
Automatic Veri�cation of Asynchronous Circuits�

Trevor W. S. Lee Mark R. Greenstreet Carl-Johan Seger

Technical Report 93-40

Department of Computer Science

University of British Columbia

Vancouver, B.C. V6T 1Z4 Canada

November 12, 1993

Abstract

Asynchronous circuits are often used in interface circuitry where traditional, synchronous

design methods are not applicable. However, the veri�cation of asynchronous designs is di�-

cult, because standard simulation techniques will often fail to reveal design errors that are only

manifested under rare circumstances. In this paper, we show how asynchronous designs can

be modeled as programs in the Synchronized Transitions language, and how this representation

facilitates rigorous and e�cient veri�cation of the designs using ordered binary diagrams (OB-

DDs). We illustrate our approach with two examples: a novel design of a transition arbiter and

a design of a toggle element from the literature. The arbiter design was derived by correcting

an error in an earlier attempt. It is noteworthy that the error in the original design, found very

quickly using the methods described in this paper, went unnoticed during more than 50 hours

of CPU time simulating 231 state transitions.

Keywords: hardware veri�cation, self-timed designs, hardware description languages, arbiters,

binary decision diagrams, invariants, model checking.

�This research was supported by operating grants OGPO 109688 and OGPO 138501 from the Natural Sciences

Research Council of Canada and a fellowship from the Advanced Systems Institute.

1

1 Introduction

Speed-independent circuits operate without clocks and function correctly regardless of the internal

delays of their components. Such designs are attractive due to their robustness, and are often used

as interface logic between synchronous systems. However, their asynchronous nature makes design

and veri�cation di�cult because standard simulation based techniques often fail to reveal errors

that only show up under rare conditions. This motivates our research into veri�cation tools that

are more rigorous and more e�cient than traditional simulation.

Our approach is based on ordered binary decision diagrams, (OBDDs) [Bry86]. Algorithms

for manipulating Boolean functions represented by OBDDS are su�ciently e�cient that these

techniques can be applied to practical, real-world designs. The typical use of OBDDs in verifying

safety properties is based on symbolic model checking[BCMD90]. In this approach, the behavior

of a circuit is given by a state transition relation (represented as an OBDD), and properties of

the circuit are veri�ed by reachability analysis of this relation. Although OBDDs can represent

complex next state relations, the relations for many designs are still much larger than can be

handled e�ciently.

Most approaches that have been proposed to alleviate the problem of large next state relations

partition the relation into a collection of functions or smaller relations whose union is the complete

relation. In general, it is tedious and di�cult to �nd a good partitioning. Another approach is

to recognize when the relation is in fact a function, since functions can be represented much more

e�ciently than general relations. As with partitioning, however, discovering that a relation is a

function is often quite subtle and almost always very tedious.

Synchronized Transitions is a hardware description language in which digital circuits are mod-

eled as parallel programs. Programs written in Synchronized Transitions describe both the com-

putation and the structure of digital circuits and can be used to specify designs from very high

levels of abstraction down to gate level descriptions. Synchronized Transitions has been used in the

design of many integrated circuits including a vector-matrix multiplier [NSJ91] and a high-speed

communications chip [Gre92]. Synchronized Transitions can be used to design traditional, syn-

chronous systems [SG88] or to design speed-independent, asynchronous circuits[Sta93]. For either

style of design, the syntactic structure of Synchronized Transitions programs provides the basis for

partitioning the transition relation into a collection of next state functions. Thus, when a design

is described using Synchronized Transitions, e�cient, OBDD-based formal veri�cation is possible.

In this paper we describe our translation of Synchronized Transitions programs into the FL

language [Seg93], a functional language with built-in support for OBDDs. We then show how

safety properties of the Synchronized Transitions program can be automatically veri�ed using

the translator and a library of prede�ned FL functions. In particular, we describe how program

invariants can be checked and how to derive the weakest invariant su�cient to guarantee a desired

2

safety property. We illustrate the applications of this approach with three examples. First, we

verify that our arbiter guarantees mutual exclusion. Second, we show that all signals in this

design obey a speed-independent protocol|basically, that there are no glitches. Finally, we use the

ability of computing the weakest invariant to prove that one Synchronized Transitions program is a

re�nement (or implements) another Synchronized Transitions program, illustrating this approach

with the arbiter and a toggle element.

2 Synchronized Transitions

Digital circuits are composed of signals, latches for storing these signals, and combinational logic for

computing functions of signals. In a Synchronized Transitions program, state variables correspond

to signals, and transitions model latches and combinational logic.

In this paper we will focus on a subset of Synchronized Transitions in which all variables are of

Boolean or bounded integer subrange types, or of �xed array or record types constructed from these

elementary types. This means that each variable has a �nite set of possible values. Furthermore,

the set of state variables of a Synchronized Transitions program is static and �nite. Thus, the

state space of a program is discrete and �nite, and is given by the Cartesian product of the sets

of possible values for each state variable. For a program, Q, we write V Q to denote the set of all

variables of Q and Q to denote the state space of Q (i.e. Q is the set of all assignments of values

to variables of Q).

Property 1 Let v be a variable declared to be of type T in a Synchronized Transitions program,

Q. From a functional point of view, v is a function from states of Q to values of type T , i.e.,

v : Q! T .

Transitions specify state changes using multi-assignments. For example,

<< a = b ! c := a >>

is a transition which speci�es an update of c to the value of a. The update is only performed if

the precondition, a = b, holds. This describes the operation of a Muller C element, a device that

is frequently used in self-timed designs. Whenever the two inputs of a C element have the same

value, the C element is enabled to set its output to this value. In general, a transition is of the

form

<< precondition ! action >>

The precondition is a predicate over the system state that indicates when the transition may be

performed. As a syntactic shorthand, a transition may be written without a precondition, in which

case the transition is always enabled. The action is a multi-assignment which speci�es the state

3

transformation made by the transition; it can only be performed if the precondition holds. In a

multi-assignment, all expressions on the right hand side are evaluated �rst, and then these values

are assigned to the variables on the left hand side. All variables on the left hand side must be

distinct.

Property 2 Let M � l1; l2; : : : lm := r1; r2; : : :rm be the multi-assignment of a transition in a

Synchronized Transitions program, Q. From a functional point of view, M is a function from Q to

Q where

M(s1) = s2 , 8i 2 f1 : : :mg:(li(s2) = ri(s1))

^ 8v 2 V Q � fl1 : : : lmg:(v(s2) = v(s1))

Property 3 Let t � <<G!M>> be a transition in a Synchronized Transitions program, Q. From

a functional point of view, t is a partial function, ft from states to states; i.e., ft : fs 2 Q j G(s)g !

Q, where

ft(s1) = s2 , G(s1) ^ (s2 = M(s1))

To describe any signi�cant circuit, many transitions are needed. The asynchronous combinator,

k, combines two or more transitions which execute asynchronously, independently, and atomically.

For example,

<< a<b ! a, b := b, a >> k << b<c ! b,c := c,b >>

speci�es two independent transitions, each of which may be executed whenever its precondition is

satis�ed. This computation sorts a, b, and c into descending order. A program de�nes a set of

transitions. This set is static and completely determined by the program text. An operational model

for the execution of a program in Synchronized Transitions is repeated selection and execution of

an arbitrary transition from this set.

Property 4 Let Q = <<G1!M1>>k<<G2!M2>>k : : :k<<Gk!Mk>> be a Synchronized Transi-

tions program. The program Q denotes a state transition relation, RQ where

(s1; s2) 2 RQ , 9i 2 f1 : : :kg:(Gi(s1) ^ (s2 = Mi(s1)))

This property gives us a convenient decomposition of RQ, the state transition relation for program

Q. In particular, RQ is the union of the relations corresponding to the partial state transition

functions of each transition in Q.

To verify the correctness of programs, we employ two annotations:

INITIALLY Q0: All possible initial states of the program satisfy the predicate Q0.

ALWAYS I : If the program is executed starting from a state satisfying the INITIALLY annotation,

then all reachable states satisfy I .

4

An INITIALLY annotation states an assumption about the program (describing, for example, the

states reached when a \reset" signal is applied to the circuit). ALWAYS annotations are assertions

about the program that must be veri�ed. We describe the automatic veri�cation of these assertions

in Sections 5 and 6.

This section has presented the features of Synchronized Transitions that will be used in this

paper. A more complete description of Synchronized Transitions including other combinators and

mechanisms for structuring programs is presented in [SG90].

Synchronized Transitions di�ers frommany other guarded command languages, e.g. CSP [Hoa78],

because shared variables are used for communication instead of messages. This provides a very sim-

ple correspondence between programs and their hardware realizations. Synchronized Transitions

also di�ers from typical hardware description languages, e.g., VHDL [HC86], Model [Eur], and

ELLA [M+84], in that preconditions (guards) determine the temporal behavior. The language

has no built-in clock concept or sequencing (\;") constructs. By using simple primitives based on

concurrent programming, Synchronized Transitions can be used e�ectively for synchronous [SG88],

self-timed, and hybrid [Gre92] designs. In this paper, we only consider the use of Synchronized

Transitions in the design and veri�cation of self-timed circuits. There are strong similarities be-

tween Synchronized Transitions and UNITY, as developed by Chandy and Misra [CM88]. Both

describe a computation as a collection of atomic conditional assignments without any explicit
ow

of control. Chandy and Misra propose this as a general programming paradigm.

3 An Example: a transition arbiter

The transition arbiter was originally described by Sutherland [Mol92] and is used as an example

throughout this paper. The arbiter has two clients, each of which communicates with the arbiter

using three signals: r (request), g (grant), and d (done). Transition signaling is employed; for

example, if a client wants to request the privilege and its request signal, r is currently low (resp.

high), the client makes the request by toggling the request signal to high (resp. low). Each client

can be in one of four states described in the table below:

state description name

r = g = d Idle

r = g = d Requesting

r = g = d Privileged

r = g = d PendingDone

When a client is in the Idle state, it may request the privilege by toggling the request signal, r,

entering the Requesting state. The arbiter grants a pending request by toggling the grant signal, g,

bringing the interface to the Privileged state. Then, the client can release the privilege by toggling

the done signal, d, returning the interface to the Idle state from which the client can make another

5

TYPE ArbiterClient = RECORD

r, (* request, an arbiter input *)

g, (* grant, an arbiter output *)

d, (* done: an arbiter input *)

BOOLEAN;

END;

FUNCTION Privileged(c: ArbiterClient) =

BEGIN (c.g = c.r) AND (c.d 6= c.r) END;

STATE

c1, c2: ArbiterClient;

INITIALLY

NOT (Privileged(c1) AND Privileged(c2));

ALWAYS

NOT (Privileged(c1) AND Privileged(c2));

BEGIN

(* transitions of the arbiter *)

<< NOT Privileged(c2) ! c1.g := c1.r >> (* grant client c1 *)

k << NOT Privileged(c1) ! c2.g := c2.r >> (* grant client c2 *)

(* transitions of client c1 *)

k << c1.r := NOT c1.g >> (* request the privilege *)

k << c1.d := c1.g >> (* release the privilege *)

(* transitions of client c2 *)

k << c2.r := NOT c2.g >> (* request the privilege *)

k << c2.d := c2.g >> (* release the privilege *)

END;

Figure 1: Synchronized Transitions program for a transition arbiter (speci�cation)

request. After the arbiter grants the privilege, the client can toggle d and r to release the privilege

and then request it again. Because the protocol is designed to be delay-insensitive [Udd84], these

events may appear at the arbiter in either order. If a new request appears before the done from the

previous cycle, the arbiter sees the interface in the PendingDone state. The arbiter has two clients,

and a correct implementation will guarantee that both clients cannot be in the Privileged state

at the same time.

The preceding paragraph gave a prose description of a transition arbiter. Although such prose

can convey an intuitive understanding of the operation of the arbiter, imprecision of the English

language preclude using such a description to rigorously verify a design. Instead, we will use a

Synchronized Transitions program to describe the arbiter for our purposes of veri�cation. Such a

speci�cation is given in Fig. 1. This program only states what a transition arbiter can do; it does

6

not give a detailed description of a circuit that implements such an arbiter. An implementation is

presented in Section 7. The ALWAYS annotation of the program in Fig. 1 asserts that the arbiter

never enters a state in which both clients are granted the privilege. This is a safety property that

we verify by model checking using OBDDs in Section 5.

4 FL and OBDDs

FL[Seg93] is a functional language similar to ML[RMH90]. As with ML, FL is strongly typed with

a polymorphic type inference system. There is one feature of FL that makes it distinct from other

functional languages: ordered binary decision diagrams (OBDDs) are �rst class objects in FL. In

fact, every object of type bool is represented internally as an OBDD. Consequently, some rather

unusual programming constructs can be executed e�ciently. For example, in FL it is easy, and

quite e�cient, to execute a program that requires quanti�cation over some set of Boolean variables.

To give a simple example, consider verifying that 8a:8b: ((a ^ 9c:(b _ c)) = 9c:((a^ b) _ (a ^ c)))

In FL this can be accomplished by simply evaluating the expression

!a. !b. ((a AND ?c. (b OR c)) = ?c. ((a AND b) OR (a AND c)));

In FL, ! denotes a universal quanti�er, and ? denotes an existential quanti�er. If the above

expression is used as input to FL, the result is T, indicating that the expression is a tautology.

Typically, signi�cantly more complex expressions with more variables are used.

Originally, FL was designed as meta-language for one particular type of formal hardware veri�-

cation, namely symbolic trajectory evaluation [SB93], but since FL is a general purpose functional

language, it has become a language of choice for prototyping formal veri�cation approaches that

bene�t from e�cient handling of Boolean functions.

Translating ST Programs to FL Programs

In order to reason about Synchronized Transitions programs using the FL system, we have devel-

oped a simple translator that derives an internal FL representation for the corresponding Synchro-

nized Transitions program. The translator is based on a Synchronized Transitions to C compiler

that we had previously written. The translator produces an FL representation of the state transition

relation corresponding to the Synchronized Transitions program, and a library provides functions

to check various safety properties, such as those stated in an ALWAYS declaration.

Since the subset of Synchronized Transitions we support guarantees that the state space of the

program is �nite, the FL version of the program represents the state of the program as a list of

Boolean variables. In fact, each element of type Boolean in the Synchronized Transitions program

has a single corresponding Boolean variable in the FL representation and each �nite subrange type

7

is represented as a vector of Boolean variables of length dlg jSje, where jSj denote the number of

elements in the subrange.

In FL, the state transition relation is represented by a list of state transition functions; each func-

tion corresponds to a transition of the Synchronized Transitions program. These state transitions

functions are in turn represented by tuples of the form (G;M), where G represents the precondi-

tion, a function from states to Booleans; and M represents the multi-assignment, a function that

maps the state before performing the multi-assignment to the state produced by performing the

multi-assignment.

For the interested reader, Appendix A lists the translated version of the Synchronized Tran-

sitions program of Fig. 1. Note that in FL the user can de�ne new in�x operators. This is used

heavily in the translation to make it easier to read and understand.

5 Safety Conditions and Invariants

A system satis�es a safety condition P , if P is satis�ed in all states reachable from any state

satisfying the initial state predicate, Q0. Establishing a safety condition involves two tasks: 1)

verifying that the safety condition is satis�ed in any initial state of the system, and 2) verifying

that the safety condition holds in every state that can be reached from any of the initial states. A

standard approach to verifying a safety property is to �nd an invariant, I , such that Q0=)I and

I=)P . Given a program Q and a predicate I over Q, we say I is an invariant if and only if

8s:8s0: I(s)^ (s; s0) 2 RQ=)I(s0)

Intuitively, if I holds in a state, s, and I is an invariant, then I will hold in all immediate successors

of s. Furthermore, I must hold in all states reachable from s as can be shown by a simple argument

by induction. We write inv(I; Q) to indicate that the predicate I is an invariant of the program Q.

To illustrate a simple invariant, consider the Synchronized Transitions program, Q with a single

transition,

<< n := (n+2) MOD 6 >>

Let I be the predicate \n is odd" (i.e. (nmod2) = 1). It is easy to show that I is an invariant of

Q as performing the transition when n is odd will lead to a new state where n is still odd.

In principle, in the FL version of an Synchronized Transitions program a proposed invariant I

could be veri�ed directly by computing (explicitly) the next state relation and checking

8s1 : : : sn:8s
0
1 : : : s

0
n: I(s1 : : : sn) ^R(s1 : : : sn; s

0
1 : : : s

0
n)=)I(s01 : : :s

0
n)

where we have assumed that the si and s0i are Boolean variables and that n variables are su�cient

to represent the state of the Synchronized Transitions program. However, the next state relation

8

is often much too large to be e�ciently represented as an OBDD. Consequently, we partition the

relation using Property 4 from Section 2 as justi�ed by the following theorem:

Theorem 1 Let Q = <<G1!M1>>k<<G2!M2>>k � � � k<<Gk!Mk>> be a Synchronized Transi-

tions program. If I is a predicate over Q, then

inv(I; Q) , 8i 2 f1 : : :kg:inv(I; <<Gi!Mi>>)

Proof:

inv(I; Q) = 8s 2 Q:8s0 2 Q:((I(s)^ (s; s0) 2 RQ)=)I(s0)) def. of invariant

= 8s 2 Q:8s0 2 Q: Property 4

((I(s)^ (9i 2 f1 : : :kg:(Gi(s)^ (s0 = Mi(s)))))=)I(s0))

= 8i 2 f1 : : :kg:8s 2 Q:((I(s)^Gi(s))=)I(Mi(s))) predicate calculus

= 8i 2 f1 : : :kg:inv(I; <<Gi!Mi>>) def. of invariant

This theorem allows us to verify an invariant by checking each transition in the Synchronized

Transitions program separately.

To illustrate this approach, let Q be the Synchronized Transitions program for the arbiter shown

in Fig. 1; let P be the the mutual exclusion property asserted in the ALWAYS declaration of the

program,

P (c1,c2) = NOT (Privileged(c1) AND Privileged(c2))

= :((c1.g = c1.r)^ (c1.d = c1.r) ^ (c2.g = c2.r) ^ (c2.d = c2.r))

and let Q0 be Q's initial state predicate, Q0 = P . To verify that P is a safety property of Q,

we must �nd an invariant, I , such that Q0=)I=)P . Because Q0 = P , the only candidate for

I is I = P . As described above, we verify that I is an invariant by considering each transition

separately. For the transition

<< NOT Privileged(c2) ! c1.g := c1.r >>

the proof obligation is

8 c1.r:8 c1.g:8 c1.d:8 c2.r:8 c2.g:8 c2.d:

((P (c1.r; c1.g; c1.d; c2.r; c2.g; c2.d) ^ :Privileged(c2.r,c2.g,c2.d)) =)

P (M(c1.r; c1.g; c1.d; c2.r; c2.g; c2.d)))

where

M(c1.r; c1.g; c1.d; c2.r; c2.g; c2.d) = (c1.r; c1.r; c1.d; c2.r; c2.g; c2.d)

After some (rather tedious) manipulations, it is easy to see that the proof obligation indeed holds.

Verifying the proof obligations for the other transitions are equally straightforward.

9

The proof obligations for verifying an invariant are readily expressed as an FL function, and

the necessary FL code is generated directly from the Synchronized Transitions program using

our st2fl translator. Note that since the state is represented as a list of Boolean variables and

the functions I(), G() and M() are represented using OBDDs over these Boolean variables, it is

not necessary to universally quantify over the state variables. Instead, we compute the Boolean

expression I�(s1; s2; : : : ; sn) de�ned as:

I�(s1; : : : ; sn)
def
= I(s1; : : : ; sn) ^Gi(s1; : : : ; sn)=)I(Mi(s1; : : : ; sn))

and determine whether this Boolean expression is a tautology. Note that computing I(Mi(s1; : : : ; sn))

involves substitution. In general, substitution can be an expensive OBDD operation; however, most

multi-assignments in Synchronized Transitions programs are very simple, and substitution has never

been a problem.

We note that safety properties are distinct from invariants. A predicate, I may be an invariant

but not a safety property if it the initial state is not guaranteed to satisfy I (i.e. Q0 6) I).

Conversely, a predicate P may be a safety property but not an invariant if there are states s and

s0 such that P holds in state s, s is unreachable from any state satisfying Q0, and the program

can make a state transition from state s to state s0, (i.e. (s; s0) 2 RQ), but P does not hold in

state s0. A safety property is an assertion about all reachable states whereas the de�nition of an

invariant considers all states of Q, not just the subset of states that are reachable. In general, the

veri�cation that a predicate is an invariant is simpli�ed because it is not necessary to �rst construct

the set of reachable states. Typically, we are interested in verifying safety properties, and, using

the techniques described in this section, invariants are central to this veri�cation. Manually �nding

a suitable invariant can be a di�cult task. In the next section, we describe how invariants can be

automatically derived.

6 Deriving Invariants

Given a program, Q, and a safety property, P , we are interested in �nding the weakest invari-

ant [Lam87] of Q that implies P . We write winP;Q to denote this invariant. When we say that

winP;Q is the weakest invariant of Q that implies P , we mean that if I is any other invariant of Q

that implies P , then if I is satis�ed in some state s, winP;Q is satis�ed in s as well. The existence

of a weakest invariant can be seen by considering the set, IP;Q of all invariants of Q that imply

P . It is easily shown that this set is �nite (because the state space of Q is �nite) and non-empty

(because \false" is an invariant of any program). If I1 and I2 are invariants, then I1 _ I2 is an

invariant as well. From these observations, it is straightforward to show that

winP;Q =
_

I2IP;Q

I

10

It is easy to verify that P is a safety property of Q if and only if Q0=)winP;Q, i.e., if and only if

the initial state predicate implies the weakest invariant.

We now derive our algorithm for �nding winP;Q. Let Q be a program, and let Q be the set of

all states of Q. Let,

WP;Q = fs 2 Q j 8t 2 Q:(s; t) 2 R�=)P (t)g

where R� =
S
1
i=0R

i, is the re
exive and transitive closure of R. Let the predicate I(s) be de�ned

to hold for all s such that s 2 WP;Q. It is easy to show that I is an invariant of Q and that I

implies P . Furthermore, if t is a state such that :I(t), then there exists a state u such that u is

reachable from t and :P (u). Therefore, I = winP;Q.

As noted earlier, it is often impractical to represent a state transition relation, (e.g. R) as an

OBDD, and its transitive closure (e.g. R�) may be even less suitable for OBDD representation. A

more e�cient approach calculates win as a �xed point computation. Let,

XP;Q(i) = fs 2 Q j 8j 2 f0 : : :ig:8t 2 Q:((s; t) 2 Rj=)P (t))g

It is easy to show that limi!1XP;Q(i) = WP;Q. Furthermore, XP;Q(0) = fs 2 Q j P (s)g, and for

i > 0

XP;Q(i) = fs 2 Q j 8j 2 f0 : : : ig:8t 2 Q:((s; t) 2 Rj=)P (t))g

= XP;Q(0) \ fs 2 Q j 8j 2 f1 : : :ig:8t 2 Q:(((s; t) 2 Rj)=)P (t))g

= XP;Q(0) \ fs 2 Q j 8t; u 2 Q:8j 2 f0 : : : i� 1g:((((s; u)2 R) ^ ((u; t) 2 Rj))=)P (t))g

= XP;Q(0) \ fs 2 Q j 8u 2 Q:((s; u) 2 R)=)(u 2 XP;Q(i� 1))g

which yields the desired iteration. For all i, XP;Q(i+ 1) � XP;Q(i), and XP;Q(i) � Q. Also, it is

easy to see that if XP;Q(i+1) = XP;Q(i) for some i, it follows that XP;Q(j) = XP;Q(i) for all j > i.

These facts, together with the fact that j Q j is �nite, implies that the iteration converges to a �xed

point in a �nite number of steps. This �xed point is WP;Q as desired.

As in the previous section, we can improve the e�ciency of this computation by decomposing

the state transition relation, R, into the union of state transition functions using Property 4. We

begin by computing winP;Q for the simple case where P consists of a single transition, <<G!M>>.

Let (see Fig. 2)

U(P) = P ^ (G=)(P �M))

Consider a state, s, in which U(P) does not hold. This means that either P does not hold in s, or

that the transition is enabled in state s, but that performing the transition leads to a state that

violates P . Clearly, s cannot satisfy winP;Q and we conclude winP;Q=)U(P). It is straightforward

to show that winP;Q = winU(P);Q. Furthermore, if P is an invariant then U(P) = P ; otherwise U(P)

is satis�ed by fewer states then P . Generalizing, winP;Q = winU i(P);Q for any positive integer i, and

either U i(P) = U i�1(P) in which case winP;Q = U i(P) or U i(P) is satis�ed in fewer states than

U i�1(P) which guarantees that this computation will eventually reach a �xed point. The sequence

11

T

PU1(P;Q)U2(P;Q): : :winP;Q

Figure 2: Computing the weakest invariant for a single transition.

// Compute win(P) of a single transition, << G -> M >>

let win1 P (G,M) s =

letrec Pstar I s =

let I' = (G AND I ==> (substitute (M(s)/s) I)) in

if (I' == T) then I else (Pstar (I AND I') s) in

Pstar P s;

Figure 3: FL program for computing the weakest invariant for a single transition.

of predicates produced by this method is illustrated in Fig 2, where each predicate is represented

by the set of states that satisfy it. In FL, OBDDs are �rst-class citizens, providing an e�cient

implementation of higher-order functions (such as U). As shown in Fig. 3, a FL implementation

for this algorithm to compute win of a single transition is extremely simple.

Using the win1 function, the FL code for computing the the weakest invariant of a program

that consists of a collection of transitions is given in Fig. 4. The basic idea is to iterate through the

transitions and use the weakest invariant obtained from one transition as the starting approximation

for the next iteration. Again, since we are always reducing the set of satisfying assignments,

eventually we will reach a �xed point. This �xed point is the weakest invariant of the program that

implies P . All operations needed to compute win are implemented e�ciently as OBDD operations

in FL. By construction, winP;Q is an invariant, and winP;Q implies Q as required. It remains to

be shown that Q0=)winP;Q which, again, is readily tested using OBDDs. Many variations on this

approach are possible. The version that we have presented here is simple and has worked quite

12

// Compute win of a list of transitions.

letrec win P trans_list s =

letrec winlist I [] s = I /\

winlist I (t:rest) s = winlist (win1 I t s) rest s in

let P' = winlist P trans_list s in

if (P == P') then P else (win P' trans_list s);

Figure 4: FL program for computing the weakest invariant that implies P for a Synchronized

Transitions program.

well in practice.

7 An Implementation of the Transition Arbiter

In this section, we consider a speed-independent implementation of the transition arbiter that was

speci�ed in Section 1. The Synchronized Transitions program for this implementation is shown in

Fig. 5. As indicated by the comments in the program, each transition corresponds to a simple gate,

transparent latch, or Muller C-element, and Fig. 6 shows the corresponding schematic diagram.

For simplicity, we do not show how the circuit is initialized to a state satisfying the INITIALLY

section of the program.

This design was manually derived from the speci�cation by choosing a transition that did not

correspond to a simple circuit element and replacing the complex transition with a collection of

simpler transitions that implement the same function. This process was repeated until the program

of Fig. 5 was obtained. As the manual nature of this process provides many opportunities to intro-

duce errors into the design, it is essential to verify that the �nal design has the desired properties.

In this section, we �rst give an intuitive explanation of the operation of the speed-independent

transition arbiter; we then describe how we veri�ed the design using the st2fl program.

Operation of the arbiter

The arbiter is organized as three functional units: the internal arbiter, logic to interface the internal

arbiter to the �rst client, and logic to interface the internal arbiter to the second client. The internal

arbiter uses level signaling, and the interface circuits perform the necessary conversions between

the transition signaling conventions of the clients and the level signaling of the internal arbiter.

The interface circuits are identical for each of the two clients, and each instance can be divided

into two sub-units. The �rst sub-unit converts the level signaling output of the internal arbiter

to the transition signaling conventions of the client. This sub-unit consists of the two transparent

13

STATE

c1, c2: ArbiterClient;

s1, t1, u1, v1, w1, x1: BOOLEAN; (* internal variables for client c1 *)

s2, t2, u2, v2, w2, x2: BOOLEAN; (* internal variables for client c2 *)

INITIALLY

((NOT (c1.r OR c1.g OR c1.d OR c2.r OR c2.g OR c2.d))

AND (NOT (s1 OR t1 OR u1 OR v1 OR x1)) AND (w1)

AND (NOT (s2 OR t2 OR u2 OR v2 OR x2)) AND (w2)

);

ALWAYS

NOT (Privileged(c1) AND Privileged(c2));

BEGIN

(* The internal arbiter: *)

<< w1 := NOT (v1 AND w2) >> (* a NAND gate *)

k << w2 := NOT (v2 AND w1) >> (* a NAND gate *)

k << x1 := NOT w1 >> (* an inverter *)

k << x2 := NOT w2 >> (* an inverter *)

(* Internal signals for client c1: *)

k << NOT x1 ! s1 := c1.r >> (* a transparent latch *)

k << t1 := s1 6= c1.d >> (* an XOR gate *)

k << u1 := s1 6= c1.g >> (* an XOR gate *)

k << t1 = u1 ! v1 := t1 >> (* a C-element *)

k << x1 ! c1.g := s1 >> (* a transparent latch *)

(* Internal signals for client c2: *)

k << NOT x2 ! s2 := c2.r >> (* a transparent latch *)

k << t2 := s2 6= c2.d >> (* an XOR gate *)

k << u2 := s2 6= c2.g >> (* an XOR gate *)

k << t2 = u2 ! v2 := t2 >> (* a C-element *)

k << x2 ! c2.g := s2 >> (* a transparent latch *)

(* actions of client c1: *)

k << c1.r := NOT c1.g >> (* an inverter *)

k << c1.d := c1.g >> (* a bu�er *)

(* actions of client c2: *)

k << c2.r := NOT c2.g >> (* an inverter *)

k << c2.d := c2.g >> (* a bu�er *)

END;

Figure 5: Synchronized Transitions program for a speed-independent transition arbiter

14

Client 1

Client 2

c1.d

c1.g

c1.r

c2.r

c2.g

c2.d

s2

u1

t2

x1

s1
L L

L L

C

C

u2

t1

x2

Transition Arbiter

w1

w2

v1

v2

Internal Arbiter

Figure 6: Schematic of the speed-independent transition arbiter.

15

latches that output the s and c.g signals. The transition arbiter grants a request by setting the

grant signal to the same value as the request signal. This is done by these latches using a simple,

two-step process: c.r is copied to s when the client does not have the internal privilege (i.e. x is

false), and s is copied to c.g once the client acquires the internal privilege.

The second sub-unit converts from the transition signaling convention of the client to the level

signaling of the internal arbiter. This sub-unit consists of the two exclusive-OR gates that output

signals t and u and the Muller C-element that outputs the request to the internal arbiter, v. When

the client is in the Requesting state, r = g = d, both t and u are both set to true, and this leads

to a value of true for v, the request to the internal arbiter. Likewise, when the client is in the Idle

state, v is set to false, releasing the internal privilege. Note that each client has two requesting

states, one with r true and the other with r false; both lead to setting v true. Likewise, both Idle

states lead to setting v false.

The preceding description has given an intuitive explanation to the function of each signal

within the arbiter, and the ambitious reader may elaborate upon this by trying a few examples of

clients requesting and releasing the privilege. The intuitive approach is helpful when designing a

circuit such as this arbiter; however, it does not prove correct operation for all possible inputs or

internal delays. We next present a rigorous veri�cation using st2fl.

Veri�cation of the arbiter

The safety property, P , that we require of the speed-independent arbiter shown in Fig. 5 is the same

as the one stated in the speci�cation (Fig. 1). However, the veri�cation of P is more involved for

the speed-independent version. In particular, P is not an invariant of the program for the speed-

independent arbiter. The predicate P only constrains the values of interface variables, requiring

that both clients cannot simultaneously have the privilege. An invariant that will imply P must

also constrain the internal state of the arbiter to exclude, for example, states in which P is satis�ed

but a transition is enabled whose execution would violate P . For example, the state

=

c1.r,

T,

c1.g,

T,

c1.d,

F,

s1,

T,

t1,

T,

u1,

T,

v1,

T,

w1,

F,

x1,

T,

c2.r,

T,

c2.g,

F,

c2.d,

F,

s2,

T,

t2,

F,

u2,

F,

v2,

F,

w2,

T,

x2

T

is a state in which Privileged(c1) and NOT Privileged(c2) hold, thus P is satis�ed. Performing

the transition,

<< x2 ! c2.g := s2 >>

leads to the state

16

=

c1.r,

T,

c1.g,

T,

c1.d,

F,

s1,

T,

t1,

T,

u1,

T,

v1,

T,

w1,

F,

x1,

T,

c2.r,

T,

c2.g,

F,

c2.d,

F,

s2,

T,

t2,

F,

u2,

F,

v2,

F,

w2,

T,

x2

T

which violates P .

For the sake of comparison, we manually derived a suitable invariant. This invariant is a

complicated Boolean expression with more than two hundred literals! It is a time consuming task

to derive such an invariant which, without the automatic tools described in this paper, must be

repeated each time the design is modi�ed. Furthermore, verifying that this expression is indeed

an invariant and that the necessary implications are satis�ed would involve more tedious and error

prone e�ort. Using only manual methods, it would be di�cult to produce a compelling argument

for the correctness of this relatively simple design of only fourteen gates and latches.

Although an expression with several hundred literals may be unwieldy for humans, such expres-

sions can be readily derived and manipulated using OBDDs. Using the st2fl program and the FL

function for automatically computing win , we veri�ed mutual exclusion for the speed-independent

arbiter in under �fteen seconds of CPU time on a SPARC-10 workstation.

Debugging designs with st2fl

In the previous examples, we have shown how st2fl can be used to verify safety properties of

designs, and our examples showed correct designs. An equally, if not more, important application

of these methods is to reveal design errors. VLSI design is an iterative process; with each iteration,

the designer corrects errors found in the previous version or adds functionality required by the

complete system. Finding errors as soon as possible can make a signi�cant contribution to the

designer's productivity.

As an example, we consider an incorrect design of a speed-independent transition arbiter that we

tried before we arrived at the design shown in Fig. 6. This design is shown in Fig. 7. The intended

operation of this design is similar to the that of the correct design shown if Fig. 6. The central

di�erence is that the requests to the internal arbiter (v1 and v2) are generated by a transparent

latch instead of a C-element. \Correct" operation requires that the latch be disabled before a grant

is issued. This is the purpose of the exclusive-or gates that generate t1, t2, z1, and z2. Note that

when, for example, signal c1.d changes the exclusive-or gate that outputs z1 is excited. However,

the gate that outputs t1 is excited as well, and changing t1 disables the output transition on z1.

Our veri�cation tools revealed this race and showed that this circuit does not guarantee mutual

exclusion when arbitrary gate delays are admitted.

When we �rst designed this circuit, we simulated it for 500,000 state transitions by compiling its

Synchronized Transitions program to C, and then compiling and executing the C program. Mutual

exclusion was maintained throughout the simulation. We then attempted to verify mutual exclusion

17

v1

w1

L

L

c1.r

c1.d

s1

x1

u1
L

t1

c1.g
C

y1

z1

c2.r

c2.d

c2.g

y2

s2
u2

t2

w2

v2

x2

z2

client 1
transition arbiter

client 2

L

L

L

C

Figure 7: An incorrect implementation of a speed-independent transition arbiter.

18

as a safety property using our st2fl program. Within one minute of execution, FL reported that

the weakest invariant for mutual exclusion was \false," i.e. from any state, a state could be reached

that violated mutual exclusion. Furthermore, the program gave a shortest sequence of transitions

that starts in a state satisfying the INITIAL predicate, but leads to a state that violates the ALWAYS

predicate. This trace consisted of 38 transitions.

Given this experience, we were curious as to how much simulation would be required to reveal

the error. The Synchronized Transitions language includes non-deterministic selection of transitions

when more than one is enabled, and our simulator chooses among concurrently enabled transitions

with equal probability. Perhaps a longer simulation would reveal the error. Our simulation in-

cluded a counter of the number of state transitions performed. After 50 CPU hours and 231 state

transitions, the counter over
owed, ending the simulation, without a single violation of mutual

exclusion encountered.

8 Other Veri�cation Tasks

In this section we will illustrate how other veri�cation tasks can be phrased in terms of computing

weakest invariants of various predicates. In particular, we will illustrate how checking for hazard-

freedom and re�nement can be accomplished.

8.1 Speed-Independence

In the previous section, we presented a speed-independent implementation of the transition arbiter

that was speci�ed in Section 1. A design is speed-independent if

1. it functions correctly independent of the speeds of its components;

2. once a component is excited to change its output, it remains excited until the change is

completed1.

Both requirements for a correct speed-independent circuit can be veri�ed using the methods de-

scribed in the previous sections of this paper. When several transitions are enabled, the semantics

of the k combinator allows a non-deterministic selection of which transition to execute. This cor-

responds to an arbitrary delay between the excitation of a circuit element and the corresponding

change of its output. Thus, showing that a program satis�es its speci�cation establishes that the

corresponding circuit functions correctly independent of the speeds of its components. For the

transition arbiter, we must show that the program can never grant both clients simultaneously.

1The second condition is violated by the NAND gates of the internal arbiter described in the previous section.

We regard the internal arbiter as a single component and note that care must be taken in the implementation of this

component [CM73]. Our design is based on that of Seitz [Sei79].

19

In our approach, each component of the circuit is modeled by a corresponding transition in the

Synchronized Transitions program. In this case, the second requirement for speed-independence is

satis�ed if there are no \interfering" transitions. Intuitively, two transitions interfere in state s if

both can be enabled from the same state, s, performing one of the transitions from state s modi�es

values read by the other. Let Gt(s) denote that the precondition of transition t is satis�ed in state

s, let Wt(s) denote the set of state variables that are modi�ed (i.e. written) when performing t in

state s, let Rt denote the set of state variable read by t. We write SIt1;t2(s) to denote the predicate

that indicates the states in which t1 does not interfere with t2:

SIt1;t2(s) = (Gt1(s) ^ Gt2(s))) (Wt1(s) \Rt2 = ;)

We note that SIt1;t2(s) is an ordinary predicate over states that can be derived directly from the

Synchronized Transitions representations of t1 and t2. For a program, P , and a state s, SIP (s)

denotes that there are no pairs of transitions in P that interfere in state s. If a program is of the

form t1kt2k : : :ktn, then

SIP (s) =
^

1�i;j<n

i6=j

SIti;tj(s)

We note that SIP (s) is an ordinary predicate over states that can be derived directly from the

program text. To verify the second requirement for speed independence, st2fl derives a de�nition

of SIP directly from the program text along with the assertion that Q0) winP (SIP).

When we apply this test for speed-independence to the Synchronized Transitions program for

the arbiter shown in �gure 5, it reports, as expected, that the transitions for the two NAND gates

interfere, but that there are no other interfering pairs of transitions. Alternatively, we can annotate

the program to indicate that we know that the NAND gates interfere with each other; in which

case, the design is veri�ed with no errors reported.

8.2 Re�nement

In the previous sections, we presented two programs for a transition arbiter. The �rst program

(see Fig. 1) was a rather abstract description that speci�ed the interaction of the arbiter with its

clients. The second program (Fig. 5) described a gate-level implementation of this arbiter. We

showed how our techniques could be used to verify that each of these programs ensured mutual

exclusion. In this subsection, we present another approach to this veri�cation task. In particular,

we show how to verify that the gate-level description of a circuit implements a more abstract

speci�cation. To say that a circuit is an implementation of a speci�cation means that everything

that the circuit does corresponds to a behavior allowed by the speci�cation. As a consequence, the

circuit inherits all safety properties of the speci�cation, and we don't have to repeat the veri�cation

of these assertions for the circuit. In the case of the arbiter, having veri�ed that the speci�cation

ensures mutual exclusion, we can verify that the circuit is an implementation of the speci�cation

20

and thereby ensure that the circuit guarantees mutual exclusion as well. In the remainder of this

subsection, we give a more precise de�nition of re�nement and show how re�nement of Synchronized

Transitions programs can be veri�ed using OBDDs. Initially, we use the transition arbiter as an

example, and then we show how the same techniques can be applied to the veri�cation of a toggle

element.

To de�ne re�nement, we �rst examine what it means for an action of an implementation to

correspond to an action of a speci�cation. An action of a Synchronized Transitions program is a

state transition and can be represented by a pair of states, (s1; s2) indicating that an execution of

the program can produce state s2 from s1 in a single step. A state assigns a value to each state

variable of the program. Typically, a speci�cation and an implementation will have di�erent sets

of state variables, and states of the two programs are, therefore, not directly comparable. For

example, the implementation of the arbiter given in Fig. 5 has state variables s1 : : :x1 and s2

: : :x2 that do not appear in the speci�cation.

To compare states of two programs with di�erent state variables, an abstraction function must

be de�ned. This function maps states of the implementation program to states of the speci�cation

program. Often, this function is very simple; for example, the abstraction function for the arbiter

programs maps the values of the interface variables of the circuit (i.e. r1, g1, d1, r2, g2, and d2)

to the corresponding variables of the speci�cation and discards the values of the internal variables

(i.e. s1 : : :x1 and s2 : : :x2). In other cases, the representation of a variable may be changed; for

example, the speci�cation may include an integer valued variable that is represented by an array

of Boolean variables in the implementation; in such cases, a non-trivial abstraction function may

be necessary.

We can now give a precise statement of what it means for one program to be an implementation

of another. Given a speci�cation program, Q, an implementation program, eQ, and an abstraction

function A, let RQ denote the state transition relation of Q and R
eQ denote the state transition

relation of eQ. eQ is a re�nement of Q if an only if for every pair of states, (~s1; ~s2) in R
eQ, either

(A(~s1); A(~s2)) is in RQ

or A(~s1) = A(~s2)

In the �rst case, the action of the implementation corresponds directly to an action of the speci�ca-

tion; in the second case, both states of the implementation map to the same state of the speci�cation,

and this action is called a \stuttering" action. Stuttering actions occur when the state transition

in the implementation only alters the value of internal variables that do not correspond to any

variables of the speci�cation.

Although the preceding de�nition refers to the state transition relations of both the speci�cation

program, Q, and the implementation, eQ, it is not necessary to represent these relations explicitly,

and signi�cant performance improvement are achieved for automatic veri�cation when an implicit

representation is used. Our approach is similar to the one we used for verifying invariants and

21

safety properties. The following derivation shows how this is achieved.

Let Q = <<G1!M1>>k<<G2!M2>>k : : :k<<Gm!Mm>>

eQ = << eG1!fM1>>k<< eG2!fM2>>k : : :k<< eGn!fMn>>

S
eQ = the state space of eQ

Then eQ implements Q i�

8(~s1; ~s2) 2 R
eQ:(A(~s1) = A(~s2))_ ((A(~s1); A(~s2)) 2 RQ)

� 8(~s1; ~s2) 2 S
eQ � S

eQ:(9j 2 f1 : : :ng: eGj(~s1) ^ (~s2 = fMj(~s1))) =)

(A(~s1) = A(~s2)) _ (9i 2 f1 : : :mg:Gi(A(~s1)) ^ (A(~s2) = Mi(A(~s1))))

� 8~s 2 S
eQ:8j 2 f1 : : :ng: eGj(~s) =)

(fMj(~s) = ~s) _ (9i 2 f1 : : :mg:Gi(A(~s1))^ (A(fMj(~s1)) = Mi(A(~s1))))

The �rst equivalence is the de�nition of re�nement from the previous paragraph, and the last line

gives an equivalent expression that can be e�ciently checked using OBDDs. In particular, we verify

that the expression

�(~s) = 8j 2 f1 : : :ng:

(fMj(~s) = ~s) _ (9i 2 f1 : : :mg:Gi(A(~s1))^ (A(fMj(~s1)) = Mi(A(~s1))))

is a tautology.

The tests for re�nement described above are very strict. In particular, all actions admitted by

the state transition relation of the implementation must correspond to actions of the speci�cation,

even if the state from which the transition is performed is unreachable. Often, it is reasonable

to implement a speci�cation with a circuit that functions correctly as long as the environment

is well-behaved and the system remains in the intended region of operation; if the environment

does something forbidden by the speci�cation, then the circuit is no longer required to function

\correctly." This notion can be captured by an invariant that describes the set of states that can

be reached under correct operation. To verify this invariant, the actions of the environment must

be considered along with those of the circuits. This is why we included transitions to model the

actions of the clients in our programs for the speci�cation and implementation of the transition

arbiter (a more complete an rigorous treatment of these issues can be found in [AL89]).

We note that the predicate � as de�ned above identi�es the states of eQ from which any state

transition corresponds to an action of Q. Thus, if � is a safety property of eQ, then eQ is a

re�nement of Q when only reachable states are considered. Given the speci�cation program, Q,

an implementation program, eQ, and an abstraction function A all written in the Synchronized

Transitions language, our translator automatically produces the predicate � and produces FL code

to verify eQ0) win(�; eQ) as required, where eQ0 is the initial state predicate for eQ.
Using these methods, we have veri�ed that the gate-level description of the arbiter (Fig. 5) is a

re�nement of the speci�cation program (Fig. 1). The veri�cation was performed automatically, and

the CPU time required was nearly identical to that of verifying mutual exclusion for the gate-level

program.

22

A toggle element

To show the applications of these methods to a transistor level design, we consider Yuan and

Svensson's toggle element [YS89]. The Synchronized Transitions speci�cation of a toggle element

is straightforward as shown below:

<< phi ! q1 := q0 >>

k << NOT phi ! q0 := NOT q1 >>

k << stable() ! phi := NOT phi >>

Where stable() = (phi=)(q1 = q0)) ^ (:phi=)(q1 6= q0)). The �rst two transitions are a

two-phase description of the behavior of the
ip-
op. The third transition states that the clock can

change when the transitions that modify q0 and q1 have been performed.

Φ y zx
L
H
L
H

L H H
L H L
H H L
L HL

L L H H

Φ

Φ

Φ

Φ

x

y z

Figure 8: Yuan-Svensson toggle element

Fig. 8 shows the implementation of a toggle element proposed by Yuan and Svensson. This

design employs precharged logic and dynamic storage along with a single-phase clocking scheme to

achieve operation at very high clock frequencies. In Synchronized Transitions, this toggle element

can be described by giving next state functions for each of the signals x, y, z, and q, and writing a

separate transition to update each of these signals according to these functions. For example, the

next state function and the transition for x are

nextx(phi, x, y, z) = (NOT z) AND ((NOT phi) OR x);

<< x := nextx(phi, x, y, z) >>

The abstraction mapping is given by stating for each variable of the speci�cation, an expression

of variables in the implementation. If a variable has the same name in both the speci�cation and

implementation (e.g. phi), then that variable is assumed to have the same value in both programs as

well. By examining the behavior of the toggle element as shown in Fig. 8, we choose the abstraction

mapping:

q0 = x OR NOT y; q1 = z AND NOT x;

23

STATE

x, y, z: BOOLEAN; (* signals output by the Yuan-Svensson toggle element *)

phi: BOOLEAN; (* the clock *)

INITIALLY (NOT x) y AND AND z;

IMPLEMENTS (* speci�cation of toggle element *)

STATE

q0: BOOLEAN = x OR NOT y;

q1: BOOLEAN = z AND NOT x;

phi: BOOLEAN; (* implicitly mapped to phi in implementation *)

FUNCTION stable() = ((q0 = q1) = phi); (* q0 and q1 have settled *)

BEGIN

<< phi ! q1 := q0 >>

k << NOT phi ! q0 := NOT q1 >>

k << stable() ! phi := NOT phi >>

END;

FUNCTION nextx(phi, x, y, z) = (NOT z) AND ((NOT phi) OR x);

FUNCTION nexty(phi, x, y, z) = (NOT phi) OR ((NOT x) AND y);

FUNCTION nextz(phi, x, y, z) = (NOT y) OR ((NOT phi) AND z);

BEGIN

<< x := nextx(phi, x, y, z) >>

k << y := nexty(phi, x, y, z) >>

k << z := nextz(phi, x, y, z) >>

k << q := nextq(phi, x, y, z) >>

k << (x = nextx(phi, x, y, z)) AND

(y = nexty(phi, x, y, z)) AND

(z = nextz(phi, x, y, z)) !phi := NOT phi>>

END;

Figure 9: Synchronized Transitions program of a Yuan-Svensson toggle element.

24

Fig. 9 shows the Synchronized Transitions program for the toggle element. The precondition of

the transition that modi�es phi is obtained by applying the inverse of the abstraction mapping

to the precondition of the corresponding transition in the speci�cation. The clauses state how

the x, y, and z signals must settle before the next change of the phi input. These are timing

assumptions that must be checked separately. Using our st2fl translator, the veri�cation that the

Yuan-Svensson design implements its speci�cation takes less than one second.

9 Conclusion

We have shown how ordered binary decision diagrams (OBDDs) can be used to verify safety proper-

ties of speed-independent, asynchronous circuits described as programs written in the Synchronized

Transitions language. In particular, we can verify that a particular predicate is an invariant or �nd

the weakest invariant of a program that implies as desired safety property. A program written in

Synchronized Transitions de�nes a state transition relation; however, this relation has a simple,

syntactic decomposition into state transition functions. With this decomposition, Synchronized

Transitions programs can be e�ciently represented as OBDDs, which makes our methods applica-

ble to practical designs.

We have illustrated our approach by considering three programs describing an arbiter. The

�rst program is a simple, high-level speci�cation of the arbiter; it guarantees mutual exclusion and

describes the communication protocol between the arbiter and its clients. For this program, we

veri�ed that mutual-exclusion is an invariant of the program and that this invariant is satis�ed

by any allowed initial state. The second program is an implementation of the arbiter. For this

program, a non-trivial invariant that guarantees mutual exclusion is much more complicated, and we

described how this is automatically generated by our software. Finally, we presented an incorrect

implementation of the arbiter and described an error that was quickly located by our software.

Although the circuit was relatively simple (22 \gates"), the error was not revealed by a simulation

of over two billion state transitions. We believe that these examples demonstrate the utility of

formal methods for VLSI design.

This paper describes ongoing research and there are many areas that we are interested in

exploring. We plan to investigate verifying liveness properties using the partitioned state transition

relations that Synchronized Transitions o�ers. Other issues include representing in�nite domains

(e.g. integers) with OBDDs, supporting the other combinators of Synchronized Transitions (e.g.

those used to describe synchronous circuits), and hierarchical veri�cation based on re�nements.

References

[AL89] Mart��n Abadi and Leslie Lamport. Composing speci�cations. In J.W. de Bakker

25

et al., editors, Proceedings of the REX Workshop, \Stepwise Re�nement of Distributed

Systems". Springer-Verlag, 1989. LNCS 430.

[BCMD90] J. R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill. Sequential circuit veri�ca-

tion using symbolic model checking. In Proceedings of the 27th Design Automation

Conference. ACM, 1990.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-

actions on Computers, C-35(8):677{691, Aug. 1986.

[CM73] T.J. Chaney and C.E. Molnar. Anomalous behavior of synchronizer and arbiter circuits.

IEEE Transactions on Computers, C-22(4):421{422, April 1973.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,

1988.

[Eur] European Silicon Structures, Bracknell, Berkshire RG12 3DY, United Kingdom. De-

signing in MODEL, doc. no. ES2-014-0055 edition. SOLO Reference Manual.

[Gre92] Mark R. Greenstreet. Using Synchronized Transitions for simulation and timing veri�-

cation. In J�rgen Staunstrup and Robin Sharp, editors, 1992 Workshop on Designing

Correct Circuits, pages 215{236, Lyngby, Denmark, January 1992. Elsevier. An earlier

version published as Matsushita Information Technology Laboratory technical report

MITL-TR-01-91.

[HC86] D.D. Hill and D.R. Coelho. Multi-level Simulation for VLSI Design. Kluwer Academic

Publishers, 1986.

[Hoa78] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM,

21(8):666{677, August 1978.

[Lam87] Leslie Lamport. win and sin: Predicate transformers for concurrency. Technical Re-

port 17, Digital Equipment Corporation, Systems Research Center, Palo Alto, CA,

May 1987.

[M+84] J.D. Morison et al. ELLA: Hardware description or speci�cation. In Proceedings of

1984 IEEE ICCAD, 1984.

[Mol92] C. Molnar. Personal communications. 1992.

[NSJ91] Christian D. Nielsen, J�rgen Staunstrup, and Simon R. Jones. A delay-insensitive

neural network engine. In J.G. Delgado-Frias and W.R. Moore, editors, Proceedings

of Workshop on VLSI for Arti�cial Intelligence and Neural Networks. Plenum Press,

1991.

26

[RMH90] M. Tofte R. Milner and R. Harper. The De�nition of Standard ML. MIT Press, Boston,

MA., U.S.A., 1990.

[SB93] C-J. Seger and R. E. Bryant. Formal veri�cation by symbolic evaluation of partially-

ordered trajectories. Technical Report UBC-CS-93-8, Department of Computer Science,

University of British Columbia, Vancouver, B.C., Canada, 1993.

[Seg93] C-J. Seger. Voss|a formal hardware veri�cation system, user's guide. Unpublished

Manuscript, Oct. 1993.

[Sei79] Charles L. Seitz. System timing. In Introduction to VLSI Systems, chapter (Carver

Mead and Lynn Conway) 7, pages 218{262. Addison Wesley, 1979.

[SG88] J�rgen Staunstrup and Mark R. Greenstreet. From high-level descriptions to VLSI

circuits. BIT, 28(3):620{638, 1988.

[SG90] J�rgen Staunstrup and Mark R. Greenstreet. Synchronized Transitions. In J�rgen

Staunstrup, editor, Formal Methods for VLSI Design, chapter 2, pages 71{128. North-

Holland, 1990.

[Sta93] J�rgen Staunstrup. A Formal Approach to Hardware Design. Kluwer, 1993. in press.

[Udd84] Jan T. Udding. Classi�cation and Composition of Delay-Insensitive Circuits. PhD

thesis, Eindhoven University of Technology, 1984.

[YS89] Jiren Yuan and Christer Svensson. High-speed CMOS circuit technique. IEEE Journal

of Solid-State Circuits, 24(1):62{70, February 1989.

27

Appendix A|FL program derived from Synchronized Transitions

speci�cation.

let ArbiterClient = st rec b [

("r", BOOLEAN),

("g", BOOLEAN),

("d", BOOLEAN)] [];

let ArbiterClient s = st var (s, ArbiterClient);

letrec privileged c =

((c:-"g") is (c:-"r")) and ((c:-"d") is not (c:-"r"));

let c1 = ArbiterClient "c1";

let c1 = st state c1 ;

let c2 = ArbiterClient "c2";

let c2 = st state c2 ;

let st vl = [c1 , c2];

let st transitions =

not (privileged c2) ==>

c1:-"g" <- c1:-"r"

|||not (privileged c1) ==>

c2:-"g" <- c2:-"r"

|||TRUE ==>

c1:-"r" <- not (c1:-"g")

|||TRUE ==>

c1:-"d" <- c1:-"g"

|||TRUE ==>

c2:-"r" <- not (c2:-"g")

|||TRUE ==>

c2:-"d" <- c2:-"g";

28

