditions that used

orientation as the task-relevant feature yielded similar results (all p-values > 0:05; t(862) = 0:23 and

t(862) = 1:15 for conditions B2 and B4 respectively).

5. EXPERIMENT 2: DISPLAY DURATION

Our conclusions in Experiment 1 apply to data displayed for 450 milliseconds. This leaves two important
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Fig. 8. Graph of average error (absolute di�erence between a subject's interval estimate and the correct interval) as a function

of display duration for combined results from the hue display duration experiment

questions unanswered. First, at what display duration are subjects no longer able to perform accurate

estimation? Second, do any feature domination e�ects begin to appear at lower display durations?

In Experiment 2 display duration was randomly varied among �ve possible values: 15, 45, 105, 195, and

450 milliseconds. Fifteen subjects with normal or corrected acuity and normal colour vision were tested in

a manner similar to Experiment 1. Trials were presented to subjects in the following way:

1. A blank screen was displayed for 195 milliseconds.

2. A focus circle with diameter roughly twice the width of the rectangular elements was displayed for

105 milliseconds.

3. The trial was displayed for its display duration (one of 15, 45, 105, 195, or 450 milliseconds).

4. A \mask" of randomly oriented grey rectangles was displayed for 105 milliseconds.

5. The screen was blanked, and subjects were allowed to enter their estimations.
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of display duration for combined results from the orientation display duration experiment.

Five subjects estimated the numerosity of elements de�ned by a blue hue (condition B1), and 10 subjects

estimated the numerosity of elements de�ned by a 60� rotation (condition B2). As in Experiment 1, an

equal number of trials was used for each interval (10 control and 10 experimental). Trials were split evenly

among the �ve possible display durations, and were presented to the subjects in a random order.

Since Experiment 1 had shown that estimation was relatively accurate at every interval, we simpli�ed the

dependent measure by averaging error over all nine intervals. The results are shown in Figure 8 for hue

estimation and in Figure 9 for orientation estimation. Inspection of these �gures shows that estimation

accuracy was reasonably stable at all durations of 105 milliseconds and higher. Below that duration, error

values increased rapidly. This indicates that the minimum display duration for robust estimation lies

somewhere between 45 and 105 milliseconds.

ANOVAs con�rmed that accuracy varied reliably with display duration for estimation using either hue (all

p-values < 0:05; F (4; 221) = 7:53, F (4; 221) = 13:59 and F (4; 446) = 13:13 for control and experimental

subsections) or orientation (F (4; 444) = 2:24; p < 0:10, F (4; 444) = 1:57; p < 0:20 and F (4; 894) =
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7:54; p < 0:05 for control and experimental subsections).

Fisher's Protected Least Signi�cant Di�erence (PLSD) tests were computed to identify display duration

pairs with signi�cant di�erences in average error. For estimation using hue, the duration pairs (15; 45),

(15; 105), (15; 195), (15; 450), (45; 105), (45; 195) and (45; 450) were signi�cant in both the control and

experimental subsections. As we expected, the signi�cant F -values appear to be due to higher average

error from the 15 and 45 millisecond display duration trials.

For estimation using orientation, Fisher's PLSD tests showed that duration pairs (15; 105), (15; 450) and

(45; 450) were signi�cant in the control subsections. Duration pairs (15; 105), (15; 195), (15; 450), (45; 105),

(45; 195) and (45; 450) were signi�cant in the experimental subsection. Again, the signi�cant F -values

appear to be caused by an increase in mean estimation error in the 15 and 45 millisecond trials.

There was no evidence of feature domination during either hue or orientation estimation. As in Experiment

1, results suggested that random variation in orientation did not interfere with numerosity estimates based

on hue. The t-values comparing mean estimation error across control and experimental trials had p-

values greater than 0.05 at every display duration except 15 milliseconds (t(178) = 2:18, t(178) = 0:76,

t(178) = 0:69, t(178) = 0:40 and t(178) = 1:09 for the display durations 15, 45, 105, 195, and 450

milliseconds). Similar results were found when we checked to see if hue interfered with estimation based on

orientation (all p-values > 0:05; t(358) = 1:64, t(358) = 1:04, t(357) = 0:05, t(357) = 0:69 and t(358) = 0:83

for the �ve display durations).

6. EXPERIMENT 3: FEATURE DIFFERENCE

Experiment 3 investigated the e�ects of varying perceived feature di�erences and display durations. Three

conditions were tested using three di�erent hue-orientation pairs during estimation:

1. Condition FD1: Rectangles were drawn using two hues 5R 7/8 and 5RP 7/8, and two orientations 0�

and 5�

2. Condition FD2: Rectangles were drawn using two hues 5R 7/8 and 10P7/8, and two orientations 0�

and 15�

3. Condition FD3: Rectangles were drawn using two hues 5R7/8 and 5PB 7/8, and two orientations 0�

and 60�
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Fig. 10. Graph of average error (absolute di�erence between a subject's interval estimate and the correct interval) across

target hue type for combined results from hue feature di�erence experiment

The perceptual discriminability between the hues and orientations is smallest in condition FD1 and largest

in condition FD3, which was essentially a replication of the hues and orientations from the previous experi-

ments. Within each condition the discriminability of the two hues and two orientations had been calibrated

to be roughly equal, following the procedures described in Experiment 1. Trials within each condition were

randomly displayed at two display durations: 45 milliseconds and 195 milliseconds. Otherwise, the details

of this experiment were identical to the previous two experiments.

Six subjects estimated numerosity based on hue. The target hue was one of 5RP 7/8, 10P7/8, or 5PB7/8,

depending on which condition a given trial belonged to. Another six subjects estimated numerosity based

on orientation (where target orientation was one of 5�, 15�, or 60�). Trials from the three conditions were

intermixed and presented to the subjects in a random order.

Figure 10 graphs mean estimation error for hue trials across the three conditions and both display durations.

Figure 11 shows a similar graph for estimation based on orientation. Mean error was below 1.0 for hue

estimation using targets 10P7/8 and 5PB7/8 at 195 milliseconds, and 5PB 7/8 at 45 milliseconds. For
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Fig. 11. Graph of average error (absolute di�erence between a subject's interval estimate and the correct interval) across

target hue type for combined results from orientation feature di�erence experiment

orientation estimation, mean error was below 1.0 for targets oriented at 15� and 60� at 195 milliseconds,

and 60� at 45 milliseconds. Outside of these cases, estimation error increased rapidly.

ANOVAs con�rmed that mean error during hue estimation was dependent on the target being estimated (all

p-values > 0:05; F (2; 321) = 26:92, F (2; 321) = 30:89 and F (2; 639) = 61:26 for 45 millisecond control and

experimental subsections; F (2; 319) = 16:42, F (2; 320) = 12:95 and F (2; 641) = 31:36 for 195 millisecond

control and experimental subsections). A similar set of ANOVA results was obtained for estimation based

on orientation (all p-values > 0:05; F (2; 321) = 20:43, F (2; 321) = 20:22 and F (2; 645) = 79:91 for 45

millisecond control and experimental subsections; F (2; 321) = 45:78, F (2; 321) = 32:24 and F (2; 645) =

50:45 for 195 millisecond control and experimental subsections). Average estimation error increased as

discriminability between the target and distractors decreased.

We concluded our analysis by testing for feature domination. There was no evidence that orientation

interfered with hue estimation at any display duration. The t-values for all six display duration-target hue

pairs had p-values greater than 0.05. Tests for hue interference during orientation estimation were also
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negative (for all six display duration-target orientation pairs, p-values > 0:05).

7. DISCUSSION

The results from Experiment 1 con�rm that rapid and accurate numerical estimation can be performed

on large multi-element displays using either hue or orientation. Experiment 2 showed further that the

estimation task could be performed preattentively, since similar high levels of accuracy were observed

down to 105 milliseconds. Both of these results are implicitly assumed in many existing visualization tools,

but have not been experimentally veri�ed in the literature. Finally, Experiment 3 showed that within a

preattentive display limit of 200 milliseconds, target elements could be reasonably similar to distractor

elements (15� rotation or one and a half hue steps in Munsell space) while still allowing for accurate

estimation. This provides a new, quantitative guideline for choosing display properties for visualization

tools. The absence of any signi�cant interference e�ects in all of the experiments suggests that it is indeed

possible to develop e�ective multidimensional visualization tools for numerical estimation based on these

features.

These experiments have not addressed two key questions related to multidimensional visualization. First,

how can we encode dimensions which are more than two-valued (i.e. truly multi-valued or continuous

dimensions)? Second, how can we extend our methods beyond two-dimensional data elements? We are

currently studying di�erent techniques to try to address these questions.

An obvious method for representing a multi-valued dimension is to divide the corresponding feature space

into more than two unique values. Research in preattentive processing has already studied some aspects

of this problem. For example, it is easy to detect a tilted rectangle in a �eld of 
at or upright rectangles

(or vise-versa). However, in a situation where both the target and distractors are tilted (e.g. target is

tilted 15� and distractors are tilted 75�), detection is much more di�cult. Wolfe suggests orientation might

be divisible into only four categories: steep, 
at, left, and right (Wolfe et al., 1992). Another example

is the division of hue feature space. Experiments have studied the e�ect of dividing hue into multiple

values. When a target used a hue which could be separated from the distractors by a straight line in colour

space, detection was rapid and accurate. However, when the target used a hue which was collinear in this

space with its distractors, detection was signi�cantly more di�cult (D'Zmura, 1991). This suggests that

hue feature space can be divided into multiple values, but that the target (or targets) must be \linearly

separable" from their distractors. We plan to study both of these e�ects in the context of our visualization

environment.
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Tools which support the visualization of multiple data dimensions must deal with a potential interaction

between some or all of the features being used to represent the dimensions. Rather than trying to avoid this,

we can sometimes control the interaction and use it to our advantage. For example, Pickett and Grinstein

have used texture to represent high-dimensional data; each dimension controls one aspect of a texture

element displayed to the user. Another promising avenue of investigation involves emergent features. An

emergent feature is created by grouping several simpler features together. The emergent feature cannot be

predicted by examining the simpler features in isolation. A careful choice of simple features will allow a

target element or a region of similar data elements to be detected preattentively (Pomerantz and Pristach,

1989), thereby signalling a correlation of variables in the data.

The data values used in our experiments were derived from Oceanography's salmon migration simulations.

We are currently applying our techniques to a number of new problem environments, including the visu-

alization of results from spatial database queries and output from medical scanners (e.g. CT, MRI, and

PET). We hope this will provide further support for the exploitation of preattentive processing in the

design of multidimensional visualization tools.
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