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Abstract

In order to display, transform, and compare volumetric data, it is often convenient or

necessary to use di�erent representations derived from the original discrete voxel values;

in particular, several methods have been proposed to compute and display an iso-surface

de�ned by some threshold value. In this paper we describe a method to represent the

volume enclosed by an iso-surface as the union of simple volume primitives. The needed

properties (displayed image, volume, surface, etc.) are derived from this representation.

A survey of properties that might be needed or useful for such representations shows

that some important ones are lacking in the representations used so far. Basic properties

include e�ciency of computation, storage, and display. Some other properties of interest

include stability (the fact that the representation changes little for a small change in

the data, such as noise or small distortions), the ability to determine the similarities

between two data sets, and the computation of simpli�ed models.

We illustrate the concept with two closely related representations, one based on the

union of tetrahedra, and another based on overlapping spheres, both derived from a

Delaunay tetrahedralization of boundary points. The former is simple and e�cient in

most respects, but is not stable, while the latter needs heuristics to be simpli�ed, but

can be made stable and useful for the computation of intrinsic properties of the object,

and the determination of similarities between objects.

This approach also helps to develop metrics indispensable to study and compare such

representations.

Keywords: possible changes visualization, Delaunay triangulation, volume primi-

tives, stability.
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1 Problem Statement

A concise statement of the problem we are addressing here is:

Given a set of points at the boundary of an object derived from volumetric data,

how can we represent the object and in particular visualize it from these points?

Volumetric data is used in the sense most authors use it in this issue, but an important

feature for our purpose is that an inside-outside test for any point within the volume is

available. Our problem is therefore a restricted form of the general problem of visualizing

an arbitrary cloud of points [1]. Data in the form of boundary points is now very common

due to the advancement of technology in 3D imaging. The most common case is when

data points are de�ned to lie on an iso-surface obtained by thresholding 3D volumetric data

(Figures 1a and 1b). To represent and visualize can be vague concepts. Their meanings

depend on the application and the context. A number of properties are considered to be

desirable in the representations and primitives used in visualization. A few of these include

ease in generation, manipulation, storage and display. Other desirable properties are that

the representation captures as much as possible the intrinsic characteristics of the object,

that is properties independent of the resolution of the data, of the imaging geometry, or even

of the imaging method itself. Such properties would help in comparing objects, establishing

whether two data sets are from the same object and determining the transformations between

them if they do.

To give an intuitive example of the kind of representation we are looking for, assume that

we have data somehow representing a human head. The head can in �rst approximation be

represented by a sphere. The surface area and the volume of the sphere will give us rough but

useful estimates of the corresponding properties for the head. At the same time the position

and radius of the sphere will give us an idea of the translation and scaling to apply to get the

head in some canonical position. If we �t an ellipsoid instead, then the additional degrees

of freedom might allow us to obtain the parameters of the rotations to apply. Of course we

cannot obtain independently estimates for the scaling and the volume or area. Which one is

obtainable depends on the context. It is clear that human perception meets these goals very

well. We will not seek such power, but be content with some progress in that direction.
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Figure 1: Example of volumetric point data. (a) Points on the surface of a skull in computed

tomography head data, and (b) the corresponding iso-surface.

One important property that a representation should have to be useful for our purpose

is stability. Stability simply means that non-intrinsic changes in the data should not result

in signi�cant changes in the model. Non-intrinsic changes include noise and distortion in the

data, changes in the resolution in the case of discrete data, and basic geometric transforma-

tions, such as scaling, translation and rotations. A semi-formal notation for this property

is:

R(T�(�)) = TR(R(�))

where � is from the volumetric data (in our case the boundary points extracted form the

voxel values), R is the operator applied to the data which generates the representation, T� is

a transformation applied to the data and TR a transformation applied to the representation.

Since in general � and R(�) will be of di�erent types (in our example � is made of boundary

points, and R(�) is a union of spheres), the transformations will not be the same. We want,

however, to be able to map TR to T�, so that if we retrieve the transformation from our

representation we can deduce the transformation on the data. This is this property that will

allow us to obtain a model as independent of the imaging technique as possible.

Another property that is useful is the ability to simplify our representation, while keeping

as much of its characteristics as possible. This helps speed up display, interactive manipula-

tion, and the extraction of models independent of the original level of details available in the
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data.

In section 2, we will survey existing methods to represent and visualize objects from

discrete boundary points. Section 3 introduces the general idea of using volume primitives to

represent volumetric data. In section 3.3, we will describe two closely related representations

based on a Delaunay tetrahedralization (see glossary) of boundary points. Some theoretical

and combinatorial results relevant to the representations are also presented. In section 4

we will present experimental results and evaluate this approach and in section 5 we will

summarize the results and discuss the current and future extensions.

2 A Sample of Current Methods

We assume that a boundary has been de�ned for scalar volumetric data set by giving a

threshold value and de�ning as inside any point above the threshold, outside any point below

the threshold, and as a boundary point any point whose value (generally interpolated) is equal

to the threshold. Clearly without loss of generality the role of the outside and the inside could

be switched. The problem is then to represent and visualize an object whose boundary is so

de�ned.

The methods used can be divided into three categories: methods which do not represent

the surface explicitly, but rely on direct volume rendering and (human) visualization to "see"

the boundary, methods which construct the surface explicitly, and methods which use volume

primitives whose surfaces (or subset of same) de�ne the object's surface. The �rst category

of methods will not be further discussed here, since by not computing the surface directly

they do not meet many of our criteria (but of course if visualization is the only goal they can

be quite e�ective and powerful). We will then concentrate on representatives of the surface

based and volume based methods.

2.1 Surface Based Methods

Surface methods represent the boundary of the object by �tting surface primitives to the

point data. Usually the primary concern is fast surface display from di�erent viewpoints.

The complexity of the method depends on the surface primitives used. In medical imaging

the most commonly used technique of this type is the so calledmarching cubes technique which
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�ts polygons to the boundary points in every voxel [2]. The advantages of such representations

are that they are quick to compute and are easy to display since many graphics workstations

support polygon display in hardware. Their success is due to the fact that interactivity

(that is the ability to compute a new image at or near video rates) plays a crucial role in

visualization. The disadvantages are that such surface representations are piecewise, lacking

information about the global properties of the object (total volume, connectivity, inclusion),

there may be a large number of primitives and that their number and distribution are highly

resolution and sampling dependent. All of these mean that the primitives cannot be used

to characterize the object or compare it to other objects. These methods are nevertheless

very useful and important, and marching cubes in particular will be used as a standard for

comparisons in our own investigation.

A similar approach, based on di�erent surface primitives, consists in �tting a surface to

the set of boundary points considered as an arbitrary clouds of points, ignoring whatever

neighborhood information could be kept from the original volumetric data. An e�ective

algorithm to compute such surfaces has been developed by Hoppe et al [3]. The fact they do

not assume any structure in the set of points is both a strength and a weakness of the methods

for our purposes (since useful information about inside/outside classi�cation has been lost).

The method also shares with the above method the problem of possibly generating a large

number of triangles, and in fact they use marching cubes as one step in the overall method.

Methods to simplify this kind of mesh exist ([4]), but they can add problems of their own

(see about stability below).

2.2 Voxel-based methods

Octrees are hierarchical data-structures to represent volumetric objects [5], assuming a binary

classi�cation of each voxel. A bounding box around the whole data is the root node for the

tree, and each node is then recursively sub-divided into eight subnodes (octants) if they are

mixed (not entirely inside or entirely outside). The advantages of octree representation are

that they are generally more compact than the voxel representation, they are hierarchical,

and elegant algorithms exist to generate them and apply some operations (e.g. boolean oper-

ations) on the representation. For display, voxels can be displayed directly (using raytracing),

or triangles can be generated within all boundary voxels (using a method similar to marching
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cubes). One major disadvantage with the octree representation is that it is highly dependent

on the coordinate system. A small change in value, especially near the boundary between

nodes high in the hierarchy, will result in very di�erent trees, and this hampers the use of

octrees in problems such as characterization of shapes and comparison of data sets.

2.3 Shell Representation

An interesting model, with characteristics of voxel fuzzy classi�cation and boundary repre-

sentation, is using shells [6]. A shell is a set of voxels in the vicinity of the boundary, with

"fuzzy" membership values associated with them. Shells can be used directly for rendering,

but the authors show that they can also be used for various operations such as volume com-

putations and measurements on surfaces. As useful as they seem to be, especially because

of the speed of rendering obtained, shells do not meet some of our criteria, mostly because

they are the result of a classi�cation scheme of voxels, and as such very dependent of the

resolution and geometry of the original imaging system.

2.4 Fitting volume primitives

The problem of deriving a geometric model of an object from discrete boundary data for

classi�cation or comparison is a well-studied problem in computer vision. A common tech-

nique in vision is to �t a single volume primitive (such as a deformable superquadric [7] or

others [8]) to the boundary points by posing the problem as an extremization problem. The

advantages are that a fairly complex shape can be de�ned with a relatively few parameters,

and the hope is that the method is stable making it useful for shape comparison. Since,

inside-outside property is de�ned for these primitives, they can be conveniently ray-casted

or ray-traced for display. This approach is attractive for use in visualization but its main

drawback in our context is that a single primitive cannot represent e�ectively most objects

of interest with volumetric data. Some a priori decision has to be made about the expected

complexity of the object(s) to be represented. We will see that our approach can be seen as

a variation with simpler, but multiple primitives, whose number is not pre-determined.
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2.5 Assemblage of Volume Primitives

Various methods have been used to represent an object with structures of volume primitives.

We will mention three widely di�erent ones.

2.5.1 BSP Trees

Binary Space Partitioning (BSP) trees are structures made of the union and intersection of

half-spaces [9]. They are widely used not only as data structures for e�cient spatial query and

navigation, but also as modeling tools [10]. For volumetric data, the strategy is to generate

the BSP trees by �tting planes to the boundary points. This needs good heuristics to be

e�ective. Once this is done, the structure produced has the advantages of BSP trees (quick

Boolean operations, good visualization). Also the simpli�cation of the model is relatively

easy, though stability is not guaranteed, being mainly dependent on the methods used to

produce the original planes, and the characteristics of the voxels.

2.5.2 Wavelet Representations

Wavelets have developed in the last few years as powerful analytic and numeric tools for a

variety of tasks [11]. They essentially allow the representation of signals in a hierarchical

multiscale basis, sometimes with a high level of compression. They have been used in the

context of volume data representation by Muraki [12]. Even though the intrinsically hierar-

chical nature of wavelet transforms allows several level of representation, it is not clear that

each level is in fact useful either visually or for the purpose of the analysis of global property.

In particular the fact that the wavelets transforms used are not invariant under translation,

and sensitive to scaling, makes their use for the comparisons of objects and the extraction of

transformations problematic.

2.5.3 Alpha-shapes

One innovative computational geometry technique to investigate \shapes" from an arbitrary

cloud of points is the use of alpha-shapes [1]. The idea is to assume a spherical eraser of radius

� and take it everywhere in 3-space where it can go without including any of the original

points. The part of 3-space that has not been erased is the alpha-shape, and represents the
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object at the scale �. At one extreme, for an in�nite �, the result is the convex hull of all

the points. At the other extreme, for an � of 0, the result is the set of points itself. In-

between, the shape is normally bounded by arcs of circles and spherical segments, but they

are normally replaced by straight line and plane segments. In the algorithms designed and

implemented by [1], the representation is derived e�ciently using Delaunay tetrahedraliza-

tion. The representation obtained has the great advantage of being a various and controllable

scale. One disadvantage is that the same scale applies to all features. This shortcoming was

removed by the de�nition of weighted alpha-shapes [13] but the problem of automatically

selecting di�erent weights for di�erent features still remains. The most serious drawback for

our purpose is the fact that whatever shape is, it is not captured by this representation, and

the volume primitive used, the tetrahedra, are su�ciently stable to be directly usable. Fur-

ther the number of tetrahedra can be as large as O(N2) (where N is the number of boundary

points), hence the representation may not be compact to store or easy to manipulate.

3 A Volume Representation for Visualization

3.1 Using volume primitives

Under the right circumstances many properties, such as surface area, volume, even topology

or connectivity can be obtained from primitives which are not intrinsically related to the

object they represent. For instance surface area can be computed from a triangulation of the

surface even if no information is available on the adjacency between triangles. If we want the

representation to be complete, in the sense that both the surface and the inside of the object

are represented, accurate (the measurable properties and the "look" of the representation

should be closed to the object -inasmuch as we know what it is), stable (as de�ned above),

scalable (in terms of details), displayable and manipulable, then the choices are relatively

few. We need volumes to satisfy completeness, simple volumes to reduce the search space

when �tting to the data and facilitate visualization, and more than one volume to hope for

accuracy. We will speci�cally here present the study of the representation of the object as a

union of simple volume primitives.

We will describe the algorithms used to extract the representation as a union of spheres,

to simplify and display it, and to retrieve transformations between related volumetric data
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sets using our representation.

3.2 Flow-chart of the method
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Figure 2: Flow chart for volume representation of volumetric objects.

Figure 2 gives a 
ow chart of our approach. The steps in the method in the case of a

single object are:

1. Generate the boundary points on the surface of the object from the volumetric data.

2. Generate the sphere representation from these boundary points.

3. If needed simplify the sphere representation using clustering or other techniques.
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4. Compute needed quantities such as volume or areas from the sphere representation.

Object de�nition: The boundary points are de�ned by choosing a threshold value, or a

range of values. Again we assume the volumetric data is scalar. Quite obviously the position

of the boundary points will depend on the method used to interpolate the original data, and

that is another reason to seek a stable method. In our case we �nd the boundary points by

linear interpolation along edges between voxels whose values straddle the threshold. This is

an O(N) process, if N is the number of voxel values. The number of boundary points so

created if also O(N), with 0 being an obvious minimum, and 2N a maximum in 2D, 3N the

maximum in 3D.

3.3 Generating the sphere representation

There are a number of ways a sphere representation can be derived from the boundary points.

For instance one can use image analysis techniques like distance transform reference here

[14] or thinning to obtain a skeleton with (approximate) distance to the nearest exterior voxel.

The use of spheres for representing objects similar to ours has been proposed by Knowlton [15]

and further investigated Badler and Bajcsy [16]. In 1979, O'Rourke and Badler presented an

algorithm to derive a sphere representation from discrete contour data [17]. Their algorithm

is very unstable and there is no guarantee that all of the object volume will be included in

the representation. The union of spheres or ellipsoids representation has also been used in

graphics for modeling [18] and rendering (e.g. blobbies [19], [20]). Fast display techniques

for such a representation have also been discussed. In earlier work, O'Rourke and Badler

describe a technique of decomposing an object into spheres from contour data [17]. For all

boundary points, their algorithm essentially �ts the largest sphere not containing any other

boundary point.

Our main criterion is to obtain a set of spheres such that all inside voxels are included

within at least one sphere, and no outside voxel is within a sphere. In addition we require

that no boundary point is inside any sphere, and a subsidiary criterion is that all boundary

points are on the surface of at least one sphere.
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3.3.1 The Algorithm

The algorithm to generate the sphere representation is based on a Delaunay tetrahedralization

triangulation in 2D) of the boundary points. We use Delaunay tetrahedralization because

of its empty sphere property, which guarantees that we will �t the largest spheres possible

de�ned by four boundary points and not including other boundary points. For sake of clarity,

the algorithm will be described in two dimensions. For 3D, read \triangle" as \tetrahedron",

and \circle" as \sphere". Figure 3a shows a computed tomography (CT) slice through a

(d) (e) (f)

(a) (b) (c)

Figure 3: Algorithm to generate the triangles (circles) representation. (a) A (32�32) size CT
slice of human head (range 0{255). (b) Boundary points for a threshold of 70.3 (c) Delaunay

triangulation of the boundary points. (d) Triangles representation. (e) Circles representation.

(f) Circles and triangles superimposed, and the centers of the circles.

human head at a 32 � 32 resolution. The steps in the representation generation algorithm

are:
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1. Compute the boundary points (Figure 3b). give range of values and threshold

value used In the �gure, the selected regions correspond to a vertebra and the lower

jaw.

2. Compute the Delaunay triangulation of these boundary points (Figure 3c). We assume

here that the generality condition (see glossary) on points holds. This is not a limitation,

and there are reliable ways to ensure this [1].

3. Compute the circumscribing circle of each triangle. By the empty circle property of

the Delaunay triangulation, this circle does not contain any other boundary point.

Therefore, if any point within the circle is known to be inside (or outside), the whole

circle can be de�ned to be inside (or outside).

4. Use the original volumetric data to verify which circles are inside. This is done by

checking the value at the grid point if any grid point is inside the circle. If there is

no grid point within the circle, we use interpolation to see if the center of the circle

is inside (or outside). Instead of working with grid points, we can directly check if

the median points of triangles, or the centers of circumscribing circles are inside or

outside. By using values at grid points we avoid unnecessary interpolation as much

as possible. It is important to note that inside and outside is here a classi�cation of

the whole primitive (triangle or circle), but not of all the points inside. In particular

an outside circle can intersect an inside one (but it cannot happen with the triangles.

For consistency, we use the same interpolation scheme for the inside/outside test of the

non-grid point as was used to derive the boundary points.

The inside circles de�ne our representation (Figures 3d and 3e). As shown in the next section,

the di�erences in the properties of the representations as triangles or as circles depend on the

boundary point density � on the surface of the object. If � is small compared to the \size"

of the object features, the two representations are close approximations of each other.

The triangle representation has certain advantages. In 3D, any object with polygonal faces

can be decomposed exactly as a union of tetrahedra. Both surface and volume information

are readily available. It is easy to compute mass properties such as surface area, volume

etc., and topological properties as connected components, holes etc. using Euler's formula

for polyhedra. Since display is polygon-based, it is fast on many machines. One disadvantage
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(a) (b)

Figure 4: Figure showing the stability of the circles representation over the triangles represen-

tation. (a) Delaunay triangles and the corresponding circumcircles for a set of eight points.

(b) Delaunay triangles and the corresponding circumcircles when the points were randomly

perturbed by very small amounts.

are that there can be a large number of tetrahedra in the representation. O(N2) is the worst

case in 3D, but O(N) is more typical when dealing with boundary points from volumetric

data. The representation is not very stable i.e. perturbation of a few boundary points may

result in a very di�erent triangulation (see Figure 4) and therefore comparison of two data

sets using individual primitives is not possible.

Derivation of simpli�ed models from this representation is not easy though possible.

The circles, by contrast are stable, even though the triangles that generated them are

not. See Figure 4 for an illustration. The disadvantages of the circle representation are that

a circle has very few degrees of freedom and hence the kind of shapes that can be accurately

represented by a union of small number of circles is fairly limited. Further, many properties

(e.g. mass, topological) seem to be di�cult to compute as the primitives are overlapping.

We will see, however, that e�cient techniques based on powerful data structures exist.

Notice �nally that while it is straightforward to derive the spheres representation from

the tetrahedra representation, it is not reversible.
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3.4 Clustering and simpli�cation

There are two main motivations to reduce the number of primitives. The �rst is to simplify

and speed up manipulation and display of the object. The second is to facilitate the compar-

ison of two objects by reducing them to the same number of primitives. The problem here

is to reduce the number of primitives without compromising much on the object properties

(volume, surface area, topology etc.) The problem is two-fold: (i) deciding which spheres can

be clustered or simpli�ed and (ii) deciding which primitive can replace the selected spheres.

In our context, replacing the cluster with a sphere is the best choice. Since spheres are used

as terminals in the structure, we can have at any time a fully formed data structure. A single

primitive can stand exactly for itself, and we can develop easily a meaningful measure of �t

between the representative and the clustered spheres. We de�ne as sphericity of a cluster of

spheres the ratio between the radius of the smallest sphere including all the spheres in the

cluster to the radius of the largest sphere in the cluster. Obviously sphericity is a real number

between 0 (the limit for vanishingly small spheres such that their maximum interdistance is

�nite) and 1 (where the set of sphere is represented exactly by a single sphere. is a figure

useful here?. We could have used the ratio of volumes of the spheres, or surface areas, but

they all have the samne range and are monotonically increasing with respect to each other, so

they are equivalent in practice. Another choice would be the volume of the union of spheres,

instead of the largest sphere, but besides the fact that it is harder to compute, in our case

since our spheres have been generated from a Delaunay triangulation, the largest sphere is

a better indication of the potential of the set of sphere to be broken down in large spheres

than the total volume.

We can now sketch out the clustering algorithm based on the sphericity measure. It is

a top-down cluster, working by subdivision, but exploiting the fact the the elements of the

clusters are spheres, not points. Input: a set of spheres produced from the volumetric data

as described above.

Output: a list of Spheres representing the same data, which each Sphere having a spheric-

ity >= TS , where TS is a chosen sphericity threshold. Each Sphere points to the list of spheres

it contains.

1. Initialize the list of Sphere to NULL.
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2. Compute the smallest enclosing Sphere for the whole set. Compute its sphericity. Add

to the list.

3. List processing: If number of Spheres in list equal or greater than limit, quit.

4. Find the Sphere in the list with the smallest sphericity. If above threshold, quit.

5. Find within that Sphere the Sphere with the largest radius whose sphericity is above

the threshold. Remove the current Sphere from the list. Add the new Sphere to the

list.

6. Once found, identify all the connected components for the union of spheres not inside

the Sphere found.

7. For each of these connected components, compute smallest enclosing Sphere and its

sphericity, and add to the list.

8. Continue list processing.

We will state without proofs a few facts about the algorithm. The algorithm will ter-

minate, since at each step we put at least one sphere in a Sphere that will not be split

again (because it is above the threshold). We are sure to �nd a Sphere below the threshold

in step ?? since each sphere can represent itself with a sphericity of 1. The complexity

of the whole algorithm is very high, in fact at least NP-complete check this; note that

clustering is. The algorithm produces in general a stable representation, which becomes

unstable locally in unavoidable cases (long cylinders, nearly parallel boundary planes).

Describe the median/average based clustering actually used for the pictures.

3.5 Computing Mass properties and Topology

A specialized data structure, the power diagram, or Laguerre-Voronoi diagram, is very

useful for this and further operations. The power diagram is similar to the Voronoi diagram,

but the distance used to de�ne the polyhedral cells is D2�R2, where D is the distance from

the test point to the center of the sphere, and R is the radius of the sphere. Figure 5 shows

the power diagram for 9 circles. The essential property of power diagrams for our purpose is

that [21] the union of the sphere is the sum of the intersection of each sphere with its power
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(c) (d)

Figure 5: (a) Set of nine circles. (b) Their power diagram. (c) Decomposition of circles using

their power diagram. (d) Union of circles.
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cell (the intersection can be empty). We can them quantify the contribution of a sphere to

the total object, and rank the spheres by order of "contribution" to the total. Edelsbrunner

has showed that the power diagram can be used e�ciently to compute the volume, surface

area and topological properties in O(N2) time [22]. more here.

3.6 Display of Union of Spheres

The direct display of the object as a union of spheres is generally not fast on current graphics

workstations, because the hardware and display software is strongly polygon-biased. Re-

search architecture such as PixelFlow [23] allows the rendering of spheres at rates of ???/s.

Raytracing software with space subdivision performs well on spheres, and our own raytracer,

optik, can render 10,000 spheres in ?? s. on a 50 MIPS machine.

Figure 6: Smooth display of the spheres representation of the skull data using blending

functions.

As seen in �gure ??, because of the presence of small spheres created by the discrete

positions of the voxels, the surface does not appear smooth. One e�ective way to smooth it

in rendering (without a�ecting the representation itself) is to use blended sphere (also known

as blobbies in rendering/modeling circles. Our raytracer includes this, and Figure ?? show

the result for the same spheres as in Figure ??.
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3.7 Extracting Transformations from the Model

More details here..

3.8 Some Theoretical Observations

This section presents without proofs theoretical and combinatorial results relevant to the

representations described above. These results are in three-dimensions. N is the number of

boundary points computed initially.

Observation 1 The number of boundary points is at most 3 times the number of voxels.

Observation 2 The number of tetrahedra (hence spheres) in our representation in the worst

case is O(N2).

Again the average number is O(N).

(a) (b)

v

v

Figure 7: (a) A circular cap of volume V�=2 on one of the boundary faces. (b) A con�guration

of boundary points so that the circles touch each other but the corresponding triangles do

not.

Observation 3 Let VT denote the volume of the union of tetrahedra and VS the volume of

the union of spheres. Let � be the boundary point density (see glossary). Let V� denote the

volume of a sphere with diameter �. Then, VT < VS < VT + (N � 2)V�

This bound is very pessimistic. The boundary point density � is related to the size of a

voxel. To be more speci�c, � �
p
3v, where v is the linear dimension of a voxel.
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Observation 4 In general, the topology of union of tetrahedra representation and the topol-

ogy of union of spheres representation may di�er.

The topology of the tetrahedra representation and that of the sphere representation di�er

when two spheres touch each other but the corresponding tetrahedra do not (Figure 5b).

When this happens, it is indicative of the fact that sharp features exist in the object. In

these places, either topology (spheres or tetrahedra) can be correct; the correct topology

should be determined from the volumetric data.

Observation 5 Two components (or branches of the same component) separated by more

than � (as de�ned above) cannot join.

This is because for a boundary point density of �, the maximum a sphere can protrude is

�=2 (see Figures 5a and 5b).

4 Experimental Results

Modify according to new figures and results.

The program is implemented in C language on Silicon Graphics IRIS machines. For

our experiments we are working with both synthetic and real volumetric data. Examples of

synthetic data include (i) a ball and (ii) a cylinder. The density for both decreases uniformly

from the center (255.0 in the center and 0.0 at the radius of about 11.5 voxel units). The

radius of the ball (or cylinder) is decided by the chosen threshold value. For example, a

threshold of 120.0 de�nes a ball of radius of about 6.0 voxel units. The real data consists

of computed tomography head data which was resampled to a small size (32� 32 � 32) for

experimental purposes.

Figures 6 and 7 show the results for the ball and cylinder data for a threshold value

of 30.5 and 100.5 respectively. Figures 6a and 7a show the points on the boundary of the

volumetric object. Linear interpolation between neighboring grid-points was used to compute

these boundary points. Figures 6b and 7b show the tetrahedral decomposition of the object.

Figures 6c and 7c show the spherical decomposition of the object. When necessary, trilinear

interpolation was used to decide if the center of a sphere was inside/outside. The distributions

of radii of spheres is shown in the histogram of Figures 6d and 7d. There are 40 buckets in
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(d)(c)(b)(a)

Figure 8: Results on arti�cial cylinder data indicating that stability can be achieved with

the proposed representation using appropriate heuristics for simpli�cation. (a) Surface mesh.

(b) Centers of spheres in the spheres representation. (c) Surface mesh for the transformed

cylinder. (d) Centers of spheres in the spheres representation. Note that the spheres seem to

transform \according" to the object.

each histogram. Figures 6e and 7e show the location of the centers of the spheres. Figures 6f

and 7f show the objects when small spheres are removed. The possibility of multi-resolution

display of objects using spheres is demonstrated in the Figures 7f and 7g. For the cylinder

data, if we display only the spheres of the bucket containing the largest spheres, we get the

object shown in Figure 7f. Figures 7g shows the cylinder at an \intermediate" resolution. As

expected, many spheres are centered close to the medial axes. Spheres whose centers stray

away from the medial axes capture the details in the surface. O'Rourke and Badler reported

similar results in an earlier paper [17].

The number of boundary points in the sphere data was 1704 and it took about 4 minutes

on an IRIS Crimson to derive the representations. There were 5120 tetrahedra (spheres) in

the representation. There were 736 boundary points for the cylinder data and it took about

35 seconds of processing time on the same machine. There were 2381 tetrahedra (spheres)

in the representation. The maximum number of tetrahedra (or spheres) observed so far is

about 4n (n being the number of boundary points).

Figures 8a-e show the results when the cylinder is transformed in the volumetric data
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(d)(b)

(c)(a)
(e)

(f)

Figure 9: Results on the real PET brain data. (a) Brain at (16 � 16 � 16) resolution.

(b) Transformed brain at (64� 64 � 64) resolution. (c) Brain in (a) using 64 spheres after

simpli�cation. (d) Brain in (b) using 64 spheres after simpli�cation. (e) Data sets (c) and (d)

before registration. (f) Data sets (c) and (d) after registration (registration was performed

by deriving the transformation between the primitives after matching).
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(translation of about 2.5 voxel units in the positive Z direction, rotation of 15 degrees clock-

wise about the negative X-axis, and dilation of 1.2 in each direction). The Y and Z axes are

in the plane of the screen (Z pointing upwards), X-axis comes out of the screen. As can be

seen again, many spheres are centered close to the medial axes. This convinces us that proper

clustering and simpli�cation of the sphere representation will give us a representation stable

enough to develop metrics for shape matching and comparisons. It will then be possible

to register di�erent volumetric data sets of the same object by deriving the transformation

between the representations of the same object in the two data sets. As a simple example,

if there is only uniform scaling between two data sets (e.g. an object is imaged at di�erent

resolutions), we can use the radius of the largest sphere in the representations of the same

object in the two data sets to determine the scaling between the two data sets.

Figure 9 shows an example of a method to display spheres with their boundary smoo-

thened using blending functions [19]. The image was generated for the resampled head data

when blending functions similar to blobbies (or metaballs) were used for smooth display. This

result is for the same iso-surface as shown in Figure 1b (which was generated using marching

cubes [2]). It took about 12 minutes to raytrace this image with 1204 spheres on an IRIS

Crimson machine.

5 Conclusion

to be modified..

We propose the use of volume primitives for representation and visualization of volu-

metric data with . This was motivated by the fact that the current techniques lack some

important properties and the use of volume primitives shows some promise to achieve these

properties. The method �rst derives volume models with as many simple volume primitives

(spheres) as needed followed by clustering and simpli�cation. The results so far indicate

that the representation can be stabilized. This is because the sphere representation is de-

rived using Delaunay tetrahedralization of boundary points which in some sense gives the

\largest-possible" spheres inside the object. Intuitively, these largest-possible spheres within

the object should not change much with little perturbation in the data even though the gen-

erated tetrahedra can be quite di�erent. The representation will be useful in characterization

22



of shapes, and comparison of objects. It will be possible to detect transformations between

two data sets using the representation and hence use it for data registration.

The major results so far are:

1. A pair of representations (tetrahedra and spheres) which together have many desirable

properties for visualization. Theoretically, the approach works for \volumetric" data

in any dimension.

2. A framework which shows some promise to yield simple and stable volume models for

volumetric data. So far, we have mostly experimented with small-sized data. The

current research emphasis is on methods to simplify the sphere representation.

In general, we are exploring the use of volume primitives in visualization. In this paper

we assumed that the points on the surface of an object can be de�ned by a threshold which

is given to us. How to choose a threshold which de�nes a meaningful object in the data set is

another important problem. In our other experiments, volume primitives seem to show some

promise in this regard also.

Some problems can bene�t from the idea that if volumetric data is available, it can be

referred to if necessary. For example, it might help resolve inter-slice connectivity ambiguities

in the contour-connecting approaches to generate surface representations from medical data

[24]. The idea here will be to see that a line joining a contour on one layer to a contour on

another layer is completely inside the object.
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Glossary

boundary point density | A measure of the closeness of boundary points. A boundary

point density of � means that any sphere with a boundary point as its center and radius

greater than � necessarily contains some other boundary point.

Delaunay triangulation | Triangulation which is a dual of the voronoi diagram (qv).

empty circle property (ECP) | The property of Delaunay triangulations which says

that the circumscribing circle (sphere) of any triangle (tetrahedron) cannot contain any other

vertex.

generality condition | In 2D, the condition that no 3 vertices are colinear, and no 4

vertices lie on a circle. In 3D, the condition that no 4 vertices lie in a plane, and no 5 vertices

lie on a sphere.

medial axes| The locus of centers of all maximal spheres inside an object; the skeleton or

symmetric axes (surfaces in 3D). power diagram | Given a set of vertices, blah...

stability | The property of a representation such as changes in the data induce commen-

surate and predictable changes in the representation.

Voronoi diagram | Given a set of vertices, their Voronoi diagram is a set of cells so that

every point within a cell is closer to one vertex than to any other vertex.
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