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Abstract 

This paper addresses detection and estimation of multiple disparities in mo­

tion and stereo using multi-evidential correlation. No a priori knowledge of the 

presence or the absence of or even the number such disparities is assumed. The 

procedure utilizes two matching kernels, one based on phase correlation and the 

other based on a variation of cepstral filtering that provide direct estimates of 

multiple motion or stereo disparities. 

Multi-evidential correlation and the kernels utilized are described and re­

sults are presented for motion transparency, occluded boundary and multi-frame 

analysis of reflected images. 

Both kernels were found useful, but phase correlation showed unstable behav­

ior and very broad peaks in the presence of curved surfaces making recognition 

of multiple disparities difficult. Cepstrum, on the other hand, had very high 

signal to noise ratio, and provided stable performance thorough all iterations. 

Submitted to ECCV'94 
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1 Introduction 

As pointed out pictorially by Bergen, Burt, Higorani and Peleg[BBHP90] different 

phenomena may result in multiple disparities in a single image neighborhood. Some of 

these include multiple disparities due to reflection or specularities, relative motion of 

objects and transparent surfaces in front of them, such as clouds or glass, and multiple 

motion or stereo disparities at occluded boundaries. Peleg and Irani[IP92] showed an 

application of multiple motion estimation to track objects through image frames and 

improve their appearance and resolution over time. 

One of the first attempts to find multiple disparities in single image regions was 

by Fenema and Thompson[FW79] who used a histogram of the correlation results to 

localize occluded regions within two frames. Since then many researchers have provided 

more robust and interesting approaches based on a variety of disparity estimation 

techniques. 

Peleg and Rom[PR90], for instance, used an iterative approach for motion segmen­

tation based on constraint equations of brightness change for images where depth of 

the scene was already known or remained constant. Campani and Verri[CV92] also 

used the differential approach for optical flow estimation to calculate multiple motion 

disparities in image sequences. 

Darrel and Pentland[DP91] used robust statistics and temporal integration to find 

distinct "layers" of motion. Jepson and Black[JB93] also used robust statistics and the 

optical flow gradient constraint equation to find multiple disparities. 

Little and Gillet[LG90] used a normalized correlation approach, but introduces two 

mechanisms to independently determine the occluding boundaries in stereo images. 

Burt, Higorani and Kolczynski[BHK], use a Laplacian pyramid and the iterative 

selective stabilization routine to lock into and cancel a dominant velocity when this 

velocity is detectable within a frequency band provided by the Laplacian, band-pass, 

pyramid structure. Bergen, Burt, Higorani and Peleg[BBHP90] also used an iterative 

approach to determine two constant velocities present in three frames. 

Finally, Jones and Malick[JM92] proposed an elegant approach based on the dis­

tance measure of vectorized response measures to orthogonal linear filters to determine 

occluded regions on stereo scenes. Chen, Shirai and Asada[CSA93] also used linear 

spatial filtering as well as the motion constraint equation to find occluded regions . 
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In this paper we use multi-evidential correlation to detect the presence of multiple 

disparities without any a priori knowledge of their existence, and to estimate differing 

disparities due to reflection, transparency and occlusion. The number of disparities 

present is not limited to two and, as we will see, the matching kernels used, namely 

phase correlation and cepstrum filtering, provide direct estimates of multiple motion 

or stereo disparities. Furthermore, in the case of constant velocities, we show how 

multi-frame analysis can improve the detection and the estimation process by allowing 

constant disparities among frames to reinforce one another. 

In the next section we provide a brief review of multi-evidential correlation and the 

mathematical properties of the different filters m;ed. We also present examples based 

on random dot stereograms to provide a quantitative comparison between cepstrum 

and phase correlation. In section 3 we present results of multiple disparity estimation 

due to transparent motion and discuss different algorithms to segment a stereo image 

based on occluded boundary. Finally we discuss the use of a multi-frame analysis 

technique, called multiCeps, to find constant multiple disparities due to reflection in a 

sequence of three images. 

2 Multi-evidential Correlation, Cepstrum and Phase 

Correlation 

Bandari and Little[BL92, BL] introduced multi-evidential correlation in conjunction 

with visual echo analysis, and cepstrum filtering. 

There are a few filters such as cepstrum[BHT62], phase correlation[KH75] and those 

based on Hadamard transform[LC88] that provide direct measurement of disparity 

between two image windows. In the case of cepstrum and phase correlation these 

measurements are found by locating the Kroenecker delta peak in the resulting filter. 

The magnitude of these peaks diminish in strength and can be overcome by noise, as 

the disparity between the two windows increase - i.e., the area of the matching parts 

between two windows decrease. Multi-evidential correlation [BL92, BL] is an iterative 

technique which substitutes such filters for sum of absolute or squared differences in 

a correlation like routine, and therefore provides multiple measurements of motion or 

stereo disparities in an im'age neighborhood. 
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To be more precise, a window from one image centered at (x1 , y1 ) is compared 

against another window from the second frame located at (x2, Y2) = (x1 + Dx, Y1 + Dy) 

where Dxmin s; Dx s; Dxmax and Dymin s; Dy s; Dymax are small offsets that sweep a small 

discrete range. As a result the window from the first image is compared against a 

series of windows from a neighborhood in the second image using cepstrum or phase 

correlation. Most importantly, each time a comparison takes place a new measurement 

of disparity is collected. Inconsistent measures, or outliers, can then be discarded and 

the remaining measurements can then be combined and confidence measures calculated. 

We have found that a more efficient approach is to find a few evidences that point to 

a particularly disparity, then extract and compare the two overlapping windows based 

on this estimate, and make sure that their disparity corresponds as closely as possible 

to (0, 0) motion. For a more detailed discussion the reader is referred to [BL93b]. 

An important property of cepstrum and phase correlation is that they both pro­

duce multiple peaks in the presence of multiple motions within a window. Figure 1 

shows a manufactured image to display the effects of multiple motion on phase cor­

relation and cepstrum. The box in the image was move by 3 pixels vertically and 6 

pixels horizontally, while the main image was moved 10 pixels vertically and 5 pixels 

horizontally. These motions created the corresponding peaks in the cepstrum result, a 

relevant portion of which is shown topographically, with the two peaks estimating the 

correct disparity. 

This property, in conjunction with multi-evidential correlation, provides a unique 

approach to detection and recognition of multiple disparities when they are present. 

To elaborate, when two or more disparities appear in an image, they generate two or 

more peaks in cepstrum and phase correlation. As multi-evidential correlation sweeps 

a window from one frame over a region in the other, only the peaks corresponding to 

legitimate disparities persist , each of them indicating a consistent disparity measure. 

The relative magnitude of these peaks will, of course, increase and decrease as the 

relative overlapping areas of the matching image parts decrease or increase. But the 

peaks themselves persist over all or some part of the iteration. In this manner we can 

first detect the presence of multiple disparities and then estimate their proper values. 

In the following subsections we describe phase correlation and a variation of power 

cepstrum for estimation of motion and binocular disparity. We defer the mathematical 

treatment of their behavior in the presence of multiple motion and instead provide 
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(a) (b) (c) 

Figure 1: (a) & (b) the manufactured images. ( c) the result of analyzing the images 

with cepstrum or phase correlation. 

examples based on random dot stereograms .. 

2.1 Phase Correlation and Multi-evidential Correlation 

Phase Correlation was first introduced by Kuglin and Hines[KH75] as an image align­

ment methodology. Given two image windows s1 (x, y) and s2 (x, y) their phase corre­

lation is defined as: 

where S1 and S2 are the Fourier transform and the conjugate Fourier transform of 

the s1 and s2 respectively, and ;:-1 is the inverse Fourier transform of the result. 

The denominator of this equation is the amplitude of the numerator; thus given two 

windows that are shifted with respect to each other by (dx, dy), it is easy to show that 

the result of this normalized correlation in the Fourier domain is simply ei(d.,w.,+dywy)_ 

The inverse Fourier transform of this exponential will then result in a sharp Kroenecker 

delta peak at (dx, dy)-
It can also be shown mathematically that if multiple disparities are present in 

the two windows, phase correlation results in multiple peaks corresponding to the 

individual disparities plus a small residual noise. To show this effect, and how multiple 
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(a) (b) 

Figure 2: (a). Each row of the figure represents the result of one iteration of the multi­

evidential correlation with phase correlation as its matching kernel. The location of 

the peaks are indicative of the disparity, with negative disparities located from the left 

column. (b) Topographic image of figure (a) displaying the magnitude of the phase 

correlation peaks 

peaks persist over individual iterations of multi-evidential correlation, we generated 

a random dot stereogram with two disparity levels of 2 and 5. We then chose an 

area near the occluded boundary, and using phase correlation as the matching kernel 

we conducted multi-evidential correlation. For window size, we chose 16 by 16 pixels 

size patches1 and for the correlation span (i.e., the area which we sweep over during 

our comparison) we selected Oto 10 columns horizontally and zero columns vertically. 

Since epipolar constraint was preserved, and our motion (or span) was only horizontal, 

the peaks in each phase correlation outcome appear only on the first row of the inverse 

Fourier transform, thus reflecting O vertical disparity. We then kept the first row of 

each phase correlation result in our multi-evidential correlation and concatenated them 

together vertically. Figure 2 shows the result with each row representing the outcome 

of one phase correlation match. 

As can be seen, each row contains two peaks corresponding to the two disparities. 

As we move to the right these disparities get smaller by one pixel, as expected, and 

1 Eight pixels by eight pixels windows or even smaller window sizes would also be adequate, but 

we chose a larger size for display purposes. 
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reach their respective maximum magnitudes at O disparities (i.e., when they reach 

the left hand column). If we continue moving to the right the peaks reappear in the 

right hand column, indicating a negative disparity, and their magnitude again starts 

to decrease with each iteration. 

What is important to note is the consistent presence of the two peaks and how 

their relative location moves as we iterate over an area. If such consistency persists 

during multi-evidential correlation over an image neighborhood then it is easy to infer 

that multiple disparities due to occlusion, reflection, or transparency has occurred. 

Even though the example presented here corresponds to binocular disparity (pri­

marily for proper visualization), the :;a,me approach can be extended to the detection 

and estimation of two or more motion disparities. 

2.2 cepsCorr: Cepstrum and Multi-evidential Correlation 

Power cepstrum was first introduced by Bogert, Healy and Tuckey[BHT62] to deter­

mine the delay arrival period of echoes in time. Described briefly, power cepstrum is 

the power spectrum of the log of the power spectrum of a signal. 

IF{ log( F{s(x, y)}) }I (2) 

Since its introduction, different variations to cepstrum such as complex cepstrum, 

phase cepstrum [SC75] and differential cepstrum[RR87] have been developed for de­

tection, retrieval, and removal of echoes, as well as for homomorphic filtering, decon­

volution and image restoration. 2 We have examined different cepstrum techniques and 

found that a variation of power cepstrum, called cepsCos, which replaces the second 

power spectrum with cosine transform to be the best approach for determination of 

signal disparities[BL93a]. 

We next used cepstrum as the correlation kernel in our multi-evidential routine -

which we often refer to as cepsCorr for brevity - and repeated the experiment described 

in the previous section. As with the phase correlation the peaks of the cepstrum appear 

only in the first row of each iteration," and hence they can be concatenated to one 

another. Since we use the same windowing routine described in [BL], and since the 

2For a more detailed discussion of these variations and applicability of cepstrum please refer to 

[CSK77] and [BL93b). 
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(a) (b) 

Figure 3: (a). The collection of binocular disparity signals generated by cepsCorr. 

Each row of the figure represents the result of one iteration of the multi-evidential 

correlation with cepstrum as its matching kernel. Each disparity is represented by 

two peaks which are symmetrically displaced away from the center of column by the 

disparity. (b) Topographic image of cepsCorr in (a) in order to display the magnitude 

of the cepstrum peaks. 

cepstrums ( or cepsCos) of real signals are symmetric and even functions, for binocular 

disparity the first row of cepstrum will contain two symmetric peaks around the center 

column for each of the disparities present. Figure 3 shows the cepsCorr results for the 

experiment described above. Note that, as with phase correlation, as the disparity 

between two identical parts in the two images reduces, the peak magnitude of their 

disparity increases, and the peaks move close to the middle column (i.e., zero disparity). 

Comparing the two topographic maps in figures 2 and 3 for our matching kernels 

indicates that the disparity peaks generated by the cepstrum filter are larger in mag­

nitude than those generated by phase correlation by roughly a factor of three to one. 

Moreover, our experiments indicate that cepstrum results seem to have higher signal 

to noise ratios than those of phase correlation. 

We also encountered instabilities in phase correlation performance which we are 

investigating further. One of these anomalies, for instance, was the presence of a 

checkered pattern at certain relative disparities between the two windows. Other 

researchers[LMK89] have also shown that cepstrum performs better than phase correla-
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Figure 4: (a). Topographic representation of multi-evidential correlation results for 

the pepsi scene with phase correlation as the matching kernel. (b). result of cepsCorr 

for the same image area in the pepsi scene. Note that cepsCorr generates a strong 

peak in the center corresponding to one of the disparities while for phase correlation 

the results are very weak and lack a distinguishing structure. 

tion in the presence of noise. Lastly, figures 4 ( c) are the results of the same operations 

as above on the boundary of the real image depicted in figure 7. The estimated peaks 

in phase correlation, even after taking into account spreading due to the curvature of 

the Pepsi can was quite inaccurate, while cepstrum's results were much better suited 

for further analysis. 

3 Results 

In this section we will apply multi-evidential correlation to the detection of multiple 

disparities. The three examples that we will tackle are due to motion transparency, 

detection and localization of occluding boundaries in binocular stereo, and multi-frame 

analysis of constant dual disparities due to reflection. 

10 



(a) (b) (c) 

Figure 5: (a). The first frame of a sequence of motion transparency images. (b). & 

(c). The magnitude of multi-evidential correlation at (0,0) disparities for cepstrum (b), 

and phase correlation ( c). 

3.1 Motion Transparency 

Determination of the motions of two objects where one object is transparent and in 

front of the other is often referred to as the motion transparency solution. One of the 

applications of this work is matching of satellite images where thin cloud cover or smoke 

can overshadow the primary matching disparity estimates. Irani and Peleg[IP92] also 

showed how they used results of motion transparency to track objects behind stained 

glass and improved the clarity and resolution of the object images over time. 

Figure 5 (a) shows an image of a sequence where a tripod is moving behind a 

window with a picture of flower. 

In the first two frames of this s~quence, while the flower stays stationary, the tripod 

moves · by 4 pixels horizontally ( again there is no vertical motion present). We used 

phase correlation and cepstrum as the matching kernels for our approach and then 

checked for maximum peaks at zero disparities - i.e., when the either tripods or the 

flowers in the two images overlapped. We also chose rather large windows of 128x128 

pixels to ensure that both disparities are included in our our analysis. The span of 

our routine was from -2 to 7 pixels horizontally. The results of the (0,0) peaks are 
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shown in figure 5 (b) and (c) . The main two peaks appear at the proper locations and 

correspond to the offsets where either the flower or the tripod overlap. It is important 

to note that even though the disparity in this case was only horizontal this is not at 

all a requirement, and that vertical as well as horizontal disparities can be found quite 

easily. 

3.2 Occluded Boundary 

Recognition of occluded boundaries in motion or stereo plays a significant role in 

segmentation of three dimensional objects. Such segmentation are in turn important 

for tracking, recognition, or object manipulation in robotics applications. 

As we have demonstrated, in the region near an occluded boundary, both phase cor­

relation and cepstrum generate two peaks corresponding to the two disparities present. 

But while detection and estimation of disparities is easy, localization of the occluded 

boundary is a more cumbersome task. The primary problem is the duality in detection 

and localization, as they relate to the window size. Large window sizes are generally 

better in detection and estimation, but produce greater uncertainty in the location 

of the edges. Figure 6 shows the uncertainty in locating the occluded boundary of 

random dot stereograms for two squares. 

Figure 6: Detection vs. localization of occluded boundary for random dot stereogram. 

The area between a pair of white and black edges corresponds to the locations where 

multiple disparities were detected. 

This problem is aggravated, and the consistency of multiple peaks in multi-evidential 
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(a) (b) (c) 

Figure 7: (a) & (b) A pair of streo images of a curved object. (c) the occlude boundary 

of the object using multi-evidential correlation. 

correlation is jeopardized, if the window shape does not match the occluded boundary, 

or if one or both objects in view contain curved or slanted surface structures; this is 

_primarily due to the fact that a curved surface will have multiple disparities within a 

window which result in a blurring of the disparity peak. 

The natural answer to this problem is to use a smaller window size. This approach 

was examined by Okutomi and Kanade[OK92] who used windows with locally adaptive 

extents. Our experience with phase and cepstrum indicates however, that even with 

smaller windows, the window width generates an uncertainty in the location of the 

occluded area. 

It should also be pointed out here that relative sizes of image patches that give rise 

to mulitple disparities are not the only factors effecting the relative peak magnitudes. 

Our studies show that other factors such as the relative frequency distribution content 

of the image windows also play a significant role. Moreover, often the objects creating 

an occluded boundary are similar in nature, making the detection and localization of 

the occluded boundaries even more difficult. This is why random dot stereograms are 

not a good representative problem. An engineering solution that will work with real 

scenes is to first find edges in the image3 and then determine if the edge is an occluded 

3 0 bviously with an edge fin_der that has good localization characteristics such as [RHK vdH92] . 
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Figure 8: (a). One of the three images with two constant disparities caused by re­

flection. (b) . The magnitude of the (0,0) peaks caused by the overlap of individual 

mulitple disparities. Note that the graph shows two maximums due to two disparities. 

boundary or a surface feature based on the existence or lack of strong multiple peaks 

along the edge. The difference between the two disparities, indicates the width of the 

occluded area. 

Instead, we examined different direct methodologies for the detection of occluded 

boundaries, including voting schemes, and thresholding of relative peak magnitudes. 

Our final approach to solving the occlusion problem is similar to a technique used 

by Fua[Fua91] to verify correct disparity calculations. That is , using multi-evidential 

correlation we selected the largest of the two dominant peaks and centered a stationary 

window in the second image at that location. We then tried to find the disparity for 

this window in the first image using mulh-evidential correlation. It is easy to show 

geometrically that (if the information content of the two disparity areas are similar) the 

verification procedure fails inside an occluded region. In fact, in the occluded regions 

the secondary peak in the first pass becomes the dominant peak in the second. 

Figure 7 shows a pair of stereo images and the occluded boundaries found by the 

above technique. Where the image lacks features for matching (such the lower part 

of the pepsi can) this procedure also shows lack of consistency in results. One way 
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to reduce the noise in this result is to verify the existence of multiple peaks for all 

occluded pixel candidates. 

3.3 MultiCeps and Multiple Motion Due to Reflection 

In [BBHP90] Bergen, Burt, Higorani and Peleg used an iterative technique to determine 

two constant motion disparities from three frames. As we can see in figure 8, the 

magnitudes of the (0,0) disparity peaks in cepsCorr also indicate the presence of at 

least two motions between frames two and three of the three frame sequence. 

In this section we use multi-frame analysis technique called multiCeps[BL] to esti­

mate the constant disparities among the three frames. To do this we concatenate the 

three frames 4 and conduct cepstral analysis. It is easy to show mathematically that 

in multiCeps the constant disparities between the first and the second frame and the 

disparity between the second and third frame reinforce one another. The same results 

will hold for the disparity between the first and third frame. Figure 9 below shows a 

small portion of the multiCeps result. 

"/blp/eaf . gd11t11" -

100000 

50000 

Figure 9: A portion of the cepstrum result for multi-frame analysis. 

Close examination of these results shows three peaks corresponding to the three 

horizontal disparities at -3.4, -0.6 and 6. 7 using linear interpolation between the peaks. 

The first two peaks correspond to the multiple disparity measures ( of the Escher print 

and the reflection) between the first frame and the second frame, reinforcing similar 

4 Actually we used a 341 by 256 sub-image of the three figures . 
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(a) (b) 

Figure 10: The difference images between frame 1 and 2 after disparity compensation 

for the two estimates. 

disparities between frames two and three. The last disparity corresponds to one of the 

two disparities between frame one and frame three. The vertical disparities between 

these images are also zero. Figures 10 show the outlines of the two images generated 

by simple subtraction of the first two frames after proper disparity realignment. 

The procedure above shows how multi-frame analysis can be utilized 'in estimation 

of constant multiple disparity measurements. 

4 Conclusion 

In this paper we discussed a direct method for detection and estimation of multiple 

disparities due to occlusion, motion transparency, and reflection using multi-evidential 

correlation. No a priori assumptions about the existence or the numb~r of disparities 

were made. The two matching kernels used, cepstrum and phase correlation, both 

generate multiple peaks in the presence of multiple motions. When these peaks persist 

between different iterations of multi-evidential correlation, and they are consistent in 

measurement of the disparities, the existence of mulitple disparities is assured. 
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We also addressed the use of multi-frame analysis and cepstrum to estimate multiple 

constant disparities over time. 

Both cepstrum and phase correlation performed well, but cepstrum had higher 

signal to noise ratio, and an overall better performance than phase correlation. 

A significant fact that should be point out here is that motion transparency and 

reflection often cause blurring in the image. Both cepstrum and phase correlation are 

robust to blurring, and in fact cepstrum is often used as a deblurring mechanism. 

Acknowledgement: We would like to thank Bob Woodham for his fruitful com­

ments on the draft of this paper. We would also like to thank Shmuel Peleg and Allen 

Jepson for providing us with interesting test images. 
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