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Abstract

Formalhardware veri�cation based on symbolic trajectory evaluation shows considerable promise

in verifying medium to large scale VLSI designs with a high degree of automation. However,

in order to verify today's designs, a method for composing partial veri�cation results is needed.

One way of accomplishing this is to use a general purpose theorem prover to combine the veri-

�cation results obtained by other tools. However, a specialised purpose theorem prover is more

attractive since it can more easily exploit symbolic trajectory evaluation (and may be easier

to use). Consequently we explore the possibility of developing a much simpler, but more tailor

made, theorem prover designed speci�cally for combining veri�cation results based on trajectory

evaluation. In the paper we discuss the underlying inference rules of the prover as well as more

practical issues regarding the user interface. We �nally conclude with a couple of examples in

which we are able to verify designs that could not have been veri�ed directly. In particular,

the complete veri�cation of a 64 bit multiplier takes approximately 15 minutes on a Sparc 10

machine.

1 Introduction

The veri�cation of computer systems has become more important as computer systems grow in

complexity and range of use. Veri�cation | the proving under some mathematical theory of the

existence (or non-existence) of properties in the system | comes at a cost: it is a di�cult and

computationally intensive task. Although signi�cant advances have been made, all veri�cation

methods su�er from this problem in some way.

This paper presents a new technique based on trajectory evaluation which reduces the compu-

tational cost of veri�cation in many cases. In this section, we present background material, and

introduce and motivate the new method.

1This research was supported by operating grant OGPO 109688 from the Natural Sciences Research Council of
Canada, a fellowship from the Advanced Systems Institute, and by research contract 92-DJ-295 from the Semicon-

ductor Research Corporation.
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1.1 Hardware Veri�cation

The theory of all the veri�cation methods discussed in this paper applies equally to software and

hardware systems. However, the application of the theory has been more successful with hardware

than software since the regular nature of design and the small number of types of components

makes veri�cation of hardware systems in general more tractable than more general systems.

A survey of the large number of di�erent hardware veri�cation techniques which have been pro-

posed is beyond the scope of this paper (an introduction to the topic and a good set of references to

the topic can be found in (McFarland, 1993)). The work presented here draws on three techniques.

1. Theorem proving: Theorem-provers are based on formal systems such as logic. For hardware

veri�cation, both the speci�cation and implementation can be described in logic, and the task

of verifying the system is to prove that the implementation entails the speci�cation. One of

the best known theorem-provers is the HOL system (Gordon, 1993), with which theories of

di�erent sorts can be built up in a rigorous way using a small number of primitive axioms

and inference rules.

The key advantage of the approach is that the proof that the implementation entails the

speci�cation can be checked mechanically. We can also have a high degree of con�dence in

the soundness of a system like HOL due to the small number of primitive axioms and inference

rules. Another important advantage of theorem proving is that it can be used to argue at

di�erent levels of abstraction. Theorem proving is structural rather than behavioural, so that

we can use the structure of the system to manage the complexity. Unfortunately, structure

may not always be present in a system in the required degree (for example, optimisation of a

circuit may transform a circuit with a high degree of structure into one with a low degree of

structure).

The most signi�cant disadvantage of theorem proving by itself is that it can be extremely

tedious to verify certain properties, particularly low-level properties of circuits. Unless sim-

pli�cations are made, this approach can be very expensive.

Besides HOL, there are a number of well-known theorem-provers, including PVS (Owre et al.,

1992) and the Boyer-Moore system (Boyer & Moore, 1988),

2. Model checking: In model checking, the behaviour of the system is described by some model

(for example, a Kripke structure, a �nite state machine, expressions in a process algebra like

CCS). The desired properties of a system are expressed in some logic (for example, CTL,

the modal �-calculus) (Clarke et al., 1983; Cleaveland et al., 1989; Coudert et al., 1990;

Burch et al., 1992). A model checking algorithm can be used to check whether the model

satis�es such an expression. Depending on how restricted the model is (the state space of

the model can be very large | even in�nite), and the language we are allowed to write the

logical expressions, model checking can be e�cient. There are important limitations to what

can be checked e�ciently (as an example the data path of a circuit poses a computational

challenge). Furthermore, while it may be very convenient to write expressions in a logic, it is

not always clear that the collection of properties actually veri�ed is what we want to verify.

Model checking is based on the behavioural rather than structural properties of the system.

Many recent model-checking algorithms use ordered binary-decision diagrams (OBDDs or

BDDs) (Bryant, 1992) for the e�cient manipulation of boolean expressions. One of the
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advantages of BDDs is that boolean expressions have canonical forms which makes comparison

of expressions very e�cient. Although BDDs do have practical limitations, the use of BDD-

based method has extended by orders of magnitude the size of systems that can be tackled

by model-checkers.

3. Trajectory Evaluation: If the state space of a system (for example a circuit) is a lattice,

the behaviour of the system can be expressed as a trajectory, a sequence of points in the

lattice determined by the initial state and the system functionality. Formulas in a simple

temporal logic express properties of the circuit. Given a formula, we can derive bounds that

trajectories with the desired property must obey. Symbolic trajectory evaluation e�ciently

checks whether all, or a speci�ed class, of trajectories of the machine obey these bounds.

Generally it checks that all trajectories of a machine M which have property A also have

property C. We write this as j=
M
[A==�C], and say thatM satis�es the trajectory assertion.

Trajectory evaluation has several advantages. Veri�cation is behavioural rather than struc-

tural, and thus symbolic trajectory evaluation is suitable for systems such as optimised cir-

cuits. Very accurate models, including timing, of the underlying model can be used, which

increases our con�dence in the meaningfulness of the results obtained. Symbolic trajectory

evaluation also uses BDDs as a powerful method of manipulating boolean expressions.

A full description of trajectory evaluation is given in a later section. Although many circuits

can be veri�ed very e�ciently, there are, however, some limitations. It is these limitations

which have motivated this work. Introductory references for symbolic trajectory evaluation

include (Beatty et al., 1991; Seger & Bryant, 1993).

1.2 Motivation

Although trajectory evaluation is a very successful approach for verifying many realistic circuits,

two weaknesses have been noted of this method.

First, there can be a semantic gap between the trajectory evaluation veri�cation and what the

user has in mind to verify. Part of the problem is that the proof is structured at the bit-level, when

it may be more natural to represent the proof in terms of a higher-level domain, for example arguing

about the behaviour of the circuit in terms of what it does to integers rather than bit-vectors. And,

unlike with theorem-proving, we cannot exploit any form of structure to guide the proof.

Second, it is still computationally expensive and approaches that would reduce this cost would

be useful. In particular, due to the underlying data representation techniques used in symbolic

trajectory evaluation and the inability to decompose the proof, there are some types of circuits

which are in practice unveri�able using this approach solely | for example a multiplier circuit.

Our approach o�ers a number of advantages. We believe that the compositional approach

makes the veri�cation easier for the user, particularly for very large systems. Second, verifying

the individual components separately is much more e�cient for a variety of reasons (discussed in

later sections). Third, composing results using domain-information makes composition e�cient

and practical. Fourth, di�erent techniques can be used for veri�cation of parts of the system, and

for veri�cation as a whole, thereby exploiting the strengths of di�erent veri�cation approaches and

overcoming their limitations.

As an example, consider the circuit in Figure 1, which takes in three numbers x, y and z on

nodes A, B and C and outputs max(x; y)+z on node F . The circuit comprises three major parts: a
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comparator, a selector, and an adder. Although this is a simple example which can easily be veri�ed

by symbolic trajectory evaluation alone, it can illustrate some of these ideas. Each component is

separately veri�ed (with the advantages mentioned above). The next step is to verify that the

comparator combined with the selector produces the greater of the two input values. The �nal step

is to combine this with the adder to show the �nal result is correct.

A>B 

M 
U 
X 

A 
B 

C 

D 

E 

F 

Figure 1: Illustration of symbolic trajectory evaluation

The veri�cation of each component is done in the presence of the rest of the system, which

means that any unintended interference can be detected. We can easily show that no matter what

the rest of the system does we shall obtain the desired behaviour. This is a very useful property,

since much of the work involved in other compositional approaches goes into ensuring that each

component works correctly in all environments.

This paper explores combining theorem-proving and trajectory evaluation so as to gain the

bene�ts of both approaches, and overcome the problems noted. An important objective in our

work is to provide a practical tool without losing rigour.

The method that we propose is a theorem proving system in which the mathematical objects

being manipulated are trajectory assertions. In later sections, the theory of trajectory evaluation

and the theory of how they can be combined and manipulated will be discussed. Here we give a

brief overview of theorem proving.

The work on theorem provers �rst started in the late 1960s and early 1970s with the work of de

Bruijn and Milner. The core of a theorem prover is a set of axioms and inference rules. Using only

these, the user can prove a theorem, with the system mechanically checking each step in a proof.

While good theorem provers have tools which assist a user in the derivation of a proof, automatic

derivation of proofs is usually not their goal.

There are di�erent ways in which this assistance can be given. Perhaps the most important

part of the utility of these tools is the way in which they can interact with the user. In HOL,

for example, the user can write proof scripts in ML. This programmability alleviates some of the

tedium of theorem proving and makes the tool much more exible. In our tool too, the user has a

fully programmable script language in which to specify proofs.

Proof management can also be accomplished with the use of what in HOL are called \tactics".

This enables the decomposition of proofs: working backwards from the goal, the appropriate tactics

are applied to the theorem to discover sub-results, which, if proven, can be used to prove the �nal

result. It should be stressed that skilful human intervention is critical. Using the proof script
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language in our system, it is possible to create similar building blocks.

A third type of assistance which can be provided is the use of external, non-trusted programs.

For example, in HOL a theory of di�erentiation has been built up. However, integration within

HOL is extremely di�cult, so one way of doing integration is to use a symbolic mathematics package

to generate the answer. We do not trust this answer, however, because the result has not been

proven within HOL. However, we can use di�erentiation within HOL to check the answer (Harrison

& Thery, 1993).

We use these ideas in two ways. First, we use a simple auxiliary theorem prover about integers

so as to incorporate domain knowledge. Secondly, our tool occasionally uses a heuristic to \guess"

an answer, which is then automatically checked to see whether it is correct.

1.3 Outline

Our goal is to exploit the strengths of symbolic trajectory evaluation, to overcome some its weak-

nesses, and create a methodology for the composition and management of proof results.

The rest of this paper is structured as follows.

� Section 2 describes related work.

� In Section 3 , after the underlying theory of symbolic trajectory evaluation is described, an

e�cient method of performing trajectory evaluation is given.

� Section 4 describes the new theory | the rules of inference which allow the combination of

symbolic trajectory evaluation results. Whereas symbolic trajectory evaluation is a purely

behavioural method, for our new theory to be useful, it is important that some structure be

readily identi�able. However, we are not moving to a purely structural model since our method

deals more with the composition of the speci�cation and the proof than the composition of

the underlying circuit. So although we need to be able to use some structure in our system,

we have neither to build a structural model of the system, nor describe the behaviour of the

component parts.

� Earlier we noted the limitations of symbolic trajectory evaluation with respect to the low-level

of abstraction, and the limitations of the underlying data representation. Section 5 discusses

how these problems can be overcome in a rigorous and practical way.

� Section 6 describes the practical veri�cation tool developed using the theory described in the

earlier sections. With this tool, we are able to use symbolic trajectory evaluation to perform

partial veri�cation, and the combinational theory to combine these results.

� Section 7 presents several examples, and section 8 is a conclusion.

2 Related Work

There are two important inuences on this work, compositionality and use of hybrid methods.
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2.1 Compositionality

Compositionality is the divide-and-conquer approach of veri�cation. It allows re-use of results

and, most importantly, it greatly reduces the state space of systems that need to be explored.

Since a human veri�er is able to structure the veri�cation, it makes veri�cation easier to manage.

Compositionality has been examined from a number of di�erent aspects:-

� Process algebras such as CCS (Milner, 1989) and CSP (Brookes et al., 1984) have as one of

their major advantages the ability to de�ne and prove properties of programs and speci�cation

using compositionality. Work continues on making veri�cation through compositionality more

e�cient in process algebras and more general transition systems (Larsen & Thomsen, 1991;

Groote & Moller, 1992)

� In model checking approaches too, there has been work in using compositionality to control

the state space of the system (Coudert et al., 1990; Clarke et al., 1989; Shiple et al., 1992;

Long, 1993).

� For theorem-provers, composition at a structural level is very important for e�cient and easy

veri�cation. The use of di�erent forms of logic promotes the ease of veri�cation.

This work shows how symbolic trajectory evaluation results can be composed.

2.2 Hybrid Methods and Proof Management

By hybrid methods, we mean the combined use of di�erent veri�cation methods. Ad hoc hybrid

approaches where designers use di�erent techniques to verify and test di�erent parts of the system

and use informal argument to glue the pieces together is not new and very common. What we are

aiming at is something of greater rigour.

One of the �rst systems which combined di�erent approaches rigorously was the HOL-Voss sys-

tem (Seger & Joyce, 1992). The HOL theorem-prover and the Voss symbolic trajectory evaluation

system were linked together in a formal, rigorous way. This enables the proof of something within

one system to be carried over into the other system.

Although not a hybrid approach, the method of model-checking in�nite state-spaces suggested

by Brad�eld illustrates the utility of providing a method of combining automatic veri�cation and

human-driven (but mechanically checked) veri�cation (Brad�eld, 1992). Although very di�erent

from our work, the common theme is that a practical yet rigorous proof management system is

very useful in veri�cation.

Recent work by Kurshan and Lamport is much closer to our approach (Kurshan & Lamport,

1993). They have combined the COSPAN model-checker with the TLP theorem prover. The

model checker is used to prove properties of components of the system: these properties are then

translated into a form suitable for the theorem-prover. In order to prove the overall result, a number

of sub-results need to be proved (including a hand-checked step).

The common link between our approaches is the recognition that di�erent techniques can be

useful in di�erent places to overcome the fundamental limitations of each individual approach.

Beyond that it is di�cult to compare our work since the two are very di�erent. Some of the

di�erences and di�culties in comparison are:
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� In our approach, all veri�cation results are expressed and have meaning within the theory of

symbolic trajectory evaluation. The theorem-prover allows e�cient inference of some of these

results, but we do not have to integrate one theory in another, or translate one formalism

into another (mechanically or manually).

� Related to this is that we have one integrated tool for veri�cation, and all steps are automatic

or machine checked.

� We can verify circuits at a much lower-level than in the COSPAN/TLP approach. This

makes our approach much less dependent on the structural properties of the system and its

speci�cation. It also means that we can capture the timing constraints very accurately2.

� As for usability, we believe that our approach is much easier to understand, since the math-

ematics a user must understand is much simpler. Of course, this is a very subjective issue,

and much can be dealt with by providing a pleasant user interface.

� No performance �gures are given for the COSPAN/TLP veri�cation of the 64-bit multiplier

which means we cannot compare performance. Furthermore, attractive as the eeting glory

of having the fastest 64-bit multiplier veri�cation in the world may be, it is not clear that

this is a useful benchmark | rather, it shows that a class of circuits unveri�able using forms

of model-checking alone are now quite tractable.

Another recent proposal which combines model checking and theorem-proving is reported in

(Hungar, 1993). Here, the model is given by a Kripke structure representing the semantics of

an Occam program, and the properties are expressed in terms of a variant of CTL. The results

generated by model-checking are combined using the LAMBDA theorem-prover. Given an Occam

program consisting of a number of processes, using the model-checker, properties can be proven of

each process. A number of rules | some analogous to the ones we propose in Section 4 | can then

be used by the theorem-prover to combine these sub-properties to prove properties of the entire

program. The work was reported as work in progress, so it is di�cult to evaluate this properly in

relation to our work, but the motivation behind the work is similar to ours.

3 The Theory Behind Trajectory Evaluation

In this section we shall give a brief introduction to the theory behind symbolic trajectory evaluation.

For the complete theory, the interested reader is referred to (Seger & Bryant, 1993). We shall assume

the reader has a working knowledge of elementary concepts from lattice theory. In particular,

the concepts of partial orders, lattices, monotone functions, etc. will be used without further

explanation.

The model we use of a system is simple and general. A model structure is a tuple M =

[hS; v i; Y ], where hS; v i is a complete lattice and Y is a monotone successor function Y :S ! S.

Intuitively, the successor function is used to express constraints on the sequence of states a system

may go through. In other words, given that the system is in state s 2 S, we view Y (s) as denoting

the least speci�ed state the system can be in one time unit later. Here, \least speci�ed" is de�ned

in terms of the partial order v .

2This issue is not discussed in (Kurshan & Lamport, 1993) so we are not saying that they can not handle the

timing, just that this is not done in this paper.
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Let S! denote the set of all in�nite sequences of elements from S. Sequences are useful when

reasoning about model behaviours, but not all sequences represent possible behaviours of a model.

The successor function generally restricts the possible sequences signi�cantly. We formalise this

property by introducing the concept of a trajectory. Given a model M and an arbitrary sequence

� = �
0
�
1
: : : 2 S! we say that the sequence is a trajectory if and only if

Y (�i)v �
i+1 for i � 0:

This rule for trajectories is consistent with our view of the successor function, i.e., a function

computing a constraint on the possible value of the successor state. The set of all trajectories of

model M is denoted L(M).

in out 

Figure 2: Unit delay inverter.

00 01 10 11 

X0 0X 1X X1 

XX 

⊥ 

Figure 3: Poset for inverter circuit.

To illustrate the ideas introduced so far, consider the circuit shown in Fig. 2. If we assume a

unit delay model of the inverter, the state of the system consists of the value of the input and the

current value of the output. Consequently, the lattice S shown in Fig. 3 can be used to model the

circuit behaviour. Since the inverter cannot impose any restrictions on its input, it follows that the

next state function will always be X for the input node, i.e., Yin(i; o) = X. For the output node,

the next state function will be de�ned as:

Yout(i; o) =

8>>><>>>:
0 if i = 1

1 if i = 0

X if i = X

> if i = >

It is easy to convince oneself that Y (i; o) = (Yin(i; o); Yout(i; o)) is a monotone function. Thus,

[hS; v i; Y ] is a model structure. In Fig. 4 we illustrate the set of all trajectories (L(MC)) given

this model structure.
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Figure 4: L(MC) for a unit delay inverter.

The key to the e�ciency of trajectory evaluation is the restricted language that can be used to

phrase questions about the model structure. The basic speci�cation language we use is very simple.

Although at �rst glance it might appear as if it can only be used to specify rather trivial behaviours,

this is not the case, particularly as we later extend the model structure to a symbolic domain. This

will essentially allow us to represent in a very concise and e�cient way a very large set of cases

simultaneously. By keeping the underlying logic simple, we gain some important properties. The

most important is that there is a unique weakest trajectory that satis�es a formula. By focusing

initially on the scalar version, we avoid the added complexity of the symbolic case while building

a foundation for this more general formulation.

Before describing trajectory formulas, we need to introduce the concept of a simple predicate.

A predicate over S is a mapping from S to the complete lattice with elements false and true, with

false as the lower bound and true as the upper bound. A predicate is said to be simple i� p is

monotone and there is a unique element p 2 S, called the de�ning value of p, such that p(t) = true

i� pv t for all t 2 S. Another way of stating this property is that p is a simple predicate i� p is

monotone and p(glb(fs 2 Sjp(s) = trueg)) = true.

In circuit veri�cation the natural simple predicates are of the following form:

1. (ni is 0) where ni 2 N , and

2. (ni is 1) where ni 2 N ,

where N is the set of nodes that determines the state of the circuit (informally, a predicate describes

a potential state of the system). It is easy to see that (ni is 0) and (ni is 1) are indeed simple with

de�ning values

hX; : : : ;X; 0;X; : : : ;Xi
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and

hX; : : : ;X; 1;X; : : : ;Xi;

where the 0 (1) is in position i.

Assume hS; v i is a lattice with universal lower bound ?. Let P denote a set of simple predicates

over S. A trajectory formula is de�ned recursively as:

1. Simple predicates: p is a trajectory formula if p 2 P .

2. Conjunction: (F1 ^ F2) is a trajectory formula if F1 and F2 are trajectory formulas.

3. Domain restriction: (e ! F ) is a trajectory formula if F is a trajectory formula and e is

either 0 or 1.

4. Next time: (NF ) is a trajectory formula if F is a trajectory formula.

The truth semantics of a trajectory formula is de�ned relative to a model structure and a

trajectory. In particular, given a model structure M and a trajectory �, the truth of a trajectory

formula F , written � j=
M
F , is de�ned recursively. In the following, assume that both � and �

0~�

are members of L(M).

1. �0~� j=
M
p i� p(�0) = true.

2. � j=
M
(F1 ^ F2) i� � j=

M
F1 and � j=

M
F2

3. (a) � j=
M
(1! F ) i� � j=

M
F

(b) � j=
M
(0! F ) holds for every �.

4. �0~� j=
M
NF i� ~� j=

M
F .

We can extend the de�nition of simplicity from predicates to formulas in the obvious way,

i.e., given a model structure M, a formula F is said to be simple i� there is a de�ning trajectory

� 2 L(M) such that � j=
M
F i� � v �. The main observation behind trajectory evaluation is that

trajectory formulas are simple. In fact, we shall give a construction that given a trajectory formula

F constructs the de�ning sequence. The construction is direct and very e�cient. As a result,

if the main veri�cation task can be phrased in terms of \for every trajectory � that satis�es the

trajectory formula A, verify that the trajectory also satis�es the formula C", it becomes obvious

how the veri�cation can be carried out: compute the de�ning trajectory for the formula A and

check that the formula C holds for this trajectory.

Before giving the construction, it is convenient to introduce an in�x \choice" function mapping

f0; 1g� S! to S! and which is de�ned as:

e?� =

(
� if e = 1

?? : : : otherwise

We now show that given a trajectory formula F we can construct its de�ning sequence �F . This

sequence is the weakest possible in the sense that � j=
M
F i� � v �. Note that �F is not necessarily

a trajectory. We de�ne �F recursively as follows:

1. �p = p ?? : : : if p 2 P is a simple predicate with de�ning value p.
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2. �F1^F2 = lub(�F1 ; �F2).

3. �e!F = e?�F .

4. �NF
=?�F .

In general, we have the following result.

Lemma 3.1 For any trajectory formula F let �F be constructed as above. Then for every � 2 L(M)

� j=
M
F () �F v �

Proof: For a proof of this result, the reader is referred to (Seger & Bryant, 1993).

From this lemma we know that any trajectory satisfying F must be greater than or equal to

the de�ning sequence �F . Thus computing �F and then determining if a trajectory is greater than

or equal to �F allows us to quickly test whether the trajectory satis�es the formula F . However,

�F is not necessarily itself a trajectory, so we combine the constraints on a state sequence implied

by �F with those imposed by the system's next-state function to give a trajectory and show that

the obtained trajectory is the weakest possible trajectory satisfying F .

Assume �F = �
0
F
�
1
F
: : : is the de�ning sequence for a formula F . De�ne �F = �

0
F
�
1
F
: : : inductively

as follows:

�
i

F
=

(
�
0
F

if i = 0

lub(�i
F
; Y (� i�1

F
)) otherwise

Given this construction, the main observation regarding trajectories and trajectory formulas, is

captured in the following lemma.

Lemma 3.2 Assume �F is de�ned as above, then:

1. �F 2 L(M),

2. �F j=M F , and

3. for every � 2 L(M)

� j=
M
F () �F v �

Proof: For a proof of this result, the reader is referred to (Seger & Bryant, 1993).

The above lemmas give a simple method for computing the de�ning trajectory and the de�ning

sequence for a trajectory formula. Although both the de�ning trajectory and the de�ning sequence

are theoretically in�nite sequences, it is easy to show that if F is a trajectory formula and �F =

�
0
F
�
1
F
: : : is the de�ning sequence for F then �i

F
= ? for i � d(F ), where d(F ) denotes the maximum

depth of nested next-time operators in F . In practice therefore, it is su�cient to compute a bounded

pre�x of the de�ning sequence and de�ning trajectory.

Our speci�cation language describes a property of the system M as an assertion of the form

[A==�C], where both A and C are trajectory formulas expressing constraints on the trajectory.

Unlike a trajectory formula, however, an assertion is considered to hold only if it holds for all

trajectories. That is, [A==�C] holds, written j=
M
[A==�C], when for every � 2 L(M) we have

that � j=
M
A implies that � j=

M
C.

The following theorem forms the basis for veri�cation based on trajectory evaluation.
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Theorem 3.3 Assume A and C are two trajectory formulas. Let �A be the de�ning trajectory for

formula A and let �C be the de�ning sequence for formula C. Then j=
M
[A==�C] i� �C v �A.

Proof: Again, for a proof of this result the reader is referred to (Seger & Bryant, 1993).

There is one major drawback with the veri�cation method suggested above|a single trajectory

formula is not very expressive. In order to verify any non-trivial property of a system we would have

to write down and verify a very large number of assertions. By making the formulas and algorithms

above operate over a symbolic domain we can e�ciently express and verify this set of assertions

in a concise and e�cient way. The key idea is to preserve the symbolic structure of the formulas

in the veri�cation algorithm. By doing so, we can perform the same algebraic manipulations and

rather than obtaining a true/false answer, we shall obtain a Boolean function over some variables.

This Boolean function, given a truth assignment to the Boolean variables, evaluates to 1 i� the

scalar assertion corresponding to this truth assignment holds.

More speci�cally, let V be a set of symbolic boolean variables. For convenience, let B denote the

set f0; 1g. An assignment, �, is a mapping �:V ! B assigning a binary value to each variable. Let

� be the set of all possible assignments, i.e., � = f�:V ! Bg. A domain constraint, D � �, de�nes

a restriction on the values assigned to the variables. We will denote such domain constraints by

boolean expressions. That is, let E be a boolean expression over elements of V3. This expression

de�nes a Boolean mapping e: �! B and thus denotes the domain constraint D = f� j e(�) = 1g.

The set of all assignments � is denoted by the constant function _1. Expressing domain constraints

by boolean expressions allows us to compactly specify many di�erent circuit operating conditions

with a single formula.

In general, if D is a scalar domain set we extend it to a symbolic domain set, written D(V), by

de�ning

D(V) = ff : �! Dg:

In other words, D(V) denotes the set of functions mapping an assignment in � to D.

We extend all operations from scalar to symbolic domains in a uniform way. Consider an

operation op:D1 �D2 ! D3, de�ned over scalar domains D1, D2, and D3. Its symbolic counterpart

_op:D1(V)�D2(V) ! D3(V) is de�ned such that for all _a 2 D1(V) and _b 2 D2(V), we have

( _a _op _b)(�) = _a(�) op _b(�).

There are several ways of extending trajectory formulas to the symbolic domain. The approach

we have taken is very simple and consists simply of allowing the domain constraint to be an arbitrary

boolean expression rather than only 1 or 0. For the case of circuit simulation, we also introduce

the notation (ni is E) as a shorthand for the formula (E ! (ni is 1)) ^ (E ! (ni is 0)). That is,

we constrain node ni to have the particular symbolic Boolean value denoted by the expression E.

Given a symbolic trajectory formula _F and an assignment � 2 �, the corresponding trajectory

formula, written _F (�), is de�ned to be the trajectory formula obtained by replacing the Boolean

expressions in the domain constraints with the value of the expression for this assignment.

Given the above, we can now derive a symbolic trajectory evaluation algorithm by simply

extending the operators and functions used in the scalar trajectory evaluation algorithm to the

symbolic domain. Thus, given a model structure M and a symbolic assertion
h
_A==� _C

i
, the

checking algorithm computes the Boolean function expressing the set of assignments under which

3For the sake of brevity, we omit a formal syntax of boolean expressions. Any standard expression syntax su�ces.
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the assertion is true. For most veri�cation problems, this should simply be the constant function 1,

i.e., the assertion should hold under all variable assignments. Again, for a more detailed discussion

and proof of correctness of this result the reader is referred to (Seger & Bryant, 1993).

3.1 The Voss System

The Voss system is a formal hardware veri�cation system being developed at the University of

British Columbia by the second author. Originally intended as a simple front-end for a symbolic

trajectory evaluation system, the system has evolved signi�cantly. In essence, the Voss system

consists of three major components: a highly e�cient implementation of Ordered Binary Decision

Diagrams; an event driven symbolic simulator with very comprehensive delay and race analysis

capabilities; and a general purpose, purely functional language. The language, called FL, is a

strongly typed, polymorphic, and fully lazy language. Every object of type boolean in the system

is internally represented as an OBDD. Consequently, FL is a very convenient language for developing

prototype veri�cation methodologies that require OBDD manipulations. Also, since the language

supports abstract data types similar to ML (Milner, 1984), the type system can bene�cially be used

to safeguard the implementation (Gordon et al., 1979). In fact, we use exactly this feature in the

system we describe in Section 6.

To illustrate the practicality of the system, we used the built-in symbolic trajectory evaluation

procedure to fully verify a simple 32-bit microprocessor (an extended version of Tamarack III

(Joyce, 1989; Zhu et al., 1993)) and the pipelined integer unit of a 32-bit RISC architecture with a

32 registers deep register �le (the circuit is a switch-level implementation of the McMillan datapath

described in (Burch et al., 1992)). The circuits veri�ed contained around 16 000 transistors each and

the veri�cation processes required less than 45 minutes on a Sparc 10/51 processor with 64Mbyte

of memory.

Although circuits as large as 20 000 transistors modelled at the switch-level and as complex as

pipelined integer RISC cores have been veri�ed, it is clear that other methods are needed if circuits

with several order of magnitude more transistors are to be veri�ed. One method to accomplish is

the topic of the next section.

4 Inference Rules

The previous section presented the theory of trajectory evaluation, and showed how properties of a

circuit could be veri�ed. Theorem 3.3 is the key result: from �C v �A, we can infer j=M [A==�C]. In

this section, we develop other rules for inferring these results, enabling the re-use and composition

of old results, and the incorporation of domain knowledge.

Throughout the section we shall use the circuit shown in Fig. 5 as a simple example (our new

techniques are not needed for such a simple circuit, but it illustrates the theory).

4.1 Preliminary theory

Before we can introduce the theorems needed for combining veri�cation results, some technical

results will be needed.

The �rst technical lemma says that a de�ning sequence is less than the corresponding de�ning

trajectory.
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Figure 5: Circuit C2.

Lemma 4.1 If A is a de�ning formula then �A v �A.

Proof: We prove by induction on i that �i
A
v �

i

A
. For the basis, i = 0, the results follows trivially

since �0
A
= �

0
A
. Hence assume inductively that �i�1

A
v �

i�1
A

for i � 1. Since � i
A
= lub(�i

A
; Y (� i�1

A
))

it follows trivially from the properties of least upper bound that �i
A
v �

i

A
and the induction goes

through and the claim follows.

The second lemma says that a de�ning sequence of a formula A is less than a de�ning trajectory

of a formula C if and only if the de�ning trajectory of A is less than the de�ning trajectory of C.

This result will be used when �nding the equivalent of transitivity for veri�cation results.

Lemma 4.2 (�-� lemma) If A and C are trajectory formulas, then �C v �A , �C v �A.

Proof:

( By Lemma 4.1, �C v �C and the result follows by the transitivity of the partial order.

) By induction. Suppose �C v �A. Since �
0
A
= �

0
A
and �

0
C
= �

0
C
it follows trivially that �0

C
v �

0
A
.

Assume now inductively that � j�1
C

v �
j�1
A

for some j � 1. Recall that � j
C
= lub(Y(� j�1

C
); �j

C
),

and �
j

A
= lub(Y(�

j�1
A

); �
j

A
) by de�nition. To conclude that �

j

C
v �

j

A
we must show that

�
j

C
v �

j

A
and that Y(� j�1

C
)v �

j

A
. The �rst claim follows trivially from the assumption that

�C v �A. Since Y is monotonic, using the induction hypothesis yields Y(� j�1
C

)vY(� j�1
A

).

Thus Y(� j�1
C

)v lub(Y(� j�1
A

); �j
A
) = �

j

A
and hence � j

C
v �

j

A
and the result follows.

Our next lemma deals with the monotonicity imposed by the de�ning trajectory construction.

Lemma 4.3 If �A, �A, �C , and �C are the de�ning sequences and de�ning trajectories for some

trajectory formulas A and C, then �C v �A implies that �C v �A.

Proof: We prove the result by induction. Suppose �C v �A. Since �
0
A
= �

0
A
and �

0
C
= �

0
C
it follows

trivially that �0
C
v �

0
A
.

Assume inductively that � j�1
C

v �
j�1
A

for some j � 1. First recall that � j
C
= lub(Y(� j�1

C
); �j

C
),

and �
j

A
= lub(Y(� j�1

A
); �j

A
) by de�nition. Now, by assumption, �j

C
v �

j

A
. Furthermore, since Y is

monotonic, using the induction hypothesis yields Y(� j�1
C

)vY(� j�1
A

). These two facts, together

with the monotonicity of lub, show that � j
C
v �

j

A
and the result follows.
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4.2 Identity Inference Rule

Our �rst general theorem is almost trivial. However, it is useful in a number of places.

Theorem 4.4 If A is any trajectory formula then j=
M
[A==�A].

Proof: By Theorem 3.3 it su�ces to show that �A v �A. This follows directly from Lemma 4.1.

4.3 Time Shift Inference Rule

The following results allow us to move the \base time" of a result. In essence, the �nal result says

that if we can prove an assertion with all times relative to time zero, then the same result holds

with all the times relative to some time t.

Lemma 4.5 If A and C are some arbitrary trajectory formulas then

j=
M
[A==�C] implies j=

M
[NA==�NC] :

Proof: Assume j=
M
[A==�C] holds. By Theorem 3.3 it follows that �C v �A. This, together with

the de�nition of �NC
, implies that �NC

= ?�C v?�A. If we can establish that ?�A v �NA
the

claim of the theorem would follow. First, note that �0
NA

= �
0
NA

= ?. Hence, we only need to

prove that � i
A
v �

i+1

NA
for i � 0. We prove this by induction on i. For the basis, i = 0, note that

�
0
A
= �

0
A
. On the other hand, �0

A
v lub(Y(?); �0

A
) by the properties of least upper bound. However,

lub(Y(?); �0
A
) = �

1
NA

, and thus the claim holds for the basis. Now assume the claim holds for some

i � 0. First, � i
A
= lub(Y(� i�1

A
); �i

A
) and �

i+1

NA
= lub(Y(� i

NA
); �i+1

NA
). However, since �NA

= ?�A

it follows that �i+1
NA

= �
i

A
. Furthermore, by the monotonicity of Y and the induction hypothesis,

we can conclude that Y(� i�1
A

)vY(� i
NA

). These two facts, together with the monotonicity of least

upper bound, implies that � i
A
v �

i+1

NA
and the induction step goes through and the lemma follows.

Theorem 4.6 For any trajectory formulas A and C, if j=
M
[A==�C] then j=

M

�
N

t
A==�N

t
C
�
for

any t � 0.

Proof: Follows trivially from Lemma 4.5 by induction on t.

As an example of using this theorem, consider the circuit shown in Fig. 5. It is easy to see that

trajectory evaluation can be used to prove that j=
M

[B is 1==�N(D is 0)]. Applying the above

theorem allows us to deduce that if at time t B has the value 1 then at time t+ 1 D has the value

0.

Note that the converse of Theorem 4.6 is not true in general. Using the same circuit as above

we can prove that j=
M

h
N1(D is 0)==�N

2(E is 0)
i
since by time 1 node C will have the value 1.

But it is not true that j=
M
[D is 0==�N(E is 0)], since nothing is known about the value of node

C at time zero.
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4.4 Post-condition weakening and pre-condition strengthening

The following theorem is a direct equivalent of the classical post-condition weakening and pre-

condition strengthening in Hoare logic.

Theorem 4.7 Let A;C;A1 and C1 be trajectory formulas. Suppose j=
M

[A==�C]. If �A v �A1
,

then j=
M
[A1==�C]. If �C1

v �C , then j=M [A==�C1].

Proof: Suppose j=
M
[A==�C]. By Theorem 3.3 it follows that �C v �A. By the assumptions in the

claim, �C1
v �C , and thus, by transitivity, �C1

v �A. By Theorem 3.3 this implies that j=
M
[A==�C1]

and the �rst part of the claim holds. On the other hand, since �A v �A1
it follows by Lemma 4.3

that �A v �A1
. Thus �C v �A v �A1

and by Theorem 3.3 the second claim follows.

Example

Consider once again the circuit shown in Fig. 5. Trajectory evaluation can easily be used to show

that j=
M

h
(B is 0) ^ (N(B is 0))==�(N2(E is 1) ^N3(E is 1))

i
. Using post-condition weakening

we can prove j=
M

h
(B is 0) ^N(B is 0))==�N2(E is 1)

i
.

4.5 Conjunction rule

The following theorem is particularly useful when properties about separate parts of the system

have been proven and we now want to combine these results to reason about the combined part.

Theorem 4.8 Let A1; C1; A2, and C2 be trajectory formulas. If j=M [A1==�C1] and j=M [A2==�C2],

then j=
M
[(A1 ^A2)==�(C1 ^ C2)].

Proof: First, by the assumptions and by Theorem 3.3 we have �C1
v �A1

and �C2
v �A2

. This

together with the de�nition of �C1^C2
implies that �C1^C2

= lub(�C1
; �C2

)v lub(�A1
; �A2

). By

de�nition of �, �A1
v �A1^A2

. Therefore, by lemma 4.1, �A1
v �A1^A2

. Similarly, �A2
v �A1^A2

.

Thus lub(�A1
; �A2

)v �A1^A2
.

Therefore, by transitivity of the partial order, lub(�C1
; �C2

)v �A1^A2
. By Theorem 3.3 the the-

orem follows.

Example

Using the circuit of Fig. 5, we can prove j=
M
[A is 0==�N(C is 1)] and j=

M
[B is 0==�N(D is 1)].

Combining these two results using the conjunction rule gives

j=
M
[(A is 0) ^ (B is 0)==�(N(C is 1)) ^ (N(D is 1))].

4.6 Transitivity Inference Rule

This rule is analogous to the transitivity rule in logic: if A) B and B ) C then A) C. Suppose

that we have two results j=
M
[A1==�C1], and j=M [A2==�C2]. This rule informs us when we can

conclude that j=
M
[A1==�C2]. We begin with a couple of lemmas.

Lemma 4.9 Let A1; C1; A2, and C2 be trajectory formulas. Suppose j=
M

[A1==�C1] and j=
M

[A2==�C2]. If �A2
v �C1

then j=
M
[A1==�C2].
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Proof: By the assumptions in the theorem and by Theorem 3.3 it follows that �C2
v �A2

and that

�C1
v �A1

. Since, by assumption �A2
v �C1

, it follows from Lemma 4.3 that �A2
v �C1

. Furthermore,

since �C1
v �A1

it follows, by Lemma 4.2, that �C1
v �A1

. Hence, we have �C2
v �A2

v �C1
v �A1

,

and therefore by Theorem 3.3 that j=
M
[A1==�C2].

Theorem 4.10 Let A1; C1; A2, and C2 be trajectory formulas. Suppose j=
M
[A1==�C1] and j=M

[A2==�C2]. If �A2
v lub(�A1

; �C1
) then j=

M
[A1==�C2].

Proof:

1. By de�nition �A1^C1
= lub(�A1

; �C1
).

2. By Theorem 3.3, �C1
v �A1

. By Lemma 4.1, �A1
v �A1

. Hence lub(�A1
; �C1

)v �A1
. So,

�A1^C1
v �A1

; consequently by Lemma 4.2. �A1^C1
v �A1

3. By assumption �A2
v lub(�A1

; �C1
). Therefore, by Lemma 4.2, �A2

v �A1^C1
.

4. By Theorem 3.3, �C2
v �A2

.

By transitivity of the partial order, �C2
v �A1

, and the result follows by Theorem 3.3.

Example

Consider once again the circuit shown in Fig. 5. We can use trajectory evaluation to show that

j=
M

h
B is 0==�N2(E is 1)

i
and that j=

M

h
N2(E is 1)==�N3(F is 0)

i
. Using the transitivity rule,

we can conclude, without having to compute anything else that j=
M

h
B is 0==�N3(F is 0)

i
.

4.7 Specialisation Inference Rule

Specialisation is a rule which allows the generation from a general form of a trajectory assertion

more specialised versions. For example from [M is a ==� O is 2*a] we may wish to generate [M

is 1 ==� O is 2*1] or [M is a+b ==� O is 2*(a+b)]. There are two types of specialisation |

a simple substitution, and a more general specialisation. We discuss each in turn.

It should be remembered that symbolic trajectory assertions are universally quanti�ed by the

free Boolean variables which appear in them. Usually, it is convenient to omit the quanti�cation;

however, when discussing substitutions, explicitly quantifying the assertion makes the dependencies

clearer.

4.7.1 Simple substitution

De�nition 4.1 A simple substitution � is a function from a set of variables, ~I, to expressions

over constants and these variables, E~I .

Theorem 4.11 (Simple Substitution Theorem) Suppose 8~I: j=
M

h
A(~I)==�C(~I)

i
, and � :

~I �! E~I is a simple substitution. Then 8~I: j=
M

h
A(�(~I))==�C(�(~I))

i
.
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Proof: To prove 8~I: j=
M

h
A(�(~I))==�C(�(~I))

i
, it su�ces to show that j=

M
[A(�(�))==�C(�(�))]

for every � 2 �. Consider an arbitrary assignment �. Let �0 = � � �. Note that �0 2 �. On

the other hand, 8~I: j=
M

h
A(~I)==�C(~I)

i
implies that for every assignment �

00 2 � we have

j=
M
[A(�00)==�C(�00)]. In particular, j=

M
[A(�0)==�C(�0)] and since � is arbitrary, the claim fol-

lows.

As an example of where this might be useful, the following may have been proven about the circuit

shown in Fig. 5: j=
M
A is a==�N2(E is :a) and j=

M
N2(E is b)==�N3(F is :b). Transitivity

cannot be used here since it is not the case that �
N

2
(E is b) v �

N
2
(E is :a). However, if :a is

substituted in for b throughout the second theorem, then transitivity can be used.

For notational convenience, we make the following de�nition:

De�nition 4.2 �(A(~I)) = A(�(~I)).

Theorem 4.12 (\When" Theorem) Let j=
M

[A==�C] and let E be any Boolean expression

over some variables ~I. Then 8~I: j=
M
[E ! A==�E ! C].

Proof: Consider any assignment � 2 �. When E(�) = 1, the result follows immediately. When

E(�) = 0, the result follows since the de�ning trajectory of the consequent is the bottom sequence

and thus less than everything.

4.7.2 Specialisation

Substitution by itself is too coarse a transformation method. Using our example circuit, let T1 =

[B is a==�N2((a ! (E is 0)) ^ (:a) ! (E is 1))] and T2 = [N2(E is b)==�N3(F is :b)]. We

can prove using Voss that j=
M
T1 and j=

M
T2. Suppose we want to \modify" T2 so that we can

use transitivity between T1 and T2. Any single substitution here into T2 will lose us information so

that the substituted version of T2 will not be of help.

A specialisation gives more �ne-grained control over the modi�cation of a trajectory assertion.

De�nition 4.3 Let �̂ = [(g1; �1); : : : ; (gn; �n)], where each gi a Boolean expression, and each �i is

a substitution. If C is a trajectory formula then de�ne �̂(C) = ^n1 (gi ! �i(C)).

A specialisation is a list of pairs, each pair consisting of a boolean expression (the guard) and a

simple substitution. To use the specialisation, for each guard-substitution pair, we use the substi-

tution, and then qualify the antecedent and consequent of the trajectory assertion by restricting

the domain of all variables to when the guard is true. To obtain the specialised assertion, all such

quali�ed substitutions are conjoined. In this example, the specialisation [(a; [(b; 0)]); (:a; [(b; 1)])]

could be used to specialise T2, and we would obtain the convenient result

T
0

2 = N2((a! (E is 0)) ^ ((:a)! (E is 1)))==�(N3((a! (F is 1)); ((:a)! (F is 0)))):

By the theorem below, we will have j=
M
T
0
2, and now will be in a position to use transitivity between

T1 and T
0
2.
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Theorem 4.13 (Specialisation Theorem) Let �̂ = [(g1; �1); : : : ; (gn; �n)] be a specialisation,

where each gi is a Boolean expression, and each �i is a simple substitution. If j=
M
[A==�C] then

j=
M
[^i(gi ! �i(A))==�^i (gi ! �i(C))]:

Proof: j=
M
[A==�C] implies that j=

M
[�i(A)==��i(C)] by the simple substitution theorem. There-

fore, j=
M
[gi ! �i(A)==�gi ! �i(C)] (when lemma), and therefore, j=

M
[^i(gi ! �i(A))==� ^i

(gi ! �i(C))] (repeated use of the conjunction theorem).

4.8 Overview

In this section, we have completed the proof of the inference rules which our theorem prover

described in section 6 uses. The basic rules of inference are:

1. VOSS: Given a trajectory assertion, use symbolic trajectory evaluation to show that it is

valid.

2. Time-shifting

3. Transitivity

4. Post-condition weakening

5. Pre-condition strengthening

6. Specialisation

7. Conjunction

The soundness of rule 1 was shown in section 3, and the soundness of the remaining rules were

shown in this section.

For a practical tool, we need something more. For example, we may have j=
M
[A==�B] and

j=
M
[C==�D]. To derive a useful result, we may need to time-shift the former, specialise the latter,

and use transitivity. While being able to manually specify the specialisations and time-shifting is

important, for a useful tool we would like as much of this to be done automatically. Although

complete automation is not possible, we have made progress in this regard. The theorem prover

therefore provides additional rules of inference which use the basic ones as steps. The soundness of

these compound rules follows from the soundness of the basic rules.

5 Boolean and other domains

While in principle the theory of symbolic trajectory evaluation can be extended to any domain, in

practice symbolic trajectory evaluation is applied to more limited domains. In the Voss system,

the underlying domain is a quaternary system f0; 1;>;?g, and the lattice for the state space is an

appropriate cross-product of this lattice.

This can make specifying the behaviour of systems tedious and error-prone: it becomes di�cult

to see that the formulas written down accurately represent our intuitive understanding of the
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system. For example, to verify a circuit which adds two numbers together, the speci�cation must

be given in terms of the signals which di�erent bits in the circuit have, rather than in terms of

integers being added together.

Further, BDDs are the sole means of checking properties. In practice, this is a signi�cant

problem. In proving properties, it is not uncommon to need domain-speci�c properties such as

the commutativity of integer multiplication (i.e. is xy = yx, where x and y are integers?). This

example is a simple result, but cannot be checked using BDDs due to the inherent limitations of

BDDs.

Therefore there are two reasons to raise the level of abstraction: to make the speci�cation of

properties easier and more understandable; and to use domain-speci�c knowledge in proofs. Two

possible ways of raising the level of abstraction are presented below.

5.1 Node/value mapping

The solution we have adopted is to provide library routines which simplify the process of speci�ca-

tion. Speci�cation is still at the bit-level, but the library routines provide a higher-level interface

to do this. For example instead of saying:

(N7 IS a7) & (N6 IS a6) & (N5 IS a5) & (N4 IS a4) &

(N3 IS a3) & (N2 IS a2) & (N1 IS a1) & (N0 IS a0)

we can write

N ISINT a

There are two issues. First, there is a need to refer to elements of the circuit being veri�ed. Instead

of referring individually to members of a group of nodes, we may �nd it convenient to name them

as a group, and thus view the system at a more abstract level. Or, it may be appropriate to refer to

nodes with more meaningful names. Thus, the �rst part of mapping is to map a logical node name

to a physical node or a vector of physical nodes. The user of the system must do this by providing

the mapping from logical to physical names. This part of the mapping is purely syntactic sugar,

and it is important for the veri�er to realise that the veri�cation really is in terms of the physical

nodes, not the logical nodes.

The drawback of this syntactic mapping is that the user of the system must clearly understand

what the physical level of the system looks like, and how the translation works. The user must give

the mapping from each integer node to the b boolean nodes which represent it, and so on. The

library routines do not hide the complexity of the underlying circuit, rather they provide a way

in which the complexity can be managed. Whatever the appearance that the library routines and

pretty-printing gives, it needs to be emphasised that all speci�cations and all symbolic trajectory

evaluation results are in terms of the state of the physical nodes.

The second issue is being able to refer to values in terms of concepts such as Booleans and

integers, rather than as bits or bit-vectors. To do this, we need a proper semantic mapping between

the values we represent at the \higher" level, and their meaning given by bits or bit-vectors. This

semantics is given by a mapping routine. Using this mapping, it is possible to specify values in a

more abstract way, and incorporate domain-knowledge into the system in a exible yet rigorous

way.
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In the HOL-Voss system (Joyce & Seger, 1993) it was shown how the HOL theorem prover could

be linked to the Voss system in a rigorous way. There, a set of library routines was formally proven

to be correct. For example, we can be sure that bv(x+ y) = bv(x)add bv(y), where bv is the library

routine which translates from integers into bit-vectors, and add is addition de�ned on bit-vectors.

Knowing this (and similar properties of bv) allows us to use properties of integers (proven in HOL)

without having to construct the bit-vectors for the expressions. The proof of the correctness of bv

assures us that given an equation proven true in HOL, were we to construct BDDs for both sides

of the equation, the two BDDs would be the same.

Similarly, in the present system we have a mapping function which gives the semantics of integer

and boolean expressions in terms of bits and bit-vectors (although we have not gone through the

exercise of performing a mechanically checked correctness proof as was done in HOL-Voss). Domain

knowledge is provided by a simple integer theorem-prover and decision procedures for integers. This

results in a sound, practical method for expressing integer and boolean values, and using domain

knowledge e�ectively. We explore the strengths and weaknesses of this approach in the conclusion.

The following example illustrates the advantage of this approach

N ISINT a*b;

� Instead of referring to a number of bit-level nodes individually, we can refer to them as a

group.

� Multiplication is not possible to represent e�ciently using BDDs. Here we have a practical

way of doing the representation which is sound in principle.

� We can use domain knowledge (for example properties of natural numbers) in our proofs.

Examples will be seen later.

5.2 Mapping between domains

The second approach to raising the level of abstraction is to allow mapping between domains.

Speci�cation is done in one domain, and veri�cation in another. Abstraction occurs when details

present in the one domain are not present in the other. Abstraction is an important tool in making

veri�cation more e�cient, and there have been a number of proposals for doing so (Donat, 1993;

Long, 1993; McIsaac, 1993). There is an important distinction: we are proposing abstraction as a

way to make veri�cation pleasanter for the veri�er, rather than more e�cient.

In terms of the work we present in this paper there is no clear advantage in performing domain

mapping over performing the simpler mapping. There are a number of open issues in how this

form of abstraction can be speci�ed, used, and automated. In general, we believe that besides

performance bene�ts discussed elsewhere (Long, 1993; McIsaac, 1993), this may lead to more

secure systems since the proofs will be done in domains closer to users' intuitive understanding of

systems.

6 Practical Tool

The theory described in the preceding two sections has been implemented, and integrated with Voss

into a new system. This tool is a theorem prover with which a user can prove properties of circuits
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speci�ed either in VHDL or netlist form. The veri�cation proof is an FL program which uses the

theorem prover at each step. The ability to use FL as a script language gives great versatility and

power.

In this section we describe the inference rules which the theorem prover provides. There are a

number of small examples. More extensive examples are given in the next section.

We use the term \trajectory assertion" to denote any claim made about the circuit, and the

term \theorem" to denote a claim which has been proven valid by using the rules of inference.

6.1 Use of tool

FL is used as the script language for proofs. The system has de�ned abstract data types for

representing and manipulating trajectories and the appropriate values (like integers).

Trajectory assertions are expressed as an abstract data type using the syntax below.

Trajectory ::=

string IS Value |

Trajectory WHEN BoolValue |

Trajectory FROM IntValue TO IntValue |

Trajectory _&_ Trajectory

Value ::= INT IntValue | BOOL BoolValue

Note that the expression v WHEN c is used to represent c! x. The shorthand Node ISINT x can

be used in place of Node IS (INT x), and the shorthand Node ISBOOL x can be used in place of

Node IS (BOOL x). Timing is expressed using FROM and TO. Saying T FROM s TO f is the same

thing as saying: Ns
T ^Ns+1

T : : :^Nf�1
T .

The two data types supported are integer and boolean expressions:

int_expr = ' int | IVar string | '+ int_expr int_expr |

'- int_expr int_expr | '* int_expr int_expr |

DIV2 int_expr int_expr | BWID int_expr int_expr |

BIT2 int_expr int_expr | POW2 int_expr;

bool_expr=

Var string | CTrue | CFalse |

And bool_expr bool_expr | Or bool_expr bool_expr |

Xor bool_expr bool_expr | Not bool_expr |

'> int_expr int_expr | '= int_expr int_expr |

'< int_expr int_expr | --> bool_expr bool_expr;

DIV2 x n represents x=2n. BWID n x represents the n lower order bits of x, viz. x mod 2n. POW2 n

is 2n. BIT2 n x is the n-th bit of x, viz. (x mod 2n)=2n�1.

Trajectory assertions are of the form:

AssertionPair ::= Trajectory ==>> Trajectory;
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Using this syntax, we can represent trajectories and trajectory assertions. The trajectory asser-

tions can be veri�ed and generated using only using the inference rules described below. This style

of system is copied from the later LCF systems, where ML was the meta-language for interacting

with the system (Paulson, 1987). In HOL (which grew out of LCF, and uses ML too), only HOL's

inference rules can be used to generate theorems, but the ML program is used to order and combine

the proof steps (Gordon, 1987; Gordon, 1993).

The inference rules return objects of type Theorem. Besides the inference rules, only PrThm

(pretty printing) can manipulate these objects. This limitation guarantees the soundness of the

results; by restricting the operations allowed on this type of object, we can ensure that the system

is safe, while still having the power and exibility of a fully-programmable script language.

Abstraction is promoted by allowing the speci�cation to be given either in terms of integers or

Booleans, and allowing the user to specify a correspondence between logical and physical nodes.

To incorporate domain knowledge, the user can provide a theory which is a list of properties about

integers. Each property is given as a pair of expressions, such a pair stating that the two expressions

are equal. Properties can be proven using a special-purpose integer theorem-prover built for this

tool. Domain knowledge is also supported through a set of simple normalisation routines which

try to keep integer and boolean expressions in a close to canonical form. The system can use

the domain information in two ways. Where the normalisation is successfully done, comparison

two expressions can be done by simply performing a syntactic check between the two expressions.

Where that fails each property is used in turn by matching the pair of expressions in the property

with the pair of expressions we wish to compare. If these matchings succeed then a positive answer

can be given, otherwise the comparison fails.

An issue beyond the scope of the paper is the comparison (in the information ordering) of tra-

jectories. Since BDDs are no longer used to represent trajectories, other algorithms were developed

to compare trajectories.

6.2 Primitive inference rules

The primitive inference rules are implementations of the inference rules described in Section 3. The

implementation of these rules, together with basic routines such as trajectory comparison, form the

core of the system, the trusted part of the system.

6.2.1 The Identity rule

Form of rule: IDENTITY trajectory

This rule takes a trajectory, T and returns the theorem [T==�T ].

6.2.2 The Voss inference rule

Form of rule: VOSS varmap (Ant, Con)

This rule takes a trajectory assertion (an antecedent, consequent pair), and veri�es this assertion by

using Voss to check that the circuit is consistent with this assertion. The antecedent and consequent

must be translated into Voss format. This implies that integer expressions must be encoded as bit

vectors. varmap speci�es the relationship between the domain variables in the antecedent and

consequent and the underlying bit-vector variables used in the encoding. This mapping is needed

because the performance of BDD-based approaches depends on the variable ordering used. The
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mapping is checked automatically for consistency, so the correctness of the rule is not a�ected if

a wrong ordering is given, although the performance may su�er.4 One of the big advantages of

breaking down the proof into di�erent parts is that the appropriate variable orderings can be used

for each part. Where the entire circuit is veri�ed as a whole, it is sometimes di�cult or impossible

to �nd a variable ordering which allows e�cient veri�cation.

6.2.3 Time shifting

Form of rule: SHIFT Base t

This takes a valid theorem, and a non-negative integer t, and derives a new rule using the time

shift inference rule.

For example to derive the assertion: [N ISINT a FROM 10 TO 20 ==�M ISINT 2*a FROM

20 TO 30], the following code could be used.

let A1 = N ISINT a FROM 0 TO 10 in

let C1 = N ISINT ('2 '* a) FROM 10 TO 20 in

let thm1 = VOSS varmap (A1, C1) in

SHIFT thm1 10;

6.2.4 Conjuncting two valid trajectory assertions

Form of rule: CONJUNCT Theorem1 Theorem2

This rule takes two valid theorems [A1==�C1] and [A2==�C2] and returns a new valid trajectory

assertion [A1 ^A2==�C1 ^ C2].

6.2.5 Precondition strengthening and Postcondition weakening

Form of rules: PRESTRONG theory Theorem NewAnt, POSTWEAK theory Theorem NewCon

PRECONDITION takes a theory (which may be empty) a basis theorem [A==�C] and a new antecedent

A
0. It then checks whether �A v �A0 , and if so returns a new theorem [A0==�C], or otherwise fails.

To answer the question of whether �A v �A0 , the theory may be used to do testing.

POSTCONDITION is an analogous rule for postcondition weakening.

6.2.6 Transitivity

Form of rule: TRANS theory Thm1 Thm2)

Transitivity is one of the most important rules and is often used, either directly or indirectly. TRANS

takes a theory, and two valid theorems [A1==�C1] and [A2==�C2]. It checks (possibly using the

theory) whether �A2
v lub(�C1

; �A1
), and if so returns the theorem [A1==�C2]; if not, it fails.

6.2.7 Specialisation

Form of rule: SPECIAL Theorem subfn

This takes a theorem and a specialisation, and returns the theorem, specialised.

4We provide library routines for giving the variable ordering. In this paper, we do not discuss or show this any

further as this is a really technical detail.
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A specialisation is a list of quali�ed substitutions. A quali�ed substitution is a pair consisting

of a boolean expression which speci�es when the substitution is valid, and a simple substitution.

A simple substitution is pair consisting of a substitution list for Booleans and a substitution list

for integers. A substitution list is a list of variable name, expression pairs which shows for each

variable what expression should be substituted for it.

As an example of where specialisation may be useful, consider a system comprising a selector

and an inverter. We can prove

T1 = (N1 ISINT a) _&_ (N2 ISINT b)

==>>

(P ISINT a WHEN (a '> b)) _&_ (P ISINT b WHEN (Not(a '> b)));

about the selector, and we can prove

T2 = (P ISINT d) ==>> (Q ISINT (Not d))

about the inverter. We would like to put these two results together, but cannot in the present form.

Simple substitution of a for d in T2 would not help since the antecedent of the new theorem still

would not be less (in the information ordering) than the consequent of T1. What we want to do is

to substitute a for d when a > b, and substitute b for d otherwise. In the notation developed here,

the appropriate specialisation is [(a=d; a > b); (b=d;:a > b)]. For each specialisation, a substitution

is done, and a quali�cation is made. So in this case we would get two theorems from T2:

T2_1 = (P ISINT a WHEN (a '> b)) ==>> (Q ISINT (NOT a) WHEN (a '> b));

T2_2 = (P ISINT b WHEN (NOT(a '> b)))

==>> (Q ISINT (NOT b) WHEN (NOT(a '> b)));

Then using conjunction, we get

(P ISINT a WHEN (a '> b)) _&_ (P ISINT b WHEN (NOT(a '> b)))

==>>

((Q ISINT a WHEN (a '> b)) _&_ (Q ISINT b WHEN (Not(a '> b))));

which is what we want5 since the antecedent of this is related to the consequent of T1. Using

transitivity results in

T1 = (N1 ISINT a) _&_ (N2 ISINT b)

==>>

((Q ISINT a WHEN (a '> b)) _&_ (Q ISINT b WHEN (Not(a '> b))));

6.2.8 Automatic Specialisation rule

Form of rule: AUTOSPTRANS goal theoremList

This rule is an implementation of the combination of the simple substitution theorem (Theo-

rem 4.11) and the transitivity theorem (Theorem 4.10). It takes a goal trajectory assertion with an-

tecedent A(V ) and consequent C(V ), and a list of proven theorems j=
M
[A1(V )==�C1(V )] ; : : : ; j=M

[An(V )==�Cn(V )], and attempts to prove j=
M
[A(V )==�C(V )].

5As can be seen, specialisation is not primitive in that it could be obtained by implementing a substitution rule

and the \when theorem" and using these two new rules and the conjunction rule. It is convenient, however, to

implement it this way.
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If 8V:�A1(�1(V )) v �A(V ), then, by precondition strengthening, 8V: j=
M

[A(V )==�C1(�1(V ))].

Further, if 8V:�A2(�2(V )) v lub(�A1(�1(V )); �C1(�1(V ))), then by the transitivity rule, we have 8V: j=
M

[A(V )==�C2(�2(V ))].

If we show for each i = 3; : : : ; n that 8V:�Ai+1(�i+1(V ))
v lub(�Ci(�i(V ))

; �Ai(�i(V ))
), then we shall

have using transitivity that 8V: j=
M
[A(V )==�Cn(�n(V ))]. Finally using post-condition weakening,

if 8V:�C(V ) v �Cn(�n(V )), then we shall have 8V: j=
M
[A(V )==�C(V )]. Therefore, to conclude this,

we have to �nd substitutions �1; : : : ; �n for which the speci�ed relationships hold.

Putting this all together formally we need to test whether, B holds, where

B = 9�1; : : : ; �n:8V [�A1(�1(V )) v �A(V ) AND

�Ai+1(�i+1(V )) v �Ci(�i(V ))^Ai(�i(V )); 8i 2 f1; : : : ; ng AND

�
C(V ) v �

Cn(�n(V ))]

Now, suppose there exists a f�1, such that �A(V ) v �
A1(e�1), then if we de�ne �1(V ) = f�1, we shall

have that �A(V ) v �A1(�1(V )). We shall get similar results if we de�ne the other �i correspondingly.

The converse of this holds too. Therefore, if we de�ne B0 by

B
0 = 8V:9f�1; : : : ;f�n:[�A1(e�1) v �A(V ) AND

�
Ai+1(g�i+1) v �

Ci(e�i)^Ai(e�i); 8i 2 f1; : : : ; ng AND

�C(V ) v �
Cn( e�n)]

then B () B
0.

B
0 can be checked automatically using BDDs. It can be encoded as an FL fragment using the

existential quanti�ers. Executing this fragment then determines whether the substitutions exist or

not. The existence of the substitutions implies that [A==�C] is a valid theorem. This does not

tell us what the substitutions are, but we do not have to know what the substitutions are to know

whether the result is valid. This is a pleasing result in that it shows the power of BDDs. It is also

a powerful result, since it is not limited by the same constraints as the SPTRANS rule below is.

However, it is likely to be very expensive in practice, particularly for non-boolean domains.

6.3 Additional inference rules

The rules described so far are all that are strictly necessary to implement the rules described in

chapter 4. However, to be really useful, they should be packaged in some way. Suppose we have

j=
M
[A1==�C1] and j=M [A2==�C2]. Now it may be that before being able to use transitivity to

deduce that j=
M

[A1==�C2] that either the �rst or the second trajectory assertion needs to be

time-shifted. Or, the second trajectory assertion may need to be specialised. The rules described

before allow the user to specify the necessary time-shifting and/or specialisation. However, it would

be better for the system to be able to derive these changes automatically. This is what the rules

below do. These rules are not core rules in that the soundness of the results does not rely on their

correct implementation. All these rules use the primitive rules to perform inference. Their utility

is that they are packaged with heuristics which \guess" appropriate specialisations etc. If these

heuristics are incorrect, or not powerful enough, it may not be possible to prove results which are

true; it will not be possible to prove false results.
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6.3.1 Specialise/Transitivity rule

Form of rule: SPTRANS theory Theorem1 Theorem2

This rule takes a theory, and two theorems j=
M

[A1==�C1] and j=M [A2==�C2]. It then tries

to derive a specialisation �̂ such that �̂(A2) v lub(�A1
; �C1

), and if successful it returns j=
M

[A1==��̂(C2)]. Unlike AUTOSPTRANS, SPTRANS is not a direct implementation of the the-

ory from Section 4; rather it uses TRANS and SPEC for inferences.

A description of the algorithm used to derive the specialisation is beyond the scope of the

paper, but essentially, it matches the antecedent of the second theorem against the consequent of

the second. The process is analogous to uni�cation. The example given in Section 6.2.7 illustrates

why we wish to do this. This rule is the combination of the TRANS and SPEC rules, packaged

with a heuristic to �nd the appropriate specialisation.

A simple example is given here, and a more complicated one in the next section. Suppose the

�rst theorem is [A ==>> (N ISINT c WHEN d)] and the second theorem is [(N ISINT x) ==>>

C]. What is the transformation which will make the antecedent of the transformed second theorem

less than the consequent of the �rst? In this case, �̂ = [([x �! a + b]; e); ([x �! c]; d)] is the

appropriate transformation, since it is trivially true that (N ISINT (a+b) WHEN e) & (N ISINT

c WHEN d) is less than itself. Hence, this rule would derive as a theorem j=
M
[A==��̂(C)].

6.3.2 Automatic time alignment

Form of rule: AUTOTIME theory Theorem1 Theorem2

This rule takes a theory, and two valid theorems j=
M
[A1==�C1] and j=M [A2==�C2]. Using the

theory, the rule determines whether there exists a suitable time shift for the second theorem so

that transitivity can be used between the two theorems. Recall that theorems can only be shifted

forward in time. So, if the algorithm returns a negative time-shift, we cannot shift the second

theorem backwards in time; rather we must shift the �rst theorem forwards in time. Formally,

the rule seeks an integer t such that �
N

t
A2

v �C1
. If such a t exists, then j=

M
[A1==�Nt

C2]

(or j=
M

[N�t
A1==�C2] if t is negative) is returned as a valid theorem. Note that the remark

after Theorem 4.6 explains why we have to treat the cases of t being positive and negative as

separate cases: while forward-shifting a theorem yields a valid theorem, backward shifting does not

necessarily do so. A description of the algorithm that �nds the time-shift is beyond the scope of

this paper.

This rule will �nd a time-shift if it exists, subject to the limitations of the domain knowledge

given in the theory.

6.3.3 Combined time-aligning and specialising

Form of rule: ALIGNSUB theory Theorem1 Theorem2

This rule takes a theory, and two theorems, j=
M
[A1==�C1] and j=M [A2==�C2]. The rule then

attempts to �nd a time shift t and a specialisation �̂ such that j=
M
[A1==��̂(Nt

C2)], if t � 0, or

j=
M
[N�t

A1==��̂(C2)], if t < 0.

In general, for a given pair of theorems there could be a number of di�erent time-shifts and

specialisations which could be used to combine the theorems. To enumerate all the possibilities

would be too computationally expensive, therefore a simple approach is taken. The �rst step is

to guess a time-shift which might be suitable. This is done based on examining when nodes are
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de�ned, but ignoring how they are de�ned. Depending on whether the time-shift is negative or

positive, the appropriate theorem is time-shifted. Although we cannot be sure that the time-shifted

theorem will be useful in the next step, the time-shifted theorem is valid. The next step is to apply

the SPTRANS rule to try to �nd an appropriate specialisation. This implies that the ALIGNSUB

rule is safe, since if the SPTRANS rule �nds an appropriate specialisation, a valid theorem will be

returned, and if it cannot, no theorem will returned.

7 Examples

The �rst three examples are contrived examples to show the use of some of the inference rules. The

fourth example shows the complete veri�cation of a 64-bit multiplier.

7.1 Simple example 1

The �rst example illustrates the use of the SPTRANS rule, allowing the two trajectory assertions

to be composed by appropriately specialising the second assertion, and then using transitivity. For

A>B 

M 
U 
X 

A 
B 

C 

D 

E 

F 

Figure 6: Circuit to illustrate use of the SPTRANS rule.

the �rst example, consider the circuit shown in Fig. 6. The overall purpose of the circuit is to take

in three numbers x, y and z on nodes A, B and C, and produce z + max(x; y) on F . There are

three parts to the circuit. The �rst part compares the value on A with the value on B and produces

true on D if the number at A is bigger than the number on B and produces false otherwise. The

second part of the circuit takes the values at A, B and D and produces at node E the value at A if

D is set to true, and produces B otherwise. The third part of the circuit takes the values at node

E and C, adds them together, and produces the sum at node F . The proof script is below.

The theorem T1 is the proof that the comparator part of the circuit works. The theorem T2 is

the proof that the selector part of the circuit works. The theorem T3 is the proof that the adder

part of the circuit works. The proof of the correctness of the entire circuit contains two steps. First

we use SPTRANS using T1 and T2. This results in specialising T2 (substitute i � j for a) and

then using transitivity to generate G1. SPTRANS is then used again, combining G1 and T2. The

specialisation used on T3 is [([("k"; i)]; i > j); ([("k"; j)];Not(i > j))]. This shows quite nicely the

power of general specialisation. Essentially it allows the proof of two cases to be done in one step.
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// Information about BDD variable ordering omitted

let list1 = ....

let varmap1 = ....

let varmap2 = ....

let GlobalInput = ((A ISINT i) _&_ (B ISINT j) _&_ (C ISINT k)) FROM 0 TO 100;

let A1 = GlobalInput;

let C1 = D ISBOOL (i '> j) FROM 10 TO 100;

let T1 = VOSS varmap1 (A1 ==>> C1);

let A2 = GlobalInput _&_ ((D ISBOOL a) FROM 10 TO 100);

let C2 = GlobalInput _&_

((E ISINT i WHEN a) _&_ (E ISINT j WHEN (Not a)) FROM 20 TO 100);

let T2 = VOSS varmap2 (A2 ==>> C2);

let A3 = E ISINT l _&_ C ISINT k FROM 20 TO 100;

let C3 = FNode ISINT (l '+ k) FROM 50 TO 100;

let T3 = VOSS varmap1 (A3 ==>> C3);

let proof =

let G1 = SPTRANS [] T1 T2 in

let G2 = SPTRANS [] G1 T3 in

G2;

Note that the veri�cation of each component is done in the presence of the rest of the system,

which means that any unintended interference can be detected. By considering the state of the

rest of the system as unknown (i.e. having the nodes set to X) we can perform the component

veri�cation e�ciently and still be sure that no matter what the rest of the system does we shall

obtain the desired behaviour. This is a very useful property, since much of the work involved

in other compositional approaches goes into ensuring that each component works correctly in all

environments.

7.2 Simple example 2 { hidden weighted bit

The hidden weighted bit problem was one of the �rst to be proven to need exponential space to

verify using traditional BDD-based methods (Bryant, 1991). A circuit for an 8-bit version is shown

in Figure 7.

In this version, the global input x1; : : : ; xn is copied to two bu�ers. The Counter part of the

circuit computes the number of 1's on the input (i.e. �n

1xi). The Chooser part of the circuit takes

the number j output on CountNode (the number is in binary form, hence if there are n input lines,

CountNode comprises blg nc + 1 lines), and outputs the value xj on Result and 0 on Error when

j > 0. If j = 0 then Error is set to 1.
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Figure 7: Circuit for the 8-bit hidden weighted bit problem

Intuitively, a veri�cation of this circuit as a whole takes exponential time and space (in n)

because the output value on CountNode, in terms of the boolean variables, is so complicated that

no suitable variable ordering can be found so that the Chooser part of the circuit can be veri�ed

e�ciently. The virtue of the the compositional approach is clearly illustrated: by decoupling the

veri�cation of the two parts of the circuit, we can choose suitable variable orderings for both parts

of the circuit; moreover, it is more e�cient to verify the circuit for an arbitrary input j (which only

needs very simple BDDs to represent it), and then substitute for j the actual input, than to verify

for the actual input (which needs more complicated BDDs to represent it).

The proof script is given below. There are �ve steps in the proof.

� The proof the copying of the input to the bu�er is correct | Bu�erTheorem.

� The veri�cation Counter part of the circuit | CounterTheorem.

� The composition of Bu�erTheorem and CounterTheorem. This is done in two steps: �rst,

the AUTOTIME rule is used to shift the CounterTheorem along so that transitivity between

Bu�erTheorem and CounterTheorem can be used; second, conjunct this with Bu�erTheorem

so that we can use the value of Bu�er2 at a later stage. Call the result of this stage1.

� Veri�cation of the Chooser part of the circuitry | ChooserTheorem.

� Composition of stage1 and ChooserTheorem by using the ALIGNSUB rule. This shifts

ChooserTheorem by an appropriate amount and specialises this so that transitivity can be

used between stage1 and ChooserTheorem.

//BDD variable ordering information omitted...

let varmap1 = ....

// Stage (1) Does the buffer pat of the circuit work

let BufferTheorem = VOSS varmap1

((InputNode ISINT x FROM 0 TO 1000)

==>> ((BufferNode1 ISINT x) _&_ (BufferNode2 ISINT x) FROM 5 TO 1000));

// Stage (2) Does the counter part of the circuit work
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let count_of num =

letrec add_bits x num =

x = N => BIT2 ('N) num

| (BIT2 ('x) num) '+ (add_bits (x+1) num)

in

add_bits 1 num;

let CounterGoal = (BufferNode1 ISINT x FROM 0 TO 990) ==>>

(CountNode ISINT (count_of x) FROM 400 TO 990);

let CounterTheorem = VOSS varmap1 CounterGoal;

// Stage (3)

let stage1 = CONJUNCT BufferTheorem

(AUTOTIME [] BufferTheorem CounterTheorem);

// Stage (4) Prove the chooser part

let seg x = BWID ('Nbit) x;

let kthBit k var = (BIT2 ('k) var) '= (BIT2 ('1) ('1));

letrec case_analysis var j =

letrec case k =

k=1 => Result ISBOOL (kthBit k var) WHEN (j '= (seg ('k)))

| (Result ISBOOL (kthBit k var) WHEN (j '= (seg ('k))))

_&_ (case (k-1) )

in

case N;

let ChooserGoal=

((CountNode ISINT j) _&_ (BufferNode2 ISINT x) FROM 0 TO 400)

==>>

(((case_analysis x j) _&_ (Error ISBOOL (seg('0) '= j)))

FROM 300 TO 400);

let ChooserTheorem = VOSS varmap2 ChooserGoal;

// Combined proof

let Proof = ALIGNSUB [] stage1 ChooserTheorem;

Results: We veri�ed the circuit for di�erent values of n (4, 8, 16, 32, 64, 128). For these values,

veri�cation takes roughly cubic time (and importantly, space was not an issue). The veri�cation of

the 128 bit problem took just under 27 minutes. Compared to this, veri�cation of the system as

one unit was not possible for n = 64 or larger.

7.3 Simple example 3
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Figure 8: Circuit to illustrate use of AUTOSPTRANS rule.

This example shows o� the AUTOSPTRANS rule. Consider the circuit shown in Fig. 8. Assume

that the circuit we are verifying consists of two parts. We prove of the �rst part (using Voss) that if

N has the value a, and M has the value b then O produces the value a_ b. We prove of the second

part that if O takes the value :(c^ f) then P produces the value c^ f . Our overall goal is to show

that if N has the value a, and M has the value b then P produces :(a _ b). The AUTOSPTRANS

rule can be used to combine the primitive results. The existential quanti�cation described in the

previous section computes that there is indeed an appropriate substitution (in this case :a for c,

and :b for f . Note also that the BDDs cope very well with di�erent syntactic expressions for the

same semantic object. The proof is expressed as follows:

let list1 = .... bdd ordering omitted

let list2 = ....

let A1 = (N ISBOOL a) _&_ (M ISBOOL b) FROM 0 TO 10;

let C1 = O ISBOOL (a Or b) FROM 4 TO 10;

let T1 = VOSS list1 (A1 ==>> C1);

let A2 = O ISBOOL (Not(c And f)) FROM 4 TO 10;

let C2 = P ISBOOL (c And f) FROM 8 TO 10;

let T2 = VOSS list2 (A2 ==>> C2);

let A = (N ISBOOL a) _&_ (M ISBOOL b) FROM 0 TO 10;

let C = P ISBOOL (Not(a Or b)) FROM 8 TO 10;

let GoalThm = AUTOSPTRANS (A ==>> C) [T1, T2];

Executing PrThm GoalThm; results in the appropriate theorem:

|- [N is (a from 0 to 10)]

[M is (b from 0 to 10)]

==>>

[P is (NOT((a OR b)) from 8 to 10)]

7.4 Verifying a multiplication circuit

Properties concerning multiplication cannot be veri�ed using BDD based tools alone, since the

representation of multiplication by BDDs needs exponentially sized BDDs (Bryant, 1991). In this

example we show how a multiplication circuit can be veri�ed using our tool.
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7.4.1 The multiplication circuit

The multiplication circuit consists of a series of adders with some additional circuitry. If the bit-

width of the of the circuit is b, there will be b stages. The �gure below shows an overview of

the circuit. The algorithm used is the standard long multiplication algorithm xy = �b

i=1(2
i�1

xiy)

where x and y are b bit numbers and xi is the i-th least signi�cant bit of x. The function of the

i-th stage is to compute (2i�1xiy) and add this to the result obtained so far. All arithmetic is done

modulo 2b. An implication of this is that the i-th stage does not use the i higher order bits of y.

Therefore the i-th stage has as input b bits which will give the partial sum so far, one bit of x, and

b� i bits from y.

A

B

partial
result

final
result

Figure 9: Overview of multiplier

7.4.2 Veri�cation strategy

The key to the proof is to recognise that after the i-th stage, the result computed by the circuit

is y multiplied by the i lower order bits of x. Suppose that at the end of the i-th stage we have

proven that given the initial input for the circuit, the output of the i-th stage is indeed the i lower

order bits of x multiplied by y. At the (i+ 1)-st step we do three things.

Firstly, the local property of the stage is checked { that it actually does the addition and so on.

This proof is done using Voss, and, crucially for the e�ciency of the checking, is done for arbitrary

input values rather than the actual values the circuit will use when executing. Once this check

has been done, we compose this result with the result from the i-th stage. Secondly, applying the

ALIGNSUB rule (time alignment and specialisation for the new result, and composition of the i-th

stage result with the transformed new result), we get what the (i+1)-st stage's output is in terms

of the whole circuit's input. Finally, the consequent of this theorem is not quite in the form we

want, and we use post-condition weakening to obtain that at the end of the (i + 1)-st stage the

partial result computed is the (i+ 1) lower order bits of x multiplied by y.
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This step is then repeated for i = 1; : : : ; n. To start o� the process, we prove a simple theorem

which just states that the input remains constant.

The proof script is given in the appendix. Here we work through a few steps of an eight bit

multiplier to illustrate the proof. Assume that the circuit takes two integers on integer node A and

integer node B. Each of these nodes is represented in the underlying circuit by 8 boolean nodes

� Prove the trivial theorem that if A has the value x and B has the value y, and Ground has

the value zero over a certain time interval then A has the value x and B has the value y,

and Ground has the value zero over the same time interval.6 Using the IDENTITY rule, we

obtain T0 below.

|- [B is (y from 0 to 1000)]

[A is (x from 0 to 1000)]

[TC0 is (0 from 0 to 1000)]

==>>

[B is (y from 0 to 1000)]

[A is (x from 0 to 1000)]

[TC0 is (0 from 0 to 1000)]

� Prove that the �rst stage | basically an adder | does what it should. Using the VOSS rule

we get T1:

|- [B is (j from 0 to 1000)]

[A is (i from 0 to 1000)]

[TC0 is (k from 0 to 1000)]

==>>

[TC1 is ((k + ((i[1])*(j[1..8]))) from 24 to 1000)]

� We cannot use transitivity on T0 and T1 because they use di�erent variables to describe the

value of the nodes. However, if we specialised T1 we would get the antecedent of T1 being

less than the consequent of T0. So we use the ALIGNSUB rule to do this7, getting T2:

|- [B is (y from 0 to 1000)]

[A is (x from 0 to 1000)]

[TC0 is (0 from 0 to 1000)]

==>>

[TC1 is (((x[1])*(y[1..8])) from 24 to 1000)]

Note how 0 is substituted for k.

6Introducing the ground nodes simpli�es the presentation as in a real implementation the �rst stage would in fact

be di�erent to all the other stages.
7In this case we do not have to do any alignment, but in general we have to so that's why it is used. We could

have used SPTRANS in this particular case.
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� This is almost in the form that we want. The only problem is that in general, the i-th bit of

x is not the same as the �rst i bits of x, and as this is going to be in a loop of the FL program

constituting the proof, we use post-condition weakening to get, T3:

|- [B is (y from 0 to 1000)]

[A is (x from 0 to 1000)]

[TC0 is (0 from 0 to 1000)]

==>>

[TC1 is ((y*(x[1..1])) from 24 to 1000)]

In order to do this post-condition weakening, it had to be shown that y � x[1] = y � x[1::1].

This can easily be done in the simple integer prover provided. The rule initrule is supplied

to the POSTWEAK procedure. We have now proven the correctness of the �rst stage.

� The �rst step in the second stage is to prove the correctness of the circuitry of the stage. We

prove T4:

|- [B is (j from 0 to 976)]

[A is (i from 0 to 976)]

[TC1 is (k from 0 to 976)]

==>>

[TC2 is ((k + (((j[1..7])*2^(1))*(i[2]))) from 24 to 976)]

� The second step is to combine T3 and T4 using ALIGNSUB. T4 must be shifted 24 time units,

and x, y and (y*(x[1..1])) must be substituted for i, j and k. Doing this we obtain:

|- [B is (y from 0 to 1000)]

[A is (x from 0 to 1000)]

[TC0 is (0 from 0 to 1000)]

==>>

[TC2 is (((y*(x[1..1])) + ((2^(1)*(y[1..7]))*(x[2])))

from 48 to 1000)]

� We want as an invariant after each step that:

TCn is y*x[1..n]

Using post-condition weakening fails at �rst since the system needs to know that y �x[1::1]+

21 � y[1::7]� x[2] = y �x[1::2]. This is beyond the ability of our simple integer theorem prover

to prove. Thus we give the system the general assumption :

let mulrule =

Assume (((y '* (BWID n x)) '+

(POW2 n) '* (BWID ('bit_width '- n) y) '* (BIT2 (n '+ '1) x)),

(y '* (BWID (n '+ '1) x)));
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(note the substitution of n for 1 in appropriate places, so 1 becomes n, 2 becomes n+ 1, and

7 becomes bit width� n). Now use POSTWEAK to obtain:

|- [B is (y from 0 to 1000)]

[A is (x from 0 to 1000)]

[TC0 is (0 from 0 to 1000)]

==>>

[TC2 is ((y*(x[1..2])) from 48 to 1000)]

ASSUMING

((y*(x[1..n])) + ((2^(n)*(y[1..(8-n)]))*(x[(n + 1)])))]=(y*(x[1..(n + 1)]))

Note that any assumptions which are used are made explicit.

� We now repeat this process for each stage in the multiplier. The �nal stage (which we do not

show for space reasons) is to use post-condition weakening to derive the �nal result. Assuming

eight-bit integers, we get as the �nal result

|- [B is (y from 0 to 1000)]

[A is (x from 0 to 1000)]

[TC0 is (0 from 0 to 1000)]

==>>

[TC8 is ((x*y) from 192 to 1000)]

ASSUMING

((y*(x[1..n])) + ((2^(n)*(y[1..(8-n)]))*(x[(n + 1)])))]=(y*(x[1..(n + 1)]))

7.4.3 Results

By proving the properties of each stage of the circuit separately and using the rules of combination

a number of advantages are gained. Firstly, since we are still using Voss for the low-level proof

we keep the advantages of trajectory evaluation. Secondly, since we prove the partial results for

arbitrary inputs rather that complicated speci�c cases, we can avoid the exponential growth of

BDDs and thereby make the method tractable. All time-shifting and specialisations are derived

automatically, simplifying the task of the user.

This process veri�es the entire circuit, including ensuring that di�erent parts of the circuit are

correctly connected.

The veri�cation of a 64-bit multiplier took just less than fourteen CPU minutes on a Sun Sparc

10/51 processor. The performance is roughly quadratic in the bit-width, so this problem can easily

be dealt with.

It is di�cult to estimate the amount of human e�ort involved in the proof, since the proof went

hand-in-hand with system development (and circuit debugging!). It turned out that one of the

most di�cult parts of the veri�cation was getting the timing constraints correct. Our estimate is

that the proof itself took two days to get right.
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8 Conclusion

8.1 Summary

We have proposed a theorem-prover based on symbolic trajectory evaluation and OBDDs. Com-

bining these two methods of veri�cation has resulted in a powerful theory and tool for low-level

hardware veri�cation and the combination of results. In our largest example, we veri�ed the cor-

rectness of a 64-bit multiplier (a circuit consisting on the order of twenty-�ve thousand gates) using

approximately �fteen minutes of CPU time.

This was obtained by exploiting the strengths of Voss, and providing (i) a means of overcoming

its weaknesses, and (ii) a method for proof management.

The strength of Voss is that it allows the use of symbolic trajectory evaluation to verify low-level

properties of circuits very e�ciently. With Voss, we also have an accurate model of the circuit,

including timing.

A weakness of Voss is that it relies on one rule for obtaining symbolic trajectory evaluation

results. It proves results of the form j=
M
[A==�B] by checking whether �B v �A. The combined

task of computing and comparing trajectories can be very expensive (in general the problem is

NP-hard). We have developed a theory and inference system which allows us to infer that �B v �A

without computing �A. In the theorem prover implementing this inference system and providing a

powerful and exible proof management system, a key issue is the use of domain knowledge. For

example, when proving properties of circuits which manipulate integers, using properties of integers

obviates the need for representing everything using OBDDs, making the analysis of a large class of

circuits tractable.

Although the tool also allows re-use of results, the examples did not show this o� to its best

advantage. In the multiplication example, instead of constructing it out of sixty-four stages, we

could have implemented the multiplier in one stage, with the output being fed back into the input

{ slightly more complicated circuitry but not too di�erent. In this case we could use Voss once to

prove how it worked, and then use the time-shift rule 63 times. As the time-shift rule is one to two

orders of magnitude faster than trajectory evaluation this would result in signi�cant saving.

We believe that we have shown:

� The use of hybrid methods gives us exibility and power without losing rigour.

� The use of domain knowledge is very important in gaining e�ciency.

� Composition of results is important: whether we have proved results of di�erent parts of the

circuit, or want to combine smaller results of the same part of the circuit, or re-use results,

composition is a very powerful technique. Veri�cation is made easier to understand, and, for

reasons discussed earlier, much more e�cient.

� In particular, symbolic trajectory evaluation results can be composed. This enables the

derivation of symbolic trajectory evaluation results without having to explicitly perform the

trajectory evaluation.
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8.2 Problems and extensions

8.2.1 Integrating domain knowledge

For the purposes of the work done so far, which we see as a proto-type for further work, we

implemented a fairly ad hoc approach to incorporating domain knowledge. We implemented a

simple theorem prover to make arguments about integers, and used simple decision procedures to

keep integer expressions in some sort of normalised form. We saw the limitations of this. Firstly,

the prover was not very powerful. Secondly, the interplay between the simple decision procedures

and the theorem prover made the use of the system a bit clumsy in parts, due to the ad hoc nature

of the approach. Finally, the security of an ad hoc approach must be questionable.

Therefore it is essential that there be a proper interface to a proper theorem prover in which

arguments about domain knowledge can be made (a very important case is arguments about inte-

gers). Theorem-provers with appropriate libraries (like HOL), or decision procedures or reasoning

tools for integers like PVS (Owre et al., 1992) and Analytica (Clarke & Zhao, 1992) would be

appropriate; criteria for choice include expertise of intended user, desired level of exibility and

security, and domain of application.

Arguments about the combination of theories may also need to be made. We need to explore

work such as (Shostak, 1979; Shostak, 1984) to see how this can be done in a coherent way so as

to make integrating new theories easy and rigorous.

8.2.2 Soundness of methods

While in principle we have a sound theory, the implementation has a number of weaknesses. The ad

hoc implementation of the integer theorem prover is one hole. Another problem is that although we

have separated out the trusted and non-trusted parts of the system, there is a fairly large, trusted

core.

8.2.3 Completeness of rules

Let A be a set of trajectory assertions. Consider the class U of machines which satisfy all these

assertions. A number of interesting theoretical questions arise:

� Does there exist a unique \weakest" machine in U?

� Suppose for each M 2 U ; j=M A;A 62 A. Can A be inferred from A using the inference rules

above?

These are questions for future research.

8.2.4 Structural versus behavioural

One of the properties of symbolic trajectory evaluation is that veri�cation is behavioural rather

than structural. We move away from a purely behavioural model in two ways. Our model of

the system is entirely behavioural. However, it is important for the usefulness of our system that

su�cient meaningful structure be identi�able (there's nothing stopping the treating of any arbitrary

eight binary nodes as an 8-bit integer; however, unless this corresponds to reality, this is unlikely

to be very useful). Second, structural composition of the speci�cation is a fundamental part of
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e�cient proof management. This issue needs to be explored further to improve performance and

allow composition of circuits.

8.2.5 False implies everything

In logic, false being in the protasis of an implication makes the implication true trivially. Theorems

of the form if pigs have wings, then this circuit works, while logically valid are problematic since

they may lull veri�ers into a false sense of security. In Voss this problem manifests itself when top

appears in the antecedent of a trajectory assertion. Thus in theory, nonsense theorems are possible.

However, Voss checks whether there is at least one valid trajectory. In this tool, by moving away

from the Voss representation, we lose this automatic checking of security. Furthermore, some of

the inference rules admit the possibility of obtaining inconsistent antecedents (obvious cases being

the conjunction and and time-shift rules, and specialisation). While mathematically this does not

pose a problem, as a practical tool, we want any speci�cation which has such an inconsistency to

be rejected as it will indicate an error in the speci�cation.

There are two factors which reduce the seriousness of the problem. Firstly, the greatest danger

of such nonsense theorems is that they become buried | they get used in the middle of a proof

and the �nal result does not reect this. This does not occur here. If at any stage, we obtain

an inconsistent antecedent, if that theorem is used by any combination rule, then the resulting

theorem must also have an inconsistent antecedent. This means that in such a case, the �nal result

of a proof would have such an inconsistency explicit in its antecedent. Second, in practice, the

antecedent of a theorem is likely to be of a simple enough form that a BDD-representation would

be reasonably e�cient to obtain. This being the case, it may be reasonably e�cient to allow the

user to check a �nal result for consistency. This needs further research.

8.2.6 Heuristics and User-assistance

The usefulness of a tool like this depends in a large measure on the ease of use and assistance

given to a user. The heuristics used to �nd appropriate time-shifts and specialisations are very

important here. Although the heuristics performed well in the examples which we have used, an

issue for further research is how these heuristics can be improved, and �nding other heuristics or

other kinds of assistance which could be provided. As an example, we found timing to be one of

the most di�cult aspects of getting the veri�cation right | assistance here would be very valuable.

There are also a range of user-interface issues which could be explored to make the use of such a

tool pleasanter.

A Multiplication example

This section contains the proof of the veri�cation of the 64-bit multiplication example shown in

section 7. The multiplication circuit itself was generated by a VHDL program and consists of the

order of twenty-�ve thousand gates. The FL program which veri�es the circuit is shown below.
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let Ground = "TC0";

// variable maps .....omitted for brevity....

let prevarmap = ...

let varmap n = ...

// Mathematical results

let mulrule = Assume (((y '* (BWID n x)) '+

(POW2 n) '* (BWID ('bit_width '- n) y) '*

(BIT2 (n '+ '1) x)),

(y '* (BWID (n '+ '1) x)));

let initrule = BDDVerify []

((BIT2 one x) '* (BWID bwidth y), y '* (BWID one x));

let width2 = BDDVerify [] (BWID (' c_size) i, i);

// Preamble theorem--------------------------------------------

let signal_length = 1000;

let preamble = ("A" ISINT x) _&_

("B" ISINT y) _&_

(Ground ISINT zero)

FROM 0 TO signal_length;

let preambleThm = IDENTITY preamble;

// GENERAL STEP------------------------------------------------

// This is the proof that the n-th stage in the multiplier works

// correctly

// Timing considerations -- each successive stage has the

// signal for less time

let answer_delay = 3*bit_width;

let start_stage n = n*answer_delay;

let signal_len n = signal_length-n*answer_delay;

let stage n =

let Ainp= "A" in

let Binp= "B" in

let Cinp= "TC"^(num2str n) in

let Cout= "TC"^(num2str (n+1)) in

let nplusone = '(n+1) in

let jpart = BWID ('(bit_width - n)) j in

((( Ainp ISINT i) _&_

( Binp ISINT j) _&_

( Cinp ISINT k)) FROM 0 TO signal_len n)

==>>

(Cout ISINT

(k '+ (jpart '* ((BIT2 nplusone i) '* (POW2 ('n)) )))

FROM answer_delay

TO signal_len n);
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let multhm n = VOSS (varmap n) (stage n);

// Wish to show that the partial result computed from the

// composition of stages 1..n is correct

let induc n =

let n1 = n+1 in

let n2 = int2str n1 in

let Ainp="A" in

let Bout= "B" in

let Cout= "TC"^n2 in

let this_width = bit_width - n1 in

Cout ISINT ((BWID ('n1) x) '* y)

FROM start_stage n+answer_delay TO signal_length;

// Each step in the proof:

// 1. prove the n-th stage works

// 2. use ALIGNSUB to compose (1) with the proof that the

// previous stage computed what it should be

// 3. Use POSTWEAK to show the "induction" step

let inferencestep n start =

let thisthm = multhm n in

let newthm2 = ALIGNSUB [] start thisthm in

POSTWEAK [initrule, mulrule] newthm2 (induc n);

// Postamble

// Use POSTWEAK to get the result in the form we want

let postamble=

let prop_delay = start_stage bit_width in

let gate = "TC" ^ (num2str c_size) in

(gate ISINT ( x '* y))

FROM prop_delay TO signal_length;

// Proof

let do_proof n =

let steps = gen (n-1) in

let proof = rev_itlist inferencestep steps preambleThm in

let final = POSTWEAK [width2] proof postamble in

final;
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