
Similarity Metric Learning for a

Variable-Kernel Classi�er

David G. Lowe

Computer Science Department

University of British Columbia

Vancouver, B.C., V6T 1Z4, Canada

E-mail: lowe@cs.ubc.ca

November 25, 1993

Abstract

Nearest-neighbour interpolation algorithms have many useful prop-

erties for applications to learning, but they often exhibit poor gener-

alization. In this paper, it is shown that much better generalization

can be obtained by using a variable interpolation kernel in combi-

nation with conjugate gradient optimization of the similarity metric

and kernel size. The resulting method is called variable-kernel simi-

larity metric (VSM) learning. It has been tested on several standard

classi�cation data sets, and on these problems it shows better gener-

alization than back propagation and most other learning methods.

An important advantage is that the system can operate as a black

box in which no model minimization parameters need to be experi-

mentally set by the user. The number of parameters that must be

determined through optimization are orders of magnitude less than

for back-propagation or RBF networks, which may indicate that the

method better captures the essential degrees of variation in learning.

Other features of VSM learning are discussed that make it relevant

to models for biological learning in the brain.

UBC-TR-93-43. This paper will be published in Neural Computation.

1

1 Introduction

Classi�cation methods based on nearest-neighbour interpolation have attracted

growing interest in the neural network community. In part, this is because

they support rapid incremental learning from new instances without degrada-

tion in performance on previous training data. Since the interpolation function

is determined from a set of nearest neighbours at run time, it is easy to incre-

mentally incorporate new training data and, if desired, to discount old data in

a controlled manner (Atkeson, 1989; Omohundro, 1992). These capabilities are

missing from the most popular neural network learning methods, yet they are

necessary for models of biological learning and for on-line learning applications.

However, classical nearest-neighbour methods often exhibit poor general-

ization performance as compared to recent neural network learning methods.

It has not been clearly recognized in the classical nearest-neighbours literature

that the performance of these methods is highly dependent on the similarity

(distance) metric that is used to select neighbours. In this paper, we combine a

variable interpolation kernel with cross-validation optimization of the similar-

ity metric and kernel size. The resulting system is called VSM (variable-kernel

similarity metric) learning. It has much better generalization than the classi-

cal nearest-neighbour approach, and it performs as well or better than current

neural network techniques on the comparison data sets to which it has been

applied.

A particular advantage of this approach is that it solves for orders of mag-

nitude fewer parameters than back propagation or radial basis function (RBF)

methods, which greatly reduces the problem of overlearning. There is no need

for the user to select model minimization parameters, such as the number of

hidden units or basis function centers (in other learning methods these are usu-

ally determined by performing extensive cross-validation testing with each set

of possible parameter values). VSM learning can be run as a black box with-

out setting problem-speci�c parameters, which is a necessary requirement for

biological models and for many on-line learning applications.

In addition to the problem of poor generalization, nearest-neighbour meth-

ods have been criticized for slow run-time performance and for increased mem-

ory requirements. The well-known k-d tree algorithm (Friedman, Bentley &

Finkel, 1977; Sproull, 1991) can be used to identify the nearest neighbours,

but its computation time is known to become large for random points in high

dimensional spaces (in these cases, it must sometimes measure the distance to

a large proportion of the inputs to �nd the single nearest neighbour). However,

following similarity metric optimization, there is an e�ective dimensionality re-

duction as some dimensions are assigned higher weightings than others. This

greatly speeds the k-d tree algorithm. In conjunction with the fact that VSM

learning only looks at a small number (about 10) nearest neighbours, the run-

time performance on many problems is actually better than competing methods

such as back-propagation. If the k-d tree algorithm is still not e�cient enough

2

in certain cases, then an approximation to the nearest-neighbour can be used

that looks at only a limited number of leaves of the k-d tree. The problem of

increased memory requirements has been partly addressed by an editing proce-

dure that removes unnecessary training data from regions where there is little

uncertainty.

2 Previous research

Nearest neighbour classi�cation techniques have been the topic of hundreds of

papers over the past 40 years in the pattern recognition and statistical classi�-

cation literature. An excellent survey of this area has recently been prepared by

Dasarathy (1991). A surprising shortcoming of this extensive literature is that

it gives little attention to the problem of selecting the optimal distance norm for

determining nearest neighbours. In most papers, this issue is avoided by look-

ing at the asymptotic performance as the number of training cases approaches

in�nity (in which case the metric is irrelevant). However, any reasonable learn-

ing method will converge to the Bayes optimal solution with in�nite data, so it

is the number of training cases required for a given level of performance that

distinguishes learning methods.

The importance of an appropriate distance metric can be seen by the degra-

dation in performance that often accompanies the addition of new input fea-

tures. Each time an unimportant feature is added to the feature set and as-

signed a weight similar to an important feature, it increases the quantity of

training data that is needed by a factor that allows for all combinations of the

important and unimportant values. It is easy to create exponential increases in

training data requirements by adding only a few poorly weighted features. This

is why nearest-neighbours algorithms have sometimes shown excellent perfor-

mance (when appropriate features and metrics have been used), but also often

show poor performance in comparison with other learning methods (when poor

metrics are chosen, usually on the basis of equal weighting for each feature).

One reason for the strong interest in neural network learning methods, such

as back propagation, is that they are able to select useful input features from

high-dimensional input vectors. Therefore, they do not su�er from the \curse

of dimensionality" of classical nearest neighbours, in which higher dimensional

inputs become less likely to provide accurate classi�cations with reasonable

amounts of training data. This becomes even more important when it is nec-

essary to take weighted combinations of noisy redundant inputs in order to

produce the best classi�cation. In these cases, it is even less likely that the

initial assigned weights will be appropriate. In this paper, we use the same

optimization techniques developed for other neural network methods, but ap-

ply them directly to determining relative feature weightings. The result is that

equivalent or better generalization can be achieved while solving for far fewer

parameters and gaining the other advantages of the nearest neighbour approach.

3

Research in the neural network �eld has recently been moving towards algo-

rithms that interpolate between nearest neighbours. One of the most popular

of these methods is radial basis function (RBF) networks (Broomhead & Lowe,

1988; Moody & Darken, 1989). This is quite similar to the classical Parzen

window method of estimating probability density distributions (Duda & Hart,

1973), except that it uses somewhat fewer basis functions and adds a linear out-

put layer of weights that are optimized during the learning process. However,

neither the RBF nor Parzen window method provides any way to optimize the

similarity metric. Therefore, they su�er from the same problem as standard

nearest neighbours, in which performance will be good only when the appro-

priate feature weighting happens to be speci�ed by the user. Poggio & Girosi

(1989, 1990) have proposed extensions to the RBF method, which they call

generalized RBFs and hyper basis functions, that optimize the centers of the

basis functions and the global similarity metric. This provides a very
exible

framework, but the large number of parameters (including those in the output

layer) means that it is necessary to select some problem-speci�c subset of pa-

rameters to optimize and to determine some limited number of basis functions

that is smaller than the number of training examples. In practice, this requires

extensive cross-validation testing to determine the model size and the appro-

priate selection of free parameters, which is computationally very expensive

and prevents the use of incremental learning as needed for biological models or

on-line learning.

Some previous research on the problem of optimizing a similarity metric

is the work of Atkeson (1991) on robot learning. He uses cross-validation to

optimize not only a similarity metric but also other stabilization and cross-

correlation terms. Similarly, the work of Wettschereck & Dietterich (1992)

selects a similarity metric for the Wolpert approach to the NETtalk problem.

Both of these methods use a distance weighted interpolation kernel that has

the property of giving in�nite weight to training data that exactly matches the

current input. This is clearly undesirable for noisy inputs, as is the case with

most real-world problems. This paper instead makes use of a variable kernel

method that provides better interpolation and approximation in the presence

of noise. VSM learning is aimed at classi�cation problems with many input

features, whereas the more extensive correlation matrix �tting of Atkeson may

be more appropriate for continuous output problems based on low-dimensional

inputs, as occurs in the problem of robot control.

Cleveland and Devlin (1988) describe the LOESS method for locally

weighted regression, in which a local weighting kernel is used to smooth mul-

tivariate data. However, they use a similarity metric that is proportional to

the variance of each input feature rather than being optimized according to its

value in determining the output.

4

3 Choice of interpolation kernel

The choice of the interpolating kernel can have a substantial e�ect on the per-

formance of a nearest-neighbours classi�er. Cover & Hart (1967) showed that

the single nearest-neighbour rule can have twice the error rate of a kernel that

obtains an accurate measure of the local Bayes probability. A doubling of the

error rate for a given set of training data would make even the best learning

method appear to have poor performance relative to the alternatives.

One widely-used kernel is to place a �xed-width Gaussian at each neighbour,

as in the Parzen window method. However, a �xed-width kernel will be too

small to achieve averaging where data points are sparse and too large to achieve

optimal locality where data points are dense. There is a trade-o� between

averaging points to achieve a better estimate of the local Bayes probability

versus maintaining locality in order to capture changes in the output. As Duda

& Hart (1973, p. 105) have shown, most of the bene�ts of local averaging

are achieved from averaging small numbers of points. In fact, the k-nearest-

neighbour method achieves a relatively good performance by maintaining a

constant number of points within the kernel.

The bene�ts of the k-nearest-neighbour method can be combined with the

smooth weighting fall-o� of a Gaussian by using what is known as the variable

kernel method (Silverman, 1986). In this method, the size of a Gaussian kernel

centered at the input is set proportional to the distance of the k-th nearest

neighbour. In this paper, we instead use the average distance of the �rst k

neighbours, because this measure is more stable under a changing similarity

metric. The constant relating neighbour distance to the Gaussian width is

learned during the optimization process, which allows the method to �nd the

optimal trade-o� between localization and averaging for each particular data

set.

In a classi�cation problem, the objective is to compute a probability pi for

each possible output label i given any new input vector x. In VSM learning,

this is done by taking the weighted average of the known correct outputs of a

number of nearest neighbours. Let nj be the weight that is assigned to each of

the J (e.g., J = 10) nearest neighbours, and sij be the known output probability

(usually 0 or 1) for label i of each neighbour. Then,

pi =

PJ
j=1 njsijPJ
j=1 nj

:

The weight nj assigned to each neighbour is determined by a Gaussian kernel

centered at x, where dj is the distance of the neighbour from x:

nj = exp(�d2j=2�
2):

The distance dj depends on the similarity metric weights wk that will be learned

during the optimization process for each dimension k of the input vector. Let cj

5

be the input location of each neighbour. Then, the weighted Euclidean distance

is

d2j =
X
k

w2

k(xk � cjk)
2:

The width of the Gaussian kernel is determined by �, which is a multiple

of the average distance to the M nearest neighbours. It is better if only some

fraction (e.g., M = J=2) of the neighbours is used, so that the kernel becomes

small even when only a few neighbours are close to the input. There is a

multiplicative parameter r relating the average neighbour distance to � which

is learned as a part of the optimization process (a typical initial value is r = 0:6,

which places the average neighbour near the steepest slope of the Gaussian):

� =
r

M

MX
m=1

dm:

If it is successful, the optimization will select a larger value for r for noisy but

densely-sampled data, and a smaller value for data that is sparse relative to

signi�cant variations in output.

4 Optimization of the similarity metric

The similarity metric weights and the kernel width factor are optimized using

the cross-validation procedure that has been widely adopted in neural network

research. This minimizes the error resulting when the output of each exemplar

in the training set is predicted on the basis of the remaining data without

that exemplar. As Atkeson (1991) has discussed, this is simple to implement

with the nearest-neighbour method because it is trivial to ignore one data item

when applying the interpolation kernel. This avoids some of the problems of

overtraining that are found in many other neural network learning methods

that can not so easily remove a single exemplar to measure the cross validation

error.

The particular optimization technique that has been used is conjugate gra-

dient (with the Polak-Ribiere update), because it is e�cient even with large

numbers of parameters and converges rapidly without the need to set conver-

gence parameters. One important technique in applying it to this problem is

that the set of neighbours of each exemplar are stored before each line search,

and the same neighbours are used throughout the line search. This avoids

introducing discontinuities to the error measure due to changes in the set of

neighbours with a changing similarity metric, which could lead in turn to in-

appropriate choices of step size in the line search. A nice side-e�ect is that

this greatly speeds the line search, as repeatedly �nding the nearest neighbours

would otherwise be the dominant cost. For the problems we have studied, the

6

conjugate gradient method converges to a minimum error in about 5 to 20

iterations.

In order to apply the conjugate gradient optimization in an e�cient manner,

it is necessary to compute the derivative of the cross validation error with

respect to the parameters being optimized. The cross validation error E is

de�ned as the sum over all training exemplars t and output labels i of the

squared di�erence between the known correct output sti and the computed

probability pti for that output label based on its nearest neighbours:

E =
X
t

X
i

(sti � pti)
2:

The derivative of this error can be computed with respect to each weight pa-

rameter wk:

@E

@wk

= �2
X
t

X
i

(sti � pti)
@pti

@wk

where

@pti

@wk

=

P
j(sji � pti)@nj=@wkP

j nj

and

@nj

@wk

=
�njwk

�2

(xk � cjk)

2

�

rd2j

M�

MX
m=1

(xk � cmk)
2

dm

!
:

The sum in this last expression does not depend on the particular neighbour j

and can therefore be precomputed for the set of neighbours.

In order to optimize the parameter r determining the width of the Gaussian

kernel, we can substitute the derivative with respect to r for the last equation

above:

@nj

@r
=

njd
2

j

r�2
:

As noted above, the error function has discontinuities whenever the set of

nearest neighbours changes due to changing weights. This can lead to inap-

propriate selection of the conjugate gradient search direction, so the search

direction should be restarted (i.e., switched to pure gradient descent for the

current iteration) whenever the error or the gradient increases. In fact, simple

gradient descent with line search seems to work well for this problem, with only

a small increase in the number of iterations required as compared to conjugate

gradient.

One �nal improvement to the optimization process is to add a stabilizing

term to the error measure E that can be used to prevent large weight changes

7

when there is only a small amount of training data. This is less important

than for most other neural network methods because of the smaller number of

parameters, but it can still be useful for preventing over�tting to small samples

of noisy training data. The following stabilizing term S is added to the cross-

validation error E:

S = �2
X
k

log2
�
wk

wk0

�

which has a derivative of

@S

@wk

=
2�2

wk

log

�
wk

wk0

�
:

This tends to keep the value of each weight wk as close as possible to the initial

weight value wk0 assigned by the user prior to optimization. We have used the

stabilization constant � = 1, which means that a one log-unit change in the

weight carries a penalty equivalent to a complete misclassi�cation of a single

item of training data. This has virtually no e�ect when there is a large amount

of training data|as in the NETtalk problem below|but will prevent large

weight changes based on a statistically invalid sample for small data sets.

5 Minimizing memory requirements

One frequent criticism of nearest-neighbour methods is that they require much

greater use of memory than neural network algorithms. However, this expec-

tation of high memory requirements seems to be based on an invalid numerical

comparison between the number of hidden units typically used in the back-

propagation approach and the much larger number of exemplars in the training

database. These are not directly comparable because each hidden unit normally

maintains a weight for every possible discrete feature value or for each value

range in a distributed representation, whereas each training exemplar requires

only memory for a speci�c set of feature values. An example is provided by the

NETtalk problem to be described below, in which an 80-hidden-unit back prop-

agation network contains 18,629 weights, which actually requires more memory

to store than the 1000 word training set. For other data sets with a less dis-

tributed representation, the nearest-neighbour approach will often require more

memory, but the di�erence may not be as signi�cant as is commonly implied.

On the other hand, it is clear that it is often unnecessary to retain all

training data in regions of the input space that have unambiguous classi�ca-

tions. Nearest-neighbour learning algorithms can reduce their memory usage

by only retaining the full density of training exemplars where they are needed

near to classi�cation boundaries and thinning them in other regions. There has

been a considerable amount of research on this problem in the classical nearest-

neighbours literature, as is summarized in the survey by Dasarathy (1991).

8

Most of this work is only relevant to a single-nearest-neighbour classi�er, but

the papers by Chang (1974) and Tomek (1976) give approaches that are relevant

to a k-nearest-neighbour method.

For VSM learning, we have developed a simple editing procedure that re-

moves data from regions that have unambiguous classi�cations. The method

deletes an exemplar if its J nearest neighbours all agree on the same classi�ca-

tion using the VSM classi�er, and all of the neighbours assign this classi�cation

a probability above 0.6. For our experiments, we have used J = 10. There is

no requirement that the removed exemplar have the same classi�cation as its

neighbours, so this can remove \noise" exemplars. The procedure is repeated

until less than 5% of the remaining exemplars are deleted on any iteration.

This is a very conservative method that deletes exemplars only within regions

that have consistent classi�cations. The surprising result is that this actually

improves generalization performance by a small but consistent amount in our

experiments. This is clearly a topic on which further research would be useful.

6 Test results

The VSM learning method was �rst applied to synthetic data to test its abil-

ity to select features of interest and assign them appropriate relative weights.

The task was to solve a noisy XOR problem, in which the �rst two real-valued

inputs were randomly assigned values of 0 or 1 and the binary output class

was determined by the exclusive-OR function of these inputs. Noise was added

to these 2 inputs drawn from a normal distribution with a standard deviation

of 0.3 (meaning that there was some overlap between the two classes). The

next two inputs were assigned the same initial 0 or 1 values as the �rst two,

but had noise with a standard deviation of 0.5. Finally another 4 inputs were

added that had random zero-mean values with a standard deviation of 2.0. The

presence of extra random inputs and varying noise levels results in poor perfor-

mance of nearest-neighbours algorithms. Indeed, the performance of the basic

nearest-neighbours algorithm on this data with 100 training and 100 test exam-

ples was only 54.3% correct (hardly better than the 50% achieved by random

guessing). However, VSM learning achieved 94.6% correct, after 14 iterations

of the conjugate gradient convergence, by assigning high weights to the �rst 2

input features, slightly smaller weights to the next 2, and much smaller weights

to the random inputs. Note that because of the XOR determination of the

output class, there would be no linear correlation between any individual input

and the output, so any linear classi�er or feature selection method would fail

on this problem.

The next test was performed on the well-known NETtalk task (Sejnowski &

Rosenberg, 1987) in which the input is a 7-letter window of an English word and

the output is the pronunciation of the central letter. Recently, Wettschereck

& Dietterich (1992) have tested many learning methods on this data, using a

9

Algorithm Letter Phoneme Stress

Nearest neighbour 53.1 61.1 74.0

RBF 57.0 65.6 80.3

Back propagation 70.6 80.8 81.3

Wolpert 72.2 82.6 80.2

GRBF 73.8 84.1 82.4

VSM 73.4 83.7 81.2

Table 1: This table gives the percent correct generalization on the NETtalk task

for di�erent learning methods. All rows except the last are from (Wettschereck

& Dietterich, 1992).

standardized test method that selects 1000 words of training data at random

and a disjoint set of 1000 words of test data. Table 1 presents their results

for many well-known learning algorithms, along with the results of running the

VSM algorithm on the same data. As the table shows, VSM learning performs

signi�cantly better than back propagation or radial basis function (RBF) learn-

ing on this data. The one method that is slightly better is a generalized radial

basis function (GRBF) method in which the center of each basis function is

optimized. However, this required extensive cross-validation testing to select

many parameters, such as number of centers and type of parameter adjustments,

and the optimization failed to converge from some starting values. In contrast,

VSM learning achieves almost the same generalization with only 10 minutes of

training time on a SparcStation 2 and with no need for experimentation. The

e�ciency of the k-d tree access method is such that the distance to only 43

exemplars on average must be checked to determine the 10 nearest neighbours

for classi�cation. VSM learning optimizes only 8 parameters (the weights for

the 7 inputs and the kernel size), whereas back propagation optimizes 18,629

parameters and GRBF optimizes 40,600 parameters for this problem.

The method by Wolpert listed in Table 1 is similar to VSM, in that it opti-

mizes a distance metric for nearest neighbour interpolation. Wolpert (1990)

originally selected the weights by hand, and he applied the method to an

edited test set so that his comparison to previous NETtalk data was invalid.

Wettschereck & Dietterich (1992) used a mutual information approach to com-

pute the feature weights, and applied it to NETtalk using their standardized test

procedure to get the results shown in Table 1. Wolpert's kernel is a distance-

weighted kernel that gives in�nite weight to an exemplar with zero distance,

and these results show that the variable kernel method used in VSM learn-

ing has better generalization. Another approach to the NETtalk problem was

taken by Stan�ll & Waltz (1986), who computed a type of similarity metric

from the nearest neighbours of each input. Although they do not perform sys-

tematic testing, they report that the results are at about the same level as

back-propagation.

10

Algorithm Percent correct

Back propagation 51

RBF 53

Gaussian node network 55

Nearest neighbour 56

VSM 61

Table 2: Percent correct generalization on vowel classi�cation task for di�erent

learning methods. All rows except the last are from (Robinson, 1989).

VSM learning was also tested on Robinson's (1989) speaker-independent

speech recognition data. Each item of training data corresponds to one of 11

vowel sounds, with the input features consisting of 10 real-valued numbers that

were extracted from the speech signal using linear predictive analysis and other

preprocessing. The training data is produced by 8 speakers saying each of the

11 vowels six times, while the test data is produced by 7 other speakers in the

same format. In applying VSM learning, it is important that only neighbours

produced by di�erent speakers from the center input are accessed during train-

ing, as otherwise the weights will be optimized to recognize each vowel based

on data from the same speaker. This is easy to accomplish by adding a �eld to

each exemplar indicating the speaker. The result of VSM learning on this task

was better than the other methods tested by Robinson, as shown in Table 2.

In fact, the nearest neighbour algorithm performed very well for this task, and

the reason for this is shown by the fact that the feature weights changed only

a little from their initial value of 1.0 during VSM learning. Presumably, this

is because of the careful preprocessing of the speech signal to extract a useful

feature set. The further improvement of VSM learning over nearest neighbours

is due to the use of the variable kernel.

Another data set on which VSM learning has been tested is Gorman &

Sejnowski's (1988) sonar data set. Each exemplar in this data set consists of

60 real-valued inputs extracted from a sonar signal. The task is to classify the

object from which the sonar is re
ected as either a rock or a metal cylinder.

Only their \aspect-angle dependent" test case was used, as the precise training

and test data cannot be determined for their other series. In this case, VSM

learning achieved 95.2% correct classi�cation as compared to the best result of

90.4% obtained by Gorman and Sejnowski using back propagation. Given that

only 104 training cases were available, the large number of input dimensions,

and the inability to perform randomized trials, it is not clear whether this result

is statistically signi�cant.

11

7 Relevance to models of biological learning

A major long-term goal of learning research is to develop a model for the power-

ful learning mechanisms incorporated in the cerebral cortex of the brain. While

many aspects of learning in the brain remain to be discovered, certain broad

properties of its performance are well known. These include the capability of

the brain to incrementally update its learned model with each new training

stimulus and its ability to perform some tasks with as little as a single train-

ing exemplar (as when recognizing a new stimulus following a single exposure

and then improving recognition performance with further exposures). Learn-

ing in one part of the input space does not produce any major degradation of

performance in other parts. Of the currently proposed neural network learning

methods, only those that perform some type of local interpolation seem capable

of satisfying these constraints.

A biologically-plausible model of learning would need to develop a complete

incremental learning method. It would be possible to start performing classi-

�cation with very small numbers of inputs if the initial set of feature weights

could be assigned by using weights from some similar previous task (for exam-

ple, the recognition of a new person would initially be based on feature weights

that have proved useful for recognizing other people). These weights would then

need to be optimized incrementally rather than through a batch process such

as conjugate gradient. One hypothetical model for implementing a variable

kernel approach with neurons would be to initially assign a neuron to each new

training experience. Each neuron would �re in proportion to its distance from

a new input due to a Gaussian-shaped receptive �eld. The implementation of a

variable kernel with a constant sum of neuron activations would require lateral

inhibition between neurons at the same level, which is known to be a common

aspect of cortical processing. To limit memory requirements, new inputs that

are very similar to previous inputs would not be assigned to a new neuron,

but instead would modify the output weights of the closest existing neurons

to re
ect the new output. This is similar to the role of the output layer of

weights in RBF learning, so the learning would tend to switch from VSM to

RBF approaches as the density of neighbours rose beyond what was needed to

represent output variations. An open research problem is to derive a statisti-

cal test to determine when output variations are small enough to perform this

combination of exemplars. One prediction that arises from VSM learning is

that relative feature weights should be set on a more global basis than a single

neuron (this di�ers from the separate feature weights of each unit in back-

propagation). This could be accomplished in biological systems by determining

feature weights from, for example, the activation level of a feature-encoding

neuron rather than by changing individual synapse weights.

12

8 Conclusions and future directions

Nearest-neighbour methods have often shown poor generalization in comparison

to other learning methods, and therefore have attracted little interest in the

neural network community in spite of a number of attractive properties. This

paper shows that with the choice of an appropriate kernel and optimization

of the similarity metric, the generalization can be as good or better than the

alternatives. In the data sets that have been tested, VSM learning achieves

better generalization than the back-propagation algorithm and most forms of

RBF networks. It also has a much reduced training time, and a large reduction

in the number of parameters to be optimized. A particular advantage of the

method is its ability to operate as a black box without the need for the user to

assign critical parameter values.

One important area for further research is the ability to learn weights that

vary between regions of the input space. Clearly, there are many problems for

which the optimal feature weights vary for di�erent regions of the input. On

the other hand, there must be a fair quantity of training data to determine

the feature weights with statistical reliability, so their optimization must also

avoid being too local. One approach to this problem would be to partition

the input space into regions using a data structure such as the k-d tree, and

to perform the optimization separately in each region. The local parameters

could be stabilized to also minimize their distance from the global values, which

would reduce the problems of overlearning.

Another area of potential improvement would be to incorporate the learning

of local linear models such as have been explored by Atkeson (1991) and Bottou

& Vapnik (1992). These approaches �t a linear model to a set of neighbours

around each input at classi�cation time. At the cost of a large increase in run-

time computation, the output can be based on a more accurate interpolation

between inputs that accounts for their particular spatial distribution in the

input space. This is likely to be particularly useful for continuous outputs.

9 References

Atkeson, C.G. 1989. Learning arm kinematics and dynamics. Annual Review

of Neuroscience 12, 157{83.

Atkeson, C.G. 1991. Using locally weighted regression for robot learning. IEEE

Conf. on Robotics and Automation, Sacramento, CA, 958{963.

Bottou, L., and Vapnik, V. 1992. Local learning algorithms. Neural Computa-

tion, 4, 888{900.

Broomhead, D.S., and Lowe, D. 1988. Multivariable functional interpolation

and adaptive networks. Complex Systems, 2, 321{355.

13

Chang, C.L. 1974. Finding prototypes for nearest neighbour classi�ers. IEEE

Transactions on Computers, 23, 1179{84.

Cleveland, W.S., and Devlin, S.J. 1988. Locally weighted regression: An ap-

proach to regression analysis by local �tting. Journal of the American Statistical

Association, 83, 596{610.

Cover, T.M., and Hart, P.E. 1967. Nearest neighbour pattern classi�cation.

IEEE Transactions on Information Theory, IT-13, 1, 21{27.

Dasarathy, B.V. 1991. NN concepts and techniques. Nearest Neighbour (NN)

Norms: NN Pattern Classi�cation Techniques, B.V. Dasarathy (Ed.), IEEE

Computer Society Press, 1{30.

Duda, R.O. and Hart, P.E. 1973. Pattern Classi�cation and Scene Analysis.

New York: Wiley.

Friedman, J.H., Bentley, J.L., and Finkel, R.A. 1977. An algorithm for �nding

best matches in logarithmic expected time. ACM Trans. Math. Software, 3,

209{226.

Gorman, R.P. and Sejnowski, T.J. 1988. Analysis of hidden units in a layered

network trained to classify sonar targets. Neural Networks, 1, 75{89.

Moody, J., and Darken, C.J. 1989. Fast learning in networks of locally-tuned

processing units. Neural Computation, 1, 281{294.

Omohundro, S.M. 1992. Best-�rst model merging for dynamic learning and

recognition, Advances in Neural Information Processing Systems 4, Morgan

Kaufmann, Denver, 958{965.

Poggio, T., and Girosi, F. 1989. A theory of networks for approximation and

learning. Report AI-1140, MIT Arti�cial Intelligence Laboratory, Cambridge,

MA.

Poggio, T., and Girosi, F. 1990. Extensions of a theory of networks for approxi-

mation and learning: dimensionality reduction and clustering. Report AI-1167,

MIT Arti�cial Intelligence Laboratory, Cambridge, MA.

Robinson, A.J. 1989. Dynamic error propagation networks, Ph.D. thesis, Cam-

bridge University Engineering Department.

Sejnowski, T.J., and Rosenberg, C.R. 1987. Parallel networks that learn to

pronounce English text. Complex Systems, 1, 145{168.

Silverman, B.W. 1986. Density Estimation for Statistics and Data Analysis,

Chapman and Hall, London.

Sproull, R.F. 1991. Re�nements to nearest-neighbour searching in k-d trees.

Algorithmica, 6, 579{589.

Stan�ll, C., and Waltz, D. 1986. Toward memory-based reasoning. Communi-

cations of the ACM, 29, 1213{1228.

14

Tomek, I. 1976. An experiment with the edited nearest-neighbour rule. IEEE

Transactions on Systems, Man and Cybernetics, 6, 448{452.

Wettschereck, D., and Dietterich, T. 1992. Improving the performance of ra-

dial basis function networks by learning center locations, Advances in Neural

Information Processing Systems 4, Morgan Kaufmann, Denver, 1133{40.

Wolpert, D.H. 1990. Constructing a generalizer superior to NETtalk via a

mathematical theory of generalization. Neural Networks, 3, 445{452.

15

