
Simulated Annealing for Pro�le and Fill Reduction

of Sparse Matrices

Robert R. Lewis

University of British Columbia

Department of Computer Science

6356 Agricultural Road

Vancouver, BC V6T 1W5

CANADA

Internet: bobl@cs.ubc.ca

24 March, 1993

Revised: 22 July, 1993

1

2

Summary

Simulated annealing can minimize both pro�le and �ll of sparse matrices. We applied these techniques to a

number of sparse matrices from the Harwell-Boeing Sparse Matrix Collection. We were able to reduce pro�le

typically to about 80% of that attained by conventional pro�le minimization techniques (and sometimesmuch

lower), but �ll reduction was less successful (85% at best). We present a new algorithm that signi�cantly

speeds up pro�le computation during the annealing process. Simulated annealing is, however, still much

more time-consuming than conventional techniques and is therefore likely to be useful only in situations

where the same sparse matrix is being used repeatedly.

3

1 Introduction

Problems that require the solution of systems of linear equations of the form

Ax = b (1)

where A is N � N , jxj = jbj = N occur frequently in many areas, often with a large value of N . Directly

solving linear systems like (1) is, in general, an O(N3) process. Iterative methods can usually improve on

this and, when they converge, are often preferred.

If A is sparse, however, iterative methods have less of an edge: direct solutions can often do much better

than O(N3). The principal drawback when solving sparse systems directly is the \�ll" created during the

decomposition procedure: elements of A which were initially zero must become non-zero and therefore enter

into the later stages of the decomposition.

The success of direct methods hinges on techniques to reduce �ll by solving the equivalent problem

A
0
x
0 = b

0

where x0 = Px, A0 = PAP
T , b0 = Pb, and P is a permutation of the rows and columns of the identity

matrix I such that PPT = I. These techniques select a P that makes A0 better (according to some criterion)

than A. This amounts to a reordering of A into A0.

Finding an optimalA0 is an NP-hard problem: there are N ! possible reorderings of A and no way to �nd the

optimal one short of trying them all. The usual approach is to follow some heuristic procedure in reordering

A such as: Reverse Cuthill-McKee (RCM), Minimum Degree Algorithm (MDA), Gibbs-King (GK), Nested

Dissection (ND), etc.

All of these methods are capable of producing generally satisfactory results, but they all have their short-

comings. They might be dependent on the correct choice of a starting node (RCM) or an initial grouping

4

(ND). In any case, none of them makes any de�nite claims about minimizing �ll.

What we'll explore in this paper is the application of a multivariate optimization technique called \simulated

annealing" that can in principle be applied to any minimizant or maximizant in NP-hard problems. In

particular, we'll investigate whether it can be practically applied to the minimizants of pro�le and �ll to

produce better orderings of A. Previous work in [1] looked at the minimizants of pro�le, wavefront, and

bandwidth. We will compare our results with this work where they overlap.

2 Simulated Annealing

(Most of this section follows the presentation in [11], although [8] presented the original idea.)

The statistical behaviour of physical systems with large numbers of degrees of freedom inspired the simulated

annealing technique.

To \anneal" is \to heat (glass, metals, etc.) and then cool slowly to prevent brittleness". This is just one

instance of a fundamental observation about nature: given su�cient time and a mechanism to do so, a

system will always tend to adjust itself to a minimal energy state. For instance

� The surface of a lake is
at.

� (Slowly) cooled liquids form highly-regular crystals.

� Air molecules spread evenly in a room.

All of these represent systems with large numbers of degrees of freedom achieving global minima.

Most iterative techniques that attempt to solve global optimization problems are, in a sense, \greedy": as

soon as they �nd a better solution, they adopt it. For this reason, these techniques don't always behave well

5

in the presence of local minima.

How, then, are molecules able to \solve" the minimal energy problem globally? Because nature gives them

su�cient time and energy to rearrange themselves in a way that ultimately satis�es the global minimum.

The Boltzmann distribution permits a system to exist in a state that is energy E above its minimum energy

state with probability

P (E) � e
�E

kBT (2)

where T is the temperature and kB is Boltzmann's constant. This means that for all T > 0 there's always a

chance for a system stuck in a local minimum to acquire enough energy to move out of that minimum, but

that as T ! 0, that probability becomes vanishingly small.

\Simulated" annealing (which we'll henceforth refer to as \SA") is then a computer simulation of physical

annealing. Because it is a simulation, the minimizant can be any quantity we choose, not just energy.

The idea of sampling a simulation of a physical system which obeys a Boltzmann distribution originated in

[10]. The development of SA as an optimization technique is due to [8].

In order to perform SA, we need (at least):

� an initial con�guration for the system

� a set of \moves" (also known as \options"): distinct ways to randomly change the con�guration. Each

move should be reversible and it should be possible to reach any part of the con�guration space in a

�nite number of moves.

� a minimizant (\E"): what we're trying to minimize. It (or, more commonly, its increment) needs to

be evaluated after the application of any move.

6

� a control parameter (\T"): an indication of how willing we are at any given point to tolerate increases

in the minimizant.

� an annealing schedule: analogous to the \cooling rate", this says how T decreases as the simulation

proceeds. The schedule also speci�es how many attempts we perform at each temperature.

Given these things, the SA algorithm (in only slightly simpli�ed form) proceeds as follows:

C initial con�guration

T initial temperature

repeat

repeat a speci�ed number of times (according to annealing schedule)

C0
 apply randomly-chosen move to C

�E E(C0)� E(C)

if �E < 0 or e�
�E

T > random(0; 1)

C C0

T lower T according to annealing schedule

until we can't �nd a lower E(C0)

The idea is that we always change con�guration if we move to a lower energy state, but that we sometimes

change con�guration even if we move to a higher state, although as the temperature drops this is less and

less likely to happen.

The main drawbacks of SA are:

� Proofs that it converges to an optimal solution are hard to come by.

7

� There are only very rough guidelines in the appropriate choice of the initial T and the annealing

schedule. Often, they are chosen by trial-and-error.

� The algorithm needs to assess E(C0), the \energy" of the changed con�guration, e�ciently, since it is

frequently needed.

3 Simulated Annealing and Sparse Matrices

How then do we use SA in sparse matrix problems? We can apply the algorithm given above if we can

provide its required inputs.

In all further discussion, we will restrict ourselves to the case of symmetric matrices. This is purely for our

own convenience: there is no reason why SA shouldn't work as well with non-symmetric matrices as it does

with symmetric ones.

We have implemented a system in C on a Sun SPARCStation-2 that is capable of performing SA pro�le

or �ll reduction on an arbitrary symmetric matrix. Hereafter, we'll refer to the two procedures as SAPR

(Simulated Annealing Pro�le Reduction) and SAFR (Simulated Annealing Fill Reduction).

Here follow the design choices a�ecting SA computation.

3.1 Initial Con�guration

This is just a representation of the sparse matrix itself. In our case, allocating an array of nodes, each with

a dynamically-sized array of adjacencies is advantageous. This takes up slightly more space than the usual

double-array storage scheme (described in [6]), but its dynamic nature allows us to add adjacencies as they

occur during �ll.

8

3.2 Moves

One move that immediately suggests itself is to exchange two randomly-chosen rows (and the corresponding

columns, since we're dealing with a symmetric matrix). We'll call this a \swap".

We'll discuss the impact of swaps on evaluations of the minimizant when we discuss the individual mini-

mizants later.

3.3 Minimizant

We can choose this as needed. For this investigation, we'll take it to be either pro�le or �ll. We'll talk

about the practical limitations of this below. We could also have chosen bandwidth, as was done by [1], but

bandwidth is a less reliable indicator of �ll than pro�le.

3.4 Control Parameter and Annealing Schedule

The easiest way to think of \temperature" in this context is to recall that in analogy with (2), a con�guration

change that increases the minimizant by an amount equal to T will be accepted 63% (= 1�e�1) of the time.

(We take kB = 1 in this analogy.)

We want the system to be initially \hot": increases in the minimizant are almost as likely to be accepted

as decreases. This is a tradeo� we make. If we start out with a T that is too low, we may miss global

minima. On the other hand, if we start out with a T that is too high, we waste computing time randomly

changing the system con�guration. In most initial SA investigations, it's prudent to overestimate T until

the researcher acquires some familiarity with the problem. This will be our approach:

Tinitial(A) = 10
finitial pro�le of Ag

N

9

This heuristic formula makes T large when we deal with a matrix that has a large pro�le, but the N�1 factor

prevents it from getting large as the size of the matrix itself increases.

We'll also follow a common (naive) approach to an annealing schedule. We are given two dimensionless

parameters: FT and AT . At any given temperature, we try a maximum of NAT swaps. If no successful

reductions of the minimizant have occurred after this, we assume we can't �nd a lower E(C0) and stop.

Otherwise, we lower the temperature by a factor of FT and iterate. In addition, if at any temperature we

ever have N (1 + 0:1AT) successes, we take this to indicate that the temperature is too high and lower the

temperature early. Typically, FT = 0:9 and AT = 100, but we'll consider others.

4 SAPR: Simulated Annealing Pro�le Reduction

It would be possible to compute the pro�le of the matrix a priori after each swap, but this is ine�cient,

being O(N �min(i; j)) = O(N) for the storage scheme being used. Instead, we can note that swapping row

i with row j : j > i a�ects only the areas of the matrix shown in gray in Figure 1. Arrows indicate which

elements are being e�ectively exchanged by the swap.

Only individual row pro�les of rows whose indices are greater than or equal to i can be a�ected. Also, the

gray areas are themselves sparse (in general) so we can e�ciently compute changes to the individual row

pro�les by traversing the adjacency arrays of the a�ected nodes of the matrix.

The overall change in pro�le as a result of a swap can therefore be computed in O(Bh) (integer operations)

where Bh is the (mean) half-bandwidth of the matrix.

10

ordering pro�le

Original 32

Reverse Cuthill-McKee 18

SAPR 17

Table 1: Results of Pro�le Minimization on Figure 2

4.1 A Simple Example

We �rst present a small example: a sparse matrix whose graph is shown in Figure 2. (This was originally

used as an example in [6].)

Figures 3 and 4 show the sparsity patterns before and after RCM-ordering of this matrix. (All examples of

RCM in this paper start from a pseudoperipheral node using the algorithm given in [6].) In this and all of

the other sparsity diagrams we show, the original elements of the matrix are in black and those that would

be created by �ll are in gray.

Figure 5 and Table 1 show the results of SAPR on this matrix. The di�erence between SAPR and RCM is

quite small (= 1) in this case, but at least it demonstrates that SAPR can �nd a better solution.

4.2 A 2-D Grid

Figures 6 and 7 show a more realistic example: a 100� 100 array corresponding to a 2-dimensional, 5-point

PDE problem on a 10� 10 grid.

Figure 8 and Table 2 show the results of SAPR on this matrix. It's important to note the times involved:

on a Sun SPARCstation-2 RCM required less than a second to run, while SAPR took about 15 minutes.

11

ordering pro�le

Original 909

Reverse Cuthill-McKee 829

SA Pro�le Reduction 812

Table 2: Results of Pro�le Minimization of 100� 100 2-D 5-point PDE solution matrix

This suggests that any practical application of SAPR seeking to minimize the amount of CPU time used

should take into account both pro�le reduction and solution time. Of course, if the same matrix is being

used many times, the SAPR cost can be amortized and the (presumed) reduction in solution time for each

use may more easily make up the di�erence.

fSAPR is the improvement ratio of SAPR compared to the best non-SA-obtained pro�le reported in our

sources. If we examine fSAPR for a wide range of N , we get the results shown in Figure 9: as N increases,

the solution gets (almost) monotonically worse, but not dramatically so.

4.3 The Harwell-Boeing Sparse Matrix Collection

To examine how SAPR does on a wider range of matrices, we will apply it to a subset of matrices from the

Harwell-Boeing Sparse Matrix collection (see [4]).

Tables 6{10 show the results of SAPR on a subset of the matrices in the Harwell-Boeing test set (description

in [4]). Table 11 is the key to these tables.

Taken overall, there's a wide variation of fSAPR . There's an improvement in the majority of cases (71 out

of 95), but in some cases (e.g. HB#13/NOS2) there's no improvement at all! How can we account for this?

Figure 10 plots fSAPR as a function of N for all the matrices in the subset. There is no obvious correlation

12

between the two: SAPR appears to be as likely to be successful with a small matrix as with a large one. The

near-monotonic increase in fSAPR we observed for a single class of problem in Figure 9 is not evident here.

Perhaps some other attribute correlates better with fSAPR. Figure 11 plots fSAPR against the original

source of the matrix, as reported in [4]. The abscissa is arranged in increasing order of mean fSAPR for all

matrices within the given source. Figure 11 also shows the discipline the matrices in each source came from.

Performance for structural engineering and �nite element matrices appears widespread. The single 9-point

30� 30 PDE appears close to fSAPR = 1, as we might have expected from the 5-point PDE results shown

above in Figure 9. All the electric power matrices have low fSAPR's.

Nevertheless, even within a given discipline, there can be a wide spread of fSAPR. Could this be the result

of the annealing schedule?

4.4 Altering the Annealing Schedule

There's no guarantee that the annealing schedule we've used for all our work so far is optimal. Let's choose

a subset of the matrices we've been using and see what happens when we change the schedule.

The subset we'll choose correspond to Harwell-Boeing Tape File #7 (hereafter \HBTF#7"). We have several

reasons for selecting these:

� They arise from a common problem domain: �nite element modelling.

� They show a wide range in fSAPR, from 0.576 to 1.541.

� They correspond to the same matrices used in [1], so we can compare our results and timings.

We'll perform SAPR on all 30 matrices in HBTF#7 with the �ve di�erent annealing schedules S1-5 described

in Table 3. S1 is identical to the schedule used for Tables 6{10. The other schedules vary FT and AT .

13

Schedule Name FT AT RCMP used?

S1 0.90 100 no

S2 0.95 50 no

S3 0.95 100 no

S4 0.90 50 no

S5 0.90 100 yes

Table 3: SAPR Schedule Speci�cations

S5 is special. Before starting SA, the matrix is preordered with the RCM algorithm. We refer to this as

\RCM Preconditioning" (hereafter, \RCMP").

We do not propose this as an improvement to SAPR: since we're supposed to start with a \hot" matrix, its

initial con�guration should not matter. What we can do, though, is use it as an indicator of how sensitive

SAPR is to the annealing schedule. If two values of fSAPR with and without RCMP di�er greatly, we take

it to be an indication that our schedule is sub-optimal.

Tables 12{13 show the results1. Table 14 is the key to these tables. It is interesting to note that while no

single schedule outperforms the others, the most rapidly-cooled, least iterated one, S4, is with one exception

always worse than the rest.

4.5 Comparison With Previous Work

As mentioned above, we can compare our results for HBTF#7 not only with those of the minimal non-SA

pro�les, but also with the previous SAPR work done by Armstrong in [1]. Tables 15{16 show this. Table 17

1The timings for Tables 6{10 and those for S1 in Tables 12{13 di�er as the former were taken from an earlier, less e�cient

version of the software with a di�erent compiler and operating system on a di�erent SPARCstation-2.

14

is the key to these tables.

Varying annealing schedules and using minimal pro�les has improved our results. Now we have uniformly

lower pro�les than non-SA methods, except in the one small case (DWT 66) for which we suggest that both

GK and SAPR �nd the minimal pro�le.

In all but one case (DWT 2680 { the largest matrix in HBTF#7), we also �nd lower pro�les than Arm-

strong. This is something of a surprise, as he chose a somewhat more elaborate annealing schedule with a

parameterization that varied matrix-by-matrix.

Nevertheless, it is safe to conclude that we have found no clear heuristic on choosing an annealing schedule for

pro�le redution. One must simply try a number of points in the schedule parameter space. (This conclusion

is often reached in SA problems.)

Armstrong also cites timing results: The total CPU time required for SAPR pro�les of all 30 matrices was

600 hours on a DEC 20/60 mainframe. The total CPU time for our SAPR results for the same 30 matrices

in Tables 15{16 was 10.1 hours on a SPARCStation 4/690 server. Certainly, a large part of the di�erence is

attributable to the di�erence in hardware technology, but it is likely that our pro�le increment computation

speedup also contributed.

5 SAFR: Simulated Annealing Fill Reduction

It is conceptually easy in SA to switch minimizants from pro�le to �ll. Problems arise, however, in computing

the change in �ll as a result of a swap, which SA requires frequently.

Since a single swap of rows i and j can introduce a large amount of �ll that cascades into all rows k >

min(i; j), �ll increment computation is much more expensive than pro�le increment computation. It would

15

ordering �ll

Original 15

Reverse Cuthill-McKee 3

SAFR 2

Table 4: Results of Fill Minimization on Figure 2

be extremely useful to try to �nd a cheaper way of computing the �ll increment.

We'll investigate �ll vs. pro�le increment computation in greater detail below.

5.1 A Simple Example

We can perform SAFR on the same simple example shown in Figure 2. Figure 12 and Table 4 show the

results.

Again, an insigni�cant improvement (= 1) in �ll over RCM, but, again, this is just an illustration of the

feasibility of the technique.

5.2 A 2-D Grid

We again use the more realistic example of Figure 6. Figure 8 and Table 5 show the �ll minimization

results. The table also includes the pro�le minimization results by way of illustrating something suggested

by a comparison of Figures 8 and 13: orderings which minimize �ll can be quite distinct from those which

minimize pro�le.

16

ordering pro�le �ll

Original 909 720

Reverse Cuthill-McKee 829 640

SAPR 812 623

SAFR 3123 400

Table 5: Results of Minimization of 100� 100 2-D 5-point PDE solution matrix

5.3 Time Requirements of Pro�le vs. Fill Computation

The 2-D, 5-point grid is a scaleable problem that allows us to see how �ll and pro�le increment computations

scale with the size of the problem. Figure 14 shows this for a wide range of N . Note that while both curves

are steeper than O(N), the �ll curve is much steeper than the pro�le curve. For this reason, we can only do

�ll minimization on small matrices.

5.4 The Harwell-Boeing Sparse Matrix Collection

Table 18 shows the results of SAFR on a small subset of the matrices in the Harwell-Boeing test set. Most of

them were chosen from those members of the subset we used for SAPR which had N < 100. Two additional

matrices, 685 BUS and 1138 BUS, were chosen to include results from the tie-breaking minimum degree

results presented in by Cavers in [2]. Table 19 is the key to these tables.

All of the matrices underwent SAFR with default schedule S1 except for the two large matrices, which

used RCMP combined with the initial assumption of T = 1 (a very cool system) to get these numbers in a

reasonable length of time2.

2If we consider over 5 CPU-hours to be \reasonable"!

17

SAFR was able to improve over the minimum degree algorithm (or Cavers' enhancement of it) in 8 out of

15 cases, and only did signi�cantly worse in the one largest case.

The times to produce conventional �ll results were never more than a few seconds.

6 Conclusions and Further Work

SA has potentially wide application in direct sparse matrix solution. Although SAPR takes considerably

longer than RCM or GK (and probably all the others), it can produce a signi�cant reduction in pro�le for a

wide spectrum of matrix types. SAFR, on the other hand, takes a considerably longer time than either ND

or MDA, and reduces �ll less dramatically than SAPR reduces pro�le.

SA is particularly applicable in two areas:

� situations where the same matrix A is used repeatedly

Then, the additional cost of SA would be amortized over a large number of solutions.

� when validating other, faster algorithms for pro�le and �ll reduction

(This was pointed out in [1].) Given the optimal annealing schedule (which we do not claim to have

used here), it should be possible to determine what the actual minimum value of the minimizant is.

Possibilities for additional work include:

� More work needs to be done on heuristics for choosing an appropriate annealing schedule.

� There may be some way to improve �ll increment computation so that SAFR will be practical on large

matrices.

18

� SA should lend itself well to nested dissection, as it has been used in analogous applications for reducing

interconnectivity in VLSI layout (see [8] and [12]).

7 Acknowledgements

The author would like to thank Dr. Joseph Liu for his helpful comments on an earlier version of this paper

and Dr. James Varah for his help and encouragement. Special thanks go to Ian Cavers for his advice and

help in accessing the Harwell-Boeing Sparse Matrix Collection.

References

[1] B. Armstrong, 'Near-Minimal Matrix Pro�les and Wavfronts for Testing Nodal Resequencing Algo-

rithms', Int. j. numer. methods eng., 21, 1785-1790 (1985).

[2] I. A. Cavers, Using De�ciency Measure for Tiebreaking the Minimum Degree Algorithm, Techical

Report 89{2, Department of Computer Science, University of British Columbia, 1989.

[3] I. A. Cavers, work in progress.

[4] I. S. Du�, R. G. Grimes, J. G. Lewis, and B. Poole, 'User's Guide for the Harwell-Boeing Sparse Matrix

Collection', ACM SIGNUM Newsletter, 17 (1982), p. 22.

[5] G. C. Everstine, 'A Comparison of Three Resequencing Algorithms for the Reduction of Matrix Pro�le

and Wavefront', Int. j. numer. methods eng., 14, 837-853 (1979).

[6] J. A. George and Joseph W-H. Liu, Computer Solution of Large Sparse Positive De�nite Systems,

Prentice-Hall, New Jersey, 1981.

19

[7] J. A. George and Joseph W-H. Liu, User Guide for SPARSPAK: Waterloo Sparse Linear Equations

Package, Research Report CS-78-30, Department of Computer Science, University of Waterloo, 1978.

[8] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, `Optimization by Simulated Annealing', Science,

220 (1983), pps. 671-680.

[9] J. G. Lewis, 'Implementation of Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms', ACM Trans.

on Math. Softw., 8 (2) (1982), pps. 180-189.

[10] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, 'Equation of State Calculations

by Fast Computing Machines', J. Chem. Phys., 21 (1953), pps. 1087-1092.

[11] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, Cambridge

University Press, New York, 1988.

[12] M. P. Vecchi and S. Kirkpatrick, 'Global Wiring by Simulated Annealing', IEEE Trans. on CAD,

CAD-2 (1983), pps. 215-222.

20

of Conventional Simulated

H-B Matrix Matrix Pro�les Annealing

Name N Nonzeros RCM GK Pro�le Time fSAPR

3 ASH292 292 1250 3738 3479 2694 457 0.774

ASH85 85 304 617 564 491 91 0.871

4 BCSPWR01 39 85 99 100 83 19 0.838

BCSPWR02 49 108 214 180 113 24 0.628

BCSPWR03 118 297 774 644 478 87 0.742

BCSPWR04 274 943 4331 3609 2224 316 0.616

BCSPWR05 443 1033 10784 7305 3015 420 0.413

BCSPWR06 1454 3377 63182 48265 17570 1940 0.364

BCSPWR07 1612 3718 74344 56119 21147 2400* 0.377

BCSPWR08 1624 3837 78187 57242 24741 2490* 0.432

BCSPWR09 1723 4117 79260 64788 26793 2300* 0.414

5 BCSSTK01 48 224 667 544 468 44 0.860

BCSSTK02 66 2211 2145 2145 2145 3 1.000

BCSSTK03 112 376 272 272 306 101 1.125

BCSSTK04 132 1890 3965 3228 3162 1060 0.980

BCSSTK05 153 1288 2254 2226 2194 464 0.986

BCSSTK06 420 4140 13226 13723 12975 2980 0.981

BCSSTK07 420 4140 13226 13723 12975 2980 0.981

BCSSTK09 1083 9760 75581 66281 57194 9250 0.863

BCSSTK10 1086 11578 19943 19685 28488 13300 1.447

BCSSTK11 1473 17857 73117 66919 62103 20400 0.928

Table 6: Results of Pro�le Reduction of Harwell-Boeing Matrices

21

of Conventional Simulated

H-B Matrix Matrix Pro�les Annealing

Name N Nonzeros RCM GK Pro�le Time fSAPR

5 BCSSTK12 1473 17857 73117 66919 62103 20400 0.928

BCSSTM10 1086 11589 19790 19685 28424 12300 1.444

6 CAN 24 24 92 97 98 95 16 0.979

CAN 61 61 309 408 367 340 85 0.926

CAN 62 62 140 269 254 178 32 0.701

CAN 73 73 225 774 699 524 52 0.750

CAN 96 96 432 1234 1114 1078 123 0.968

CAN 144 144 720 1074 979 972 227 0.993

CAN 161 161 769 2610 2610 2473 238 0.948

CAN 187 187 839 2374 2231 2163 294 0.970

CAN 229 229 1003 4475 4423 3890 326 0.879

CAN 256 256 1586 7977 6845 4166 650 0.609

CAN 268 268 1675 7732 9665 4637 749 0.600

CAN 292 292 1416 9275 8014 4057 545 0.506

CAN 445 445 2127 20234 18786 14448 948 0.769

CAN 634 634 3931 35131 32155 26111 2470 0.812

CAN 715 715 3690 38449 35451 20722 2390 0.585

7 DWT 59 59 163 255 255 214 35 0.839

DWT 66 66 193 151 127 127 47 1.000

DWT 72 72 147 297 255 147 33 0.576

DWT 87 87 314 609 595 428 84 0.719

Table 7: Results of Pro�le Reduction of Harwell-Boeing Matrices (continued)

22

of Conventional Simulated

H-B Matrix Matrix Pro�les Annealing

Name N Nonzeros RCM GK Pro�le Time fSAPR

7 DWT 162 162 672 1479 1417 1117 216 0.788

DWT 193 193 1843 5312 4416 4225 911 0.957

DWT 198 198 795 1219 1115 1096 281 0.983

DWT 209 209 976 3610 3823 2494 325 0.691

DWT 221 221 925 2004 2002 2204 316 1.101

DWT 234 234 534 1305 1115 814 173 0.730

DWT 245 245 853 5196 3568 1939 271 0.543

DWT 307 307 1415 8336 8540 6290 526 0.755

DWT 310 310 1379 2836 2697 2639 541 0.878

DWT 346 346 1786 7688 7335 5925 740 0.808

DWT 361 361 1657 4714 4699 4646 647 0.989

DWT 419 419 1991 8230 7654 6173 838 0.807

DWT 492 492 1824 6575 5021 3156 716 0.629

DWT 503 503 3265 14816 14539 11817 1930 0.813

DWT 512 512 2007 4807 4456 4031 864 0.905

DWT 592 592 2848 10848 10333 8940 1510 0.865

DWT 607 607 2869 17261 14283 13013 1400 0.911

DWT 758 758 3376 7822 7417 11433 1830 1.541

DWT 869 869 4077 18424 14589 15820 2600 1.084

DWT 878 878 4163 21513 18818 17499 2860 0.930

DWT 918 918 4151 22187 19580 15286 2630 0.781

Table 8: Results of Pro�le Reduction of Harwell-Boeing Matrices (continued)

23

of Conventional Simulated

H-B Matrix Matrix Pro�les Annealing

Name N Nonzeros RCM GK Pro�le Time fSAPR

11 LSHP 265 265 1009 3479 3355 3168 169 0.944

LSHP 406 406 1561 6541 6346 5970 329 0.941

LSHP 577 577 2233 11012 10730 10113 570 0.942

LSHP 778 778 3025 17158 16773 15893 854* 0.948

LSHP1009 1009 3937 25245 24741 23501 1300* 0.950

LSHP1270 1270 4969 35539 34900 33419 1750* 0.958

LSHP1561 1561 6121 48306 47516 46133 2170* 0.971

LSHP1882 1882 7393 63812 62855 61523 2810* 0.979

LSHP2233 2233 8785 82323 81183 90032 3290* 1.109

LSHP2614 2614 10297 104105 102766 102100 3890* 0.994

LSHP3025 3025 11929 129424 127870 124753 4610* 0.976

13 NOS1 237 627 467 468 872 82 1.867

NOS2 957 2547 1907 1908 3937 506 2.064

NOS3 960 8402 47536 41273 36487 3970 0.884

NOS4 100 347 744 750 652 40 0.876

NOS5 468 2820 25228 22471 19997 717 0.890

NOS6 675 1965 9305 9095 12501 443 1.374

NOS7 729 2673 34110 34110 34201 732 1.003

19 GR.30.30 900 4322 33872 28251 27170 1690* 0.962

20 PLAT362 362 3074 9261 13388 8238 1050 0.890

23 BLCKHOLE 2132 8502 171437 169219 107710 3210 0.637

Table 9: Results of Pro�le Reduction of Harwell-Boeing Matrices (continued)

24

of Conventional Simulated

H-B Matrix Matrix Pro�les Annealing

Name N Nonzeros RCM GK Pro�le Time fSAPR

23 SSTMODEL 3345 13047 105421 104562 82805 6030 0.792

24 BCSSTK19 817 3835 9594 8152 9505 1120 1.166

BCSSTK20 485 1810 5069 4408 3859 336 0.875

BCSSTK21 3600 15100 174478 172754 272798 6820 1.579

BCSSTK22 138 417 851 842 729 63 0.866

28 494 BUS 494 1080 13272 8412 2921 446 0.347

662 BUS 662 1568 28727 16601 6847 720 0.412

685 BUS 685 1967 25606 16314 6857 897 0.420

1138 BUS 1138 2596 43680 36707 12278 1450 0.334

29 ZENIOS 2873 15302 12981 12723 23172 12100* 1.821

30 BCSSTK26 1922 16129 194842 188032 102187 17900 0.543

Table 10: Results of Pro�le Reduction of Harwell-Boeing Matrices (continued)

25

Column Description

H-B # Harwell-Boeing \Tape File Number"

Matrix Name Harwell-Boeing designation of the matrix

N dimension of the matrix is N � N

of Matrix Nonzeros number of non-zero elements in the matrix

RCM Reverse Cuthill-McKee pro�le derived from

SPARSPAK library (source: [3])

GK Gibbs-King pro�le (source: [9])

Pro�le the SAPR result

Time total (user + system) CPU time (sec) required on a

Sun SPARCstation-2 to perform SAPR

fSAPR ratio of Pro�le (with no RCMP) to the minimum

of RCM and GK

*
ags certain SA pro�le computations that did not converge

after 100 or more temperature decrements (all pro�le changes

were < 0:1% at that point, so this should not noticeably

a�ect overall results)

Table 11: Key to Tables 6{10

26

Simulated Annealing Schedule

Matrix S1 S2 S3 S4 S5

Name Pro�le Time Pro�le Time Pro�le Time Pro�le Time Pro�le Time

DWT 59 214 19.6 215 21.1 215 40.7 215 9.8 215 19.2

DWT 66 127 26.6 127 24.4 127 50.6 204 12.8 127 26.0

DWT 72 147 17.8 155 17.4 153 35.0 163 8.7 151 18.5

DWT 87 428 50.4 428 47.8 429 90.1 462 22.5 431 49.2

DWT 162 1117 127.0 1183 131.0 1258 234.8 1262 60.1 1110 131.4

DWT 193 4225 536.5 4233 535.8 4230 1045.0 4228 254.5 4217 543.0

DWT 198 1096 165.7 1094 172.8 1091 323.8 1094 79.8 1090 158.1

DWT 209 2494 193.1 2493 199.9 3029 371.4 2503 96.6 2503 194.2

DWT 221 2204 185.4 1643 197.8 1634 364.9 1650 92.9 2062 178.2

DWT 234 814 95.3 818 94.1 815 172.8 838 45.7 818 88.6

DWT 245 1939 153.9 2022 144.7 2041 297.4 1986 76.8 2024 157.2

DWT 307 6290 304.5 6569 318.0 6315 627.2 6437 169.2 6391 310.1

DWT 310 2639 302.5 2636 311.3 2631 603.5 2642 171.3 2645 320.6

DWT 346 5925 457.8 5843 475.2 5882 863.5 5945 231.6 5842 446.2

DWT 361 4646 377.8 4647 377.8 4638 773.1 4681 194.9 4642 381.5

DWT 419 6173 509.7 6345 490.3 6147 1034.5 6309 255.8 6242 483.2

DWT 492 3156 427.7 3466 439.5 2855 902.4 4663 239.7 3083 451.0

DWT 503 11817 1180.6 11599 1079.6 11682 2167.8 11827 554.6 11611 1099.4

DWT 512 4031 495.0 3918 438.5 3937 908.0 4325 219.8 3991 532.6

DWT 592 8940 841.4 8914 805.6 10414 1535.2 9068 461.2 8933 884.0

Table 12: SAPR Results For HBTF#7 With Several Annealing Schedules

27

Simulated Annealing Schedule

Matrix S1 S2 S3 S4 S5

Name Pro�le Time Pro�le Time Pro�le Time Pro�le Time Pro�le Time

DWT 607 13013 772.2 12700 773.2 12613 1428.6 13108 396.8 13075 820.7

DWT 758 11433 953.2 9886 945.6 10020 1798.0 11342 541.0 7111 1409.6

DWT 869 15820 1363.6 18164 1124.7 12416 2275.1 11723 701.8 12274 1307.9

DWT 878 17499 1472.7 17733 1225.2 17638 2367.3 18262 702.2 17953 >1602.8

DWT 918 15286 1394.2 19452 1368.3 21280 2400.9 28358 694.0 15572 1392.7

DWT 992 32204 4048.5 32258 3919.7 31940 7637.3 32526 2134.0 32794 4099.3

DWT 1005 32213 >1504.4 33116 1502.9 32167 2816.1 33189 810.5 32584 1604.5

DWT 1007 19246 1811.2 19362 1455.2 16965 2805.7 20791 856.5 19288 1721.4

DWT 1242 32452 2046.6 40672 2185.1 32440 3695.6 33676 >1182.4 32549 2340.9

DWT 2680 86068 >5589.2 112866 >6928.0 109228 11967.7 143576 >3395.7 85048 >6474.1

Table 13: SAPR Results For HBTF#7 With Several Annealing Schedules (continued)

28

Column Description

Matrix Name Harwell-Boeing designation of the matrix

Pro�le SAPR pro�le resulting from annealing schedule S1 - S5

described in Table 3 (best results boxed)

Time total (user + system) CPU time (sec) required on a

Sun SPARCstation-2 4/690 to perform the corresponding SAPR

>
ags certain SA pro�le computations that did not converge

after the temperature fell below 0.01 (all pro�le changes

were < 0:1% at that point, so this would not noticeably

a�ect overall results)

Table 14: Key to Tables 12{13

29

Conventional Pro�les Current Previous

Matrix RCM SAPR SAPR

Name Cav Eve Cur GK Pro�le Time fSAPR Pro�le fArm

DWT 59 255 313 255 255 214 19.6 0.839 273 0.784

DWT 66 151 211 151 127 127 24.4 1.000 193 0.658

DWT 72 297 245 297 255 147 17.8 0.600 219 0.671

DWT 87 609 687 575 595 428 50.4 0.744 515 0.831

DWT 162 1479 1604 1456 1417 1110 131.4 0.783 1272 0.873

DWT 193 5312 4844 4948 4416 4217 543.0 0.955 4409 0.956

DWT 198 1219 1366 1186 1115 1090 158.1 0.978 1287 0.847

DWT 209 3610 3950 3568 3823 2493 199.9 0.699 2693 0.926

DWT 221 2004 2166 2147 2002 1634 364.9 0.816 1848 0.884

DWT 234 1305 1544 1366 1115 814 95.3 0.730 1016 0.801

DWT 245 5196 4018 5155 3568 1939 153.9 0.543 2161 0.897

DWT 307 8336 8136 8730 8540 6290 304.5 0.773 6535 0.963

DWT 310 2836 3007 2789 2697 2631 603.5 0.976 2940 0.895

DWT 346 7688 7508 7714 7335 5842 446.2 0.796 6136 0.952

DWT 361 4714 5090 4714 4699 4638 194.9 0.987 4992 0.929

DWT 419 8230 9050 8246 7654 6147 1034.5 0.803 6512 0.944

DWT 492 6575 6691 6982 5021 2855 902.4 0.569 3304 0.864

DWT 503 14816 15945 14829 14539 11599 1079.6 0.798 11958 0.970

DWT 512 4807 5325 4740 4456 3918 438.5 0.879 4384 0.894

DWT 592 10848 14563 11207 10333 8914 805.6 0.863 9417 0.947

Table 15: Comparison of SAPR With Conventional and Previous SA Pro�le Reduction Results

30

Conventional Pro�les Current Previous

Matrix RCM SAPR SAPR

Name Cav Eve Cur GK Pro�le Time fSAPR Pro�le fArm

DWT 607 17261 15721 17151 14283 12613 1428.6 0.883 13065 0.965

DWT 758 7822 11370 7808 7417 7111 1409.6 0.959 7123 0.998

DWT 869 18424 16163 15660 14589 11723 701.8 0.804 13207 0.888

DWT 878 21513 20545 21485 18818 17499 1472.7 0.930 17835 0.981

DWT 918 22187 22399 22201 19580 15286 1394.2 0.781 15949 0.958

DWT 992 35018 37136 31940 7637.3 0.912 32528 0.982

DWT 1005 41104 42176 32167 2816.1 0.783 32513 0.989

DWT 1007 24168 23685 16965 2805.7 0.716 19913 0.852

DWT 1242 51419 48837 32440 3695.6 0.664 33098 0.980

DWT 2680 105324 102112 85048 6474.1 0.833 84900 1.002

Table 16: Comparison of SAPR With Conventional and Previous SA Pro�le Reduction Results (continued)

31

Column Description

Matrix Name Harwell-Boeing designation of the matrix

Conventional Pro�les non-SA pro�les from various sources

(best results boxed)

Cav Reverse Cuthill-McKee pro�le derived from

SPARSPAK library (source: [3])

Eve RCM pro�le (source: [5])

Cur RCM pro�le computed by author using pseudoperipheral

node algorithm described in [6]

GK Gibbs-King pro�le (source: [9])

Pro�le best SAPR pro�le from Tables 12{13

Time total (user + system) CPU time (sec) required on a

Sun SPARCstation-2 4/690 to obtain the best SAPR pro�le

fSAPR ratio of the best Sn pro�le to the minimum of the

RCM and GK pro�les

Previous SAPR Pro�le simulated annealing pro�le reported by [1]

fArm ratio of [1] results to the best SAPR pro�le

Table 17: Key to Tables 15{16

32

of Conventional Simulated

H-B Matrix Matrix Fills Annealing

Name N Nonzeros ND MDA CTB Fill Time fSAFR

3 ASH85 85 304 390 211 195 6122.9 0.924

4 BCSPWR01 39 85 23 19 19 118.4 1.000

BCSPWR02 49 108 49 21 20 206.2 0.952

5 BCSSTK01 48 224 336 269 231 5849.2 0.859

6 CAN 24 24 92 34 27 23 179.6 0.852

CAN 61 61 309 112 56 52 2699.9 0.929

CAN 62 62 140 97 44 44 430.2 1.000

CAN 73 73 225 263 163 164 4901.6 1.006

CAN 96 96 432 699 544 545 40062.6 1.002

7 DWT 59 59 163 121 81 79 771.8 0.975

DWT 66 66 193 110 0 8 554.8 ERROR

DWT 72 72 147 87 37 37 351.0 1.000

DWT 87 87 314 319 105 99 4388.6 0.943

28 685 BUS 685 1967 4212 1692 1586 1523 20700.0 0.960

1138 BUS 1138 2596 3838 673 641 691 22900.0 1.078

Table 18: SAFR Results

33

Column Description

H-B # Harwell-Boeing \Tape File Number"

Matrix Name Harwell-Boeing designation of the matrix

N dimension of the matrix is N � N

of Matrix Nonzeros number of non-zero elements in the matrix

Conventional Fills non-SA �lls from various sources

(best results boxed)

ND best �ll from conventional nested dissection

ordering (source: [7])

MDA best �ll resulting from conventional minimum-degree

algorithm ordering (source: [7])

CTB best �ll resulting from minimum-degree algorithm

with the tie-breaking strategy in [2]

Fill the SAFR result

Time total (user + system) CPU time (sec) required on a

Sun SPARCstation-2 to perform SAFR

fSAFR ratio of Fill to the minimum of ND, MDA, and CTB

Table 19: Key to Table 18

34

8 Figures

35

ji

j

i

Figure 1:

36

a f h

gdi

e

c b j

Figure 2:

37

Figure 3:

38

Figure 4:

39

Figure 5:

40

Figure 6:

41

Figure 7:

42

Figure 8:

43

N

f
S
A
P
R

10000100010010

1:1

1:05

1

0:95

0:9

Figure 9:

44

N

f
S
A
P
R

10000100010010

2:5

2

1:5

1

0:5

0

Figure 10:

45

Air Tra�c Control

Structural Engineering

Structural Engineering

Structural Engineering

Finite Element

PDE

Oceanography

Structural Engineering

Mixed

Finite Element

Structural Engineering

Structural Engineering

Electric Power

Electric Power

Discipline

fSAPR

H
a
rw
el
l-
B
o
ei
n
g
T
a
p
e
F
il
e
N
u
m
b
er

2:521:510:50

29

13

24

5

11

19

20

7

3

6

23

30

4

28

Figure 11:

46

Figure 12:

47

Figure 13:

48

fSAFR
fSAPR

N

T
im
e
(s
ec
)

10000100010010

105

104

103

102

101

100

Figure 14:

49

LEGENDS

Figure 1: Swapping Two Rows And Columns of a Symmetric Matrix

Figure 2: A Simple Example

Figure 3: Sparsity Pattern of Original Figure 2 Matrix

Figure 4: Sparsity Pattern of RCM-ordered Figure 2 Matrix

Figure 5: Sparsity Pattern of SA Pro�le Reduction of Figure 2 Matrix

Figure 6: Sparsity Pattern of Original 100� 100 2D 5-point PDE Matrix

Figure 7: Sparsity Pattern of RCM-ordered 100� 100 2D 5-point PDE Matrix

Figure 8: Sparsity Pattern of SA Pro�le Reduction of 100� 100 2-D 5-point PDE Matrix

Figure 9: fSAPR vs. N for a Range of 2-D 5-point PDE Matrices

Figure 10: Relative Performance of SAPR vs. N

Figure 11: Relative Performance of SAPR vs. Harwell-Boeing Tape File Number

Figure 12: Sparsity Pattern of SAFR of Figure 2 Matrix

Figure 13: Sparsity Pattern of SAFR of 100� 100 2-D 5-point PDE Matrix

Figure 14: Times Required for SA Fill and Pro�le Minimization of 2-D 5-point PDE Matrix

