
The Raven Kernel: a Microkernel for Shared Memory Multiprocessors 1

Duncan Stuart Ritchie

sritchie@cs.ubc.ca

Department of Computer Science

University of British Columbia

Vancouver, B.C., Canada V6T 1Z2

Technical Report TR 93-36

April 30, 1993

The Raven kernel is a small, lightweight operating system for shared memory multiproces-

sors. Raven is characterized by its movement of several traditional kernel abstractions into user

space. The kernel itself implements tasks, virtual memory management, and low level excep-

tion dispatching. All thread management, device drivers, and message passing functions are

implemented completely in user space. This movement of typical kernel-level abstractions into

user space can drastically reduce the overall number of user/kernel interactions for �ne-grained

parallel applications.

1This work was made possible by grants from the Natural Sciences and Engineering Research Council of

Canada.

1

Table of Contents

List of Tables 5

List of Figures 6

1 Introduction 1

1.1 Motivation : 2

1.2 Raven kernel overview : 3

2 Run-time environment overview 5

2.1 Hardware Overview : 5

2.2 Software environment : 14

3 Kernel level implementation 18

3.1 The interrupt model : 19

3.2 Low level mutual exclusion : 20

3.3 List and Queue Management : 23

3.4 Low level console input/output : 29

3.5 Memory management : 31

3.6 Physical memory management : 33

3.7 Memory mapping and cache management : 35

3.8 Virtual memory management : 43

3.9 Task management : 49

3.10 Kernel management for global semaphores : 73

3.11 Interrupt management : 75

3.12 User/Kernel Shared memory regions : 84

2

4 User level kernel implementation 87

4.1 Upcall handling : 88

4.2 User level spin-locks : 92

4.3 Thread management : 93

4.4 Semaphore management : 101

4.5 Interprocess communication : 107

4.6 The global nameserver : 119

4.7 User/User Shared memory regions : 121

5 Performance Evaluation 123

5.1 Benchmark tools : 123

5.2 Function calls vs. System calls : 124

5.3 Thread management performance : 124

5.4 Interrupt handling performance : 127

5.5 Task signalling performance : 129

5.6 Interprocess communication performance : 130

5.7 Memory management performance : 135

5.8 Ethernet driver performance : 136

6 Related Work 137

6.1 Low-level mutual exclusion : 137

6.2 Threads : 140

6.3 Interprocess communication : 143

7 Conclusion 145

7.1 Summary : 145

7.2 Future Work : 146

Appendices 148

3

A Kernel system call interface 148

A.1 System calls provided to the user level kernel : 148

A.2 System calls provided for application programs : : : : : : : : : : : : : : : : : : : 149

B User kernel library call interface 151

B.1 Thread management : 151

B.2 Synchronization primitives : 151

B.3 Asynchronous Send/Receive port IPC : 151

B.4 Synchronous Send/Receive/Reply port IPC : 152

B.5 Nameserver : 152

B.6 User level memory management : 152

B.7 Interrupt and exception management : 152

C Unix version 154

Bibliography 156

4

List of Tables

2.1 GNU C computer and kernel register usage. : 14

5.2 4 parameter user level function call vs. kernel system call. : : : : : : : : : : : : : 125

5.3 Thread management performance. : 125

5.4 Interrupt service routine invocation latencies. : 128

5.5 Task signalling invocation latencies. : 130

5.6 Performance of asynchronous and synchronous local ports, 4 byte data message. 132

5.7 IPC performance for asynchronous and synchronous global ports, 4 byte data

message. : 133

5.8 IPC primitive breakdown. : 134

5.9 Virtual memory operation execution times. : 135

5.10 Time to transfer 10MB of data over Ethernet. : 136

5

List of Figures

1.1 High level system organization. : 4

2.2 88200 CMMU address translation table format. : : : : : : : : : : : : : : : : : : : 7

2.3 Hypermodule physical address map, showing DRAM, VMEbus, and device utility

space. : 8

3.4 Kernel source code organization. : 18

3.5 kprint module system call summary. : 29

3.6 Memory management system decomposition. : 32

3.7 Virtual memory system call summary. : 43

3.8 Typical user level memory space. : 44

3.9 Initialized supervisor memory space. : 49

3.10 task.c module system call summary. : 50

3.11 Destroying a remote task. : 65

3.12 Task state transitions. : 67

3.13 Task ready queue structure. : 68

3.14 Kernel level global semaphore support routines. : : : : : : : : : : : : : : : : : : : 73

3.15 Interrupt handler registration system calls. : 75

3.16 Register r28 usage. : 76

3.17 Kernel interrupt dispatching process. : 81

3.18 User/Kernel shared memory regions. : 85

4.19 User level kernel source code organization. : 87

4.20 User level upcall dispatching routines. : 88

4.21 Summary of upcall events and the user level upcall handlers. : : : : : : : : : : : 90

6

4.22 Thread context save area and stack bu�er. : 95

7

Chapter 1

Introduction

One of the goals of a multitasking operating system is to present the illusion of parallelism to

users. To the naked eye, programs running in such an environment appear to run concurrently.

At a conceptual level, the system can use the notion of threads and processes to present a parallel

model for constructing programs. On uniprocessor hardware, the parallelism seen in these two

cases is indeed illusion. It is the relative speed of microprocessors and operating system design

techniques such as time-slicing and cooperative scheduling that make this illusion possible.

The recent proliferation of low-cost multiprocessor hardware has made it possible to change

this illusion into reality. The parallelism that a user or application developer sees is no longer

an illusion { it is real. With multiple processors, separate threads of execution can execute

concurrently. While the amount of true parallelism is bounded by the number of processors in

the system, the illusion of a general purpose parallel environment can be enhanced by using

uniprocessor techniques such as time-slicing and cooperative scheduling.

However, while scheduling techniques can be borrowed from uniprocessors and applied to

multiprocessors, their implementation cannot. Traditional uniprocessor operating systems often

lack desirable features that are possible with parallel hardware. Also, they can be di�cult

to adapt to a multiprocessor environment, leading to ine�cient operation [JAG86]. There

are two main factors which contribute to ine�cient operation: the increased requirement for

concurrency control within the kernel; and new scheduling possibilities.

This report presents a new operating system kernel which addresses the above factors for

a shared memory multiprocessing environment. This design is geared speci�cally towards uni-

formly shared memory architectures, and not non-uniform architectures (NUMA) or distributed

1

Chapter 1. Introduction 2

memory architectures.

This report is organized as follows. The remainder of this introduction chapter introduces

the reader to motivation of this work, and describes the overall design of the kernel. Chapter

2 describes the hardware and software run-time environments. Chapter 3 and 4 discuss the

implementation of the supervisor kernel and user level kernel, respectively. Chapter 5 presents

performance �gures for the various kernel services. Chapter 6 provides a look at previous

work that inuenced the design of the system. Finally, chapter 7 concludes the report with a

summary of future work.

1.1 Motivation

The availability of low cost multiprocessor hardware has opened up new avenues for providing

higher performance programming environments for applications. However, the availability of

general purpose operating system software to take advantage of new techniques is slow to

appear.

Traditional microkernel architectures, such as Mach 3.0 and Chorus, are designed with

the view that the kernel should only provide a minimum set of primitive abstractions (tasks,

threads, virtual memory, device management, etc). These primitives are then used by user

space modules to provide additional services to the operating system environment, such as

networking protocols and �le servers.

When used as general purpose computing environments, this architecture is su�cient. Ro-

bustness is the most important requirement, with performance being second on the list. The

system is secure against malicious or errant user programs, and performance is adequate.

Recently, however, the speed of network and other input/output devices has increased by

an order of magnitude or more. The traditional kernel mediated operating system now exposes

its performance problems more than ever. For many applications running under such an envi-

ronment, the cost of crossing user/kernel boundaries for each primitive abstraction becomes a

concern. Typical system call overhead is likely 10 times greater than a procedure call [ALBL91].

Chapter 1. Introduction 3

By moving several of the high-use kernel services into user space, less time is spent invoking

operations. The general motivation is to reduce the overall number of user/kernel interactions.

Several techniques can be employed to do this:

� User level thread scheduling. Rather scheduling threads in the kernel, move the scheduling

code into the user space.

� User level interrupt handling. Allow interrupt handlers to upcall directly into the user

space. Device drivers can be implemented completely in user space, eliminating the costs

of moving data between the user and kernel.

� User level interprocess communication. By making extensive use of shared memory be-

tween client and server address spaces, data copying through the kernel is eliminated.

� Low level synchronization primitives. Provide a simple mechanism to allow an event to be

passed from one address space to another. With appropriate hardware, remote processor

interrupts can be implemented completely at the user level.

1.2 Raven kernel overview

The Raven kernel is a small, lightweight microkernel operating system for shared memory mul-

tiprocessors. The kernel executable compiles into less than 32KB of code. The most intriguing

part of the Raven kernel design is the dislocation of many traditional kernel services into user

space.

Two main abstractions are provided by the kernel: tasks and virtual memory. All other

services are provided by the user level: threads, semaphore synchronization, interprocess com-

munication, and device management1. Extensive use of shared memory allows disjoint address

spaces to e�ciently communicate scheduling information and interprocess communication data.

Figure 1.1 demonstrates the supervisor kernel in relation with the user level.

1The supervisor kernel initially handles interrupts, but they can be dispatched to the user level.

Chapter 1. Introduction 4

User program

Task management
and scheduler Memory

management

Exception and interrupt handling

upcall and interupt handling

kernel upcall
events

Interprocess
communication

shared
memory region

system
calls

thread
scheduling

standard C
library

Figure 1.1: High level system organization.

The system is implemented for a four processor, Motorola 88100 shared memory multipro-

cessor [Gro90]. A special gdb-based kernel level debugger, known as g88 [Bed90], allows the

development environment to be hosted under a friendly Unix account, and provides downloading

features to run programs.

Several sample applications have been developed to demonstrate the kernel operation. A

user level serial port device driver implements a �le server and terminal tty server to a Unix

host. An ethernet device driver demonstrates network data throughput through the kernel IPC

services.

Chapter 2

Run-time environment overview

The main goal for an operating system is to provide a reliable and convenient work environment.

Hidden beneath the operating system is the raw physical hardware, an environment far too

exacting for higher level users to deal with. Just as users are given a run-time environment

to work in, the operating system has its own run-time environment: main memory, exceptions

and interrupts, and the various devices that make up a general purpose computer. As well, the

operating system uses tools such as compilers and debuggers. This chapter provides an overall

view of the hardware and software environment available to us. The �rst part of this chapter

provides an overview of the current hardware platform. The second part then describes the low

level software environment and development tools.

In the spirit of e�ciency and simplicity, the Raven kernel makes assumptions about the

hardware architecture model: the kernel is designed for shared memory multiprocessor plat-

forms, where each processor has the same view of memory and devices. Non-uniform memory

access (NUMA) machines and distributed memory machines require di�erent considerations in

terms of memory management, scheduling, and input/output. Some systems, such as Mach

[ABB+86], provide hardware compatibility layers to isolate porting details, and this can alle-

viate porting to di�erent classes of hardware architectures. But this generality has its costs in

terms of additional code size and complexity.

2.1 Hardware Overview

The hardware platform used for the implementation of the kernel is known as the Motorola

MVME188 Hypermodule [Gro90]. The Hypermodule is a general purpose shared memory

5

Chapter 2. Run-time environment overview 6

multiprocessor, based on Motorola's 88100 RISC architecture [Mot88a]. The Hypermodule

contains four 88100 processors, each with a uniform view of 32MB of shared memory. In

addition, the Hypermodule contains many devices such as timers, interrupt management, a

VMEbus controller, and serial ports to make up a general purpose computer. This section will

examine many of the relevant aspects to this hardware, as it pertains to the kernel.

2.1.1 The MC88100 RISC Microprocessor

Each of the four 88100 processors runs at a clock speed of 25MHz. Most instructions execute

in a single clock cycle. Using four processors, the Hypermodule can theoretically achieve a

performance rating of about 60 MIPS1.

The instruction set is typical of many 32-bit RISC microprocessors: a simple set of single

cycle instructions used to build higher level constructs. All instructions are represented in

memory as 32-bit words, simplifying the decoding phase. A delayed branching feature can be

used to alleviate pipeline stalls when executing branch instructions.

There are 32 general purpose user level registers, r0 | r31, each 32-bits wide. Register

r0 is read-only and always holds a value of zero. In supervisor mode, the 88100 contains 21

additional control registers: cr0 to cr20. These registers reect the state of the processor mode,

data unit pipeline, integer unit pipeline, and general purpose scratch registers. The oating

point execution unit contains 11 more registers: fcr0 to fcr8, and user registers fpcr62 and

fpcr63.

2.1.2 The MC88200 Cache/Memory Management Unit

The 88200 CMMU augments the 88100 processor by providing instruction and data caches,

as well as adding memory management. Each processor on the MVME188 uses two 88200's,

giving each CPU 16KB of code and 16KB of data cache. A memory bus snooping protocol

allows cache coherency between all caches in the system.

1VAX MIPS

Chapter 2. Run-time environment overview 7

The memory management section implements a two level page table scheme with a page

granularity of 4096 bytes. Figure 2.2 shows the layout of this page table scheme. Up to 4GB

can be mapped to a single address space. Each page in that address space can have various

combinations of the following attributes: no translation, cache-disable, writethrough, write

inhibit (for read-only pages), and snoop enable. The detailed settings for these attribute bits

can be found in the 88200 technical documentation.

segment 0

segment 1

segment 2

Map descriptor Segment table Page table 0

4K page

segment 1023

.

.

4K page

4K page

.

.

4K page

page 0

page 1

page 2

.

.

page 1023

Page table 1023

page 0

page 1

page 2

.

.

page 1023

.

.

.

.

4K page

4K page

4K page

.

.

4K page

Physical
Memory

Figure 2.2: 88200 CMMU address translation table format.

Access to the 88200 registers for programming is done through the Hypermodule utility

space (discussed below). Each of the 88200's in the system can be accessed separately, allowing

cache ushes and page table management to be performed by the host processors.

2.1.3 System Controller

In addition to the processor, CMMU's and memory, the Hypermodule has a system controller

board that contains all of the additional functionality and glue that make up a general purpose

computer. Components such as timers, serial ports, and the VMEbus controller are found on

this system controller board.

Chapter 2. Run-time environment overview 8

The system controller board maps all of its devices and memory into the processor's physical

address space. To access a device on the controller board, the processor executes load/store

operations to the memory-mapped device registers. Other devices and resources can be added

to the physical address space through the VMEbus interface.

Figure 2.3 shows the default physical address space that the Hypermodule resources reside

in. The remainder of this section will be devoted to examining each portion of this address

space, and noting the features pertinent to kernel operation. For additional detail, consult the

hardware manuals [Gro90] and [Mot88a].

0x00000000

0x00010000

DRAM memory (60 ns)

0x02000000

32MB
physical
address
space

VMEbus 32-bit address space

512Kbyte EPROM (188Bug)

128Kbyte SRAM (tek188mon)

MVME188 device and CMMU
registers

VMEbus 16-bit short I/O

0xffff0000

0xffc00000

0xffc80000

0xffe00000

0xffe20000

0xfff00000

0xfff88030

4MB
utility
address
space

188Bug local storage

Figure 2.3: Hypermodule physical address map, showing DRAM, VMEbus, and device utility

space.

Chapter 2. Run-time environment overview 9

Utility address space

All onboard devices and resources are located in an upper region of memory called the utility

space. The utility space address map spans a 4MB region from 0xffc00000 to 0xffffffff.

Each resource within the utility space are given their own section of address space to reside in,

padded by null memory space.

Access to the utility space by the operating system kernel is a necessity. While the default

base address of the utility space can be modi�ed by switching jumpers, it cannot be made to

go away completely. In fact, the address translation hardware of the 88200's contain hardwired

entries to always make the utility space available in the supervisor memory map. This is done

so that the operating system can �nd the utility space in the event of translation table errors

or software malfunction.

The following devices are made available inside the utility address space. Some of these

devices are shared by user level memory maps. For instance, in order to implement a user level

serial port driver, the DUART registers must be mapped in user space.

MC68681 DUART/Timer

The MC68681 provides the system software with two RS-232C compatible serial ports and a

programmable interval timer. The serial port speeds can be programmed to support varying

data rates, but also support 18 preprogrammed rates from 50bps to 38.4kbps. The kernel uses

one serial port in polled mode for low level debugging support, and another interrupt driven

port to connect with attached terminals or Unix hosts.

The kernel also uses this chip's interval timer. Using the 3.6864MHz clock on the DUART,

an interrupt can be generated with a period anywhere from 540 nsec to 563 msec. The kernel

allows this period to be con�gured at boot time, in terms of ticks per second. This value is

then used as the system clock tick.

Chapter 2. Run-time environment overview 10

Z8536 Counter/Timer

In addition to the interval timer provided by the MC68681, the Z8536 Counter/Timer device

serves as an enhanced timer service. The Z8536 contains three individual 16-bit timers, each

using a clock rate of 4MHz. The timers can be programmed separately, or cascaded together to

provide higher resolutions. The kernel cascades two of these timers, allowing intervals from 1

usec to 4295 sec (71 minutes) to be timed with 1 usec accuracy. This resolution is good enough

to benchmark relatively small sections of code with reasonable accuracy.

The third timer on the Z8536 can be enabled as a watchdog timer for the Hypermodule

board. When programmed to do so, the timer will trigger a reset sequence which reboots the

machine. This feature allows the system to self-recover from fatal system crashes.

MK48T02 Time-of-Day Clock

As if two timers were not enough, the Hypermodule also contains a time-of-day clock. This

clock can be used to maintain the correct wall clock time (it is battery backed and will correctly

maintain the time when power is o�). Currently, the kernel doesn't use the notion of wall clock

time anywhere, so this device is not used.

MVME6000 VMEbus Controller

Access to VMEbus peripherals is provided by the MVME6000 \VMEchip" controller [Mot88d].

This device manages the interface between the Hypermodule memory bus (master) and the

VMEbus, and the attached devices (slaves). It allows regions of the VMEbus address spaces

to be mapped into the Hypermodule's local physical address space. For example, the Ethernet

device driver uses the VMEchip to map in the Ethernet board's device registers at location

0x10000000.

In addition to providing access to slave devices, the VMEchip contains features that facilitate

operation in a multiprocessor environment. If more than one Hypermodule board is installed

on the VMEbus, the VMEchip on each board can be used for coordination and synchronization

Chapter 2. Run-time environment overview 11

services.

128KB SRAM

The Hypermodule board contains 128KB of non-volatile (battery backed) SRAM, which can

be used to retain data and program instructions while the power is turned o�.

Currently, the kernel uses this section of memory to store the g88 debug monitor. The

debug monitor code rarely changes, so once it is downloaded into the SRAM, it is there for

good. The next time the Hypermodule is started, the debugger checksums the monitor area to

see if it is complete. If the monitor checksum passes, there is no need to download a fresh copy

(which can take a while at serial-port speed).

512KB EPROM and 188BUG Debugger

An EPROM chip module contains a standalone, onboard monitor/debugger known as 188Bug

[Mot88c]. This is a low level interactive debugger which can be accessed via the serial port using

a dumb terminal. The debugger is non-symbolic but full featured, with the ability to perform

raw operations on disk, tape and serial port devices. This allows code such as operating systems

to be easily bootstrapped from disk, tape, or serial port.

In addition to the software debugging features, a full suite of diagnostics are provided to

test and exercise the hardware.

Since 188BUG is non-symbolic, it can be di�cult to debug programs written in high level

languages like C. Instead, the kernel uses a gdb-based debugger called g88 to run and test the

system. g88 allows kernel code to be downloaded and interactively debugged using the familiar

gdb environment. Breakpoints can be set, data examined, just like debugging a regular user

level process under Unix.

Chapter 2. Run-time environment overview 12

DRAM address space

The Hypermodule can be con�gured to hold up to 64MB of 60ns DRAM, in 16MB increments.

All of this physical memory is symmetrically visible and available to all processors in the system.

Peak memory bandwidth is 44.4MB/sec for reads, and 66.7MB/sec for writes.

The onboard debugger, 188Bug, reserves the lowest 64KB region for its own use (exception

table, local variables, code, and stack). This region must be preserved for the 188Big to operate

properly. Sometimes 188Bug is useful, so the kernel doesn't intrude on its territory. Useable

memory begins at 0x10000 and grows upwards.

VMEbus address space

The Hypermodule VMEbus chipset supports 32-, 24-, and 16-bit VMEbus addressing modes.

The 16-bit VMEbus SHORTIO space is hardwired to live in the upper 64KB region of memory,

so that master and slave devices always know how to locate this region. All other addresses

within the physical address space, between the end of DRAM and the beginning of utility space,

can be used for mapping in portions of the 32-bit and 24-bit VMEbus address spaces.

As a convention, the kernel uses 32-bit VMEbus address mapping for external devices.

Currently only the Ethernet board is mapped in this fashion, so this convention is certain to

change for other kinds of devices.

2.1.4 Interrupt management

In many earlier multiprocessor systems, one special processor was designated as the I/O proces-

sor. Doing so would help simplify an already complex memory and interrupt bus. This special

processor is speci�cally wired to accept all interrupts from external devices. While this does

leave other processors to do useful work for non-I/O bound operations, a processor that re-

quires I/O must always go through the special I/O processor. This can introduce a throughput

bottleneck in the system, and can complicate I/O and device driver code.

The Hypermodule interrupt management scheme is fully symmetric. Any processor in the

Chapter 2. Run-time environment overview 13

system can respond to any particular interrupt by setting appropriate bits in the processor's

interrupt enable register (IEN). In a system with four processors, there are 4 interrupt enable

registers named IEN0 to IEN3.

The hardware supports up to 32 di�erent interrupt sources. Each bit in the IEN registers

corresponds to one of the possible interrupt sources. Some of the common interrupt sources are:

DUART timer, DUART serial port, VMEbus IRQ0 { IRQ7, and software interrupts (SWI).

Individual interrupt sources can be set to occur on any combination of the processors in

the system. It is possible to con�gure the IEN registers such that multiple processors receive

the same interrupt. In this case, all interrupted processors will halt execution and branch to

the interrupt handler when the particular interrupt occurs. This could generate a great deal

of contention if spin-locks are used within the interrupt handler. Therefore, certain interrupts

should be enabled on only a single processor at a time. The kernel interrupt architecture

manages the setting of the interrupt enable bits to minimize latency to interrupt handlers.

For example, the Ethernet device driver is a user level task that requires to be executed

every time an interrupt is generated on the Ethernet board. Switching in the task can involve

cache ushes and address space changes and is therefore an expensive operation. This task

switch is avoided if by setting Ethernet interrupt enable bit properly on the processor which

is currently executing the Ethernet task. Doing so localizes the interrupt to a single processor

that has the correct address space activated.

If there is more than one processor allocated to an interrupt driver task, only one processor

at a time has the device interrupt enable bit set. Which processor it is, is determined by the

kernel. If the interruptable processor is relinquished, another processor allocated to the device

task is assigned the interrupt bit.

When a processor receives an interrupt exception, one of the �rst things it needs to do is �nd

out exactly which device caused the exception. The interrupt status register (IST) allows this to

be easily accomplished. The IST is bit-for-bit similar to the IEN registers, except that it reects

the status of all interrupts in the system. If a bit is set in the IST, then the corresponding

Chapter 2. Run-time environment overview 14

Register Compiler and system usage

r0 Read-only 0 constant

r1 Function call return address

r2 { r9 Function call parameters

r10 { r13 Function temporary registers

r14 { r25 Function preserved registers

r26 Temporary scratch register

r27 Temporary scratch register

r28 Locking and upcall status bits

r29 User thread context save pointer

r30 Stack frame pointer

r31 Stack pointer

Table 2.1: GNU C computer and kernel register usage.

device is requesting an interrupt.

Note that there is only one IST, and not one for each processor. The IST gives the global

status of all interrupting devices, and the IEN registers give the enable mask for each processor.

So to check whether a particular processor received a particular interrupt, the processor must

AND the IST its IEN register: status = ien reg[cpu] & ist reg.

2.2 Software environment

In the hardware overview section, various features of the hardware runtime environment were

discussed. In this section, the software development environment is examined. This environ-

ment includes the g88 debugger and simulator, compiler tools, and software conventions such

as register usage. Other factors which inuence the runtime environment are the processor

supervisor/user state settings, and supervisor register conventions.

2.2.1 The gcc compiler and tools

The C compiler used is the ANSI-compliant GNU gcc version 1.37.29. All other tools used for

compiling and linking executable code, such as the linker and assembler, are also GNU tools.

Chapter 2. Run-time environment overview 15

The C compiler uses a standard format for processor register allocation. Table 2.1 shows

this register convention. Functions can always rely on registers r10 { r13 to be available for

temporary scratch purposes. Registers r14 { r25 can also be used for general purpose storage,

but they must be preserved by the called function if they are to be used. The C stack frame

contains the frame pointer, saved registers of the previous function, function return address, and

local variable storage for the function. This information is useful when interfacing C programs

with handcoded assembler.

2.2.2 The g88 kernel debugger

The g88 cross-debugger/simulator [Bed90] is a GNU gdb [Sta89] based kernel debugger. Im-

plemented as an extension to gdb 3.2, g88 allows Hypermodule users to download code and

interactively debug their programs from within a standard gdb terminal session. g88 can set

breakpoints, step through code, examine variables, etc. { just about everything one expects

from a Unix version of gdb.

g88 runs on a Unix workstation and connects to the Hypermodule hardware via two serial

ports. One serial port is used for the gdb command protocol, console input/output and down-

loading code. The other is used as a software controlled interrupt and reset line. This line is

connected to the Hypermodule reset and interrupt logic, and is used to reboot and interrupt

the target. For example, when control-C is pressed within g88, the interrupt logic is toggled,

generating an ABRT interrupt on the Hypermodule. The onboard g88 monitor program recog-

nizes this interrupt, suspends kernel execution, and returns control back to the g88. This allows

users to interactively debug their code running on the Hypermodule, with the same control as

if it were a regular Unix process.

When starting a session, g88 downloads a monitor program to the Hypermodule memory.

This monitor, known as g88mon, handles the g88 serial port communication protocol between

the Unix host and Hypermodule. It manages all the gdb features such as breakpoints, single

Chapter 2. Run-time environment overview 16

stepping and memory examination. The monitor is designed and implemented to be as unob-

trusive as possible. It is downloaded into a portion of the Hypermodule non-volatile SRAM,

and resides there until it is erased. The program being debugged does not have any knowledge

of g88mon existence in the system.

2.2.3 The g88 Hypermodule simulator

g88 also contains a complete instruction level simulator of the MVME188 Hypermodule. The

simulator provides a virtual environment that is a clone of the Hypermodule: four 88100 pro-

cessors, eight 88200 CMMUs, and all the system controller devices. An environment variable

controls the size of the simulated physical memory size. Programs running in the simulator are

virtually oblivious to the fact that they are running in a simulated environment. g88 provides

the customary gdb interface to the simulator, so programs can be downloaded, executed, and

debugged.

When the simulator is used to execute something, no physical serial links are necessary

because g88 simulates the hardware directly in its address space on the Unix host. The overhead

associated with sending commands across the serial link is eliminated. Thus the downloading

of code and overall communication with the \physical" hardware is much faster. This property

makes the simulator ideal for debugging and development, where a fast edit/compile/test cycle

is desirable. It takes about 60 seconds to download the Raven kernel to the real hardware,

compared to a fraction of a second for the simulated hardware. Similarly, overall debugging

commands on the simulator are much faster.

Raw execution speed of the simulator is of course much slower than the real hardware (about

100 times slower on a SPARC 1+). However this does not impact the usability of the Raven

kernel on the simulator for debugging purposes. The kernel itself and most user level programs

at this point are not compute bound, so most executions are fast enough.

The current version of g88 has one major limitation: it can only be used to debug supervisor

code. This means that g88 cannot debug user level programs. This limitation stems from the

Chapter 2. Run-time environment overview 17

fact that gdb 3.2 is only able to manage one execution context (i.e., one program) at a time.

However, g88 is still under development by its author, in cooperation with Horizon Research,

for Mach 3.0 work. An upgrade to g88 which will allow user level debugging and performance

improvements will soon be available.

Chapter 3

Kernel level implementation

The Raven kernel is split into two distinct entities: the supervisor kernel, and the user level

kernel. Each of these entities is implemented as separate executable programs. This chapter

discusses the design and implementation of the supervisor kernel part.

task.c

readyq.c

task_timer.c

Task scheduling
management

vm.c

rawpage.c

map.c

Memory
management

Miscellaneous

kprint.c

loader.c

lock.s

queue.h

excp_handler.sintr_handler.s

interrupt.c exception.c
Exception handling

and dispatching

excp_vects.s

Figure 3.4: Kernel source code organization.

Figure 3.4 shows the modular breakdown of the system, and the source code �les involved.

The �rst section in this chapter discusses the overall programming model of the kernel, and the

following sections describe the code modules in detail.

Several of the kernel modules export a system call interface to the user level. These system

18

Chapter 3. Kernel level implementation 19

calls are broken into two categories: calls available for general purpose user applications, and

calls available for user level kernels only. For modules which export such a system call interface,

each description in this chapter will contain a table summarizing the interface provided by that

module.

System calls, and internal kernel functions, often return a success or failure condition to

the caller. Throughout the implementation of the kernel, the following convention is used

for function return values. Functions that complete successfully always return the value OK.

Functions that fail in some manner during their invocation return the value FAILED.

3.1 The interrupt model

The implementation of the kernel is based on the interrupt model, as opposed to the process

model. In the process model, a kernel is composed of several cooperating processes, each of

which has their own stack and local state variables. Interrupts and preemption are normally

allowed during execution. The processes must be scheduled by the kernel, and special cases for

preemption locking and concurrency locking must be explicitly coded.

In the interrupt model, the kernel can be viewed as one big interrupt handler. All kernel

invocations, including system calls, device interrupts, and exceptions, enter into the kernel

though the exception vector table, excp vects.s. From this point, the low level exception

handler routines allocate a stack for the processor and dispatches the event.

Any number of processors can be executing within the kernel at the same time. While a

processor is executing within the kernel, interrupts and preemption is disabled for that proces-

sor. This simpli�es the implementation quite substantially, because there is no need for special

purpose preemption locking and protection. All calls to the kernel are non-blocking: except for

the processor relinquishment call, all kernel calls return immediately to the user after executing.

When control returns to user space, interrupts and preemption is re-enabled.

Each processor in the system uses its own dedicated kernel stack. In a four processor

system, there are four dedicated kernel stacks. The kernel stacks are located at well-known �xed

Chapter 3. Kernel level implementation 20

locations in the supervisor memory space, and are allocated at very beginning of initialization

time. Each time the kernel is invoked, the processor stack pointer is set to the top of its kernel

stack. The system can assume that there is only one execution context per processor while

running inside the kernel. This substantially simpli�es implementation issues.

3.2 Low level mutual exclusion

In a shared memory parallel environment like the Hypermodule, many algorithms require that

sections of their code have atomicity. These critical sections of code must be executed atomically

in mutual exclusion with their neighbours, or risk leaving their state inconsistent. In the kernel,

these algorithms range from simple enqueue/dequeue operations on a shared queue, to ensuring

sequential access to device registers.

Several techniques exist to ensure mutual exclusion. One technique is to avoid critical

sections altogether by implementing data structures as lock-free objects [Ber91] and optimistic

synchronization [MP89]. In this case, a compare-and-swap operation allows data structures to

be concurrently accessed with consistency. However, the lack of proper hardware support for

compare-and-swap on the Hypermodule hardware does not make this algorithm practical.

Other techniques range from the simple spin-lock to the higher level semaphore. The latter

technique relies on the operating system to \schedule around" critical hot spots by relinquishing

the processor to another thread when such a spot is reached. This technique requires some

cooperation with the operating system, commonly in the form of semaphore data structures,

which in themselves require mutual exclusion. Hence the requirement for a more primitive

mutual exclusion technique.

3.2.1 Spin locks

The spin lock is a brute force method of providing mutual exclusion around sections of code.

The algorithm tests a shared lock variable to see if the lock is free or used. If the lock is free, the

lock is claimed by setting its state to \locked", and execution continues. If the lock is not free,

Chapter 3. Kernel level implementation 21

continually check until it is free. A lock is freed by storing a \free" value to the lock variable.

While waiting for a lock to become free, the processor cannot do anything else. In a system

with many processors, this property can become a bottleneck when frequently accessing a shared

resource.

3.2.2 lock wait() implementation

On many processors, a test-and-set instruction is used to ensure atomicity of the lock variable

test and set stage. The test stage is broken into two parts: one instruction loads the value of the

lock variable, another instruction tests its value. If the value of the lock variable is altered after

the load instruction but before the test, the algorithm will fail. To prevent this problem, the

88100 instruction set includes the xmem instruction. The xmem instruction atomically exchanges

the contents of a register with the contents of a memory location. The load and store accesses

of the xmem instruction are indivisible: the instruction cannot be interrupted part-way through

its execution.

Using the atomic exchange instruction, the lock acquire routine can be safely implemented

in the following manner:

_lock_wait: ; r2 <- lock variable addr

or r10, r0, 1 ; set a lock value

lw: xmem r10, r2, r0 ; atomic exchange

bcnd ne0, r10, lw ; try lock again if not zero.

jmp r1 ; return to caller

lock wait() begins by putting a \locked" value into register r10. This register is then

exchanged with the lock variable stored in memory at the address r2. As a result of the

exchange, r10 is loaded with the previous lock value. If this value is non-zero, then the bcnd

instruction branches to the top of the routine, where the test starts again. This sequence is

repeated until a \free" value is found in the lock value. The memory bus transactions generated

by the repeated accesses to the lock variable can quickly saturate the memory bus, hindering

other processors in the system from doing useful work.

Chapter 3. Kernel level implementation 22

An optimization can be achieved by relying on the data cache to maintain a coherent copy

of the lock variable. In this case, initially the processor spins on a cached copy of the lock,

generating negligible memory bus accesses. If the lock is freed, the processor performs an xmem

to grab the lock. If this xmem fails, then return to spinning on the cached copy. This algorithm

is implemented as follows, and can be found in lock.s:

void lock_wait(int *lock_addr);

_lock_wait: ; r2 <- lock variable addr

ld r10, r2, 0 ; read the lock value

bcnd ne0, r10, _lock_wait ; loop if lock is busy.

or r10, r0, 1 ; set a lock value.

xmem r10, r2, r0 ; atomic exchange

bcnd ne0, r10, _lock_wait ; try lock again if nonzero

jmp r1 ; return to caller

3.2.3 lock free() implementation

Freeing a lock is trivial. All that needs to be done is to store a \free" value to the lock variable.

This can be accomplished in a single st instruction on the 88100.

void lock_free(int *lock_addr);

_lock_free: ; r2 <- lock variable addr

jmp.n r1 ; return to caller

st r0, r2, 0 ; store "free" value

In this routine, the jmp.n r1 instruction demonstrates the use of delayed branching on the

88100. The instruction cycle immediately after a control transfer instruction, such as jump,

is known as the delay slot. This is where the processor �gures out where execution should

continue. While it does this, another instruction can be executed. In this case, the st r0, r2,

0 instruction is executed in the jmp r1 delay slot.

3.2.4 Lock initialization

Before using a spin lock, a lock variable must be allocated and initialized. The lock variable is

of type int and can be allocated in any appropriate fashion, such as statically at compile time.

Chapter 3. Kernel level implementation 23

Initializing a lock variable is as simple as assigning zero to it:

int my_lock = 0;

lock_wait(&my_lock);

....

lock_free(&my_lock);

3.2.5 Summary

The simple spin lock can become surprisingly complex, as shown by [And89] and [KLMO91].

These more complex techniques arise from di�erences in hardware characteristics, such as the

number of processors, memory bus architecture, and instruction sets.

In a shared memory system such as the Hypermodule with only four processors, spinning

on a cached copy of the lock is su�cient to attain good performance. This algorithm is im-

plemented by the routines lock wait() and lock free(). Modules throughout the kernel use

these routines to provided mutual exclusion for shared data structures and hardware devices.

3.3 List and Queue Management

List and queue data structures are primitive and fundamental building blocks for operating

systems. Much of the information stored within the kernel, such as task control blocks and

memory regions, are kept track of using linked lists. The operations involved are insertions,

removals, and traversals. This section describes these operations implemented in the kernel and

the data structures involved.

All of the queue management routines are implemented as C macros, so they are easily

inlined to avoid procedure call overhead. The routines could be coded in assembler, but inlining

ability and portability would be sacri�ced.

The queue macros are designed to be type-exible. This allows a small set of macro routines

to be general enough to handle any queue node structure. To do this, the macros require that

the caller specify the node type. When the macros are expanded at compile time, the proper

Chapter 3. Kernel level implementation 24

type casting is performed using the supplied type. This technique is similar to the queue macros

seen in the Mach kernel.

There are some algorithms where an ordered list of items is a basic requirement. For

example, the system clock timer maintains an ordered list of task control blocks. The list is

sorted by the wake time key. This allows the clock timer to examine only the head node on

the list to check for a timer expiry.

The queue macro package does not provide any macros for ordered list or priority queue

management. It is felt that such a structure can be e�ciently constructed using the supplied,

more primitive macros.

In a multiprocessor environment, concurrency control is required to protect against multiple

accesses to common data structures. Many of the system queues are shared amongst all the

processors. The queue management library does not implement locking, leaving it to be done

explicitly by the user. This option can reduce overhead when locking is not required.

The queue and linked list structures are simple enough to allow the use of the spin lock

library seen in the previous section. The use of spin locks to manage queue structure access is

demonstrated in the code fragments below.

3.3.1 Single linked lists

Most of the data that is kept on the linked lists are arrays of statically allocated control blocks.

Some control block data structures are very simple and don't even need the exibility provided

with a double-linked list. For example, the rawpage table[], which keeps track of physical

pages in the system, uses a single-linked list to remember all the free pages. To get a new page,

rawpage alloc() dequeues the head pointer from the free list. To free a page back to the pool,

rawpage free() enqueues the page onto the free list head. The rawpage routines don't need

to be able to remove elements from the middle or end of the list, so a backward link is not

required.

Simple linked lists as in the above example are used throughout the system whenever a

Chapter 3. Kernel level implementation 25

simple allocate/free operation of some data object is required. Since the lists are so simple,

the queue management library doesn't provide any help { it's up to the kernel programmer

to provide the head and next pointers for the list structure. This allows the list types to be

tailored for use within a code module.

3.3.2 Queues

The most common type of list used in the kernel is the double-linked list. These lists are

used extensively as FIFO queues for task, thread, and semaphore management, to name a few.

Since the queue operations are so basic to the operation of the kernel, a set of macros and data

structures are provided to simplify the job and make the code look a bit cleaner.

All queues have a master handle of type QUEUE which maintain the head and tail pointer

for the linked list. The other data structure that is used is the QUEUE LINK structure. The

QUEUE LINK structure contains the next and previous pointers, and is used as the \link" for

each node in the list. Each node in a queue must have at least one of these structures. Using

more than one link per node allows nodes to be linked to several di�erent queues at once.

The task control block table, task table[], provides a good example of how these structures

are used. Each TASK structure contains several �elds of data, two of which are the QUEUE LINK

structures:

/* next/prev link for queue structures */

QUEUE_LINK sched_link; /* scheduler queue */

QUEUE_LINK timer_link; /* timed event queue */

These links are used to connect the task control block to the scheduler queue and timer

queue1.

Enqueue operations

There are three possible enqueue operations: enqueue at head of list, enqueue at the tail of list,

and enqueue before a given node. For queues that need to pay attention to FIFO ordering, the

1The timer queue is used by the system clock timer to notify tasks of timed events.

Chapter 3. Kernel level implementation 26

enqueue/dequeue operation always occur on opposite ends of the queue. The kernel follows the

standard convention that nodes are always enqueued at the tail and dequeued from the head,

as seen in the following example from task create():

/* queue the task on the suspended queue */

lock_wait(&task_susp_q_lock);

ENQUEUE_TAIL(task_susp_q, task, TASK, sched_link);

lock_free(&task_susp_q_lock);

The following macros can be used for enqueue operations:

� ENQUEUE HEAD(queue, node, node type, node link)

� ENQUEUE TAIL(queue, node, node type, node link)

� ENQUEUE ITEM(node, next node, node type, node link)

This macro inserts a node directly before the supplied next node. This macro can not be

used when next node is either the head or tail of the list { in those cases, the other two

enqueue routines should be used.

Dequeue operations

The following two dequeue operations are provided.

� DEQUEUE HEAD(queue, node, node type, link)

� DEQUEUE ITEM(queue, node, node type, link)

Note that these macros do not check for empty queues. It's an error to try and dequeue a

node from an empty list. To protect against this error, the QUEUE EMPTY() macro can be used

to check for the empty/non-empty condition. For example, task create() uses the following

code to get a new task control block:

lock_wait(&task_free_q_lock);

Chapter 3. Kernel level implementation 27

if (QUEUE_EMPTY(task_free_q))

{

lock_free(&task_free_q_lock);

kprint("task_create: no free tasks!\n");

*task_id = -1;

return(FAILED);

}

/* get a free task descriptor */

DEQUEUE_HEAD(task_free_q, task, TASK, sched_link);

lock_free(&task_free_q_lock);

Miscellaneous queue operations

As the previous example illustrates, the following queue operations can sometimes be useful:

� QUEUE EMPTY(queue)

This macro evaluates to non-zero if the speci�ed queue is empty.

� QUEUE HEAD(queue)

This macro returns the �rst node of the queue.

� QUEUE NEXT(queue, node, link)

This macro returns the next node on the link after the speci�ed node.

Allocating and initializing a queue

Before a queue list can be created, a master queue handle must be allocated and initialized.

The kernel uses the policy of static allocation wherever possible, so the handles are normally

allocated at compile time by declaring a variable of the QUEUE type. The following code from

task.c demonstrates this:

QUEUE task_free_q; /* queue of free tasks */

QUEUE task_susp_q; /* queue of suspended tasks */

int task_free_q_lock; /* spin locks for the above queues */

int task_susp_q_lock;

Chapter 3. Kernel level implementation 28

Once the master queue handle is allocated, it must be initialized to contain the value of

an empty list. The QUEUE INIT() macro performs this task, as demonstrated in the following

initialization code from task init():

/* create task system queues. */

QUEUE_INIT(task_free_q); task_free_q_lock = 0;

QUEUE_INIT(task_susp_q); task_susp_q_lock = 0;

3.3.3 Other linked list schemes

The Xinu operating system [Com84] uses an interesting technique to implement double-linked

lists for its process queues. In this scheme, the node links are stored in an array of links,

completely separate from the process descriptors. There is a one-to-one mapping between links

in the array and process descriptors. Both the links array and process table are indexed by an

integer. So, if you know which link you are, you automatically know which process descriptor

you belong to. Next/previous pointers in the links allow for double-links, and an extra key �eld

allows ordered lists to be constructed.

This way of structuring a queue can make the enqueue/dequeue operations very e�cient.

However, it does have the limitation that a node can only reside on one queue at a time. The

Raven kernel task scheduler and system clock timer require that a task be queued on two queues

at once, so this scheme cannot be used.

3.3.4 Summary

Queues provide a means of ordering and organizing data. They are a basic component in

operating system kernels. Both single linked and doubly linked lists are used throughout the

kernel to organize resources such as task descriptors and memory pools. The routines used

in the kernel to manage these queues are implemented as C macros which are portable and

e�cient.

Chapter 3. Kernel level implementation 29

3.4 Low level console input/output

During the development stages of an operating system, one of the greatest aids is a low level

console output routine. Sometimes, the only way to debug at the kernel level is to output

debugging strings to the console. The output routine should be simple enough that it can be

executed from anywhere, independently of the rest of the system. This allows information to be

printed out whether or not the kernel is functioning properly, or from within interrupt handlers

and other delicate routines.

Using polled output in the presence of interrupt drivers can have negative consequences.

So rather than always sending console output through the serial port, a dedicated portion of

memory is set aside for console messages. This section of memory is known as the kmsg bu�er.

kprint()

kgetstr()

user application

user application

Prints out a string to the console (polled output).

Waits for a string from the console (polled input).

Synpopsis Interface availability Description

Figure 3.5: kprint module system call summary.

The kprint.c module implements the console polled input/output driver. The table in

Figure 3.5 summarizes the system call interface exported to the user level by this module.

3.4.1 Console output

void kprint(char *str);

This routine is the lowest level output routine. It takes a null-terminated string of characters

as its argument, and uses polled output to send the string to the console.

void kprintf(char *fmt, ...);

This is the kprint() routine for formatted printing. It passes the format string and ar-

guments to sprintf() for formatting, and then calls kprint() to output the resulted string.

kprintf() understands the following format sequences: %c, %s, %d, and %x.

Chapter 3. Kernel level implementation 30

Special care should be taken when calling kprintf(): the output string should not be

greater than 200 bytes, or the stack will be damaged. kprintf() allocates a temporary 200

byte output bu�er on the caller's stack.

On the real hardware, the g88mon monitor controls communication across the serial port

to provide access to the g88 console under Unix. In the simulated environment, the simulator

contains a character console device at 0xffff0000. Access to both interfaces uses strictly polled

I/O.

void kprint_mode(int mode);

This routine controls the suppression of console output strings to the serial port device. In

some cases, the blocking nature of polled I/O has negative consequences. Outputting a string

across the serial port can take a long time in relation to other devices. For the Ethernet device,

the time taken to output a debug message may result in lost packets.

kprint mode() can help prevent this problem by allowing console output to be shut o� under

program control. This is useful when debugging code where interrupt activity is necessary, such

debugging an Ethernet protocol stack. Passing a non-zero value for the mode argument allows

output to the serial port. Passing a zero value for the mode argument suppresses serial port

output. In either case, the kmsg bu�er logs all output strings, which can be viewed at a later

time.

3.4.2 Console output bu�er

The console output bu�er, or kmsg bu�er, is a large bu�er in the kernel memory space which

logs all strings that have been outputted to the console using kprint(). Even strings that are

sent with the mode disabled are placed in the kmsg bu�er. This allows all console output to be

viewed at a later time using the debugger.

The kmsg base variable points to the beginning of the kmsg bu�er. The g88 debugger can

be used to print out console strings starting at the kmsg base address. For example:

Chapter 3. Kernel level implementation 31

[0] (gdb) x/4s kmsg_base

Reading in symbols for kprint.c...done.

0x1e80000: (char *) 0x1e80000 "CPU 0 started\n"

0x1e8000f: (char *) 0x1e8000f "Executing on real hardware.\n\n"

0x1e8002d: (char *) 0x1e8002d "total system memory: 8192 pages\n"

0x1e80065: (char *) 0x1e80065 "avail user memory: 7751 pages\n"

[0] (gdb)

The size of the kmsg bu�er is controlled at compile time by the KMSG BUF SEGS constant.

This bu�er is allocated in segment sizes of 512KB, to facilitate memory mapping.

3.4.3 Console input

int kgetstr(char *buf, int buf_size);

In addition to providing a means to output information, the kernel also has a primitive

way to input information. This can be useful to ask con�rmation questions at boot time, for

instance. The caller supplies the preallocated bu�er to place the inputted string in buf and the

maximum length of the string in buf size. The size of the inputted string is returned.

3.4.4 Console I/O initialization

Before doing any low-level console I/O, the structures must be initialized. This is done at boot

time by the kernel initialization routine.

int kprint_init();

This routine sets the console output mode to 1, enabling output to the serial port device,

and clears the kmsg bu�er.

3.5 Memory management

During the normal operation of an operating system, memory allocation and deallocation are

common tasks. Beneath the operating system lies a contiguous area of physical memory, pieces

Chapter 3. Kernel level implementation 32

of which are parcelled o� for various uses, and later returned. User level tasks do not work

directly with these raw regions, however. The memory management system provides a protected

linear address space for user level programs to work in.

The memory management system divides its work into three distinct modules: virtual mem-

ory management, memory mapping and cache management, and physical memory management.

Figure 3.6 shows the layered relationship of each module. This section describes each module

in detail.

Virtual memory layer
vm.c

Mapping and cache
management

map.c

Physical memory
management
rawpage.c

DRAM and 88200 CMMU hardware

Physical memory
management
rawpage.c

Figure 3.6: Memory management system decomposition.

The virtual memory module provides the user level system call interface to the memory man-

agement system. Routines are provided to allocate, deallocate, and share regions of memory.

A region is a contiguous, page aligned portion of memory in a virtual address space.

The virtual memory module relies on the memory mapping module to manage the 88200

CMMU page tables. Regions of memory can allocated at speci�c addresses and with various

page protection statuses. The processor instruction and data caches must also be maintained

throughout memory allocation/deallocation operations. The mapping module also provides

user level address space switching functions.

The physical memory module provides a simple and e�cient interface to the virtual memory

module for allocating and deallocating physical pages of memory. Pages are allocated and

deallocated on a page granularity.

Chapter 3. Kernel level implementation 33

3.6 Physical memory management

The physical memory management module is very simple. Its job is to allocate physical pages

from the raw memory pool, and return physical pages when the virtual memory layer is �nished

with them. While the virtual memory layer manages contiguous regions of an address space, the

physical memory layer works on a simple page-by-page basis. The allocation and deallocation

routines always work with single page units.

The rawpage table[] keeps track of each physical memory page in the system. The table

is statically allocated at compile time to contain one entry for each page in the system. When

more physical memory is added to the system, more elements need to be allocated in this

table. The static allocation strategy is used mainly for simplicity. However, in the future, this

static table could easily be replaced with a table that is allocated at runtime, after probing the

hardware for the true physical memory size.

The following data structures are used to manage the physical memory pages:

typedef struct raw_page_s

{

int count; /* page reference count */

int lock; /* spin-lock to protect access */

struct raw_page_s *next; /* next free page */

} RAW_PAGE;

RAW_PAGE rawpage_table[RAWPAGE_TABLE_SIZE];

RAW_PAGE *pages_free_head; /* linked list of free pages */

int pages_free_lock; /* spin-lock to protect list access */

The RAW PAGE structure provides a handle for each physical memory page in the system.

The count �eld implements a reference count for the page: when a page is allocated or shared,

its reference count is incremented. When a page is freed, its reference count is decremented.

This allows the system to keep track of which pages are used and which pages are unused.

There are three routines provided by the raw page module. All of these routines are available

within the kernel only, they are not exported to the user level.

Chapter 3. Kernel level implementation 34

3.6.1 Allocating a physical page

To allocate a free physical page, the following routine is used.

void *rawpage_alloc();

No parameters are required. The base address of the physical memory page is returned. If

there are no free pages, the system panics (something more elegant could be done in future).

Finding a free page is very simple. First, the free list lock is acquired. Then the �rst entry

on the list is dequeued, and the lock is freed. The reference count is initialized. The address of

the physical page is computed from the position of the page entry relative to the head of the

raw page table. This address is returned to the caller.

3.6.2 Freeing a physical page

Freeing a physical page is equally as simple. Using the page address, the raw page table entry

is computed. The entry lock is acquired and the reference count is decremented. If the new

reference count is 0, the page entry is queued to the beginning of the free page list.

int rawpage_free(void *page);

The rawpage free() call decrements the reference count for the given page, and returns it

to the raw page pool if the count reaches 0.

3.6.3 Sharing a physical page

A reference count allows pages to be shared by di�erent processes, keeping them from being

freed and reused while they are being used elsewhere. If two processes are sharing a page, and

one process frees the page from its address space, the page is not returned to the free memory

pool. The page is only freed when the last process discards the page.

int rawpage_reference(void *page);

The rawpage reference() call increments the reference count for the speci�ed physical

page.

Chapter 3. Kernel level implementation 35

3.6.4 Raw page initialization

At initialization time, the rawpage table[] is initialized and the free pages linked list is created.

Even at boot time, many pages are already allocated for the kernel data and code areas. These

pages are removed from the free list and their reference count is marked for use. Access to the

list of free pages is protected using the pages free lock spin-lock. The allocate/free routines

must acquire the lock before pages can be removed or added from the free list.

int rawpage_init();

The rawpage init() function is called by the boot processor to initialize the physical mem-

ory pool. It returns the total number of free physical pages in the pool.

3.7 Memory mapping and cache management

The map module is responsible for controlling the 88200 memory management unit [Mot88b].

All aspects to do with address translation and cache management are encapsulated in this

module. Changes in the memory management hardware would only require changes to this

module.

Routines are provided to create and manage the hardware translation tables and caching

parameters. These routines are used by the virtual memory layer to provide the user and

supervisor space with virtual addressing. These address spaces include physical memory, as

well as access to hardware device control registers. None of these routines are user-accessible,

they are only used locally within the kernel.

3.7.1 Translation tables

As described in the hardware overview section, the 88200 uses a two-level translation table to

allow mapping of a 4GB address space. The �rst level segment table contains 1024 entries that

point to page tables. Each page table contains 1024 entries that provide the translation for a

single page of 4096 bytes. Refer to Figure 2.2 for a description of the translation table format.

Chapter 3. Kernel level implementation 36

In addition to address mapping information, the translation table entries contain attribute

bits that control cache and protection status. Di�erent settings of these bits are used for di�erent

types of memory pages. For example, since code pages are not modi�ed during execution,

code pages are marked read-only/cache-enabled. Device control registers are marked read-

write/cache-inhibited. These attribute bits, as well as the 88200 control register o�sets, can be

found in the registers.h �le. Refer to the 88200 user manual [Mot88b] for detailed information

on the attribute bits.

Each 88200 maintains two registers called area pointers: the user area pointer (UAPR), and

the supervisor area pointer (SAPR). The UAPR and SAPR contain a master pointer to the

translation table for the user and supervisor address spaces, respectively. Context switching an

address space requires setting the area pointer from one map to another. Throughout execution

of the system, the supervisor area pointer remains constant, while the user area pointer changes

for each running task. The map module keeps track of area pointers using the MAP structure:

typedef struct

{

int map; /* 88200 area pointer */

int lock; /* spin lock for this memory map */

} MAP;

The MAP structure contains the area pointer and a spin-lock to protect accesses to the trans-

lation table. The lock must be acquired by any map routine before changes to the translation

table are allowed.

Each processor in the system uses two 88200 units: one for the code caching and translation,

and one for data caching and translation. Each 88200 can use their own set of translation tables,

or they can share a common single table. The Raven kernel opts to have two tables: one for

code, and one for data. Thus each task descriptor in the system contains two map descriptors:

MAP code_map;

MAP data_map;

Chapter 3. Kernel level implementation 37

3.7.2 Translation lookaside bu�er (TLB)

In addition to the instruction and data caches, the 88200 units also contain translation table

caches, or translation lookaside bu�ers (TLB). The TLB stores frequently used translations,

so that translation table searches are not required for each memory access. On the 88200, the

TLB is termed the physical address translation cache (PATC), and contains 56 entries.

But unlike the instruction and data caches, the TLB caches are not automatically coherent

across multiple cache units. Therefore, modi�cations to an activated translation table in the

form of attribute changes or freed pages require TLB ushes if the address space is enabled

on more than one processor. If this is not done, then remote TLB caches will not contain the

correct translation table information.

Another type of translation lookaside bu�er in the 88200 is the block address translation

cache (BATC). There are ten entries in this cache which can be set programmatically. The

entries remain until explicitly reprogrammed. Rather than mapping single 4KB pages, the

BATC entries maps contiguous 512KB blocks. The operating system software can use these

entries to provide mappings for high-use code or data regions.

3.7.3 Translation table storage area

A special region of the physical memory space is set aside at boot time for translation table

storage. The kernel allocates segment and page translation tables for each task in the system

from this common storage area. This area is located at the very top of physical memory. Its size

is de�ned at compile time, in a granularity of 128 pages, by the PAGE TABLE SEGS constant in

the �le kernel.h. This allows the 88200 BATC entries to map the whole storage area into the

kernel space at all times. Using the programmable BATC entries help avoid the chicken-and-egg

problem that occurs when an unmapped page is allocated to store a page table.

Two macro routines are used to manage the allocation and deallocation of translation table

pages. These routines are very e�cient: they simply keep track of a free list of pages in the

page table storage area. The PTE ALLOC() macro allocates a page table by dequeuing the next

Chapter 3. Kernel level implementation 38

free one. The PTE FREE() macro returns a page to the storage area by enqueuing it back on

the free queue.

3.7.4 Allocating a translation map

When a user task is created, two address maps are allocated to create the tasks code and data

address spaces. The virtual memory layer uses the following routine to allocate these maps:

int map_alloc(MAP *map, int attrb);

The caller passes in a pointer to a preallocated, empty MAP structure and an attribute

setting. An empty translation table is allocated using PTE ALLOC(), and using the address of

this table along with the attributes, the map area descriptor is created.

3.7.5 Freeing a translation map

When a user task is destroyed, the virtual memory layer frees its memory, and then calls this

routine to free the tasks' translation tables. Since there are two translation tables for each user

task, this routine is called twice to completely free a user task:

int map_free(MAP *map);

The caller passes in a pointer to the MAP structure for the table to be freed. The routine

traverses the translation table structure and uses PTE FREE() to release each table back to the

free pool.

3.7.6 Enabling an address space

Before a user level task can execute, its address space must be activated. Enabling an address

space is simply done by assigning the map area pointer to the 88200 UAPR register. But before

this can be done, the previous user level TLB entries must be ushed. Otherwise, TLB entries

from the previous address space would pollute the translations of the new address space.

Chapter 3. Kernel level implementation 39

int map_enable_task(int cpu, MAP *data_map, MAP *code_map);

The �rst parameter speci�es the physical processor number to enable the address space on.

This cpu number is used to calculate the appropriate 88200 register addresses to assign the

provided map descriptors to (there are eight 88200 units in the system, two for each processor).

The proper TLB entries are ushed and the new area pointers are assigned to the UAPR

registers.

3.7.7 Mapping pages in an address space

When the virtual memory layer allocates physical memory to an address space, a new entry in

the address space's translation tables is created. The allocation of memory to an address space

includes the operation of allocating new memory regions, in addition to sharing pages between

address spaces. The map module provides two routines to allows page mapping on single or

multiple contiguous pages.

int map_page(MAP *map, void *page, void *logical_addr, int attrb);

The map page() routine e�ciently maps a single physical page to a logical address in an

address space. The map parameter speci�es the address space to map the page. The page

parameter speci�es the physical address of where the page to map is located. The logical addr

parameter speci�es the address in the address space to map the page at. attrb speci�es the

attribute bits for the page.

int map_pages(MAP *map, void **addr, void **hint, int num_pages, int attrb);

This routine allows multiple contiguous pages to be mapped into an address space. Unlike

the simpler map page() call, this routine also allocates new physical pages from the rawpage

module. map pages() is most commonly used by the virtual memory layer to e�ciently allocate

contiguous regions of memory for a task. By supplying *addr = NULL, the routine will choose

the next available free memory space and allocate num pages pages starting there. The hint

is supplied to provide a good starting location for the free memory search.

Chapter 3. Kernel level implementation 40

3.7.8 Unmapping pages from an address space

When the virtual memory layer removes physical pages from an address space, the associated

translation table entries must be removed. For active address spaces, the TLB caches of the

associated cache units must be noti�ed of the changes (otherwise remote TLB caches may

continue to contain the unmapped translation table entry). Every TLB in the system that is

potentially caching the changed entries must be ushed. This includes remote processors that

are executing the same address space.

On many multiprocessor systems, ushing a TLB on a remote processor involves sending

the remote processor an interrupt and stalling the remote processor until the ush is complete

[BRG+88]. This is because some machines do not allow ush operations on TLBs other than

their own. Fortunately, the 88200 does allow ush operations to be invoked from remote

processors. All the kernel needs to do is write an invalidate command to every 88200 unit in

the system that is using the address space. Flushing the whole TLB when only one page table

entry is changed can be wasteful. Fortunately, the 88200 allows system software to specify

the ush granularity on a page basis. Before issuing the ush command, the page entry to

invalidate is speci�ed.

int unmap_page(MAP *map, void *logical_addr);

The unmap page() routine removes the speci�ed logical page from the speci�ed address

space

int unmap_pages(MAP *map, void *logical_addr, int num_pages, int free);

The unmap pages() routine is the plural form of the above unmap page() routine. In this

case, multiple contiguous pages can be removed from an address space, starting at the speci�ed

logical address. If the free ag is non-zero, then each logical page is also returned to the

physical memory pool using rawpage free(). This allows large regions of an address space to

be e�ciently freed in one call.

Chapter 3. Kernel level implementation 41

If a page table becomes empty after the last logical page is removed from it, that page table is

not returned to the page table pool (normally done by the PTE FREE()macro). This could leave

several page tables consumed for apparently no purpose. Curing this problem would require

some form of garbage collection in the unmap routines. However, this problem is not as bad as

it may seem. Any subsequent memory allocations will likely consume the next available entry

in these empty page tables. So in fact, not garbage collecting these tables would allow them

to be used directly without having to allocate new ones. Thus, an PTE FREE()/PTE ALLOC()

iteration is saved.

3.7.9 Finding free logical addresses

Before the virtual memory layer can allocate memory to an address space, it needs to know

where to place the memory in that address space. For example, when a user program calls

malloc(), the user does not specify the location to allocate the memory. Instead, the next

available address is chosen by the malloc library. Likewise, user level calls to the virtual

memory allocator do not always specify the address to place the memory at. The virtual

memory layer must decide where to allocate the memory. It uses the following routine to do

this:

int map_find_free(MAP *map, void **addr, void **addr_hint, int num_pages);

Given a address map map, map find free() will traverse the map starting at address

*addr hint, looking for a free contiguous region of pages. The size of the region is speci�ed by

num pages. The found address is returned in *addr. The *addr hint address is updated to the

next page beyond this contiguous region. Returns OK if successful, or FAILED if a contiguous

free region could not be found.

3.7.10 Sharing and moving translations

Another common memory operation that the supervisor and user level tasks require is the

ability to share and move memory between address spaces. Sharing memory allows multiple

Chapter 3. Kernel level implementation 42

address spaces to read and write the contents of a single region of memory. The move operation

allows contiguous memory regions to be passed from one address space to another, removing

the mapping from the source. The following map share() routine provides the virtual memory

layer support to easily do this.

int map_share(MAP *src_map, void *src_addr, MAP *dest_map,

void **dest_addr, void **dest_hint, int num_pages,

int attrb, int share);

The routine takes a source map, a source logical address, and the number of contiguous

pages to map into a destination map. If the destination address is not known, then *dest addr

= NULL is passed, and map find free() �nds a suitable address. Passing the dest hint address

gives the search algorithm a good place to start. Passing a non-zero value for share retains

the mapping in the source address space, passing a zero value causes the source region to be

unmapped.

3.7.11 Map module initialization

The only state maintained by the map module are the translation tables. Storage for these

tables is allocated at initialization time at the top of physical memory. The size of the storage

area is con�gured at compile time using the PAGE TABLE SEGS constant in kernel.h. The

pte init() routine builds a free list to manage the allocation and deallocation of translation

tables from this storage area.

void map_init();

This routine is called by the virtual memory initialization code. First, it calls pte init()

to initialize the translation table storage area. Then, it programs the 88200 BATC entries to

map in the kmsg buf and page table storage areas. These areas will then be available to the

kernel when the supervisor address space is enabled.

Chapter 3. Kernel level implementation 43

3.8 Virtual memory management

All address spaces, user and supervisor, are created and managed by the virtual memory layer.

The virtual memory layer provides the kernel and user level with an interface to allocate,

deallocate, and share contiguous regions of memory within an address space. It uses the map

module for setting up address translation, and the rawpage module for managing physical pages.

The table in Figure 3.7 summarizes the routines exported to user level by this module.

Synpopsis

vm_alloc()

Interface availability Description

user application Allocates a region of virtual memory.

vm_free() user application Deallocates a region of virtual memory.

vm_share() user application Shares a region of memory between tasks.

vm_move() user application Moves a region of memory between tasks.

vm_map_device() user application Maps in a region of device registers.

vm_unmap_device() user application Unmaps a region of device registers.

Figure 3.7: Virtual memory system call summary.

Figure 3.8 shows a typical memory space for a user level task. A user level memory space

contains four basic components: an executable code segment; a data segment for global variables

and constants; dynamically allocated heap space; thread stacks; and hardware device mappings.

The dark areas denote regions of memory that are mapped. The code and data regions are

always contiguous, they contain the executable image as loaded from a �le. The heap area

starts at USER HEAP START ADDR and continues to USER HEAP END ADDR (currently 0x700000

and 0xffbf0000 in context.h). This heap area gives user programs approximately 3.9GB of

virtual address space to work in.

Memory regions in the heap space are allocated and deallocated on demand throughout

execution of the user level program. Thus, as Figure 3.8 illustrates, the heap space can become

fragmented. A sparsely populated memory space can consume many translation tables, so

allocation routines try to minimize this fragmentation by allocating space close to neighbours.

However, this feature can be easily overridden, in the event that a speci�c address is required.

Chapter 3. Kernel level implementation 44

0x00000000

0x00010000
Code region

Data region

0x0005c000

0x00400000

0x00700000
Heap regions

Ethernet device

Interrupt ctrl

0xffffffff

0xfff84000

Heap regions

0xffbf0000

Heap regions

3.9GB
Heap
space

Figure 3.8: Typical user level memory space.

User level device drivers use the virtual memory layer to map in hardware device registers.

While hardware devices reside at very speci�c physical addresses, their logical address can

appear anywhere within the user's virtual space. Therefore, devices can be dynamically mapped

anywhere within the heap storage area.

3.8.1 Region descriptors

The virtual memory module manages memory in objects called regions. A region is a contiguous,

page aligned portion of memory in a virtual address space. The following VM REGION structure

describes a region:

typedef struct

{

int id; /* this region descriptor id */

int task_id; /* task that this region belongs to */

MAP *map; /* page table mapping descriptor */

void *addr; /* virtual address of region start */

int size; /* size of region */

int attrb; /* page attributes for region */

Chapter 3. Kernel level implementation 45

/* next/prev link for VM region queue structures */

QUEUE_LINK link;

} VM_REGION;

VM_REGION region_table[REGION_TABLE_SIZE];

QUEUE region_free_q;

int region_free_q_lock;

A region entry contains address mapping and ownership information. The start address,

size, attributes, and map specify the mapping information for the region. The link �eld allows

region entries to be queued together into lists. For example, the region free q keeps track of

all unused region descriptors. The statically allocated region table maintains a global pool of

region entries. To allocate a new region entry, the VM GET REGION() macro dequeues the next

available region. Old regions are recycled by enqueuing them back on the free list.

3.8.2 Allocating a region of memory

All user level tasks allocate heap memory through one single system call, vm alloc(). To

allocate memory, a new region entry is dequeued, and its values are initialized. Then, the

map pages() routine performs the physical memory allocation and mapping for the region.

Finally, the region entry is enqueued onto the tasks heap list.

Each task maintains a list of heap regions that are allocated in its address space. When a

task is destroyed, its memory must be returned to the system. The heap list allows each region

to be kept track of, which can be e�ciently freed all at once.

int vm_alloc(int *region_id, int task_id, void **addr, int size, int attrb);

task id speci�es the task to allocate memory into. *addr is set to contain the starting

address to allocate the region of memory at. However, if the caller passes *addr = NULL, then

the next available contiguous free region of memory is chosen. This address is then returned to

the caller in *addr. The size parameter speci�es the size of region to allocate, in bytes. All

sizes are rounded up to the nearest page.

Chapter 3. Kernel level implementation 46

The attrb parameter speci�es the page attributes for the 88200 memory management

unit. These attribute settings are discussed in detail by the 88200 technical manual. The

registers.h �le contains all possible bit settings for this parameter. For example, to allocate

a page of memory that can be shared amongst all threads in an address space, use attrb =

GLOBAL BIT | VALID BIT.

The newly allocated region identi�er is returned in *region id. Further operations on this

region of memory are speci�ed by supplying this region identi�er to the virtual memory system

calls. For example, to free the region, call vm free() with the returned region id.

3.8.3 Freeing a region of memory, vm free()

int vm_free(int region_id);

To free a region of memory, the vm free() call is used. The call examines the supplied

region entry, and uses the unmap pages() routine to remove the address mapping and free the

physical pages.

3.8.4 Sharing memory

Sharing memory provides a convenient and e�cient way for address spaces to communicate.

Memory regions can be shared between any number of address spaces.

int vm_share(int src_region_id, int *dest_region_id, int dest_task_id,

void **dest_addr, int dest_attrb);

The caller supplies a source region identi�er in src region id, and a memory address

*dest addr in the destination task to map the region at. If the destination address is not

known ahead of time, then passing *dest addr = NULL will automatically choose the next

available free location. The chosen memory address will be returned in *dest addr. The

dest attrb parameter speci�es the page attributes for the destination address mapping. For

example, a server may wish to provide a read-only page of memory for clients to examine. A

region identi�er for the newly created region is returned in dest region id.

Chapter 3. Kernel level implementation 47

3.8.5 Moving memory between tasks

A common operation throughout execution of device drivers and client/server interactions is

the movement of data between address spaces. For example, initially a device driver will read

a chunk of data from a device, and give it to a server for processing. The server will then send

the data to clients. Each step could involve the movement of data across address spaces.

Sometimes, the amount of data passed between clients and servers is small, and therefore

an explicit memory copy operation is the most e�cient way to pass memory between address

spaces. But for high speed devices, and especially block-mode devices with large block sizes, a

memory mapping technique can eliminate the data copy altogether. The vm move() system call

provides a convenient interface to do this. Memory pages in one address space can be mapped

out and mapped in to another address space.

int vm_move(int src_region_id, int dest_task_id, void **dest_addr,

int dest_attrb);

The src region id speci�es the source region to move. The destination task for the memory

region is speci�ed by dest task id. *dest addr should be set to contain the starting logical

address for the region of to appear in the destination address space. If the destination address

is not known ahead of time, then passing *dest addr = NULL will automatically choose the

next available free location. The chosen memory address will be returned in *dest addr. The

dest attrb parameter speci�es the page attributes for the destination address mapping. The

region identi�er src region id remains the same in the destination task.

3.8.6 Mapping hardware devices

On the 88100 Hypermodule, access to hardware peripherals and on-board devices is accom-

plished through memory mapped registers. These registers appear at well-known memory lo-

cations in the physical address space. Many of these physical memory locations are hardwired,

such as the 88200 registers, while others such as the VMEbus devices, can be con�gured via

jumper settings or programmable registers.

Chapter 3. Kernel level implementation 48

User level device drivers must know exactly where in the physical address space their device

registers reside. Using that information, the vm map device() can map in the appropriate

physical memory locations to provide access to these device registers.

int vm_map_device(int *region_id, void *phys_addr, void **addr, int size);

The caller must specify the physical address of the device in phys addr, and the size of the

memory region in bytes (rounded up to PAGE SIZE boundaries). The caller can also use *addr

to specify the desired logical address to map the physical region. If the logical address is not

known ahead of time, then passing *addr = NULL will automatically choose the next available

free location. The chosen memory address will be returned in *addr. A region identi�er for

this newly created region is returned in region id.

The previous memory mapping and allocation routines allowed the caller to specify a page

attribute for each memory page. Device register mappings have more stringent requirements:

they must be mapped as cache-inhibited to make sure that accesses truly hit the device, and

not just the cache. vm map device() sets all of its page attributes to CACHEINHIBIT BIT |

VALID BIT.

int vm_unmap_device(int region_id);

The vm unmap device() system call allows device register mappings to be removed from the

callers address space. The region identi�er region id speci�es the memory region to remove.

3.8.7 Virtual memory initialization

When the kernel boots, initial execution of the system happens within the physical memory

space, no memory translation is done. When the virtual memory module gets a chance to

initialize, it initializes the lower layers, and then begins to setup the supervisor memory space.

During this setup phase, translation is disabled until the whole supervisor translation table is

built.

Chapter 3. Kernel level implementation 49

The lower layers of the virtual memory system include the rawpage module and the map

module. These modules are simply initialized with the rawpage init() and map init() calls.

0x00000000

0x00010000Code region

Data region
0x00019000

0x00036000

MVME188
on-board devices

0xffffffff

0xff000000

g88mon

188Bug area

0xffe13000

0xffe1b000

kernel stacks

kmsg buffer

translation tables

Free physical
memory

Free VMEbus
32-bit space

32MB
physical
memory

0x02000000

0x01f00000

0x01e80000

0x01e7e000

Figure 3.9: Initialized supervisor memory space.

To begin building the supervisor memory space, the map alloc() call is used to create the

supervisor code and data address space maps: kernel code map and kernel data map. The

address space is then built using the map page() call. Figure 3.9 shows the layout of a fully

initialized supervisor memory space.

3.9 Task management

A task encapsulates the virtual memory space and processor allocation functions for user level

programs. The virtual memory space for a task includes program code, data and heap regions,

as well as shared regions and memory mapped device registers. The virtual memory module

manages most of a task's address space requirements: address space allocation and deallocation.

All other memory operations, such as page-wise dynamic allocation and mapping, are handled

directly by the virtual memory module.

Chapter 3. Kernel level implementation 50

The task.cmodule implements the bulk of the task management functionality. This module

works in cooperation with all of the other main system components, and ties them together to

form a basis for user level development: memory management, task scheduling, interrupt and

exception handling, and system call handling. The table in Figure 3.10 summarizes the system

call interface exported to the user level by this module.

Synpopsis

task_create()

task_destroy()

task_suspend()

task_resume()

task_info()

task_timer_event()

task_request_cpu()

task_relinquish_cpu()

task_intr_relinquish()

task_cleanup()

Interface availability Description

user application Creates a task.

user application Destroys a task.

user application Suspends the execution of a task.

user application Resumes the execution of a task.

user application Returns task state information

user kernel Registers a task for a timer event.

task_signal() user kernel Sends an asynchronous signal message to a task.

user kernel Requests a processor for the task.

user kernel Relinquishes control of the cpu to another task.

user kernel Relinquishes control to an interrupt driver task.

user kernel Cleans up an exiting task.

Figure 3.10: task.c module system call summary.

This section describes the task management module, and how it interacts with the rest of

the system. Before describing the details behind task management, we �rst present an overview

of the task scheduling environment. This discussion is intended to give the reader a global view

of how and why scheduling decisions are made.

3.9.1 Task management overview

All tasks are created using the task create() system call. Each task in the system is allocated

its own task descriptor from a global descriptor table, task table[]. The task descriptor

contains all the vital information which describes the task, such as name, entry point, and

virtual memory space. In addition, the task descriptor contains two pieces of information

which assist in the task processor allocation: num cpus, the number of processors currently

Chapter 3. Kernel level implementation 51

allocated to the task; and num ready threads, the number of ready threads in the task waiting

for a processor.

When a task receives a processor, the num cpus �eld is incremented. When a processor

is taken away from a task, num cpus is decremented. Likewise, when the user level thread

scheduler places a thread on its ready queue, num ready threads is incremented. When a

thread is removed from the ready queue, num ready threads is decremented.

The task scheduling mechanism uses both of these variables to help decide how a task

should be scheduled. There are seven main sources of control in the system which invoke the

task scheduler to make a scheduling decision:

1. Processor requests from user programs. When a user level thread scheduler �nds itself with

ready threads on hand (i.e., num ready threads > 0), then it will request a processor.

2. Processor relinquishment from user programs. When a user level thread scheduler runs out

of runnable threads (i.e., num ready threads == 0), then it will relinquish its processor.

3. Hardware interrupt handlers. An interrupt may cause an upcall event to be directed at a

speci�c task, in which case the task must be given a processor.

4. Hardware exception handlers. As with interrupt handlers, an exception may occur that

requires the attention of a speci�c task2.

5. When creating a new task. A newly created task begins with num ready threads == 1,

num cpus == 0.

6. Resuming a suspended task. A suspended task, when resumed with num ready threads

> 0, is in need of at least one processor.

7. After a task is destroyed. When the currently running task is destroyed, another task is

scheduled in its place.

2For example, an external pager task would be invoked whenever a task generates a page fault.

Chapter 3. Kernel level implementation 52

Tasks that are in need of a processor, when num ready threads > 0, are either placed on the

task ready queue to be given a processor in the future, or are given a processor immediately.

The task ready queue is a centralized priority queue with 32 levels. All processors in the

system share the same queue through a simple three routine interface: enqueue ready task(),

dequeue ready task(), and remove ready task().

The main scheduling loop within the kernel is in the routine sched(). When invoked,

sched() dequeues the next available ready task and runs it. If there are no ready tasks, then

the processor drops into the idle() loop. The idle loop simply runs a forever-loop, with interrupts

enabled. So rather than having idle processors poll system queues looking for work, work is

delivered to idle processors using the software interrupt service (SWI). When work becomes

available, an interrupt is delivered to the next available idle processor. For example, if a task

is in need of a processor, then one of the idle processors is delivered a TASK RUN SWI interrupt.

(A global structure, idle cpus[], keeps track of which processors are idle.)

One of the main task scheduler routines that is responsible for delivering work to idle

processors is the enqueue ready task() routine. Whenever a task is found to require an

additional processor, enqueue ready task() is called to place the task on the ready queue.

However, if an idle processor is available, enqueue ready task() will deliver the processor a

TASK RUN SWI interrupt.

3.9.2 The KERNEL INFO structure

The kernel maintains three important data structures to manage the scheduling of tasks:

the KERNEL INFO structure; the task descriptor, TASK; and the shared region structure,

SHARED REGION. This section focuses on KERNEL INFO; the following section discusses the latter

two.

The KERNEL INFO structure, shown below, contains a number of �elds that are used through-

out the kernel, and at the user level. At boot time, a physical memory page is allocated to

store the structure. The page is mapped into the kernel space with read/write privileges, and is

Chapter 3. Kernel level implementation 53

accessed through the global variable kernel info. When a task is created, the page is mapped

read-only into the tasks address space. All user level code has read access to the information,

but it cannot be overwritten.

typedef struct

{

int simulator; /* nonzero when executing under the 88k simulator */

unsigned long timer_ticks; /* clock ticks since boot time */

char idle_cpus[NUM_CPUS]; /* indicates which cpus are idle */

unsigned long idle_time[NUM_CPUS]; /* idle time counters for each CPU */

unsigned long kernel_time[NUM_CPUS]; /* average time in kernel recently */

unsigned long user_time[NUM_CPUS]; /* average time in user space */

int page_table_entries; /* number of free pte entries */

int physical_pages_free; /* usable free memory */

int num_free_regions; /* free VM regions */

int num_tasks; /* tasks created in system */

int num_ready_tasks; /* number of ready tasks (note: */

/* protected by ready_q_lock) */

/* stores which cpus tasks are running on. */

/* given a task id, it's easy to find which cpus it's running on */

char run_cpus[TASK_TABLE_SIZE][NUM_CPUS];

int lock;

} KERNEL_INFO;

KERNEL_INFO *kernel_info; /* allocated and mapped at boot time */

The structure contains many miscellaneous �elds, and a few important ones. simulator is

set at boot time to signify whether the system is running under the g88 simulator, or on the real

hardware. Sometimes, as when dealing with devices, it is important to know this di�erence.

timer ticks is a counter that is incremented at each system clock tick. This can be used to

give programs a notion of time.

Many of the �elds in this structure are used for resource usage accounting. A user level

Unix-style ps command could display this information, or log it to a �le. The idle time[],

Chapter 3. Kernel level implementation 54

kernel time[], and user time[] �elds are used to record system activity for each processor.

The next �ve �elds are used to count other system resources, such as free memory and the

number of tasks running in the system.

The idle cpus[] �eld is used to record the idle state of each processor in the system. When

a processor enters its idle loop, it sets the associated entry in the idle cpus[] array. Another

processor in the system can read this �eld and immediately know which processors are idle

and are eligible for work. For example, if a new thread is created at the user level, the thread

scheduler can read idle cpus[] and quickly spawn the thread to a remote idle processor by

delivering a software interrupt message to the idle processor (via intr remote cpu().

The run cpus[][] �eld records the running status of each task in the system. When a

processor is given to a task, the task's run cpus entry is set for that processor. This allows the

scheduling code to quickly �nd out which processors are running a speci�c task. This can be

used when destroying a task, for example. The task destroy() code consults the run cpus

entry for the task, and broadcasts an interrupt to the processors running that task. As another

example, the IPC mechanism can easily target its messages to processors that are running the

destination task.

3.9.3 Task descriptors

The task descriptor structure, type TASK de�ned in kernel.h, contains most of the bookkeeping

data that comprises a task. The structure is divided into several main components, each of

which is maintained and shared between the various kernel modules. The descriptors are private

to the kernel memory space; it is not directly shared by user level programs.

typedef struct

{

int id; /* 0 to TASK_TABLE_SIZE-1 */

int lock; /* spin lock for this descriptor */

void *stack_page; /* kernel address of user's upcall stack*/

int interrupts; /* bit field of enabled user interrupts */

Chapter 3. Kernel level implementation 55

int exceptions; /* bit field of enabled user exceptions */

int pending_intr; /* remembers pending interrupt vector */

TASK_INFO info; /* task statistics and other info */

TASK_VM vm; /* task virtual memory spaces */

SHARED_REGION *sr; /* user/kernel shared region pointer */

QUEUE_LINK sched_link; /* scheduler queue */

QUEUE_LINK timer_link; /* timed event queue */

unsigned int wake_time; /* time to wake this task (task_timer) */

} TASK;

The following paragraphs and subsections describe each component of this structure. After

starting with the smaller miscellaneous �elds, the larger component structures are described.

The id �eld identi�es the task descriptor. This number is the index value of the descriptor

in the task table[] array. It is initialized at boot time, and remains constant throughout the

life of the system.

The lock �eld is the spin lock used to provide mutual exclusion in routines that manage

the task descriptor. Normally this lock is acquired before any system call or scheduling action

is performed on a task. However, there are cases where locking is not required. These cases are

de�ned by their speci�c purposes.

The stack page �eld points to the physical page of memory that is allocated for the tasks

upcall stack. When a task is created, a user level upcall stack is allocated and mapped into the

user level memory space at location TASK STACK ADDR. When the task is destroyed, the upcall

stack is returned to the physical memory pool.

The interrupts and exceptions �elds are maintained by the kernel interrupt and excep-

tion dispatchers. interrupts and exceptions are bit �elds which describe the interrupt and

exception handling capability for the task. For example, when a task registers an interrupt

handler in its address space, the corresponding bit is set in the interrupt �eld. The kernel in-

terrupt dispatcher can use this information for deciding what to do when a particular interrupt

arrives.

Chapter 3. Kernel level implementation 56

The interrupt dispatcher uses intr pending to remember a pending interrupt. When a

hardware device generates an interrupt, the kernel interrupt dispatcher looks up in its table

where to locate the handler for the interrupt. If the handler resides in a task that is currently

not active, it must be switched in. The intr pending �eld is set in the old task to remember

the pending interrupt vector. When the old task is switched out and the interrupt handler task

is switched in, the vector is examined before upcalling to the new task.

The sched link �eld is the main scheduler queue link for the task. This link is used to

place the task on the task descriptor free queue and ready queue. The timer link �eld is used

by the task event timer system. A task enqueues itself on the task timer q using this link,

and will be issued a timer upcall event when the wake time interval expires.

TASK INFO structure

The �rst main component of the task descriptor, info, contains general information about the

task such as scheduling state, priority, an ASCII string name and resource consumption

statistics. The reason why these data �elds are grouped in their own structure is so that they

can easily be marshalled to user level programs. A special system call, task info(), allows user

level programs to query this structure for information collecting. For example, the console

program implements a Unix-style ps command for displaying task scheduling and resource

usage. Currently, the resources kept track of are memory usage, but this could be expanded to

include other interesting information such as interrupt and context switching rates.

typedef struct

{

int state; /* task scheduling state */

int priority; /* 0 to NUM_READYQ_PRIORITIES-1 */

char name[TASK_NAME_SIZE]; /* ASCII string name for executable */

/* some memory statistics */

int code_size; /* size of the program code (bytes) */

int data_size; /* size of the program data (bytes) */

int bss_size; /* size of the program bss (bytes) */

int virtual_size; /* pages of memory mapped by this task */

} TASK_INFO;

Chapter 3. Kernel level implementation 57

TASK VM structure

The next component, vm of type TASK VM, maintains information about the tasks' address space.

This structure is managed by the memory management system. The code and data address

map descriptors, and allocated virtual memory region descriptors are stored here.

typedef struct

{

MAP code_map; /* map descriptor for code map */

MAP data_map; /* map descriptor for data map */

int code_region_id; /* region id for code memory */

int data_region_id; /* region id for data memory */

QUEUE device_regions; /* region list for mapped devices */

QUEUE heap_regions; /* region list for allocated memory */

int heap_hint_addr; /* hint address for next heap allocation */

} TASK_VM;

The map descriptors code map and data map are used by the map module to perform address

translations for the task. When a task is created, the maps are allocated, and region descriptors

are allocated for the executable code and data areas. When a task is scheduled to run, the map

descriptors are passed to the address map activation routine.

The two region queues, device regions and heap regions, are used to remember region

descriptors that are dynamically allocated by the user throughout the life of the task. This

provides an easy way to free all of a tasks memory when it is destroyed: the region lists can be

e�ciently traversed and the descriptors freed. The heap hint addr �eld is used to remember

to next free location in the tasks virtual address space for a heap or device memory allocation

to occur. The hint helps reduce the amount of searching through the task translation table

structures to �nd free contiguous regions.

SHARED REGION structure

The sr �eld is a pointer to the tasks' user/kernel shared memory region. The shared region

structure, SHARED REGION, contains information that is commonly accessed by both the user

Chapter 3. Kernel level implementation 58

and supervisor address spaces for scheduling decisions and other operations. This helps reduce

communication costs between the user and kernel spaces.

When a task is created, a physical memory page is allocated for the shared region structure

using rawpage alloc(). The page is mapped read/write into both the user and supervisor

address spaces. The memory location of the page in the supervisor address space is remembered

by the sr �eld. In the user address space, the page is mapped at the well known address,

USER SHARED REGION ADDR. The user level kernel code can use this constant to refer to the

structure.

typedef struct

{

/* parameter passing area for system calls */

int syscall_parms[NUM_CPUS][SYSCALL_PARMS_SIZE/4];

int num_cpus; /* number of cpus assigned to this task */

int num_ready_threads; /* number of ready threads in task */

void *upcall_addr; /* user upcall dispatch address */

int upcall_status[NUM_CPUS]; /* upcall dispatcher events */

int intr_status[NUM_CPUS]; /* interrupt dispatcher events */

int excp_status[NUM_CPUS]; /* exception dispatcher events */

int num_signals; /* number of signals in list */

int signal_head; /* signal list head index */

int signal_tail; /* signal list tail index */

int signal_lock; /* signal list spin lock */

SIGNAL signals[NUM_SIGNAL_ENTRIES];

/* global semaphore links */

GLOBAL_SEM_LINK sem_links[NUM_GLOBAL_SEMS];

int argc; /* number of command line arguments */

char *argv[NUM_ARGV_VECTORS]; /* array of argv vectors */

char argv_buf[ARGV_BUF_SIZE]; /* buffer for storing parameters */

} SHARED_REGION;

The syscall parms �eld provides a bu�er for passing out-of-line parameters through system

calls. For example, when a user calls kprint(), the string parameter is copied into the system

Chapter 3. Kernel level implementation 59

call bu�er. The kernel kprint() routine can then access the string parameter from the bu�er.

Ideally, the kernel should be able to access the user's parameters directly. However, most of the

kernel system calls are implemented in C, a language which does not easily permit references

to remote address spaces. So kernel system calls which pass parameters by reference must use

this indirection. Each processor running a task uses its own parameter bu�er, so that system

calls can safely execute in parallel. Thus, the syscall parms �eld allocates enough bu�ers for

every processor in the system.

The num ready threads �eld is maintained by the user level threading kernel to count

the number of runnable threads available. num cpus is maintained by the kernel to count the

number of processors currently allocated to the task. These �elds are used by both the thread

and task schedulers as the basis for processor allocation decisions.

The upcall addr �eld is used by the kernel upcall dispatcher as the address to call in the

user space for upcall events. Initially, when a task is created, this value is set to contain the

entry point for the executable program. This entry point corresponds to the user level kernel

initialization code. When the task runs and initializes itself, it can easily change this value to

any address within its address space, such as the user level upcall dispatcher.

The upcall status, intr status, and excp status are per-processor �elds that are used

by the interrupt, exception, and task upcall dispatching mechanism to signal various events to

the user kernel. Each �eld maintains a bit �eld of possible ags, each ag is set to specify a

certain event, or combination of events.

The set of signal �elds belong to the asynchronous task signalling mechanism. Any task

can send a simple signal message to another task using the task signal() system call interface.

These �elds are used to implement a FIFO queue for a �xed number of signals destined for a

task.

The sem links �eld stores an array of queue links for the global semaphore service. Each

link in the array corresponds to a global semaphore entry. When a user thread blocks on a

global semaphore, the thread's task is queued on the global semaphore's queue. When the

Chapter 3. Kernel level implementation 60

semaphore is signalled, the next task in the queue is dequeued and issued a signal.

The arg �elds are used to supply Unix-style command line argument information for user

programs. When a task is created, one of the parameters to task create() is a user argument

structure. task create() copies the user arguments into these �elds. When the user level

initialization routine executes, the argv vector can be built and passed to the user's main()

thread.

3.9.4 Task descriptor table

Following the general policy of static allocation where possible, the task table[] array stores

all of the system task descriptors. The size of the table is de�ned at compile time. The table

is declared in the following fashion in task.c:

TASK task_table[TASK_TABLE_SIZE];

QUEUE task_free_q; /* free descriptor queue */

int task_free_q_lock; /* spin lock for free queue */

The table and task free q are initialized at boot time. Each of the task descriptors are

linked together into a free queue. The free queue allows for O(1) allocation and deallocation of

task descriptors.

3.9.5 Upcalling to a task

A task is given a processor for a number of reasons. Each reason is termed an upcall event,

and there are eight di�erent upcall events de�ned in upcall.h. These upcall events are used

in various places throughout the kernel:

#define RUN_UPCALL 0 /* task can execute now */

#define TICK_UPCALL 1 /* timer tick upcall */

#define RELINQUISH_UPCALL 2 /* task relinquish request */

#define TIMER_UPCALL 3 /* timed event has expired */

#define SIGNAL_UPCALL 4 /* task signal is pending */

#define KILL_UPCALL 5 /* task destroy upcall */

Chapter 3. Kernel level implementation 61

#define EXCP_UPCALL 6 /* a user exception occurred */

#define INTR_UPCALL 7 /* a user interrupt occurred */

Each of these upcall events correspond to a bit in the upcall status[] �eld in the task's

shared region. These events are described in greater detail in Section 4.1. When an upcall

is issued to a task, the particular event is bit-wise or'ed into the upcall status[] entry for

the processor. Previous bits in the entry are therefore retained, and can be accumulated if

many upcall events are directed to a task before the task actually gets a chance to execute.

At the user level, the upcall dispatcher reads this bit-�eld and executes the appropriate upcall

handlers, clearing the event bits as the handlers complete.

For example, when sched() �nds a ready task to run, it issues a RUN UPCALL to the task in

the following manner:

curr_task->sr->upcall_status[cpu] |= 1 << RUN_UPCALL;

upcall_now(curr_task->sr->upcall_addr); /* no return */

The upcall now() routine, from excp dispatch.s, is an assembler code routine that per-

forms the upcall action into user space. Given the user level destination address, upcall now()

sets up the processor context, and executes a \return from exception" rte instruction.

Before a task can be issued an upcall, its memory space must be activated on the local

processor. Also, if the task resides on the ready queue, it may have to be dequeued. The

task upcall() routine performs all of the bookkeeping chores to enable a task and upcall

into its address space. This routine is used in various places in the kernel to facilitate upcall

dispatching.

void task_upcall(int cpu, TASK *task, int upcall_vec);

The task to activate is speci�ed by task, and the upcall event is speci�ed in upcall vec.

The task will be removed from the ready queue if num ready threads <= 1, and its state set to

TASK RUNNING. A task is not removed from the ready queue if num ready threads > 1, which

means that the task is eligible for more processors than the one it is currently receiving.

Chapter 3. Kernel level implementation 62

The task's num cpus �eld is incremented and its run cpus[][] entry is set to indicate which

processor the task is running on. Finally, the map enable task() call activates the code and

data memory space, and upcall now() is invoked to pass execution to the user level.

3.9.6 Creating a task

The task create() system call is used to create a task. First, a free task descriptor is dequeued

from the task free q. Then, virtual memory call vm task alloc() is used to allocate the

task's address space and create the shared region storage area. The shared region �elds are

then initialized. The syscall parms bu�er is used to pass the task's id and the region identi�er

for the nameserver to the user initialization routine. The task is either placed on the ready

queue to be run, or left in the suspended state to be later resumed.

int task_create(int *task_id, int priority, int ready, TASK_EXEC_HDR *hdr,

int code_region, int data_region, TASK_ARGS *args);

The priority parameter speci�es the task's run priority level, an integer between 0 and

31. Priority 0 is low priority, priority 31 is high priority. A high priority task always receives

processors before a low priority task. If ready is passed a nonzero value, the new task will

be immediately readied and executed on an idle processor, or placed on the ready queue if all

processors are busy. If ready is zero, the task will be placed in the TASK SUSPENDED state, to

be later resumed by task resume(). task id returns the created task's descriptor identi�er.

task create() returns OK if task creation was successful, or FAILED if an error occurs.

The hdr parameter passes the executable header information. This structure contains the

executables code, data, and bss segment addresses and sizes. It also includes the executable

entry point. The caller is responsible for querying the �lesystem for this information.

The code region and data region parameters pass the executable code and data regions.

Before the user calls task create(), the executable code and data must be read from the �lesys-

tem into two regions. These regions, plus the hdr information, are used by the vm task alloc()

routine to allocate the memory space for executable. In vm task alloc(), once the address

Chapter 3. Kernel level implementation 63

maps are created, vm share() is used to map the code and data regions to the tasks address

space. The caller to task create() can then free the code and data regions from their address

space, or use them for additional calls to task create().

The args parameter points to an argument structure of the following format. The user

must properly initialize this structure before calling task create():

typedef struct

{

int nameserver_id; /* region id of nameserver */

int tty_id; /* port id of the tty connection */

int argc; /* user argument count */

int argv_len; /* length in bytes of argv_buf */

char argv_buf[ARGV_BUF_SIZE]; /* user parameters */

} TASK_ARGS;

The nameserver id �eld is used to pass the nameserver region identi�er to the newly

created task. When the task initializes, it can use this identi�er in vm share() to map in the

nameserver. The tty id is used by the user level tty driver.c server to pass on the tty

connection identi�er. When the tty server creates a task, a stdin/stdout port connection is

created for the task to communicate with the server. When the task initializes, it uses the

tty id port to communicate with the server.

The argc �eld is set to specify the number of command line parameters. argv len is set to

specify the length in bytes of the parameters in the argv buf �eld. argv buf is built to contain

a contiguous list of null-terminated parameter strings. When the task gets a chance to run,

the user level initialization routine uses this information to construct an appropriate Unix-style

argv list to pass to the user's main().

3.9.7 Destroying a task

int task_destroy(int task_id);

Whether a task simply �nishes its own execution, or whether a remote task must be killed,

task destroy() does the job. task destroy() is responsible for locating the speci�ed task,

killing it, and returning its resources back to the system.

Chapter 3. Kernel level implementation 64

On a multiprocessor system, the e�ort required to kill a task is greater than on a unipro-

cessor system. The additional di�culty arises when the task to destroy is executing on remote

processors. In this case, the remote processors must be interrupted and noti�ed that the task

they are executing will be destroyed:

/* check if there are other cpus running the task */

if (dead_task->sr->num_cpus > 0)

{

/* interrupt each cpu currently running this task */

intr_remote_cpus(kernel_info->run_cpus[task_id], TASK_DESTROY_SWI,

task_id);

}

The remote interruption facility is provided by the intr remote cpus() call in

interrupt.c, which in this case, delivers a TASK DESTROY SWI software interrupt to all proces-

sors executing the speci�ed task. The SWI interrupt handler on the remote processors recognize

this interrupt and discards the dying task.

However, stopping execution and cleaning up the task's memory space and kernel data

structures is not enough to completely remove a task from the system. There are also data

structures at the user level which must be cleaned up. For example, if a task has created and

is the owner of user level IPC ports, the ports must also be properly terminated. Otherwise,

the user level port data structures will be left with stale entries in their descriptor tables. As

another example, suppose a task has established a communication channel with a server. The

task must be given the chance to gracefully sever the connection with its server.

To o�er a graceful shutdown for tasks which are to be destroyed, before the kernel frees the

tasks resources, a KILL UPCALL is delivered to the task. The KILL UPCALL handler executes at

the user level, and performs any cleanup that is necessary before returning to the kernel to be

o�cially destroyed. While this is taking place, the task's state is set to TASK DYING, indicating

that the task should not be scheduled by remote processors. Figure 3.11 demonstrates this

sequence of events.

Chapter 3. Kernel level implementation 65

task id: 1 task id: 2

Kernel

task_destroy(2); task_cleanup(2);

KILL_UPCALL

kill_handler()

sched()

task_cleanup(2);

Figure 3.11: Destroying a remote task.

When the KILL UPCALL handler has �nished cleaning up the user level state, the system call

task cleanup() is used to return control to the kernel. task cleanup() frees all of the task's

memory, returns its descriptor to the free list, and jumps into the scheduler loop sched() to

continue processing other tasks.

If a task is voluntarily killing itself, then task destroy() assumes that the user level code

has already cleaned up its data structures, and therefore dispatching a KILL UPCALL is not

necessary.

3.9.8 Suspending a task

The act of suspending a task in a multiprocessor system has the same problem as destroying

a task: the task may be executing on a remote processor. As with destroying a task, the

intr remote cpus() call can deliver a TASK SUSPEND SWI interrupt to the appropriate proces-

sors. Upon receiving the interrupt, the SWI handler invokes a RELINQUISH UPCALL event into

the task. At the user level, the RELINQUISH UPCALL handler places the currently executing

thread back on the thread ready queue, and relinquishes control of the processor back to the

kernel, where another task is scheduled in its place.

Chapter 3. Kernel level implementation 66

int task_suspend(int task_id);

The task suspend() call suspends execution of the speci�ed task. If the task is currently

executing on a remote processor, the processor will be interrupted and forced to schedule

another task. The tasks state is set to TASK SUSPENDED. Returns OK if successful, or FAILED if

the speci�ed task is invalid.

3.9.9 Resuming a task

int task_resume(int task_id);

The task resume() call resumes execution of a previously suspended task, speci�ed by

task id. If an idle processor is available, a TASK RUN SWI interrupt will be delivered to it, and

the resumed task will be executed there. If all processors are busy, then the task is placed on

the task ready queue where it will be scheduled sometime in the future. Returns OK if successful,

or FAILED if the speci�ed task is invalid.

3.9.10 Task states

The task descriptor state �eld, info.state, maintains the scheduling state of a task. There

are six possible scheduling states, de�ned in kernel.h:

/* possible states for a task descriptor */

#define TASK_FREE 0

#define TASK_SUSPENDED 1

#define TASK_READY 2

#define TASK_RUNNING 3

#define TASK_IDLE 4

#define TASK_DYING 5

Figure 3.12 summarizes the possible transitions between each state. The use of each state

is described as follows:

� TASK FREE: Is the initial state for all tasks. The task descriptor is queued on the free

queue, task free q, using the tasks sched link.

Chapter 3. Kernel level implementation 67

TASK_READY

TASK_FREE

TASK_SUSPENDED

TASK_IDLE

TASK_RUNNING

TASK_DYING

Figure 3.12: Task state transitions.

� TASK READY: The task currently resides on the ready queue. The task also may be exe-

cuting on at least one processor.

� TASK RUNNING: The task is executing on at least one processor.

� TASK IDLE: The task is not executing anywhere, and does not require any processors.

� TASK SUSPENDED: The task has been suspended. It will receive no processors.

� TASK DYING: The task is being removed from the system. The state will progress to

TASK FREE when the tasks resources have been properly cleaned up.

3.9.11 Task ready queue

Tasks that require a processor are placed on the task ready queue. The �le readyq.c pro-

vides a simple interface to a globally shared round-robin priority queue with 32 levels. All

accesses to the task ready queue are done through three routines: enqueue ready task(),

Chapter 3. Kernel level implementation 68

dequeue ready task(), and remove ready task(). As long as this interface remains the same,

the implementation of the ready queue can change.

The ready queue enforces priority levels between 0 and 31. Priority level 0 is low, level 31

is high. A higher priority task will receive a processor before a lower priority task.

Enqueue and dequeue operations are O(1) in the most frequent case. This e�ciency is

achieved by the use of 32 independent FIFO queues, rather than a single sorted priority list.

Figure 3.13 displays a typical ready queue layout. Using a sorted priority list would guarantee

an O(1) dequeue operation because the �rst element on the list is always the highest priority

task. However, the enqueue and remove operation requires a sort operation to rebuild the

list, which for a heapsort structure, requires O(n log(n)) access time (not including extra code

complexity overhead).

priority 0

priority 1

priority 31

priority 2

 30

task 3

priority 30

task 5

task 0 task 6

task 1 task 9

readyq_table[]

hint

Figure 3.13: Task ready queue structure.

QUEUE readyq_table[NUM_READYQ_PRIORITIES];

int hint;

int ready_q_lock;

The readyq table[] maintains a statically allocated array of FIFO queues. Each queue is

used to store task descriptors of a single priority level. A single spin lock, ready q lock, is used

to protect the queue from concurrent accesses. The hint integer is used to cache the highest

priority non-empty FIFO queue, and is used to speed up the dequeue operation.

Chapter 3. Kernel level implementation 69

TASK *dequeue_ready_task();

The dequeue ready task() operation dequeues the next available ready task and returns

its descriptor. The routine consults the hint variable to �nd the highest level priority with a

non-empty queue. If the hint level queue is empty, a linear search counts down the hint until

the next non-empty queue is reached. The task is dequeued and returned to the caller.

void enqueue_ready_task(TASK *task);

The enqueue ready task() operation tries to �nd an idle processor to execute the speci�ed

task. If all processors are busy, then the task descriptor's state is set to TASK READY and is placed

on the end of the appropriate queue. If the task's priority is higher than the hint variable,

then the hint is updated to this priority value.

void remove_ready_task(TASK *task);

A task that resides in the ready queue structure may need to be removed for reasons other

than a processor becoming available to run the task. Sometimes a task must be removed out of

order, from the middle of the queue. For example, a task that is being destroyed or suspended

must be removed from the ready queue. The task descriptor to remove from the ready queue

is speci�ed by the task parameter.

3.9.12 Task signalling

The task signalling mechanism provides a primitive building block for the construction of user

level communication services. A signal is a simple non-blocking one-way message delivered

from one task to another. The task signal() system call performs two operations: wakes up

a destination task, and delivers it a message. The following structure, from shared region.h,

de�nes a signal message:

Chapter 3. Kernel level implementation 70

typedef struct

{

int signal; /* signal message type */

int data; /* message type-defined data */

} SIGNAL;

Any task in the system can be the recipient of multiple signal messages from multiple

sources. To ensure the non-blocking, reliable delivery of a signal message, a FIFO queue of signal

descriptors is allocated to bu�er messages. The queue is stored as signals[], in the shared

region structure of each task descriptor. Signals are enqueued by the kernel, and dequeued by

the user level signal dispatcher as a result of a SIGNAL UPCALL.

In the event that many senders bombard a single task with signals, the signal queue of

the destination task may become �lled. Further signal messages will be discarded. Thus the

delivery of signals is not totally reliable. However, reliability can be ensured for a bounded set

of interactions given a reasonable queue size. The signal queue �ts within the task's shared

region page, where it has room for about 400 entries, at 8 bytes each.

Each task contains a set of signal handlers as part of its user level upcall dispatch tree

(c.f. Figure 4.20). One signal handler routine is used for each signal message type. Originally,

the signal mechanism was designed to allow handlers to be added and removed dynamically,

allowing user programs to add their own signal handlers at run-time. However, a static scheme

was implemented for simplicity. The system currently supports six di�erent signal message

types:

#define GLOBAL_SEM_SIGNAL_SIGNAL 0 /* global semaphore signal */

#define GLOBAL_SEM_DESTROY_SIGNAL 1 /* global semaphore destroy */

#define GRPC_PORT_SEND_SIGNAL 2 /* global rpc send handler */

#define GRPC_PORT_REPLY_SIGNAL 3 /* global rpc reply handler */

#define GRPC_PORT_DESTROY_SIGNAL 4 /* global rpc destroy handler */

#define GLOBAL_PORT_SEND_SIGNAL 5 /* global port send handler */

These particular signals are used by the user level IPC and semaphore library to synchronize

their cross-address space communication events. For example, when a client invokes an RPC

Chapter 3. Kernel level implementation 71

message to a server, the server must be informed of the waiting message. In this case, the client

RPC library would issue a GRPC PORT SEND SIGNAL, specifying the port identi�er in the signal's

data �eld.

Delivery of a signal

The user level can deliver a signal to a task by two means. The user level kernel determines

which of these two methods is most appropriate:

1. Issue a TASK SIGNAL SWI interrupt to a processor:

intr_remote_cpu(cpu_list, TASK_SIGNAL_SWI, task_id,

GRPC_PORT_SEND_SIGNAL, port_id);

If the destination task is executing on a remote processor, or if there is an idle processor,

then deliver an interrupt to that processor. The SWI service() handler on the remote

processor will queue the signal and dispatch an upcall to the destination task. It is possible

that the remote processor can become busy before the interrupt is actually sent. In this

case, the SWI service() handler will properly dispatch the signal to the destination task

and return to the existing work.

2. Issue a task signal() system call:

task_signal(task_id, GRPC_PORT_SEND_SIGNAL, port_id);

If the destination task is not executing anywhere, and there are no idle processors, then

the kernel level system call task signal() must be invoked on the local processor to

manually queue the signal and wake the destination task. The destination task is woken

by placing it on the ready queue. When the task eventually acquires a processor, its

upcall dispatcher is executed.

In either case, when the destination task obtains a processor, the user level upcall dispatcher

notices that the num signals �eld is nonzero, and begins to process the signals. After each

Chapter 3. Kernel level implementation 72

signal entry is dequeued by the dispatcher, the signal �eld is used to execute the appropriate

handler. The signal handler can then perform the desired operation using the supplied data

�eld. The user level IPC and semaphore libraries contain handlers for each of the above signal

types.

3.9.13 Task timer service

The timer service allows tasks to register for a timed event. User level schedulers can use this

service to implement a sleep facility. A list of tasks, timer q, sorted by their wakeup time, is

maintained by the task timer.c module. This list is shared with the system clock interrupt

service routine, DTI service(), to ready tasks with expired wakeup values. The timer q lock

protects against concurrent accesses to the list. When a timed event expires, the associated

task is readied and delivered a TIMER UPCALL event.

QUEUE timer_q; /* list of tasks waiting for a timer event */

int timer_q_lock;

int task_timer_event(unsigned long wake_time);

task timer event() is called by user level thread schedulers to register for a timed event.

The wake time �eld speci�es the future wakeup time. By using the current system clock time,

provided by kernel info->timer ticks, the future wakeup time can be calculated by adding

the desired number of clock ticks. The clock tick interrupt rate is determined at boot time, and

can be con�gured to any value within the hardware limits: 8.6 microseconds to 563 milliseconds.

Only one timed event is registered per task. Other timed events are queued by the user

level sleep service. Registering an earlier timed event will reset the previous setting to use the

nearer value.

The task descriptor �eld timer link is used to link the task into the timer q. A linear

search through the timer q is done to locate the proper waketime slot.

Chapter 3. Kernel level implementation 73

3.10 Kernel management for global semaphores

The task signalling mechanism provides a way for tasks to send low level event messages to

each other. This service can be used to notify remote tasks that an event has occurred. Global

semaphores, on the other hand, provide a way for threads in a task to wait for a remote event

to occur. This service can be used as building block for higher level communication services.

Synpopsis

kernel_sem_enqueue()

Interface availability Description

user kernel Enqueues the caller task onto the semaphore.

kernel_sem_dequeue() user kernel Dequeues the next task from the semaphore.

kernel_sem_destroy() user kernel Dequeues all tasks from the semaphore.

Figure 3.14: Kernel level global semaphore support routines.

For example, a client thread wishing to send a message to a server may have to wait for

a free port bu�er to become available. The client thread performs a sem wait() on the port

queue, and when the server releases a bu�er, it issues a sem signal(). The client thread is

then unblocked to dequeue a free port bu�er and send its message.

While the user level global semaphore library implements the call sem wait() and the call

sem signal(), some kernel level assistance is required to preserve the ordering of sem wait()

calls. Threads must be unblocked by sem signal() in the same order that they were blocked

by sem wait(). Threads from multiple tasks may be blocked on the same semaphore. So

sem signal() must decide which task should be delivered the signal message. To do this, the

kernel implements a task queuing service, consisting of three system calls summarized in Figure

3.14.

These calls manage a set of task queues, one queue for each global semaphore. The queues

are stored in the task sem q[] table, declared in kernel sem.c:

QUEUE task_sem_q[NUM_GLOBAL_SEMS];

When a thread blocks on a global semaphore, the user semaphore library routine

calls kernel sem enqueue() to queue the threads's task descriptor onto the appropriate

Chapter 3. Kernel level implementation 74

task sem q[] entry. When the semaphore is signalled, kernel sem dequeue() is invoked,

which dequeues the task descriptor that contains the blocked thread. The task is then de-

livered a GLOBAL SEM SIGNAL SIGNAL message using task signal(). The task will then be

scheduled and its upcall dispatcher will unblock the thread.

In the event that a global semaphore holding blocked threads is destroyed, the

kernel sem destroy() call is invoked to traverse the appropriate task sem q[] list, and send

GLOBAL SEM DESTROY SIGNAL signals to each task. Each task will be scheduled and allowed to

unblock its threads.

Threads in a task can be blocked on multiple semaphores, so a task descriptor may be

queued on several task sem q[] queues at once. To allow this, each task descriptor contains

a list of global semaphore links, sem links[], in its shared region structure. A task is queued

on the same semaphore at most once, so the number of links required equals the number of

semaphores. The GLOBAL SEM LINK is de�ned as follows in shared region.h:

typedef struct

{

signed int task_id:16; /* this link's task identifier */

signed int num_threads_waiting:16; /* num threads in this task */

QUEUE_LINK link; /* semaphore queue link */

} GLOBAL_SEM_LINK;

The task id �eld identi�es the task descriptor that belongs to the link. When

kernel sem dequeue() removes a task from a semaphore queue, the task id �eld is used

to identify which task contains the blocked thread.

The num threads waiting �eld counts the number of threads in the task that are

blocked on the semaphore. This count is used by the user level semaphore library and the

kernel sem dequeue() routine to decide when a link should be enqueued or dequeued.

Chapter 3. Kernel level implementation 75

3.11 Interrupt management

This section describes the kernel level interrupt handling and dispatching mechanism. Some

interrupts are handled directly by the kernel, such as the system clock tick. Other interrupts,

such as VMEbus interrupts, can be dynamically registered by tasks to call a user level routine.

A table of interrupt handler routines is maintained to keep track of user level and kernel level

handlers.

The interrupt.c module implements the interrupt dispatcher and user level system calls

use to register interrupt handlers. The table in Figure 3.15 summarizes the system call interface

exported to the user level by this module.

Synpopsis

intr_register_user()

Interface availability Description

user kernel Registers the task and enables the interrupt.

intr_deregister_user() user kernel Disables the interrupt bit and removes handler.

Figure 3.15: Interrupt handler registration system calls.

All interrupts on the 88100 are funnelled through one single exception vector, INT. From

there, the low level interrupt handler properly saves the execution context and branches to the

interrupt dispatcher. The interrupt dispatcher �nds the recipient of the interrupt, and either

upcalls into user space to handle it, or calls a local kernel function.

3.11.1 User level preemption

Interrupts preempt user level threads and cause scheduling events to occur. For example, if

a timer interrupt occurs, a TICK UPCALL event is sent to the user level to indicate that it's

time to schedule the next ready thread. In a multiprocessor environment, special care must be

taken to ensure that the rescheduling of threads in the presence of spin-locks does not adversely

a�ect performance. A naive approach would allow interrupts to occur at any point during

user level execution. This can result in very poor performance if threads are using spin-locks

for concurrency protection. If a thread is preempted while holding a spin lock, then all other

Chapter 3. Kernel level implementation 76

threads that try to access the lock must wait until the original thread is rescheduled and releases

its lock. The original thread may not be rescheduled for some time, causing all other threads to

waste CPU time, uselessly spinning. Since spin locks are used throughout the user level kernel

to protect data structure accesses, this problem must be solved.

The solution implemented in the Raven kernel involves close participation between the

user level and kernel. Whenever the user level acquires a spin lock, a lock count variable

is incremented at the user level. Whenever an interrupt occurs that would cause an upcall

event into user space, the interrupt handler checks the lock count variable. A non-zero value

indicates that a critical section is currently being executed, and control must be returned to

the user. But before the interrupt handler returns control to the critical section, it sets the

upcall pending variable, to indicate that an interrupt occurred. When the user level regains

control and �nishes its critical section, the upcall pending variable is checked, and if set, the

thread will save its context and branch to the upcall dispatcher. The upcall dispatcher will

perform the deferred event(s).

As implemented, the two variables, lock count and upcall pending are not stored as

conventional variables at all. Rather, each of them share the processor's r28 register, as shown

in Figure 3.16. This is done to ensure that access to the variables is atomic. For example,

to increment lock count, a single addu r28, r28, 1 instruction is performed. If lock count

was a conventional global variable, then incrementing it would require the use of a spin lock {

which cannot be done, since lock count itself is used within the locking routines.

01531

16

17

lock_count

in_upcall

upcall_
pending

Figure 3.16: Register r28 usage.

Chapter 3. Kernel level implementation 77

A third variable is contained within the r28 register: in upcall, bit 16. This bit is set to

prevent preemption while the user level is processing an upcall event. The interrupt dispatcher

checks this bit whenever an upcall is attempted. If the bit is set, then an upcall is already is

progress. Upcalls cannot be nested, so the user's context is restored, and control returns back to

the point where the interrupt occurred, and upcall processing continues. Any upcall status[]

bits that were set as a result of the interrupt will be properly dispatched.

3.11.2 Handling interrupts

Due to the asynchronous nature of instruction execution on the 88100, low level interrupt han-

dling is a fairly complex operation. Certain situations arise where instructions in the data

unit and oating point pipeline are not properly completed. The interrupt handler must com-

plete these instructions. It is possible that some of the instructions may cause an exception

fault to occur, so the interrupt handler must be able to detect this and handle the exceptions.

Faulted instructions in the data unit pipeline must be decoded and completed by simulating

the instructions in software.

When a device issues an interrupt, and the processor interrupt disable bit (IND) is not set,

the processor stops fetching further instructions and tries to empty its pipelines. The IND bit

is automatically set to disable interrupts while the initial interrupt handler executes. Interrupts

remain disabled while execution continues throughout the kernel.

After the processor �nishes cleaning up its internal state, execution resumes at the INT

vector handler in the exception vector table, excp vects. The exception vector table contains

1024 entries, one for each of the possible 88100 exception vectors. The INT vector saves the

user's stack pointer in a temporary scratch register, and branches to the kernel interrupt handler

INT handler() in intr handler.s:

exc1: br.n _INT_handler ; hardware device interrupt

stcr r31, cr20 ; cr20 <- user's stack pointer r31

The �rst thing the interrupt handler does is check if the interrupt belongs to g88. g88 uses

Chapter 3. Kernel level implementation 78

the ABRT and SWI7 interrupt for its functioning, so any of those interrupts are immediately

redirected to the g88mon handler. The ABRT interrupt is set whenever the user presses control-

C on the console. The SWI7 interrupt is used to propagate g88mon interrupts to all processors.

All other interrupts are processed by the kernel.

Interrupts are normally disabled while execution runs within the kernel. The only exception

to this rule is when the kernel is executing the idle loop. If an interrupt occurs during the idle

loop, no register state needs to be saved because the idle loop does not do anything useful. The

interrupt handler checks the processor EPSR3 register mode bit to see if the processor was in

supervisor mode at the time of the interrupt. If so, then the idle loop was running, and the

handler can jump directly to the interrupt dispatcher intr dispatch s() without saving any

state.

If execution was interrupted at the user level, the interrupt handler must save the user's

processor context. The user's context is comprised of 34 user level registers: r1 to r31, fpcr

and fpsr, and the execution address. This context is saved in one of two possible places:

� Temporary storage on the kernel stack. If user level preemption has been deferred by

user lock management (i.e., if lock count and in upcall in register r28 are non-zero),

then the register context is temporarily saved onto the kernel stack. These registers are

restored when the interrupt handler completes and returns control to the user.

� The user level thread context saved area. If user level preemption is not deferred (i.e.,

if lock count and in upcall in register r28 is zero), then the register context is saved

into a bu�er maintained at the user level. A pointer to this bu�er is retained in processor

register r29. When the user level thread scheduler runs a thread, it sets r29 to point to

the threads context save area. The interrupt handler saves the context directly into the

user supplied bu�er.

3The EPSR register is the 88100 exception time shadow register for the PSR register. The EPSR reects the

value of the PSR before the exception occurred.

Chapter 3. Kernel level implementation 79

3.11.3 Dispatching interrupts

Once the processor context is saved, INT handler() calls the interrupt dispatcher in

interrupt.c to process the interrupt. There are two interrupt dispatchers:

� void intr_dispatch_s(int cpu, int intr_vec, int intr_status);

This dispatch routine handles all interrupts while the processor was executing the idle

loop (i.e., when the processor is in supervisor mode). This dispatcher is fairly simple,

because there are no requirements to clean up a currently executing task.

� TASK *intr_dispatch(int cpu, int intr_vec, int *context, TASK *curr_task);

This dispatch routine handles all interrupts occurring while the processor executes at the

user level. The routine has additional duties because the currently executing task must

be properly managed.

The interrupt dispatch module maintains a table, intr table[], which stores the handlers

for each of the 32 possible interrupts. Both of the interrupt dispatch routines use this table to

locate the appropriate interrupt service routine to handle the interrupt. The elements of this

table are de�ned by the INTR HANDLER structure:

typedef struct

{

TASK *user_task;

void (*routine)(int, int, TASK *);

int lock;

} INTR_HANDLER;

INTR_HANDLER intr_table[NUM_INTERRUPTS];

The user task �eld designates the task that should be invoked to handle the interrupt.

This �eld is set to NULL if the interrupt handler is local to the kernel. If the handler is local to

the kernel, routine contains the address of the interrupt service routine.

Chapter 3. Kernel level implementation 80

The routines intr register() and intr deregister() manage the intr table[] entries

to allow a user level task or local kernel function to be the recipient of any interrupt.

To handle a kernel level interrupt service routine, the dispatcher simply makes a function

call to the service routine. But for user level handlers, the procedure is more complicated. An

address space switch may be required to activate the proper interrupt handler task.

The dispatcher checks the appropriate interrupt entry, and if the currently executing task

is registered to handle that interrupt, then an INTR UPCALL event is given to the task. The

particular interrupt vector bit is recorded in the shared region intr status[] �eld. The user

level interrupt dispatcher examines this �eld to determine the proper interrupt handler for the

event. This action is demonstrated by the following code from intr dispatch s():

task->sr->intr_status[cpu] |= 1 << intr_vec;

task_upcall(cpu, task, 1 << INTR_UPCALL); /* no return */

task upcall() is a non-returning call in the task scheduler that activates the speci�ed task

and issues an upcall into its address space.

If the currently executing task does not handle the interrupt, but another task does, then

the current task must be switched out and the interrupt handling task must be switched in.

But before the current task is placed back onto the task ready queue, the thread which was

interrupted must be cleaned up so that it can be rescheduled. While the register context for

the thread has been properly saved by INT handler(), the user level thread kernel must be

noti�ed that one of its threads has been preempted, so the thread can be placed back on the

user level thread ready queue. To do this, the current task is issued an RELINQUISH UPCALL.

The user level upcall handler will then take the currently executing thread and place it back

onto the thread ready queue. The upcall handler then immediately returns to the kernel via

task intr relinquish(). At this point, the current task is returned to the ready queue, and

the interrupt handler task is activated and issued an INTR UPCALL to handle the interrupt.

The Figure 3.17 owchart summarizes the interrupt dispatching process.

Chapter 3. Kernel level implementation 81

Did interrupt
occur in the
idle loop?

Save context and call
intr_dispatch()

No

Yes

Can current
task handle
interrupt?

Upcall RELINQUISH_UPCALL to
user level. Clean up thread and

return to kernel.

No

Yes

Use task_upcall() to activate
and upcall to interrupt handler

task.

Use task_upcall() to
activate and upcall to
interrupt handler task.

Upcall INTR_UPCALL to
current task.

Begin

Yes

User level
upcalls

deferred?

Set upcall_pending ,
INTR_UPCALL flag and

return to user.

No

Figure 3.17: Kernel interrupt dispatching process.

3.11.4 Kernel managed interrupts

Several interrupt sources are managed directly by kernel level service routines. These interrupt

vectors are the system clock tick timer (DTI), and software interrupt (SWI).

Chapter 3. Kernel level implementation 82

System clock tick

The system clock tick is the heartbeat generator for the kernel. The tick hardware used is the

timer component of the onboard MC68681 DUART chip. The Hypermodule connects the timer

output to the DTI interrupt vector. The MC68681 is initialized at boot time to a default or

user speci�ed interrupt rate.

The clock interrupt service routine, DTI service(), checks the task timer q list, and readies

the tasks that have expired times. If an idle processor is available, the processor is delivered a

TASK RUN SWI interrupt to run the task.

After all such tasks have been readied, a TICK UPCALL event is issued to the currently

executing user level on the local processor. This upcall event is used by the user level as

a thread preemption timer to timeslice threads. The user level kernel counts the number of

TICK UPCALLS it receives, and relinquishes its processor when the value reaches a quantum.

There is a certain amount of trust placed in the user level to properly relinquish control when

its quantum has expired.

Clock ticks are not issued to each processor in the system at once. Only one processor at

a time has its clock tick interrupt vector enabled. When the tick occurs on a processor, the

DTI service() routine advances the tick interrupt to the next processor. Thus, tick interrupts

propagate around all processors evenly in a round-robin fashion. This helps reduce the lock

contention that would occur if all processors tried to access the task data structures that the

same time.

Remote processor interrupts

The Hypermodule contains a software interrupt register (SWI), which allows any processor

in the system to interrupt any other processor. A remote processor is issued an interrupt

when its associated bit is written in the SWI register. An external data structure, SWI MSG in

shared region.h, managed by the kernel software, allows event messages to be recorded about

the interrupt.

Chapter 3. Kernel level implementation 83

typedef struct

{

int msg; /* SWI event message type */

int task_id; /* event task id */

int data; /* event type data */

int more_data; /* more event type data */

int lock; /* spin-lock to protect this entry */

} SWI_MSG;

SWI_MSG swi_msgs[NUM_CPUS];

Each processor in the system maintains its own swi msg entry in a global swi msgs[]

table. To deliver an interrupt to a remote processor, a message and data is recorded into the

processor's swi msg entry. A lock must �rst be acquired on the swi msg entry before access

to it is permitted. The local processor then sets the appropriate bit in the SWI register to

interrupt the remote processor.

The remote processor will receive the interrupt, and use the SWI service() routine to

handle it. SWI service() examines the swi msg entry and performs the appropriate action

based on the message and data.

The swi msgs[] table is allocated on a single physical page which is shared read/write

between all address spaces in the system. Also, the SWI register is mapped into all address

spaces. This allows any address space to e�ciently deliver a remote interrupt. System calls

from the user level are not required.

The following four interrupt messages can be issued using the swi msg entry:

� TASK SUSPEND SWI { issued by task suspend() to suspend the execution of a task on a

processor.

� TASK DESTROY SWI { issued by task destroy() to suspend execution of a task on a pro-

cessor.

� TASK RUN SWI { issued by thread and task schedulers to initiate execution of a new thread

or task.

Chapter 3. Kernel level implementation 84

� TASK SIGNAL SWI { issued by task signal() to send a signal event to a task.

The interrupt module provides two routines to manage the delivery of remote interrupts.

The caller speci�es a char array list of processors to interrupt. A non-zero entry in the list

indicates that the associated processor should be delivered an interrupt.

� void intr_remote_cpus(char *cpus, int msg, int task_id);

This routine is used to send an interrupt to a list of processors, speci�ed by the list cpus.

The swi msg entry for each processor in the list is acquired, the message is written, and

an interrupt is delivered.

� int intr_remote_cpu(char *cpus, int msg, int task_id);

This routine is used to send an interrupt to one of the speci�ed processors in the cpus

list. If the swi msg lock cannot be acquired (i.e., if the swi msg is currently being used

to deliver an interrupt by another processor), then the processor is skipped and the next

one in the list is tried. The routine returns OK after the �rst interrupt is delivered, or

FAILED if no swi msg entry could be acquired.

These two routines are not exported to the user level. Since the swi msgs[] table and

the SWI register are mapped into the user address space, similar routines can be implemented

there, avoiding system calls to the kernel.

3.12 User/Kernel Shared memory regions

The Raven kernel relies on shared memory regions to help reduce communication costs between

the user and kernel levels. These regions contain high-use information that is frequently accessed

when making scheduling decisions at the kernel and user levels. Instead of invoking system calls

to pass this information between the user and kernel, read and write operations to the shared

regions are used to perform the same e�ect. Simple read and write operations are much cheaper

than system calls.

Chapter 3. Kernel level implementation 85

However, the use shared memory regions at the user level opens up system security holes.

Errant program behaviour and rogue processes can adversely modify the information contained

in the shared regions, causing any number of execution problems ranging from improper schedul-

ing of tasks to fatal system crashes. This section summarizes the shared regions and describes

techniques used to help avoid their abuse.

3.12.1 The shared regions

There are three shared memory regions between the user level and kernel. The table in Figure

3.18 summarizes these regions and their protection status.

KERNEL_INFO read-only General purpose kernel state.

SHARED_REGION read/write Scheduling information between user/kernel.

SWI_MSGS read/write For passing SWI interrupt messages.

Region name User Protection Description

For passing SWI interrupt messages.

Figure 3.18: User/Kernel shared memory regions.

The KERNEL INFO structure is a read-only page that is mapped into all user level address

spaces. It is mapped read/write into the kernel address space.

The SHARED REGION structure is a read/write page that is pair-wise mapped between the

user/kernel address space. Each task maintains its own SHARED REGION structure for scheduling

purposes.

The SWI MSGS structure is a read/write page that is mapped into all address spaces. It is

used to pass software interrupt event information between processors. All address spaces require

access to this page so that software interrupts can be invoked without kernel intervention.

3.12.2 Abuse Prevention

The current technique used by the Raven kernel to reduce the tampering of shared memory

regions is to map the regions at non-obvious locations in the virtual address space. If regions are

allocated in sparse areas of the address space, chances are that erroneous or malicious program

Chapter 3. Kernel level implementation 86

behaviour will result in memory access exceptions before the shared regions are discovered.

However, this technique is certainly not failsafe.

In order to fully protect shared memory regions at the user level from invalid access, the

processor must have the ability to mark sections of memory in the user space as privileged.

Accessing these sections would require the executing code to have the same level of privilege.

The user level kernel could use this feature to enable its code and shared regions with a certain

level of privilege, higher than the level given to user application code. However, most modern

microprocessors, including the 88100, do not allow this kind of exibility, so alternatives must

be considered.

One alternative to mimic multiple levels of privilege within the same address space is to dy-

namically change the address mapping tables as the privileged code executes. When a function

in the user kernel requires information from a shared region, it could map in the appropriate

page, access the data, and unmap the page. Special purpose address mapping system calls

could be coded very e�ciently in assembler for this purpose. However, additional costs such as

TLB misses and ushing could make this approach impractical. If the translation tables were

accessible to user programs, then these system calls could be avoided, but the security situation

would be even worse due to the exposure of translation tables.

Other techniques to improve security in this area are being investigated.

Chapter 4

User level kernel implementation

Each user level task running in the system requires a user level kernel library. This library

contains all of the operating system services that are not implemented in the supervisor kernel,

such as: thread management, synchronization primitives, and interprocess communication.

This chapter discusses the implementation of the user level kernel, and how it interacts with

the supervisor kernel and user programs.

exception.c interrupt.cupcall.c

Upcall and interrupt dispatching

System call
dispatching

syscalls.c

syscall.s

ports.c

Interprocess
communication

rpc_port.c

grpc_port.c

global_port.c

semaph.c

lock.s

Synchronization

task_signal.c
threads.c

ready_queue.c

ctxsw.s

Thread management

User level application code

Figure 4.19: User level kernel source code organization.

Figure 4.19 shows the modular breakdown of the user level kernel, and the source code �les

involved. This section begins by discussing the user level upcalling dispatching mechanism. We

87

Chapter 4. User level kernel implementation 88

then then continue by describing the threading environment and support modules.

4.1 Upcall handling

When a task is loaded into the system, task create() allocates a memory space, as in Figure

3.8, and preallocates an initial stack for the task to execute in. This stack is known as the

upcall stack, and is used by the processor to handle upcalls events into the task. Since upcall

events to the same task can occur in parallel on multiple processors, a separate upcall stack for

each processor is required. The upcall stacks are located at well known location at the end of

heap space.

relinquish_
handler()

run_
handler()

upcall_
dispatch()

intr_
dispatch()

excp_
dispatch()

DACC_
handler()

ether_
handler()

DI_
handler()

tick_
handler()

run_
handler()

timer_
handler()

kill_
handler()

signal_
handler()

tick_
handler()

timer_
handler()

kill_
handler()

relinquish_
handler()

User level task

Kernel level

Figure 4.20: User level upcall dispatching routines.

When the kernel upcalls into user space, it places the upcall event ags into the task's

shared region upcall status[] entry1. All upcalls into the user space are funnelled through

a single dispatch routine, upcall dispatch() in upcall.c. upcall dispatch() scans the

1The this cpu() function returns the local processor number.

Chapter 4. User level kernel implementation 89

upcall status[] entry for event bits and handles each of the agged events by calling the

appropriate upcall handler, clearing the event bits as it goes. Figure 4.20 shows a typical set of

upcall handlers, including an exception handler routine and two interrupt device driver routines.

Preemption is deferred at all times on the local processor during upcall handling. This

prevents nested upcalls to occur. For example, if an interrupt occurs during upcall dispatching,

the interrupt event is recorded, but control returns directly to the user level to proceed with

upcall dispatching. The upcall dispatcher will notice the occurrence of any event by examining

its upcall status[] entry, and handle it appropriately. Preemption is deferred by setting the

in upcall ag in the processor register r28. The kernel level upcall dispatcher examines this

ag before issuing any upcall, and if set, does not issue an upcall.

The upcall mechanism maintains a table of upcall handlers, upcall table[]. This table

is comprised of a static list of upcall handler functions, one for each upcall event type. The

kernel task management module de�nes 8 possible upcall events that must be handled by the

dispatcher. The following Figure 4.21 describes the actions performed by each of the upcall

event handlers.

A second upcall dispatch routine upcall resume() is provided to invoke dispatching by the

user level spin lock library. When a spin-lock is held, upcall preemption is deferred until the

lock is released. The lock release code checks to see if an upcall is pending, and if so, branches

to upcall resume() to dispatch the pending upcalls.

While upcall dispatch() is invoked by the kernel in the upcall context, upcall resume()

is invoked within the calling thread's context. So before proceeding with upcall dispatching,

upcall resume() must �rst save the thread's context and put the thread back on the ready

queue.

4.1.1 User level interrupt and exception handlers

All of the entries in the upcall table[] are de�ned at compile time to point to well known

handler routines in the user level kernel. However, two of these upcall handlers, excp handler()

Chapter 4. User level kernel implementation 90

Upcall Event Handler function Description

RUN_UPCALL run_handler() The task has been given a processor, and can begin
scheduling threads.

A system clock tick occurred, schedule another thread. A
quantum count is incremented, and if expired, the
processor is relinquished to the kernel.

TICK_UPCALL tick_handler()

The task scheduler has requested that this task
relinquish the processor.

RELINQUISH_UPCALL relinquish_handler()

The task timer service has indicated that a timed event in
this task has expired. Check the list of sleeping threads
and ready any threads that have expired waketimes.

TIMER_UPCALL timer_handler()

At least one message is waiting in the shared region
signal queue. Dequeue each signal message and call
their signal handlers.

SIGNAL_UPCALL signal_handler()

The task scheduler has destroyed this task, so the user
level state must be cleaned up, and control returned to
the kernel.

KILL_UPCALL kill_handler()

A processor exception has occurred. The handler checks
the excp_status[] entry to determine the exception
code and branches to the appropriate exception handler.

EXCP_UPCALL excp_handler()

A device interrupt occurred that is registered for this
task. The intr_status[] entry is used to determine
the interrupt vector and user interrupt handler.

INTR_UPCALL intr_handler()

Figure 4.21: Summary of upcall events and the user level upcall handlers.

and intr handler(), furnish a level of indirection to user provided handlers.

The user provided handlers are invoked from within the context of the upcall dispatching

mechanism. Preemption is deferred, and execution runs on the upcall stack. Handlers that exe-

cute within this context must not invoke thread management routines that may cause a thread

context switch to occur. Thus, handler routines must be careful not to block on semaphores or

such. Spin locks are allowed because they do not involve context switching.

Interrupt handers

The interrupt.cmodule maintains a table of user provided interrupt handlers, intr table[].

Each entry in the table contains a pointer to a handler routine:

Chapter 4. User level kernel implementation 91

typedef struct

{

void (*routine)(int);

int lock;

} INTR_HANDLER;

INTR_HANDLER intr_table[NUM_INTERRUPTS];

The following two routines are provided by the interrupt.c module to manage the entries

in intr table[]:

� int intr_register(int intr_vec, void *handler);

This routine registers a user supplied handler routine to be called whenever the hardware

interrupt vector intr vec is signalled. The list of hardware interrupt vectors are listed

in the kernel �le registers.h. The kernel system call intr register user() is called

to register the interrupt with the kernel and set the interrupt enable bit for the vector.

Returns OK if successful, or FAILED if an error occurred.

� int intr_deregister(int intr_vec);

This routine disables the interrupt vector intr vec and removes the user level handler

routine from the intr table[]. The kernel system call intr deregister user() is used

to disable the interrupt enable bit for the vector. Returns OK if successful, or FAILED if

an error occurred.

Exception handers

The exception.c module is basically a mirror of the interrupt.c module. It provides the

same functionality, except that its attention is directed towards processor exceptions rather

than interrupt exceptions.

One use for the user level handling of exceptions is to trap the data access exception DACC.

This exception occurs whenever a memory load or store operation happens outside of the user

level address space. This could be used to implement a user level paging mechanism. Or,

Chapter 4. User level kernel implementation 92

a handler could be constructed that would detect thread stack overows and automatically

allocate more room. Handlers for other exceptions, such as code violations and division by

zero, could be written to destroy the o�ending thread context, rather than destroying the

whole task.

exception.c maintains a table of user provided exception handlers, excp table[]. Each

entry in the table contains a pointer to a handler routine:

typedef struct

{

void (*routine)();

int lock;

} EXCP_HANDLER;

EXCP_HANDLER excp_table[NUM_EXCEPTIONS];

Similar to the interrupt.c module, two routines are provided to manage the entries in

excp table[]:

� int excp_register(int excp_vec, void *handler);

This routine registers a user supplied handler routine to be called whenever the exception

vector excp vec is signalled. The list of hardware exception vectors are listed in the kernel

�le registers.h. The kernel system call excp register user() is called to register the

exception with the kernel. Returns OK if successful, or FAILED if an error occurred.

� int excp_deregister(int intr_vec);

This routine removes the user level handler routine from the excp table[], and calls the

kernel system call excp deregister user() to deregister the exception from the kernel.

Returns OK if successful, or FAILED if an error occurred.

4.2 User level spin-locks

The user level spin locking code, lock.s, provides the same interface as the kernel version, but

it is implemented quite di�erently at the user level. The user level spin-lock mechanism needs

Chapter 4. User level kernel implementation 93

to prevent thread preemption while a lock is held. If a thread is preempted while holding a lock,

other threads in the system will busy-wait trying to acquire the lock until the thread is resched-

uled and the lock is released. To solve this problem, a special locking protocol is implemented

between lock wait()/lock free() and the kernel level upcall dispatcher mechanism.

void lock_wait(int *lock);

The lock wait() call tries to acquire a lock by spin-waiting on a cached copy of the lock,

just like the supervisor kernel version. However, when it does acquire the lock, the lock count

variable in register r28 is incremented to notify the kernel level upcall dispatching mechanism

that a lock is held. If an interrupt or other task scheduling event occurs, the kernel upcall

dispatcher checks the locks held counter and defers the upcall event if it is non-zero. The

upcall dispatcher will not preempt the user level when the lock count is non-zero.

void lock_free(int *lock);

lock free() writes a 0 value to the lock variable, and decrements the lock count variable.

If lock count reaches zero, and an upcall is deferred (bit 16 of r28 is set), then control is

passed immediately to the upcall resume() call. upcall resume() invokes the user level

upcall dispatcher, where the deferred upcall is properly handled.

4.3 Thread management

The thread management library manages the creation, destruction, and scheduling of lightweight

threads of control. Threads are preemptively timesliced, and and freely migrate from processor

to processor, in an e�ort to balance workload. A central 32 level round robin priority queue

manages the scheduling ordering of threads.

4.3.1 Thread descriptor structure

The thread descriptor control block structure, TCB de�ned in kernel.h, comprises the data

that makes up a thread:

Chapter 4. User level kernel implementation 94

typedef struct

{

int id; /* thread identifier */

int state; /* scheduling state */

int priority; /* priority level, 0 to 31 */

char name[THREAD_NAME_SIZE+1]; /* string name for thread */

int stack_region; /* VM region of thread stack */

int *context; /* thread register context area */

int sem_wait_id; /* sem this thread is waiting on */

unsigned int wake_time; /* time to wake this sleeping thread */

QUEUE_LINK link; /* queue link in system queues */

int lock; /* spin-lock for this thread */

} TCB;

TCB thread_table[THREAD_TABLE_SIZE];

TCB *thread_free_q;

int thread_free_q_lock;

All thread descriptors are stored within the static thread table[] array. At initialization

time, free thread descriptors are linked into the thread free q, to make descriptor allocation

an easy dequeue operation.

Threads are referred to by their index into this table, the identi�er �eld id. The state

�eld maintains the threads scheduling state. priority contains the scheduling priority for the

thread, a value from 0 to 31. The name �eld stores a string name for the thread (useful for

debugging purposes).

Each thread is allocated a page-aligned context save area and stack from the kernel memory

allocator, vm alloc(). The region descriptor belonging to the stack is saved in the stack region

�eld. The address of the context save area is stored in the context �eld. The thread's stack is

positioned immediately below this context bu�er. Figure 4.22 shows this relationship.

The sem wait id �eld is used by the local semaphore library to store the identi�er of the

semaphore that the thread is blocked on. If the thread is ever destroyed while blocked on a

semaphore, sem wait id is consulted to remove the thread from the appropriate semaphore

Chapter 4. User level kernel implementation 95

Context save area,
256 bytes

Thread stack buffer
context

Stack pointer r31,
grows downward.

Allocated page
aligned from
vm_alloc()

Figure 4.22: Thread context save area and stack bu�er.

entry.

The wake time �eld is used by the thread sleep() facility to record the future wakeup

time of the thread.

The link �eld is a queue link that links the thread descriptor into the various user level

thread management queues. There are several of these queues: the ready queue, semaphore

queues, and IPC queues.

Finally, the lock �eld provides a spin lock to protect against concurrent accesses to the

thread descriptor data structure.

4.3.2 Thread context switching

The low level thread context switching routines provide the basic mechanism to load and save

the thread execution context. The thread context is a collection of 29 general purpose registers:

r1 { r25, the frame pointer r30, the stack pointer r31, and oating point registers fpcr and

fpsr. In addition to the processor registers, a thread instruction pointer is also maintained.

Two assembler routines are provided by the ctxsw.s module to assist in the saving and

loading of thread contexts: load context() and save context().

void load_context(int *context, int *thread_lock);

This routine loads the processor registers with the context bu�er provided by context. The

thread descriptor must be previously locked to prevent writes to the context area while it is being

loaded (if an interrupt occurs in the middle of loading a thread's context, the interrupt handler

Chapter 4. User level kernel implementation 96

must not overwrite this context or inconsistency would result). Processor register r29 is set to

point to the context bu�er. (At interrupt time, the kernel interrupt handler consults r29 to

�nd the context save address.) When the context is �nished being loaded, the thread descriptor

is unlocked (hence the reason for passing the thread lock parameter), and a jump instruction

branches to the address contained in the thread instruction pointer. load context() never

returns to the caller.

A thread's context is saved in one of two ways: by the kernel interrupt handler when

a interrupt occurs, or by the thread scheduler to switch out a running thread. The thread

scheduler uses save context() to save the calling thread's context registers.

int save_context(int *context, int *thread_lock);

save context() saves the calling thread's register context into the supplied context bu�er.

Once saved, the thread descriptor lock is released. save context() returns a non-zero value

to the caller. When the thread context is loaded again sometime in the future, the thread

instruction pointer returns back to the same location where save context() was called from.

Except in this case, a zero value is returned. Therefore, the caller must check the return

value to see if execution is continuing, or if the thread has been restored. The following code

demonstrates this:

/* save the thread's context and drop through */

if (save_context(running_thread->context, &running_thread->lock))

/* When thread context is reloaded, control returns here. */

/* This return statement jumps back to the thread. */

return;

/* normal execution drops through to here */

4.3.3 Thread ready queue

The thread scheduler uses a 32 level round robin priority queue to order ready threads. Priority

level 0 is low, priority level 31 is high. A low priority thread will never be scheduled to run if

Chapter 4. User level kernel implementation 97

there is a higher priority thread waiting. However, this ordering does not span tasks. A low

priority thread in a remote task will be allowed to run even though there are higher priority

threads in the local task.

The ready queue.c module implements a priority queue structure and interface that is

similar to the kernel level task ready queue. The readyq table[] keeps track of 32 queues, one

queue for each priority level. The hint variable is used to cache the highest priority level with

a non-empty queue, to help speed up dequeue operations. A spin-lock ready q lock protects

against concurrent accesses to the ready queue structures.

static QUEUE readyq_table[NUM_READYQ_PRIORITIES];

static int hint;

static int ready_q_lock;

Three routines are provided which operate on the above structures:

� TCB *dequeue_ready_thread();

Dequeues the next available ready thread from the ready queue, and decrements the

shared region num ready threads counter.

� void enqueue_ready_thread(TCB *thread);

Puts the thread descriptor thread into the THREAD READY state, enqueues it onto the ready

queue, and increments the shared region num ready threads counter. If an idle remote

processor is available, an TASK RUN SWI interrupt will be delivered to that processor to

run the thread. Otherwise, if a processor has not been previously requested, the kernel

system call task request cpu(), drops down to the task scheduler to request another

processor for the task.

� void remove_ready_thread(TCB *thread);

Removes the speci�ed thread descriptor from the ready queue structure, and decrements

the shared region num ready threads counter. This is used by the thread destroy() and

thread suspend() routines to remove a thread from anywhere within the ready queue.

Chapter 4. User level kernel implementation 98

4.3.4 Thread scheduling

The thread scheduler is the heart of the user level kernel. When the upcall dispatcher �nishes

handling all of the upcall events, control is passed to the scheduler. Ready threads are dequeued

from the ready queue, and executed via load context(). When a thread blocks, the scheduler

saves the thread's context, and schedules a new thread.

There are two main thread scheduling routines: sched() and sched no save(). These

routines are used internally by the thread package, and are not intended for general purpose

use by user programs. A third interface, thread sched() is available to user programs for

voluntarily relinquishing control.

void sched(TCB *running_thread);

The sched() routine is responsible for saving the running thread context and dispatching

a new thread. The caller is assumed to already have placed the running thread descriptor on

the proper queue; this routine only saves the context, it does not do any queuing. After saving

the caller's context, sched() dequeues the next ready thread, sets its state to THREAD RUNNING,

and performs load context() to execute the thread. If there is no ready thread available, the

task relinquish() system call relinquishes control of the processor back to the kernel task

scheduler.

void sched_no_save();

sched no save() is the same as sched(), except that the caller's context is not saved. This

is used primarily as the �nal call by the upcall dispatcher, which doesn't run in a thread context,

to begin scheduling threads. sched no save() dequeues the next ready thread, sets its state

to THREAD RUNNING, and performs load context() to execute the thread. If there is no ready

thread available, the task relinquish() system call relinquishes control of the processor back

to the kernel task scheduler.

Chapter 4. User level kernel implementation 99

void thread_sched();

thread sched() is a user-callable thread library routine. This call performs a voluntary

thread relinquishment. The caller thread is placed on the ready queue, and sched() is called

to save the thread context and schedule another thread.

4.3.5 Thread creation

All threads are created using the library call thread create(). thread create() allocates a

free thread descriptor from the thread free q, allocates a stack, and sets up the thread's initial

execution context. The execution context is built from the thread entry point, exit point, initial

stack address, and parameters. The exit point for a thread is called when the thread \runs o�

the end" of its function, and is set to the thread destroy() call.

int thread_create(int *thread_id, void (func)(), char *name,

int priority, int stack_size, int ready, int num_args, ...);

func speci�es the entry point for the thread. name is a null-delimited string which identi�es

the thread (useful for debugging purposes). priority speci�es the ready queue scheduling

priority.

stack size speci�es the size of the bu�er to allocate for the thread's stack. Currently, all

stack bu�ers are allocated using the kernel memory allocator, vm alloc(). Thus, stacks are

always allocated on page boundaries. The smallest stack size is therefore 4096 bytes.

The ready �eld speci�es the scheduling state that the thread should be placed in after it

is created. A non-zero value passed in ready signi�es that the thread be placed on the ready

queue and executed if a processor is available. If zero is passed in ready, the thread is placed

in the THREAD SUSPENDED state, to be later resumed by thread resume().

The num args �eld speci�es the number of parameter arguments to pass to the created

thread. The thread arguments are speci�ed immediately after the num args �eld as a variable

argument list.

Chapter 4. User level kernel implementation 100

If the thread creation was successful, the thread identi�er is returned in thread id, and OK

is returned. Otherwise, FAILED is returned if an error occurred.

4.3.6 Destroying a thread

The thread destroy() routine removes a thread from the local task. The thread's stack is

freed, and the thread descriptor is placed back onto the thread free q. In a multiprocessor

environment, however, the speci�ed thread to destroy may be executing on a remote processor.

In this case, an interrupt must be delivered to the remote processor to suspend execution of

the thread.

If the currently executing thread is destroying itself, then additional work needs to be done

to properly free the threads stack bu�er. The currently executing thread cannot free its own

stack, or else execution will have no stack to continue with. Instead, the thread descriptor

is placed in the THREAD DYING state, and is queued onto the thread dying q. A special low-

priority idle cleanup() thread is created at initialization time, which waits for threads to be

placed on the thread dying q, and frees the thread stacks when they become available.

int thread_destroy(int id);

The thread to destroy is speci�ed by id.

4.3.7 Suspending and resuming a thread

A thread can suspend execution of itself using the thread suspend() call. This routine places

the thread descriptor into the THREAD SUSPENDED state, and will not be executed again until it

is resumed via thread resume().

int thread_suspend();

This function suspends the caller thread inde�nitely.

int thread_resume(int id);

This function resumes normal scheduling priority of the speci�ed thread.

Chapter 4. User level kernel implementation 101

4.3.8 Sleeping a thread

The thread sleeping facility is used to suspend the execution of threads for a predetermined

length of time. The sleep facility is built on top of the task timer service, which generates upcall

events at speci�ed times.

The timer handler() upcall routine and thread sleep() routine share a sorted queue,

thread sleep q. Sleeping threads are placed on this queue, sorted in the order of wakeup

time. When timer handler() is called, expired threads on the thread sleep q are placed on

the ready queue and executed.

int thread_sleep(unsigned long sleep_time);

thread sleep() puts the caller thread to sleep for the speci�ed number of clock ticks. The

number of clock ticks per second is a value that is interactively set at kernel boot time.

4.4 Semaphore management

Semaphores provide a way to synchronize actions and communicate events between threads. A

common use for semaphores is to provide mutual exclusion around a piece of sensitive code.

Other uses include controlling producer/consumer type problems between threads. For example,

the interprocess communication system uses semaphores to synchronize message passing events

between threads.

The user level semaphore library, sem.c and global sem.c, provides two types of semaphores

through the same function call interface. Lightweight semaphores, local to an address space

can be created for exclusive use between threads in the same address space (used by the local

IPC implementation). Global semaphores can also be created, which allow threads in remote

address spaces to synchronize between each other (used by the global IPC implementation).

The global semaphore implementation requires special hooks into the kernel, and is therefore

slightly more costly in terms of performance. A parameter in the sem create() call allows the

caller to specify whether a local or global semaphore should be created.

Chapter 4. User level kernel implementation 102

4.4.1 Local semaphores

Local semaphores are used only between threads in the same address space. They are specially

optimized for the local case, and no kernel involvement is required. The semaphore library

keeps track of each semaphore using a statically allocated table of descriptors:

typedef struct semaph_s

{

int id; /* semaphore identifier */

int state; /* SEM_FREE or SEM_USED */

int sequence; /* for deletion protection */

int count; /* semaphore count variable */

int lock; /* spin-lock protecting this entry */

QUEUE wait_q; /* queue of waiting threads */

struct semaph_s *next_sem;

} SEMAPH;

SEMAPH sem_table[SEM_TABLE_SIZE];

SEMAPH *sem_free_head; /* semaphore free list */

int sem_lock; /* spin-lock protecting free list */

The total number of semaphores in a task is bounded at compile time by the SEM TABLE SIZE

constant in the sem.h �le. Each semaphore descriptor maintains a count value and a queue for

storing blocked threads. The sequence �eld allows the semaphore routines to check whether

a deletion has occurred. Each semaphore descriptor is linked into a free list, sem free head,

making semaphore allocation a simple operation.

4.4.2 Global semaphores

Global semaphores can be used to synchronize events between threads in separate address

spaces, as well as their local address space. The global semaphore routines are similar in

semantics to the local case. However, they di�er completely in implementation, some kernel

support is necessary.

Each address space shares a global semaphore table, global sem table de�ned as:

Chapter 4. User level kernel implementation 103

typedef struct

{

int lock;

int free_sem_q;

GLOBAL_SEM sems[NUM_GLOBAL_SEMS];

} GLOBAL_SEM_TABLE;

GLOBAL_SEM_TABLE *global_sem_table;

This structure is allocated by the �rst task in the system, and is shared between all further

created tasks. The main element in this structure is the table of semaphore descriptors, sems.

The free sem q �eld implements a list head pointer to start a linked list of free semaphore

descriptors.

The �rst task that is loaded into the system uses vm alloc() to allocate a region for the

table. The region identi�er is then stored in the global nameserver. Future tasks that are

loaded into the system query the nameserver for the region identi�er, and map the table in

using vm share().

The global semaphore descriptors stored in sems comprise the semaphore's main data struc-

ture unit:

typedef struct

{

int id; /* semaphore identifier */

int owner_task; /* owner task_id of this semaphore */

int sequence; /* destroy sequence counter */

int count; /* semaphore count */

int lock; /* spin-lock protecting this entry */

int next_sem; /* semaphore free list next pointer */

} GLOBAL_SEM;

Other data structures involved in global semaphore operation reside in the local shared

region structure, and in the kernel. These data structures are used to support the queuing of

blocked threads in disjoint address spaces. Threads in di�erent tasks can block on the same

global semaphore. The sem signal() signal operation will unblock one of the threads, but

which one? A fair protocol would unblock the thread that has been waiting the longest.

Chapter 4. User level kernel implementation 104

The local semaphore implementation supports this fairness by using a FIFO queue to sort

the blocked thread descriptors. A queue is also used in the global semaphore case to provide

fairness. However, this queue stores task descriptors, not threads.

Each global semaphore in the system has a task queue associated with it. This queue links

together all the tasks in the system that contain threads which are blocked on the semaphore.

Since multiple threads in the same task can block on several di�erent semaphores, each task

in the system could be linked onto several di�erent global semaphore queues. Thus, each task

needs to maintain a table of queue links, one for each possible global semaphore.

The table of queue links for each task is located in the task's kernel/user shared region, as

sem links[]. When a thread in a task blocks on a global semaphore, the task is linked onto

the semaphore queue using its local link from sem links[]. When a thread in another task

invokes the sem signal() operation, the next task in the queue is dequeued and delivered a

GLOBAL SEM SIGNAL SIGNAL message using the task signal() mechanism. The signal handler

for this message then wakes up and runs the appropriate thread.

The semaphore task queues are maintained within the kernel. Whenever a user thread

blocks on a semaphore, a system call is required to place the local task on the semaphore

queue: kernel sem enqueue(). However, since the task is now queued on the semaphore,

further threads that block on the same semaphore do not invoke the kernel operation. Likewise,

the kernel sem dequeue() system call removes the next task in the queue and delivers it a

signal.

4.4.3 Waiting on a semaphore

The sem wait() call decrements the semaphore count variable. If the count remains zero and

above, then the call returns immediately. Otherwise, the calling thread is enqueued onto the

semaphore's queue, and the thread scheduler is called to run the next thread. The thread will

remain on the semaphore's queue until it is unblocked by sem signal() or sem destroy(), or

until the thread is destroyed.

Chapter 4. User level kernel implementation 105

int sem_wait(int sem_id, int no_block);

The semaphore is speci�ed by sem id. If no block is set to a non-zero value, then sem wait()

will always return to the caller, regardless of the value of the count variable. This function re-

turns OK if successful, WOULD BLOCK when no block is set and the call would normally block,

DESTROYED if the semaphore was deleted, or FAILED if the speci�ed sem id is invalid.

4.4.4 Signalling a semaphore

The sem signal() call increments the semaphore count variable, and readies the next waiting

thread from the semaphore's queue using enqueue ready thread(). The readied thread will

eventually resume execution when a processor is available.

int sem_signal(int sem_id);

The sem id parameter speci�es the semaphore to signal.

4.4.5 Allocating a semaphore

The sem create() call allocates a free semaphore descriptor and initializes the descriptor en-

tries. The next free semaphore descriptor is dequeued from the sem free head queue. The

initial value of the semaphore count can be speci�ed by the caller. Either global or local

semaphores can be allocated by specifying the global parameter.

int sem_create(int *sem_id, int count, int global);

The initial semaphore count value is speci�ed by the parameter count. Passing a non-zero

value as the global parameter will create a global semaphore, otherwise a local semaphore will

be created.

Chapter 4. User level kernel implementation 106

4.4.6 Destroying a semaphore

When a program is �nished with a semaphore, it should be returned to the system using the

sem destroy() call. Destroying a semaphore requires more work than enqueuing the descriptor

on the free list, however. Any blocked threads waiting on the semaphore must be released, or

they would remain blocked forever. The blocked threads are dequeued one at a time, and readied

with the enqueue ready thread() call. Before releasing the blocked threads, the semaphore

sequence �eld is incremented. When a thread resumes execution in sem wait(), it checks the

sequence value against the previous value. If the values di�er, then sem wait() can return a

DESTROYED value.

When destroying a global semaphore, however, any remote tasks that are queued behind the

semaphore must be dequeued and delivered a GLOBAL SEM DESTROY SIGNAL message. Since the

global semaphore queues are maintained within the kernel, the kernel sem destroy() system

call performs this function.

4.4.7 Kernel intervention

The global semaphore library requires some special purpose kernel support for its operation.

One of the main goals of the system is to reduce the overall number of these kernel interactions.

This subsection summarizes the situations where kernel system calls are necessary during the

global semaphore operations.

The following steps are executed by the semaphore wait operation. A kernel call is only

necessary if there are no blocked threads on the semaphore.

1. Return if semaphore count is greater than zero.

2. Block calling thread.

3. Call kernel sem enqueue() if this is the �rst thread in the local task blocked on the

semaphore.

The semaphore signal routine makes a system call only if there is a waiting thread:

Chapter 4. User level kernel implementation 107

1. If the semaphore count indicates a blocked thread, call kernel sem dequeue().

2. Return to caller.

4.4.8 Miscellaneous semaphore operations

The following operations can be useful in certain situations.

� int sem_count(int sem_id);

This function returns the count value of the speci�ed semaphore.

� int sem_reset(int sem_id, int count);

This function allows the caller to change a semaphore count value.

4.4.9 Semaphore library initialization

The sem init() semaphore library initialization routine �rst initializes the local semaphore

data structures. The sem table[] is initialized and a free list q is created.

Then, and the global semaphore initialization routine is invoked. This routine allocates

or maps in the global semaphore table, and initializes the local data structures. The global

nameserver is queried to see if the GLOBAL SEM REGION NAME string exists in the database. If

so, the region identi�er for the semaphore table is returned, and vm share() is used to map in

the memory. If the string is not registered, then a new table is allocated with vm alloc(), and

its region identi�er is stored in the nameserver database.

4.5 Interprocess communication

The user level kernel supports both port-based synchronous send/receive/reply and asyn-

chronous send/receive communication models. These models are su�ciently di�erent in imple-

mentation that each require its own library interface: the synchronous port library, rpc port.c

and grpc port.c, and asynchronous port libraries, ports.c and global ports.c.

Chapter 4. User level kernel implementation 108

The port based approach to interprocess communication uses a port number as the mailbox

address for messages. In a client/server model, the server waits for messages to be received on

a port, the client sends messages to a port. When a server cannot receive messages as fast as

they are sent, the messages are bu�ered by the port library. A port must be properly created

before any IPC can take place through the interface.

For performance reasons, the port user level libraries distinguish between local ports and

global ports. Local ports are used only for communication within a single address space. The

implementation of these ports are based on local semaphores and the local thread scheduler.

Local ports are more e�cient than global ports because all of their interaction is limited to the

local address space.

Global ports are used for communication across address spaces, as well as within. These

ports make extensive use of shared memory between the client/server address spaces to help

reduce communication costs. In addition to reducing data copying, the shared memory also

helps reduce the number of kernel interventions required to invoke the port communication

protocols.

Local port messages are always passed by reference to reduce data copying. However, since

pointers don't make sense in remote address spaces, global port messages cannot use pointers.

Instead, to emulate pass-by-reference, a virtual memory region descriptor of the data bu�er can

be passed, and the vm share() and vm move() system calls can be used to map the region into

the local address space. This technique can eliminate data copying when moving data between

address spaces. For small pieces of data, however, the overhead of memory mapping outweighs

the data copy, and therefore this technique should be reserved for larger chunks of data.

4.5.1 The synchronous port library

The user level library supports the synchronous style send/receive/reply protocol. Using a

transaction identi�er returned by the receive operation, server threads can defer the reply stage

until a later time. The transaction identi�er is used by the reply call to identify the proper

Chapter 4. User level kernel implementation 109

client message to reply.

The following two subsections describe the implementation of the local and global port

libraries. Then, the user interface is described.

Local synchronous port implementation

The local synchronous port library maintains a table of port descriptors rpc port msgs[]. This

descriptor is used to keep track of threads blocked on sends, receives, and replies.

typedef struct port_s

{

int id; /* port identifier */

int state; /* USED or FREE status */

int sequence; /* incremented at each port_destroy */

int send_sem; /* semaphore to block receiver */

QUEUE send_msg_q; /* queue of sender messages */

QUEUE reply_wait_q; /* queue of threads waiting for a reply */

struct port_s *next_port; /* next port descriptor link */

int lock; /* spin lock protecting this port */

} RPC_PORT;

The semaphore send sem is used to block server threads on the receive operation. This

semaphore counts the number sender threads currently blocked on a send. When a client thread

sends a message, the message is queued into the send msg q, and the send sem is signalled to

wake the server thread. The client thread is placed on the reply wait q and blocks waiting for

a reply. The server thread dequeues the client from this queue and unblocks it when it performs

the reply operation.

Each thread in a task is allocated its own synchronous message descriptor. All local messages

are passed by reference. This message descriptor maintains pointers to the passed data bu�ers,

and a queue link for attaching to a port:

Chapter 4. User level kernel implementation 110

typedef struct

{

int id; /* port id this message is queued on */

char *send_data; /* pointer to send data */

int send_len; /* length of send_data */

char *reply_data; /* pointer to reply data */

int *reply_len; /* pointer to reply data length */

QUEUE_LINK link; /* link for port msg queue */

} RPC_MSG;

Global synchronous port implementation

Each task in the system shares a region of shared memory that contains a table of global port

descriptors. When a global port is created, a free descriptor is allocated from the free list. A

region bu�er for storing messages is allocated by the owner task, and is shared to all clients

that want to interact on the port.

This port descriptor maintains head/tail pointers to the shared port message bu�ers. Each

port descriptor contains three queues: the msg free q links the free message descriptors to-

gether; the msg send q head links the send messages together; and msg reply q head which

links the reply messages together.

A global semaphore in each port descriptor is used to control access to the port's msg free q.

When a client thread sends a message, a message bu�er is dequeued from the shared bu�er. If

there are no free bu�ers, then the thread blocks on the msg free sem. When a server releases a

message bu�er back to the free list, it performs a sem signal() operation to unblock a waiting

thread.

The task signalling facility is used to communicate low level send/receive/reply events to

the client and server address spaces. These events are not sent on every interaction, but only in

the worst-case moments discussed below. The task signalling facility, task signal(), is used

to communicate these events to remote address spaces. The following three signal messages are

de�ned for this use:

� the GRPC PORT SEND SIGNAL message is sent by a client thread to a server task with a

Chapter 4. User level kernel implementation 111

blocked server thread to wake the server thread and tell it that a message awaits. If a

send message is already present in the queue, then the library assumes that the server

has already been delivered a signal message, so sending another is not necessary.

� the GRPC PORT REPLY SIGNALmessage is sent by a server thread to a client task to indicate

to the client task that a server is replying to a client's message. When the client task

receives this signal, it can wake the client thread, and deliver the reply message to it.

� the GRPC PORT DESTROY SIGNAL message is sent to all client tasks that are blocked on a

port when the port is destroyed. The client threads can then be unblocked and told that

the port was destroyed.

The task signal() mechanism can deliver these messages without kernel intervention on

the local processor. If a remote processor is executing the destination task, then that processor

is interrupted by the user level intr remote cpu() service. Otherwise, if a remote processor is

idle, then that processor is interrupted to handle the signal message. If all processors are busy,

then a system call is required to deliver the signal.

Sending a synchronous message

int rpc_port_send(int port_id, char *send_data, int send_len,

int *reply_data, int *reply_len);

This function queues a message of length send len bytes on port id and blocks waiting

for a reply. For a global port, the send data bu�er is copied into the ports shared bu�er

region. For a local port, a pointer to the data is passed. reply data is assumed to point to

pre-allocated bu�er space for the reply message, whose length is speci�ed in reply len. Upon

successful return, the global port reply data is copied in reply data bu�er and the length in

reply len. The call returns OK if successful, DESTROYED if the port was destroyed while waiting

for a reply, and FAILED if the port does not exist.

The following client thread demonstrates this call:

Chapter 4. User level kernel implementation 112

void client(port)

{

char reply_msg[20];

char *send_msg = "send message";

int reply_len;

rpc_port_send(port, send_msg, strlen(send_msg)+1, &reply_msg, &reply_len);

printf("reply message is:%s length:%d\n", reply_msg, reply_len);

}

Before the client thread can queue a message into the shared port bu�er, the bu�er must be

mapped into the client's address space. rpc port send() will automatically do this mapping on

the �rst message send. However, when a client is �nished communicating across a global port,

the port bu�er must be unmapped explicitly. The rpc port dereference() call, described

below, does this.

Receiving a synchronous message

int rpc_port_recv(int port_id, char **recv_data, int *recv_len,

char **reply_data);

This function blocks the calling thread and waits for a message to arrive on the speci�ed port.

When a message arrives, recv data and recv len is returned to contain a pointer and length

of the received data, and the reply data �eld points to the reply bu�er. This bu�er is used

by the server to copy the reply message into. When successful, the function returns a msg id,

which identi�es the synchronous transaction. This msg id is supplied to the rpc port reply()

function to issue a reply on the transaction. The following code demonstrates this interaction:

void server(int port)

{

char *recv_msg;

int recv_len;

char *reply_data;

char *reply_msg = "reply message";

Chapter 4. User level kernel implementation 113

int msg_id;

msg_id = rpc_port_recv(port, &recv_msg, &recv_len, &reply_data);

printf("received message:%s length:%d\n", recv_msg, recv_len);

/* copy reply message into supplied reply buffer */

strcpy(reply_data, reply_msg);

rpc_port_reply(port, msg_id, strlen(reply_msg));

}

Replying a synchronous message

int rpc_port_reply(int port_id, int msg_id, int reply_len);

This routine is called by the server thread to reply to an rpc port send() call. The msg id

speci�es the transaction number obtained from rpc port recv(). reply len speci�es the

length of data copied into the reply data bu�er from rpc port recv.

Creating a synchronous port

int rpc_port_create(int *port_id);

This is the creation routine for local synchronous ports (global ports are su�ciently di�erent

to require a separate routine). The created port is returned in port id.

int grpc_port_create(int *port_id, int max_data_len, int num_msg_bufs);

This is the creation routine for global synchronous ports. The maximum port message

size, max data len, and queue size, num msg bufs, are speci�ed so that a queue bu�er can be

allocated. The created port is returned in port id. Returns OK if successful, FAILED if there

are no free ports.

Destroying a synchronous port

int rpc_port_destroy(int port_id);

Chapter 4. User level kernel implementation 114

This function destroys the speci�ed synchronous port. Only the port creator's address space

can destroy the port. All clients blocked on an rpc port send() are released.

int rpc_port_dereference(int port_id);

When a client address space is �nished sending messages to a global port, it can \deref-

erence" the port. This causes the shared memory region between the client and server to be

unmapped from the client address space.

Kernel intervention

The interprocess communication library is designed to reduce the number of user/kernel interac-

tions required to interact between client and server address spaces. Pure kernel implementations

require at least three kernel calls per send/receive/reply interaction: one call at each of the send,

receive, and reply stages.

The local port communication library does not require any kernel support at all. The global

port library does however require kernel system calls in certain cases. Global interprocess

communication is based on the task-to-task asynchronous signalling mechanism. The amount

of kernel intervention required is directly based on the amount of kernel intervention in the

signalling mechanism. An invocation of the signal mechanism breaks down into the following

steps:

1. If the destination task is running on a remote processor, deliver it an interrupt and return.

2. If there is an idle processor, deliver it an interrupt and return.

3. Otherwise, make a system call to perform the signal.

The signalling mechanism uses software interrupts to deliver messages to remote processors,

avoiding system calls on the local processor. A system call is required only if the third step is

reached.

Chapter 4. User level kernel implementation 115

The synchronous IPC mechanism tries to reduce the number of kernel calls by invoking

task signals only when necessary. The following lists summarize the stages of the synchronous

operations and where system calls and task signals potentially occur.

The rpc port send() operation requires at most one system call per invocation, or possibly

a task signal invocation:

1. sem wait() for a free send bu�er, causing a system call only for the �rst blocked thread

(described in 4.4.7).

2. Copy message into bu�er.

3. If the send queue is empty, deliver a signal to the destination task.

4. Block sending thread.

5. Wake up and copy reply message to local bu�er.

6. sem signal() free bu�er queue.

The steps followed by the rpc port recv() operation does not require any kernel support

at all:

1. If a message awaits, return a pointer to the message bu�er.

2. If the port is empty, block the thread.

3. Wake up and return a pointer to the message bu�er.

rpc port reply() requires a task signal invocation only when there are no reply messages

queued for the client:

1. Enqueue the reply message.

2. If there are existing reply messages in the queue, simply return.

3. Otherwise, deliver a task signal to the client task.

Chapter 4. User level kernel implementation 116

4.5.2 The asynchronous port library

Asynchronous send/receive communication can be used between threads when no reply message

is required. This method can more e�cient than synchronous interactions because there is

potentially less context switching involved between the client and server thread. Client send

messages are copied into a bu�er, to be picked up by the server. Client sending threads do not

block unless the port queue becomes full.

Threads communicate their message data through a FIFO message bu�er. In the local port

case, this bu�er is dynamically allocate into the local memory space. In the global port case, a

shared region is allocated between client and servers, similar to the global synchronous ports.

The local port implementation uses local semaphores to synchronize client/server access to

the port message bu�er queues. The sender thread waits for free message bu�er to become

available. The free message bu�er is dequeued, and the send message is copied into it. The

message is queued onto the port send queue, and the send semaphore is signalled to wake the

server thread.

The global port implementation relies on a shared region of port descriptors to manage the

port queue. One global semaphore is used to synchronize access to the port free message queue.

Client threads wait on the free message queue semaphore for bu�ers to become available. The

server threads block waiting for sent messages.

When a client thread sends a message, a GLOBAL PORT SEND SIGNAL message is delivered to

the server task to notify server threads that a message is waiting. This signal is sent only when

server threads are blocked, and when no messages are queued in the send bu�er. That is, the

signal is sent only when the send queue is empty.

Sending an asynchronous message

int port_send(int port_id, char *msg, int msg_size, int no_block);

Sends a message pointed to by msg to the speci�ed port. The message bu�er of length

msg size is copied into the port's message queue. If the message queue is full, this routine will

Chapter 4. User level kernel implementation 117

return immediately without queuing the message if no block is set to NO BLOCK. If no block

is BLOCK, the calling thread will be blocked until room is made available in the message queue.

Returns OK if the message was queued successfully, WOULD BLOCK if the queue was full, DESTROYED

if the port was destroyed while blocked, or FAILED if the port does not exist.

The following client thread demonstrates this call:

void client(port)

{

char *send_msg = "send message";

port_send(port, send_msg, strlen(send_msg)+1, BLOCK);

}

Before a client thread in a remote address space can send messages on a global port, the port

message queue region must be mapped into the client's address space. The port send() routine

will automatically map in the port message queue on the �rst invocation. When communication

across the port is later discontinued by the client, the port queue must be explicitly unmapped.

The port dereference() call, described below, performs this operation.

Receiving an asynchronous message

int port_recv(int port_id, char *msg, int *msg_size, int no_block);

Receives a message from the speci�ed port. If the port queue is empty, this will return

immediately if no block is set to NO BLOCK. Otherwise, the caller thread will be blocked until

a message arrives. msg must be a preallocated bu�er to hold at least msg size bytes. The

message is automatically copied into this bu�er when it is dequeued from the port. Returns

OK if a message was successfully received, DESTROYED if the port was destroyed while blocked,

WOULD BLOCK if the caller thread would be blocked, or FAILED if the port does not exist.

The following server thread demonstrates this call:

Chapter 4. User level kernel implementation 118

void server(port)

{

char recv_msg[20];

int recv_size;

port_recv(port, recv_msg, recv_size, BLOCK);

printf("message received:%s length:%d\n", recv_msg, recv_size);

}

Creating an asynchronous port

int port_create(int *port_id, int max_msg_size, int queue_size, int global);

This is the asynchronous port creation routine. The max msg size parameter speci�es

the maximum length in bytes of the messages passed on this port. queue size speci�es the

maximum number of messages that can be queued up on the port. If global is PORT GLOBAL,

then a global port will be created. Otherwise, if global is PORT LOCAL, then a local port will

be created. Returns OK if successful, FAILED if there was a parameter error, or if there are no

more port descriptors.

Destroying an asynchronous port

int port_destroy(int port_id);

Destroys the speci�ed local or global port. Remote and local threads blocked on an operation

to the port will be woken with a DESTROYED failure result. Returns OK if successful, FAILED if

the port does not exist, or if the port did not originate in the caller's task.

int port_dereference(int port_id);

When client threads in an address space are �nished accessing a port, this routine will clean

up the shared memory region associated with the port. Returns OK if successful, FAILED if the

port does not exist.

Chapter 4. User level kernel implementation 119

Kernel intervention

Similar to the synchronous port library, the asynchronous library only requires kernel support

for supporting global communication. The task signalling mechanism is used in the same

manner to help reduce kernel intervention.

The port send() call may require a system call if the sem wait() call blocks, or a signal

may be delivered:

1. sem wait() for a free message bu�er.

2. Copy message into bu�er.

3. Deliver a signal only if the send queue is empty and a server thread is blocked.

The port receive() call may require a system call by sem signal() to wake any blocked

sender threads:

1. Block if there are no messages.

2. Wake up, dequeue message and copy it into the caller's bu�er.

3. Issue sem signal() on the port free bu�er queue.

4.6 The global nameserver

The user level library maintains a simple nameserver data structure that is shared read/write

by all address spaces in the system. The nameserver database stores (string,integer) pairs,

using the string as a search key. User programs can register strings, with them associated an

integer value. The integer value can be used to pass handles for various objects, or for other

miscellaneous purposes. For example, global ports can be registered, so that remote address

spaces can query for server port identi�ers.

The following structure is used for each entry in the nameserver table[]:

Chapter 4. User level kernel implementation 120

typedef struct

{

char string[NAMESERVER_STRING_SIZE];

int data;

} NAMESERVER_ENTRY;

The complete nameserver interface is provided through the following three function calls:

nameserver register(), nameserver deregister(), and nameserver find().

4.6.1 Registering with the nameserver

Any null-character delimited string, of up to NAMESERVER STRING SIZE characters, can be stored

in the nameserver database. The register routine simply performs a linear search through the

nameserver table[], and �nds the �rst available slot.

int nameserver_register(char *str, int data);

The null-terminated string str is stored in the nameserver table[], with its associated

data value, data. If the table is full, FAILED is returned. The string and data value are copied

into the table entry. The string is truncated if not enough space is available. Returns OK if

successful.

4.6.2 Deregistering a string

The deregister routine removes a string and its data value from the nameserver table. A linear

search �nd the table entry, which is then invalidated.

int nameserver_deregister(char *str);

The null-terminated string str speci�es the string to invalidate. Returns OK if successful,

or FAILED otherwise.

Chapter 4. User level kernel implementation 121

4.6.3 Nameserver initialization

The task initialization upcall must initialize the nameserver data structure. The initialization

code checks to see if a nameserver table already exists in the system. The nameserver region

identi�er is passed to a task through the TASK ARGS structure when calling task create().

The �rst task in the system allocates the table using vm alloc(). All child tasks are passed

the nameserver table region identi�er through TASK ARGS. Child tasks, when initializing, uses

the region identi�er to map in the table with vm share().

4.7 User/User Shared memory regions

Just as the supervisor kernel implements shared regions between the user and kernel spaces, the

user kernel library also makes use of shared regions between user/user address spaces. These

regions are used by the interprocess communication library and global nameserver to facilitate

data sharing between tasks. The supervisor kernel has no knowledge of these regions.

These regions are susceptible to the same problems that the user/kernel shared regions face,

although the a�ects of such problems are slightly less critical. Damaging a user/user shared

region may prevent interprocess communication across a port, but it won't fatally crash the

system as damaging the user/kernel shared region would.

4.7.1 Globally shared regions

The user level kernel library shares three regions between each task in the system. The �rst

task that is loaded into the system and executed is responsible for allocating each region. Other

tasks that are subsequently loaded share these regions. Each region is shared with read/write

protection:

� The global nameserver region, which contains a table of key/value pairs for passing handles

and other information.

Chapter 4. User level kernel implementation 122

� The asynchronous port descriptor region, which contains a table of asynchronous port

descriptors.

� The synchronous port descriptor region, which contains a table of descriptors for the

synchronous port library.

4.7.2 Client/Server shared regions

The synchronous and asynchronous port creation routines allocate a bu�er in the server task

to queue messages between the client and server. Clients that wish to communicate across

the port �rst map in the bu�er region to their address space. So these regions are only made

available to those address spaces that ask for it.

Other shared memory regions can be easily created by user programs for application speci�c

purposes.

Chapter 5

Performance Evaluation

This chapter presents some performance benchmarks for various aspects of the kernel operation.

We begin by describing the tools used to obtain performance data. Then, several benchmarks

are presented and analyzed.

5.1 Benchmark tools

There are two tools available in the system which can provide performance measurements.

The Hypermodule's on-board Z8536 Counter/Timer can be con�gured as a 32-bit timer, with

microsecond resolution. The following routines are available within the kernel and at the user

level to control the timer:

unsigned long timer_start();

unsigned long timer_stop(unsigned long start);

The timer hardware is initialized at boot time to continually cycle through a 32-bit counter

register. The counting frequency is 2MHz, giving the counter a cycle time of about 35.7 minutes

with 1/2 microsecond accuracy. The timer start() function takes a snapshot of the counter

register, returning the counter value. This value is then passed to timer stop(), where another

snapshot is taken, and the time between snapshots is returned. This value should then be

divided by 2 to convert to microseconds.

The second tool is only available while running under the simulator. The simulator provides

a special device used to support an instruction tracing feature. This feature allows a processor's

execution stream to be saved for later analysis, such as counting the number of instructions

123

Chapter 5. Performance Evaluation 124

executed. A simulator device allows the tracing to be turned on and o�, at program control, and

categorized into slots. The following macros can be used by any code to control the instruction

tracing device:

/* 'x' is the category slot */

#define SIMTRACE_ON(x) (*(int *) SIMTRACE_CTRL = x)

#define SIMTRACE_OFF(x) (*(int *) (SIMTRACE_CTRL+4) = x)

5.2 Function calls vs. System calls

To help put the performance results in perspective, here we consider the cost of a null system

call compared to the cost of a null procedure call. A null procedure with four parameters

requires at least 6 instructions on the 88100: four instructions to build the argument list, one

instruction to call the routine, and one instruction to return.

/* func() is the null workhorse */

void func(int a, int b, int c, int d)

{

return;

}

The kernel system call interface funnels all system calls through a single trap vector. An

integer passed across the trap is used to determine the correct system call. The initial system

call handler has the job of preserving user level state and setting up the kernel execution

context. This involves some register saving and processor con�guration. In all, 56 instructions

are required to invoke a null system call with 4 parameters.

The basic setup cost and administration for system calls is an order of magnitude greater

than a local function call. Table 5.2 summarizes this comparison.

5.3 Thread management performance

This section details the costs of thread creation and scheduling. Thread management operations

are primitives that closely a�ect the performance of tightly coupled parallel applications. In

Chapter 5. Performance Evaluation 125

Instructions

local function call 6

kernel system call 56

Table 5.2: 4 parameter user level function call vs. kernel system call.

1 CPU 2 CPU 3 CPU 4 CPU

thread create() 38.1 usec 35.7 usec 34.3 usec 34.1 usec

dispatch and destroy 22.3 usec 16.2 usec 13.5 usec 11.4 usec

thread sched() 12.8 usec 8.2 usec 6.5 usec 5.1 usec

Table 5.3: Thread management performance.

these applications, threads are used extensively to perform jobs in parallel, and schedule events

from one to another. Often, the raw performance of the underlying thread scheduler can become

a bottleneck.

5.3.1 Thread creation performance

This benchmark measures the overall performance of the thread create() routine. A simple

program was written which creates 100 threads, but does not execute them. Execution times

were collected for four di�erent processor con�gurations: one, two, three, and four processor

versions. In each case, the same number of worker threads is used to create the null thread as

there are processors. For example, the four processor measurement uses four server threads to

create 25 null threads each, totalling to 100 threads.

Table 5.3 summarizes the results. The basic uniprocessor thread create call completes every

38.1 microseconds. This creation time could be signi�cantly improved by modifying the thread

stack allocator. Currently, thread create() performs the system call vm alloc() to allocate

its thread stack. An algorithm that allocated a large number of thread stacks at once would

reduce the expensive vm alloc() calls.

When more processors are added to the system, performance improves because there of the

Chapter 5. Performance Evaluation 126

parallel creation, but only slightly, until levelling o� after about 4 processors. This is probably

caused by a spin-lock contention bottleneck, seen in three places during thread creation: locking

the free thread descriptor queue to allocate a descriptor; locking the task descriptor to perform

the vm alloc() system call; and locking the task's address map descriptor to perform the

vm alloc() system call. In addition to reducing the amount of code executed, removing the

vm alloc() call for stack allocation may also reduce lock contention.

5.3.2 Thread resumption and destruction performance

Using the 100 threads created for the previous benchmark test, the threads are resumed using

thread resume(), executed, and �nally destroy themselves using thread destroy(). The last

thread to destroy itself prints out the execution time for the complete run.

Table 5.3 summarizes the execution times for one, two, three, and four processors. A thread

is executed and removed in 19.3 microseconds. This execution time includes putting the thread

on the ready queue, invoking the scheduler to dispatch it, and invoking the thread destroy()

routine to kill the thread. Adding more processors has a more signi�cant e�ect on the execution

time, compared to the thread creation benchmark. While there is still lock contention for the

ready queue list, this contention is not nearly as long as found in the vm alloc() system call.

Greater parallelism is achieved in this case.

5.3.3 Thread context switching

This benchmark measures the basic context switching performance of the thread sched()

library call. 10 threads are created, and each of them performs the following tight loop:

void worker(iterations)

{

while (iterations--)

thread_sched();

}

Chapter 5. Performance Evaluation 127

100,000 iterations were performed by each thread, and the overall execution time was

recorded. This number is divided by 100,000 to determine the approximate performance of

the thread sched() call. The calling thread's context is saved, and its descriptor is placed on

the ready queue. The next available thread is dequeued and its context is restored.

Table 5.3 shows the average performance of thread sched(). A basic context switch from

one thread to another on a uniprocessor occurs in 12.8 microseconds. The ready queue o�ers

some lock contention for when additional processors are added. The remainder of the processor

time is spent saving and loading the 29 thread context registers1.

5.4 Interrupt handling performance

The performance of interrupt handling is a critical concern for high speed device drivers and

kernel scheduling performance. Interrupt handling must be as lightweight as possible to ensure

low latency dispatch times to device drivers. Interrupt handling and dispatching in a monolithic

kernel is fairly straightforward: trap the interrupt, save context, and call the interrupt service

routine. In the Raven kernel, since device drivers are implemented at the user level, device

interrupts must take the journey up into the user level for processing. However, once at the

user level, execution can continue with application processing.

An experiment was constructed to measure the execution latency time to dispatch an in-

terrupt to a service routine. The kernel interrupt handler was modi�ed to take a timestamp at

the earliest convenience. This timestamp is then compared with the timestamp acquired at the

beginning of the interrupt handler. Three di�erent interrupt handler scenarios were measured:

1. A kernel level interrupt handler. Invoking this handler is a local kernel call.

2. A user level interrupt handler in a task that is activated on the interrupted processor.

Invoking this handler requires an upcall into the user space.

1A small optimization can be made during the register save operation because the register save is occuring

during a well known point in the thread scheduler. This allows less registers to be saved than the whole processor

context.

Chapter 5. Performance Evaluation 128

Time (usec) Instructions

kernel invoke 7.21 86

user invoke 14.0 194

user switch/invoke 30.6 421

Table 5.4: Interrupt service routine invocation latencies.

3. A user level interrupt handler in a task that is not currently activated on the interrupted

processor. Invoking this handler requires that the current task be switched out and the

interrupt handler task be switched in. Performing this operation requires two upcalls into

user space and a system call.

Table 5.4 summarizes the average times, in microseconds, to invoke each service routine.

Also, the number of instructions per invocation is shown. The cheapest invocation time of 7.21

microseconds is naturally inside the kernel. No special setup is required to upcall into user

space. Also, the user level register context can be saved in a cheaper fashion, since it will be

directly restored by the kernel at the end of the interrupt.

Invoking a user space handler is about twice as expensive. The user level register context

must be properly saved into the user level context save area, and an upcall must be performed to

the user level. Once at the user level, the upcall dispatcher must place the previously executing

thread on the ready queue, and �nally call the service routine.

Switching address spaces before calling the service routine is the most expensive invocation

operation. The old address space must be upcalled to handle any cleanup and placed on the

task ready queue before the new address space can be invoked.

At �rst glance, this benchmark appears to show that user level device drivers are much more

expensive than kernel device drivers because of the interrupt dispatching overhead. However,

one must also consider that even a kernel device driver needs to communicate with the user level

at some point. User level code must eventually be executed to operate on the data provided

by the device driver. Depending on the device, this may involve an extra data copy operation

Chapter 5. Performance Evaluation 129

to move the data between the user application and kernel device driver. Moreover, there is

the additional costs of scheduling and activating the user application when the device driver is

ready for more. All of these costs are automatically taken care of by the interrupt dispatcher

and upcall mechanism.

5.5 Task signalling performance

The asynchronous task signalling facility is used throughout the kernel to provide synchroniza-

tion and event passing between tasks. The performance of this facility is an important factor

for global thread synchronization and interprocess communication.

The signalling mechanism relies on interprocessor interrupts or a system call to deliver signal

messages. The sequence of steps performed by a signal invocation is summarized as follows:

1. If the destination task is running on a remote processor, deliver it an interrupt and return.

2. If there is an idle processor, deliver it an interrupt and return.

3. Otherwise, make a system call to perform the signal.

The remote interrupt mechanism allows the local processor to o�oad all of the queuing and

task invocation work to the destination processor. The initiating processor can continue with

its own work while the signal is processed. If signal invocation makes a kernel call to perform

its work, the local processor handles the signal message queuing and readying, and dispatching

of the destination task.

A benchmark was constructed to measure the di�erence between a software interrupted

signal message and a kernel mediated signal message. Two tasks were created. One task

contains a signal handler that will be invoked by the other task. Three test cases were measured:

a kernel mediated signal, a software interrupt with the remote task activated on the interrupted

processor, and a software interrupt with the remote task not activated on the interrupted

processor. The results for a single invocation are shown in Table 5.5.

Chapter 5. Performance Evaluation 130

Time (usec)

kernel signal 32.4

user active signal 13.2

user inactive signal 15.6

Table 5.5: Task signalling invocation latencies.

The kernel mediated signal is more than twice as expensive as the software interrupt versions.

This time is mostly consumed by the task switch that must occur on the local processor. The

initiating task must be switched out, and the destination task must be switched in a delivered

the signal. Sending a signal to a remote processor that is running the task is the least expensive.

No task switching is required, but there is the cost of handling the interrupt and saving the

interrupt thread's context. Interrupting an idle processor is only slightly more expensive. The

destination task must be activated, but there is no thread state to save.

5.6 Interprocess communication performance

The performance of the interprocess communication primitives is a vital factor for high-

throughput client/server applications. In these types applications, IPC performance is the

most common bottleneck.

The user level IPC libraries make extensive use of shared memory and scheduling primitives

that do not require kernel intervention. Two experiment programs were constructed to measure

the performance of the IPC libraries under various conditions. The �rst set of experiments test

the local interprocess communication primitives. Then a second set of experiments test the

global IPC primitives. These libraries are su�ciently di�erent in implementation that it makes

sense to test and analyze them separately.

Chapter 5. Performance Evaluation 131

5.6.1 Local communication

Both synchronous and asynchronous port based communication was tested. The performance

of these libraries weighs heavily on the performance of the low level thread scheduling modules.

The operations performed by the local IPC primitives are mostly thread context switching and

enqueue/dequeue operations.

The test program creates a port and some threads to communicate across the port. The

number of client and server threads was varied, as well as the number of physical processors. A

4 byte message is passed several thousand times each case, and the individual results averaged.

The �rst set of tests measures the asynchronous port performance. A port with a 20 element

queue was created. The results of these tests are shown in Table 5.6. The �rst test creates 1

sender thread and 1 receiver thread (denoted 1-send/1-recv). While the average send/receive

time for this case is 13.2 microseconds, the actual latency between a single send/receive pair is

much higher. The 13.2 microsecond time is achieved because the sending thread can �ll up the

port queue at full speed, and then transfer control to the receiver thread which can spend all of

its time draining the queue. Thus the overall time is greatly reduced due to the amortization

of message bu�ering in the queue.

The addition of more processors to this case does not help much. In theory, the sender should

be able to supply data fast enough to keep the receiver occupied. However, by examining the

port status descriptors at various intervals during the benchmark, it appeared that the port

remained full during most of the computation. This caused senders to block, thus forcing

context switches between the senders and receivers. A more balanced workload on the sender

side would have helped reduce this problem.

The synchronous message passing case requires much more work per transaction, because

the sender always blocks waiting for a reply. Therefore the 1-send/1-recv/reply uniprocessor

case is heavily bounded by the thread scheduling performance. Adding more processors causes

additional work to be done. This appears to be due to scheduling overhead. When a client

thread places a message on a port queue, the client will deliver a remote interrupt to the next

Chapter 5. Performance Evaluation 132

1 CPU 2 CPU 3 CPU 4 CPU

1-send/1-recv 13.2 usec 12.6 usec 12.7 usec 12.7 usec

10-send/10-recv 14.3 12.0 10.3 10.0

1-send/1-recv/reply 32.6 32.9 33.0 33.0

10-send/10-recv/reply 18.1 17.6 17.0 16.8

Table 5.6: Performance of asynchronous and synchronous local ports, 4 byte data message.

available idle processor to wake the server thread. Since there is only one server thread and

one client thread, the cost of managing the context switch on the local processor turns out to

be less expensive than delivering an interrupt to a remote processor. Interrupting a remote

processor to run a thread causes that processor to examine the ready queue, increasing lock

contention for other processors in the system.

If the client and server sides have more threads to work with, as in the 10-client thread

10-server thread case, performance is greatly improved because the message queue can be

maintained at a non-empty state, and servers can read messages as fast as clients can place

them.

However, none of these local port cases show much improvement when more processors are

added. Most of the time spent seems to be wasted on lock contention. There are two hot spots:

the port spin-lock or the thread scheduler ready queue lock. The workload that the client and

server threads perform are basically null operations, so most of the execution time is spent

chasing after locks within the thread scheduler.

5.6.2 Global interprocess communication

This section measures the performance throughput of the global interprocess communication

service. This test combines many of the primitive system services: remote interrupt dispatching,

task signal dispatching, global semaphores, and task and thread scheduling.

The global IPC test cases create two address spaces: a server task, and a client task. The

server task allocates a port descriptor containing 20 message bu�ers and advertises it on the

Chapter 5. Performance Evaluation 133

1 CPU 2 CPU 3 CPU 4 CPU

1-send/1-recv 43.2 usec 33.9 usec 32.1 usec 32.0 usec

2-send/2-recv 44.5 32.2 31.8 31.0

10-send/10-recv 44.3 33.9 32.0 32.5

1-send/1-recv/reply 145 124 124.1 123.8

2-send/2-recv/reply 108 95.3 90.3 89.6

10-send/10-recv/reply 89.3 92.5 94.9 95.6

Table 5.7: IPC performance for asynchronous and synchronous global ports, 4 byte data mes-

sage.

nameserver. A number of server threads are created to listen for messages on the port. The

client task queries the nameserver for the port descriptor and creates a number of client threads

to bombard the server with messages.

Table 5.7 contains performance results for various combinations of processors and threads.

The simple case of 1-send thread and 1-receive thread synchronous send/receive/reply demon-

strates the worst case performance of 121 microseconds per interaction. Each iteration requires

two processor relinquishments and two upcalls. This �gure is improved slightly in the 2 proces-

sor case, because the client and servers reside on separate processors most of the time. Invoking

the remote task to signal a message is done via a software interrupt, and an address space switch

is not required.

However, synchronous performance does not increase by the expected amount when more

threads and processors are added. In fact, performance is reduced when more processors are

added to the 10-sender 10-receiver case. In a uniprocessor system, the all the sender threads

block, then all the receivers return replies. However, when processors are added, the thread

and task schedulers seems to constantly jump around in a form of hysteresis, causing more

scheduling events to occur than optimal.

The asynchronous message transfers are much faster overall because of the reduced context

switching requirements between the client and server. The client threads have no problem

keeping the port queue full of data for the server threads. Increasing the number of threads

Chapter 5. Performance Evaluation 134

Async IPC Sync IPC

total IPC calls 200,000 300,000

kernel calls 16,000 56,000

user interrupts 68,000 108,000

Table 5.8: IPC primitive breakdown.

results in an apparent slight performance hit. This is possibly due to the increased number of

thread descriptors being managed throughout the system. Both the single thread and multiple

thread case are able to keep the port queue full, so have multiple threads on a single processor

does not help.

As seen in the local case, performance sharply declines as more processors are added to the

system. The reason for this again is lock contention. The workload performed by the client

and server threads is null, so all their e�ort is spent trying to access the port queue. Much of

the overall processor time is spent waiting on the port queue.

Kernel Intervention

The global interprocess communication library attempts to reduce the number of kernel in-

teractions by using a task signalling mechanism that can send event messages without kernel

intervention. To illustrate this, the number of low level primitive invocations was measured for

the 2-thread server, 2-thread client, benchmarks shown above for synchronous and asynchronous

IPC.

These measurements are broken into the following three categories: the total number of IPC

primitive calls, the number of kernel mediated calls, and the number of software interrupt me-

diated calls. Table 5.8 summarizes the results for asynchronous and synchronous benchmarks.

These results demonstrate the reduced dependency on kernel interaction of the user level

IPC library. Better results could be achieved using an improved task and thread scheduler.

Such a scheduling system could properly schedule threads that are communicating so as to

reduce the number of context switches and event messages.

Chapter 5. Performance Evaluation 135

Time (usec) Instructions

vm alloc() 4KB 38.5 389

vm alloc() 64KB 149 1516

vm alloc() 1MB 2080 20637

vm free() 4KB 23.3 303

vm free() 64KB 145 1575

vm free() 1MB 2140 21745

vm share() 4KB 30.1 303

vm share() 64KB 116 1126

vm share() 1MB 1650 14682

vm move() 4KB 34.0 324

vm move() 64KB 132 1264

vm move() 1MB 1720 15353

Table 5.9: Virtual memory operation execution times.

5.7 Memory management performance

This section performs some experiments to measure the execution time of various virtual mem-

ory system calls. The system calls tested are: vm alloc(), vm free(), vm share(), and

vm move(). Each call is benchmarked by repeatedly calling the routines using region sizes

of 4KB, 64KB, and 1MB.

The calls were all performed within a single thread, so no parallel performance numbers

were measured. However, one can deduce that the parallel performance of these operations will

be relatively poor due to high lock contention. Approximately 90% of the work done by these

operations occur within a critical section, protected by the address map lock, or by the task

descriptor lock. This lock contention is on a per-address space basis, so parallel invocations will

happily coexist if allocations occur amongst disjoint address spaces.

Each call was executed a number of times in a tight loop. Table 5.9 shows the average

execution time and instruction counts for each call, for varying region sizes.

The time to execute each call on a single page size of 4KB is relatively high compared to

the time for larger page sizes. This is due to the high setup costs for each call. Using multiple

Chapter 5. Performance Evaluation 136

Frame size (bytes) Time (sec) e�ciency

128 18.6 45.1%

512 9.03 92.9%

1024 8.71 96.3%

1500 8.57 97.9%

Table 5.10: Time to transfer 10MB of data over Ethernet.

page sizes allows the per-page cost to be amortized over a large number of pages, thus reducing

the relative execution time drastically.

5.8 Ethernet driver performance

A simple test program was constructed to test the performance of the Ethernet device driver.

The test program runs on two machines connected by Ethernet. One machine continuously

sends data to the receiver machine. 10 megabytes of data is transmitted between the machines

using a range of Ethernet frame sizes. Table 5.10 summarizes the results of the test, showing

the percentage e�ciency compared to the 10Mbps Ethernet speed.

Chapter 6

Related Work

This chapter examines recent work in the �eld of multiprocessor operating systems, and how

it relates to the design of the Raven kernel. The operating systems topic is rather broad. The

research emphasis in recent years has turned away from implementing feature rich environments,

to �nding more e�cient and streamlined ways of doing things. For example, rather than building

an operating system that contains everything that anyone would ever need, recent research in

the �eld identi�es the basic operating system components and improves upon them. The Raven

kernel was designed and implemented in the same spirit.

Amongst these basic operating system components that are particularly relevant to mul-

tiprocessor systems are critical section management, thread management and scheduling, and

interprocess communication. Much attention to these areas has been spent in recent years to

improve the performance and their characteristics.

6.1 Low-level mutual exclusion

There is a large body of research work related to the implementation and analysis of mutual

exclusion synchronization primitives on shared-memory multiprocessors. Early work in this area

detailed software algorithms where the only atomic operations provided by the hardware are

memory read and write, [Dij65] [Knu66]. The main disadvantage of these software dominated

approaches is their ine�ciency. Since then, however, more powerful atomic operations supplied

by hardware has made mutual exclusion more e�cient. Before looking at these operations,

consider where mutual exclusion is used.

Operating systems rely on low-level mutual exclusion algorithms to protect against parallel

137

Chapter 6. Related Work 138

access to system data structures and hardware devices. In a uniprocessor system, a common use

for mutual exclusion are to protect data structures that are shared between interrupt handlers

and device drivers. Disabling preemption by masking interrupts around sensitive code is an

e�ective way to provide this capability. However, the addition of multiple processors in a

system complicates the situation. Disabling interrupts alone does not stop other processors in

the system from accessing the protected resource.

The technique of spin-locking has long been an elementary operation that can provide

mutual exclusion between separate processors. The algorithm is to spin-wait for a shared lock

variable to become available, and then mark it unavailable, thus claiming the lock. When the

critical section is over, the lock variable is marked available again. In many systems, the lock

\acquire" stage requires an atomic operation, such as memory exchange or test-and-set.

While lock contention can be reduced by carefully designing critical sections to minimize

their overlap, spin-locking can be wasteful of available computing resources because of the busy

wait nature of the algorithm. In addition to completely consuming local processor cycles, the

spinning read/write cycle of test-and-set can generate a constant barrage of memory transac-

tions. In a shared memory multiprocessor environment where main memory accesses share a

common bus, this activity can degrade the performance of all processors in the system. Ex-

periments in [And89] show that this algorithm is worthwhile for systems with less than six

processors. However, this experiment only shows the impact of memory bus contention against

spinning processors, and not processors doing other work.

A simple optimization to the spin lock involves the use of memory caching to reduce global

memory bus contention. This technique relies on cache coherency to maintain proper copies of

lock variables. Rather than accessing the lock variable directly in memory, the lock variable is

read into the local processor cache. All spinning occurs out of the cache. When a lock value

changes, the system's cache coherency algorithm propagates the new value to the appropriate

caches. On some systems however, the cost of maintaining cache coherency can become a bot-

tleneck. The Raven kernel implements the above method because the Hypermodule hardware

Chapter 6. Related Work 139

and the 88100 provide the necessary cache coherency protocols.

In the absence of cache coherency, spinning memory transactions can be reduced by using

a backo� algorithm. If acquiring a lock fails, then delay for a period of time and try again.

This algorithm is similar to the Ethernet's exponential backo� [MB76]. However in this case,

performance can still be poor for a small number of spinning processors because the lock acquire

stage will continue to backo� even when the lock is released. The waiting processor remains

consumed by the backo� delay. This algorithm is not appropriate in the current implementation

of the Raven kernel because of the small number of processors in the system. Also, the overhead

required to implement backo� timing would consume a high proportion of lock acquire stage.

The technique of queuelocks has been shown to reduce memory bus contention even in the

presence of many processors, [And89], [GT90], [MCS91a]. The idea behind queuelocks is to

make each thread spin only for one other thread to release a lock. If one thread waits for a

lock holder, another thread will wait for the �rst waiting thread. This relationship allows each

thread to spin on a di�erent memory location. However, the advantages of this method are

o�set by the additional overhead costs in the bookkeeping of lock queue data structures. This

overhead is not justi�ed in the current implementation of the Raven kernel because of the small

number of processors.

Experiments have shown that spin-locking on global locks does not scale well beyond eight

processors [And89] [KLMO91]. While memory bus contention is signi�cantly reduced using

caching, performance eventually becomes bounded by spinning processor cycles. This bottle-

neck appears to become a factor in systems with more than eight processors. Also, the cost of

cache coherency in some systems can impose other bottlenecks to the system.

An alternative to spin-waiting involves techniques based on wait-free synchronization [Her91]

[Her90] [MCS91b] and data structures known as lock-free objects [Ber91] [MP91]. The idea

here is optimistic: allow concurrent data accesses without blocking. After a modi�cation to

a data structure is made, the algorithm checks to see if structures are consistent, and if not,

the operation is rolled-back. However, these algorithms require additional hardware support

Chapter 6. Related Work 140

beyond simple test-and-set or compare-and-swap to operate e�ciently. The Hypermodule and

88100 instruction set does not directly support these algorithms, but they can be constructed

using more primitive features.

6.2 Threads

Operating systems have long provided lightweight threads of control to support a general pur-

pose concurrent programming model for address spaces. Threads are used in uniprocessor

systems as a structuring aid and to help overlap input/output with computation. In multipro-

cessor systems, threads are also used to exploit true parallelism. Several techniques for thread

management and their associated performance characteristics are measured in [ALL89].

Thread management is usually implemented as either a kernel level service, or in user

address spaces as a threading library linked with executables. Kernel level threads bene�t from

better integration with the other kernel supported services, such as priority scheduling and

input/output. The kernel maintains control over all scheduling decisions, so thread priorities can

be obeyed across address spaces. Threads performing input/output system calls or interprocess

communication can be properly blocked and rescheduled as their operations complete.

Traditional microkernel architectures such as Mach [TR87] and the V-Kernel [Che88] demon-

strate the use of kernel threads. However, the performance of these systems inherently su�er

due to the costs of crossing user/kernel boundaries to perform thread management functions.

Every single thread context switch and library call requires a kernel call. In addition, since

the kernel level interface is usually intended to be used by all varieties of user programs, the

threading interface must be general purpose and cannot take advantage of any local special

purpose optimizations.

The Raven kernel implements threads at the user level to avoid the above performance

problems and provide more convenient interfaces to the user.

Pure user level threading implementations can perform thread management operations at

least an order of magnitude faster than their kernel level counterparts. The cost of invoking

Chapter 6. Related Work 141

thread operations is at most the cost of a local procedure call, which in some cases can be

optimized to inline macro routines. Many such user level threading packages exist for the Unix

environment [Gol86] [Doe87] [SM90]. These packages multiplex a number of user de�ned threads

on top of a single kernel implemented process. While these packages avoid kernel invocation

for most thread services, they introduce problems of their own:

� Blocking system calls stop all threads in the address space. While select() can be used to

alleviate this problem for routines such as open(), close(), read(), and write(), other

potentially blocking calls such as mkdir(), rename(), ioctl(), stat() and asynchronous

events such as page faults are more di�cult to deal with.

� Poor performance resulting from improper scheduling decisions imposed by the kernel

during low-level thread mutual exclusion. Spin locks are commonly used between threads

in the same address to provide lightweight mutual exclusion (blocking semaphore man-

agement is too heavyweight for some operations). If a spin lock is acquired and held by a

thread which is subsequently switched out, other threads in the system trying to acquire

the lock will hopelessly busy wait until the holder is allowed to complete its critical sec-

tion. A thread can be switched out for a number of reasons, such as the expiry of a time

quantum, or the arrival of other external interrupting conditions.

One technique which tries alleviate parts of the above problems allows lightweight user

level threads to be executed on top of kernel supported middle-weight threads of control. This

technique is used by Mach's C-Threads library [CD90] and SunOS's LWP [PKB+91] [SS92].

The user level threads reside as data structures in the user level address space. Kernel level

threads are used as virtual processors to execute the user level threads. User level threads can

be successfully scheduled around blocking system calls, but low-level synchronization problems

still exist.

To solve the scheduling problems that low-level synchronization code introduces requires

some special support by the operating system that can detect when it is inappropriate for

Chapter 6. Related Work 142

context switching to occur. In the Psyche operating system [SLM89], �rst class user level

threads [MSLM91] share locking information between the lock management routines and the

kernel. Soon before preemption is required, the kernel provides the user level with a two-minute

warning ag. User level synchronization code can check this ag prior to acquiring a lock, and

voluntarily relinquish control to the kernel if it deems necessary. While this technique does

not completely remove inappropriate scheduling decisions, the number of them is signi�cantly

reduced. The solution implemented in the Raven kernel eliminates this problem.

The scheduler activations technique [ABLL92] provides a more sure-�re way of preventing

lock synchronization problems by allowing critical sections to complete before preempting the

processor. This is the same idea used by the Raven kernel, but scheduler activations implements

it quite di�erently.

When an event occurs that would normally cause preemption during a critical section, an

upcall into the user space occurs. The user level kernel recognizes that a critical section is in

progress by checking the interrupted address, and jumps directly to the code that will complete

the critical section. This code is in fact a copy of the original, except that the tail end contains

a relinquishment call to the scheduler.

Instead of upcalling to the user level during a critical section, the Raven kernel defers the

preemption by setting an \upcall deferred" bit and returns to the user execution. At the end

of the critical section, the user checks the bit and relinquishes if it indicates so.

The scheduler activation technique allows lock operations to be as e�cient as possible, be-

cause they do not require to manage any preemption status variables. However, additional

overhead is required by the upcall handler to dispatch control to the appropriate copy of the

critical section. The instruction pointer at the time of preemption must be examined and com-

pared with a list of critical section handlers. This makes nested locking and critical sections with

multiple return points di�cult to manage. Special compiler support is required to automate

the code copying. The upcall dispatcher in the Raven kernel avoids this di�culty altogether.

Chapter 6. Related Work 143

6.3 Interprocess communication

In traditional operating systems, the kernel has mediated the interprocess communication mech-

anism. User programs wishing to communicate with remote services were required to invoke

kernel operations to perform the communication protocol. This process is now seen as be-

ing ine�cient due to the increased relative costs of crossing user/kernel boundaries compared

to simple procedure calls. Interprocess communication systems are concentrating on reducing

data copying costs and latencies by using memory mapping techniques and software supported

scheduling mechanisms.

Recent versions of the Mach 3.0 kernel have improved on typical kernel mediated IPC im-

plementations by introducing the continuation [DBRD91]. Continuations facilitate the passage

of execution control through the kernel scheduling primitives by allowing execution context to

be handed o� to another thread. This can eliminate scheduling overhead and queuing within

the kernel. In the fast path best case, the sender thread executes within the context of the

receiver thread.

The Lightweight Remote Procedure Call (LRPC) [BALL89] mechanism also involves kernel

intervention to pass messages between client and server, but takes advantage of architectural

details of the DEC SRC Firey. Execution progresses through the kernel and into the remote

address space using a special purpose stack structure that is used by both the sender and

receiver. Frequently used parameters are cached in processor registers.

As with the thread scheduling implementations discussed above, recent interprocess com-

munication design have been removed from the kernel and implemented at the user level. This

allows users to directly invoke IPC primitives without the added costs of crossing user/kernel

boundaries. A level of indirection is removed because instead of invoking the kernel, the user

now directly communicates with the remote process.

The URPC technique [BALL90] relies on pair-wise shared memory between the client and

server processes to pass message data. The message delivery system is controlled by low priority

threads that poll the message queues looking for work. The threads only poll while the system

Chapter 6. Related Work 144

is idle. While this polling mechanism can produce low latency message transfers, this best case

scenario only occurs when there is no other work for the system. Therefore, this model is not

appropriate for systems with constant workloads. The Raven kernel is intended to be used in

applications where good IPC performance is required under load.

The split level scheduling technique and memory mapped streams implemented in the con-

tinuous media system [GA91] describes one way of using shared memory and scheduling tech-

niques to reduce communication bottlenecks. Split level scheduling allows scheduling decisions

to be made at both the kernel and user level. A shared data structure between the user/kernel

level facilitates the communication of thread scheduling information. This sharing of informa-

tion is similar to the Raven kernel, but in Raven, the amount of information shared is much less.

In order to properly honour thread priorities and real-time events in remote address spaces,

much more scheduling detail must be shared between the user and kernel.

The address-valued signal mechanism introduced in [CK93] describes a hardware assisted

low level signalling mechanism. This is a hardware solution to the Raven kernel's task signalling

facility. The hardware maintains a FIFO queue of signal interrupts, making it especially easy

and e�cient for one address space to send a low level synchronization message to another

address space. Virtual addresses are used to direct the signal to any particular address space,

and the hardware handles the rest. The remote processor is interrupted and presented the next

signal on the hardware FIFO queue. Higher level communication protocols, such as RPC, can

be built with this low level mechanism.

Chapter 7

Conclusion

7.1 Summary

This report presented a new multiprocessor operating system, known as the Raven kernel. The

Raven kernel provides a multitasking, time sliced, environment for user level programs to ex-

ecute in. The system provides the notion of tasks, virtual memory, threads, and interprocess

communication. However, unlike traditional microkernel architectures, the Raven kernel imple-

ments many of these services completely in user space. The motivation behind this design was

to improve system performance by reducing the number of user/kernel boundary changes.

An overview of the runtime environment used for the Raven kernel was provided. The

hardware platform used is the Motorola 88100 four processor Hypermodule, with 32MB of

shared memory. A special kernel debugger based on gdb allows kernel code to be interactively

debugged and tested.

The implementation of the kernel services was then described. The kernel consists of several

modules that provide three main services to user level programs:

� Task management (allocation and scheduling).

� Virtual memory management (memory allocation and mapping).

� Low level upcall dispatching.

The description of the user level kernel followed. The following operating system services

were implemented completely at the user space:

� Preemptive thread scheduling. Threads migrate from processor to processor in an e�ort

to balance the load.

145

Chapter 7. Conclusion 146

� Device interrupt handlers. Hardware interrupts are e�ciently funnelled up from the kernel

to user level registered handlers.

� Semaphores, used to synchronize events between threads in remote address spaces.

� Interprocess communication. A synchronous and asynchronous port based messaging

scheme was implemented using shared memory queues and low level synchronization rou-

tines.

� A nameserver database for fast lookup of global names.

A set of primitive low level event signalling routines made interprocess communication and

scheduling possible without kernel intervention:

� The intr remote cpu() processor interruption facility delivers hardware interrupts to

remote processors.

� The task signal() signalling facility sends asynchronous event message to remote tasks.

The performance results show that reduced kernel intervention and improved performance

is possible using these techniques. However, the trade-o� between performance is stability. To

reduce communication bottlenecks between address spaces, extensive use of shared memory

regions is employed. These shared memory regions are left exposed to malicious processes or

errant program behaviour. Therefore, the system is suited towards dedicated environments

where programs are trusted.

7.2 Future Work

The Raven kernel is intended to provide the basis for an e�cient and lightweight parallel

programming environment for high-speed parallel applications. Work will be continued in this

area to improve performance and add functionality.

The performance results showed that scheduling and lock contention overhead contributed

to most of the interprocess communication bottleneck. The current task and thread scheduler

Chapter 7. Conclusion 147

makes scheduling decisions based solely on the round-robin fairness scheme. A better task and

thread scheduler could be designed which would identify communicating threads, and try to

schedule them together to reduce context switching bottlenecks.

Appendix A

Kernel system call interface

This appendix summarizes the supervisor level system call interface that is available for general

purpose user programs. The �rst section presents the system calls intended by use for user level

kernels. The second section presents the interface intended for user application programs.

A.1 System calls provided to the user level kernel

This section summarizes the system calls provided to user level kernels. User application pro-

grams should not call these routines directly.

A.1.1 Task management system calls

int task_timer_event(int wakeup_time);

int task_request_cpu();

int task_relinquish_cpu();

int task_intr_relinquish_cpu();

int task_cleanup(int task_id);

A.1.2 Interrupt management system calls

These system calls register and enable interrupts to the user level.

int intr_register_user(int intr_vec);

int intr_deregister_user(int intr_vec);

A.1.3 Exception management system calls

These system calls register and enable exceptions to the user level.

148

Appendix A. Kernel system call interface 149

int excp_register_user(int intr_vec);

int excp_deregister_user(int intr_vec);

A.1.4 Global semaphore management

int kernel_sem_enqueue(int sem_id);

int kernel_sem_dequeue(int sem_id);

A.2 System calls provided for application programs

This section summarizes the system calls provided by the supervisor kernel for application

programs.

A.2.1 Task management system calls

int task_suspend(int task_id);

int task_resume(int task_id);

int task_signal(int task_id, int signal, int user_data);

int task_create(int *task_id, int priority, TASK_EXEC_HDR *hdr,

int code_region, int data_region, TASK_ARGS *args);

int task_destroy(int task_id);

int task_info(int task_id);

A.2.2 Virtual memory management system calls

int vm_alloc(int *region_id, int task_id, void **addr, int size, int attrb);

int vm_free(int region_id);

int vm_move(int region_id, int dest_task_id, void **dest_addr, int dest_attrb);

int vm_share(int src_region_id, int *dest_region_id, int dest_task_id,

void **dest_addr, int dest_attrb);

int vm_map_device(int *region_id, void *phys_addr, void **addr, int size);

int vm_unmap_device(int region_id);

A.2.3 Console input/output

void kprint(char *str);

Appendix A. Kernel system call interface 150

int kgetstr(char *str, int len);

A.2.4 Program loader

int read_exec_hdr(char *filespec, TASK_EXEC_HDR *hdr);

int read_exec(int code_region, int data_region);

Appendix B

User kernel library call interface

This appendix summarizes the user level kernel library call interface that is available for general

purpose user programs. All of these calls are prototyped in the <user/threads.h> header �le.

B.1 Thread management

int thread_me();

int thread_sleep(unsigned long sleep_time);

int thread_suspend();

int thread_resume(int id);

void thread_sched();

int thread_create(int *thread_id, void (func)(), char *name, int priority,

int stacksize, int ready, int num_args, ...);

int thread_destroy(int id);

B.2 Synchronization primitives

/* Spin lock routines */

void lock_wait(int *lock);

void lock_free(int *lock);

/* semaphore routines */

int sem_wait(int sem_id, int no_block);

int sem_signal(int sem_id);

int sem_reset(int sem_id, int count);

int sem_count(int sem_id);

int sem_create(int *sem_id, int count, int global);

int sem_destroy(int sem_id);

B.3 Asynchronous Send/Receive port IPC

int port_send(int port_id, char *msg, int msg_size, int no_block);

int port_recv(int port_id, char *msg, int *msg_size, int no_block);

151

Appendix B. User kernel library call interface 152

int port_create(int *port_id, int max_msg_size, int queue_size, int global);

int port_destroy(int port_id);

/* for global ports only -- these do memory mappings of port queues */

int port_reference(int port_id);

int port_dereference(int port_id);

B.4 Synchronous Send/Receive/Reply port IPC

int rpc_port_send(int port_id, char *send_data, int send_len,

char *reply_data, int *reply_len);

int rpc_port_recv(int port_id, char **recv_data, int *recv_len,

char **reply_data);

int rpc_port_reply(int port_id, int msg_id, int reply_len);

int rpc_port_create(int *port_id);

int rpc_port_destroy(int port_id);

/* special calls for global rpc_ports */

int grpc_port_create(int *port_id, int max_data_len, int num_msg_bufs);

int rpc_port_dereference(int port_id);

B.5 Nameserver

int nameserver_find(char *str, int *data);

int nameserver_register(char *str, int data);

int nameserver_deregister(char *str);

B.6 User level memory management

/* Zone memory allocator routines */

void *zone_alloc(int zone_id);

int zone_free(void *buf);

int zone_create(int *zone_id, int size, int alloc_size);

int zone_destroy(int zone_id);

void *malloc(int size);

#define free(buf) (zone_free(buf))

B.7 Interrupt and exception management

int intr_register(int intr_vec, void *handler);

int intr_deregister(int intr_vec)

Appendix B. User kernel library call interface 153

int excp_register(int excp_vec, void *routine, int global);

int excp_deregister(int excp_vec);

Appendix C

Unix version

A Unix version of the user level interface was implemented to aid in the development and

testing of user level programs. The Unix version implements a non-preemptive thread scheduler,

properly integrated with Unix �lesystem I/O using a select() wrapper.

The following function prototypes document the Unix version interface:

int thread_me();

int thread_sleep(long sleep_time);

int thread_suspend(int id);

int thread_resume(int id);

void thread_sched();

int thread_create(int *thread_id, void (func)(), char *name, int priority,

int stacksize, int num_args, ...);

int thread_destroy(int id);

int sem_wait(int sem_id, int no_block);

int sem_signal(int sem_id);

int sem_reset(int sem_id, int count);

int sem_count(int sem_id);

int sem_create(int *sem_id, int count, int global);

int sem_destroy(int sem_id);

int port_send(int port_id, int *msg, int msg_size);

154

Appendix C. Unix version 155

int port_recv(int port_id, void **msg, int *msg_size);

int port_create(int *port_id, int msg_size, int queue_size, int attrib);

int port_destroy(int port_id);

/* for Unix I/O */

int Read(int fd, char *buf, int nbytes);

int ReadN(int fd, char *buf, int nbytes);

int Write(int fd, char *buf, int nbytes);

int WriteN(int fd, char *buf, int nbytes);

int Open(char *filespec, int flags, int mode);

int Close(int fd);

int Socket(int domain, int type, int protocol);

int Accept(int fd, struct sockaddr *addr, int *addrlen);

int Connect(int fd, struct sockaddr *name, int namelen);

Bibliography

[ABB+86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and

M. Young. Mach: A new kernel foundation for UNIX development. In Summer

Conference Proceedings. USENIX Association, 1986.

[ABLL92] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy.

Scheduler activations: E�ective kernel support for the user-level management of

parallelism. ACM Transactions on Computer Systems, 10:53{79, February 1992.

[ALBL91] Thomas E. Anderson, Henry M. Levy, Brian N. Bershad, and Edward D. La-

zowska. The interaction of architecture and operating system design. In Fourth

International Conference on Architectural Support for Programming Languages and

Operating Systems, pages 108{120, 1991.

[ALL89] Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy. The performance

implications of thread management alternatives for shared-memory multiprocessors.

IEEE Transactions on Computers, 38(12):1631{1644, December 1989.

[And89] Thomas E. Anderson. The performance implications of spin-waiting alternatives

for shared-memory multiprocessors. In International Conference on Parallel Pro-

cessing, pages II{170{II{174, 1989.

[BALL89] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy.

Lightweight remote procedure call. In Proceedings of the 12th ACM Symposium on

Operating System Principles, pages 102{113, Litch�eld Park, AZ, 3{6 December

1989. Published as Operating Systems Review, volume 23, number 5.

[BALL90] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy.

User-level interprocess communication for shared memory multiprocessors. Tr-90-

05-07, University of Washington, July 1990.

[Bed90] Robert Bedichek. Some e�cient architecture simulation techniques. Winter 1990

USENIX Conference, January 1990.

[Ber91] Brian N. Bershad. Practical considerations for lock-free concurrent objects. Cmu-

cs-91-183, Carnegie-Mellon University, September 1991.

[BRG+88] David L. Black, Richard F. Rashid, David G. Golub, Charles R. Hill, and Robert V.

Baron. Translation lookaside bu�er consistency: A software approach. Cmu-cs-88-

201, Carnegie-Mellon University, December 1988.

[CD90] Eric C. Cooper and Richard P. Draves. C threads. Technical report, Department

of Computer Science, Carnegie Mellon University, September 1990.

156

Bibliography 157

[Che88] D.R. Cheriton. The v distributed system. Communications of the ACM, 31(3):314{

333, March 1988.

[CK93] David R. Cheriton and Robert A. Kutter. Optimizing memory-based messaging for

scalable shared memory multiprocessor architectures. Technical report, Computer

Science Department, Stanford University, 1993.

[Com84] Douglas Comer. Operating system design, the Xinu approach. Prentice Hall, 1984.

[DBRD91] Richard P. Draves, Brian N. Bershad, Richard F. Rashid, and Randall W. Dean.

Using continuations to implement thread management and communication in op-

erating systems. In Proc. 13th SOSP., 1991.

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming control. Com-

munications of the ACM, September 1965.

[Doe87] Thomas W. Doeppner. Threads: A system for the support of concurrent pro-

gramming. Technical Report CS-87-11, Department of Computer Science Brown

University, Providence, RI 02912, June 1987.

[GA91] Ramesh Govindan and David P. Anderson. Scheduling and IPC mechanisms for

continuous media. In Proc. 13th SOSP., pages 68{80, Asilomar, Paci�c Grove, CA,

13 Oct. 1991. Published as ACM. SIGOPS.

[Gol86] Murray W. Goldberg. Pthreads. Technical report, Department of Computer Sci-

ence, Univeristy of British Columbia, 1986.

[Gro90] Motorola Computer Group. MVME188 VMEmodule RISC Microcomputer User's

Manual. Motorola, 1990.

[GT90] G. Graunke and S. Thakkar. Synchronization algorithms for shared-memory mul-

tiprocessors. IEEE Computer, June 1990.

[Her90] Maurice Herlihy. A methodology for implementing highly concurrent data struc-

tures. Second ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, March 1990.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming

Languages, January 1991.

[JAG86] M.D. Janssens, J.K. Annot, and A.J. Van De Goor. Adapting unix for a multipro-

cessor environment. Communications of the ACM, September 1986.

[KLMO91] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan Owicki. Empirical stud-

ies of competitive spinning for a shared-memory multiprocessor. In Proc. 13th

SOSP., pages 41{55, Asilomar, Paci�c Grove, CA, 13 Oct. 1991. Published as

ACM. SIGOPS.

Bibliography 158

[Knu66] Donald E. Knuth. Additional comments on a problem in concurrent programming

control. Communications of the ACM, May 1966.

[MB76] R. Metcalfe and D. Boggs. Ethernet: Distributed packet switching for local com-

puter networks. Communications of the ACM, July 1976.

[MCS91a] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization

on shared-memory multiprocessors. TOCS, 9(1):21{65, February 1991. Earlier

version published as TR 342, URCSD, April 1990, and COMP TR90-114, Center

for Research on Parallel Computation, Rice UNIV, May 1990.

[MCS91b] J. M. Mellor-Crummey and M. L. Scott. Synchronization without contention. In

PROC of the Fourth ASPLOS, pages 269{278, Santa Clara, CA, 8-11 April 1991.

In CAN 19:2, OSR 25 (special issue), and ACM SIGPLAN Notices 26:4.

[Mot88a] Motorola. MC88100 User's Manual. Motorola, 1988.

[Mot88b] Motorola. MC88200 User's Manual. Motorola, 1988.

[Mot88c] Motorola. MVME188BUG 188Bug Debugging Package User's Manual. Motorola,

1988.

[Mot88d] Motorola. MVME6000 VMEbus Interface User's Manaual. Motorola, 1988.

[MP89] Henry Massalin and Calton Pu. Threads and input/output in the synthesis kernel.

In Proceedings of the 12th ACM Symposium on Operating System Principles, pages

191{201, Litch�eld Park, AZ, 3{6 December 1989. Published as Operating Systems

Review, volume 23, number 5.

[MP91] H. Massalin and C. Pu. A lock-free multiprocessor OS kernel. Technical Report

CUCS-005-91, Department of Computer Science, Columbia University, February

1991.

[MSLM91] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos. First-class user-level

threads. In PROC of the Thirteenth SOSP, pages 110{121, Paci�c Grove, CA, 14-16

October 1991. In OSR 25:5.

[PKB+91] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah, D. Stein, and M. Weeks. Sunos

multi-thread architecture. Proceedings of the Usenix 1991 Winter Conference, 1991.

[SLM89] M. L. Scott, T. J. LeBlanc, and B. D. Marsh. A multi-user, multi-language open

operating system. In PROC of the Second Workshop on Workstation Operating

Systems, pages 125{129, Paci�c Grove, CA, 27-29 September 1989.

[SM90] Inc. Sun Microsystems. Lightweight processes. SunOS Programming Utilities and

Libraries, March 1990.

[SS92] D. Stein and D. Shah. Implementing lightweight threads. Proceedings of the Usenix

1992 Summer Conference, 1992.

Bibliography 159

[Sta89] Richard M. Stallman. The GNU gdb debugger. The Free Software Foundation,

1989.

[TR87] A. Tevanian and R.F. Rashid. MACH: A basis for future UNIX development.

Cmu-cs-87-139, Carnegie-Mellon University, June 1987.

