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Abstract. Computer-Aided Software Engineering (CASE) tools encourage users to codify the
speci�cation for the design of a system early in the development process. They often use graphical
formalisms, simulation, and prototyping to help express ideas concisely and unambiguously. Some
tools provide little more than syntax checking of the speci�cation but others can test the model
for reachability of conditions, nondeterminism, or deadlock.

Formal methods include powerful tools like automatic model checking to exhaustively check a
model against certain requirements. Integrating formal techniques into the system development
process is an e�ective method of providing more thorough analysis of speci�cations than conven-
tional approaches employed by Computer-Aided Software Engineering (CASE) tools. In order to
create this link, the formalism used by the CASE tool must have a precise formal semantics that
can be understood by the veri�cation tool.

The CASE tool STATEMATE makes use of an extended state transition notation called state-
charts. We have formalized an operational semantics for statecharts by embedding them in the
logical framework of an interactive proof-assistant system called HOL. A software interface is

provided to extract a statechart directly from the STATEMATE database.

Using HOL in combination with Voss, a binary decision diagram-based veri�cation tool, we have
developed a model checker for statecharts which tests whether an operational speci�cation, given
by a statechart, satis�es a descriptive speci�cation of the system requirements. The model check-
ing procedure is a simple higher-order logic function which executes the semantics of statecharts.

In this thesis, we describe the formal semantics of statecharts and the model checking algorithm.
Various examples, including an intersection with a tra�c light and an arbiter, are presented to
illustrate the method.

This work was submitted in partial ful�llment of requirements for a Master of Science degree at
the University of British Columbia, September, 1993.
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Chapter 1

Introduction

Integrating formal techniques into the system development process is an e�ective method of
providing more thorough analysis of speci�cations than achieved by conventional approaches
employed by Computer-Aided Software Engineering (CASE) tools. We begin by describing the
existing capabilities of the CASE tool STATEMATE for speci�cation analysis and how it can

bene�t from formal techniques. The approach taken in this work is to create a model checker for
statecharts in the hybrid veri�cation tool HOL-Voss.

1.1 Introduction

Previous work has stated that errors introduced in the speci�cation stage of the system development process
are often the most costly to correct [21]. Computer-Aided Software Engineering (CASE) tools are mechanical
aids to the system speci�er. The ability to analyze these speci�cations can help eliminate errors at this early
stage and ensure that the speci�cation has its intended meaning. Formal methods, such as model checking,
have been developed to analyze speci�cations. This work describes a particular example of linking the CASE
tool STATEMATE with a model checker. The main conclusion is that formal techniques are an e�ective
method for providing more thorough analysis of speci�cations than achieved by conventional approaches
employed by CASE tools.

1.2 CASE Tools

CASE tools are intended to help the system developer by providing ways of codifying requirements early in
the process. The speci�cation is developed in a graphical notation which is intended to be an improvement
over natural language but may still be open to interpretation. In this work, we focus on CASE tools used
commercially by software engineers who are not familiar with formal methods.

The speci�cation that the user creates with the CASE tool is usually an operational model. It can be
considered a very abstract view of the system implementation. This model can often be simulated or executed
although it may include non-determinism. Examples of operational speci�cation notations supported by
CASE tools include data ow diagrams, petri nets and �nite state machines [5].

1.3 Speci�cation Analysis

Once a speci�cation has been created, it is useful to analyze it before proceeding with system development.
Some CASE tools provide little more than syntax and type checking of the notation, but others exploit the
possibilities for doing further analysis of the requirements. Simulation and prototyping help ensure that the
requirements are complete and that they capture the intended behaviour of the system. Tests for deadlock,
non-determinism, and race conditions are all useful for checking general properties of the system.
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Given an operational model of the system, we can also ask whether it has particular properties. Safety or
liveness conditions can be checked at this initial stage of speci�cation. For example, a model of a tra�c light
at a two way intersection should have the property that at least one of the lights is red at all times. These
properties are called descriptive speci�cations. They are often global conditions which should be satis�ed
throughout the system's execution.

1.4 STATEMATE

The CASE tool STATEMATE uses a graphical extended state transition notation called statecharts as
the operational speci�cation notation for real-time systems. STATEMATE integrates tools to analyze and
execute the model [14].

The STATEMATE Simulator provides interactive or batch mode executions of the model. It relies on
the user to play the role of the environment by changing the values of external data items. In cases where
the model is non-deterministic, the user can choose or the system will randomly select one execution path
to follow.

STATEMATE's Dynamic Analysis tests provide more comprehensive examination of the model for par-
ticular properties. The \reachability of conditions" test checks whether the system ever reaches a point in

execution where certain conditions, given in the syntax of statechart Boolean expressions, hold true. This
test is not completely comprehensive because initial or default values for internal data-items and events must
be given. A range of values can be assigned to external data-items. A test is performed for each di�erent
value within this range, but it is unclear from the manual whether the value is constant throughout the test,
or whether all di�erent possible values are considered at each decision point. The second interpretation is
the more conservative and the more appropriate since the system has no control over when the value of an
external data-item is changed. The user must also give a limit on the number of execution steps that the
model will take while performing these checks. In cases where the condition is reached, the execution path
followed to arrive at that point is documented.

1.5 Formal Methods

While type-checking or testing a model for general properties like non-determinism could be considered
formal methods, we will use the term in a more specialized way. In this work, the term \formal methods"
encompasses a range of techniques where principles of reasoning and mathematics are used to examine models
more thoroughly than can be achieved by traditional testing and simulation. These techniques include both
interactive and automatic theorem proving, and model checking. The test for reachability of conditions in

STATEMATE is a restricted form of model checking.

1.6 Linking CASE tools with Formal Methods

The intent of this work is to determine if by using formal techniques it is possible to do more thorough
analysis of speci�cations beyond the ability of conventional methods employed by commercial CASE tools.
To carry out any type of formal analysis, precise semantics are required for both the descriptive and the
operational speci�cations. Statecharts were chosen as the language for the operational speci�cations because
they are supported by a CASE tool and because they already have a reasonably well-developed semantics.

In general, the automatic formal techniques are more appealing to non-experts than the interactive tools.
Harel [11] and others have suggested that automatic veri�cation techniques could be integrated e�ectively
into system analysis tools. Model checking is an automatic way of verifying properties of an operational
model. The link to CASE tools is provided by a precise semantics for the operational speci�cation notation.
However, much of the work to formalize these semantics and create the infrastructure to connect a CASE tool
with a model checker can be carried out by an expert. The result is a tool that can be used by non-experts
to verify properties of their model automatically.
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This thesis presents a formalization of the semantics of statecharts used in the CASE tool STATEMATE
and the implementation of a model checker for statecharts in an existing veri�cation tool. We potentially
improve upon the existing test for reachability of conditions within STATEMATE in the following ways:

1. allowing symbolic values in the expression of the properties,

2. making the semantics adaptable to suit variations of the statechart notation, and

3. providing a framework for using more expressive descriptive speci�cation languages.

It is not entirely clear from the STATEMATE manual to what extent symbolic functionality properties
can be proven. For example, we would like to set an initial state where a variable has the value a and, given
an increment operation, the model checker could prove that the resulting value is a + 1. We also want to
be certain that the model checker recognizes that external data-items can change their values at any time
and therefore examines branching execution paths. Both of these are accomplished using symbolic values
for variables which means many values for a variable can be checked with one run of the model checker.

Chapter 2 presents situations in the semantics that can be interpreted in various ways, pointing out
areas where others might wish to make di�erent choices. By making the semantics used in the model
checker explicit, it should not be di�cult to adapt them to suit variations of the formalism. Leveson et al.'s
Requirements State Machine Language (RSML) [21] falls into this category.

Properties that we wish to verify can often only be expressed in more complex descriptive speci�cation
languages. Computational Tree Logic (CTL) is an example of such a language which includes temporal
operators in its expressions. Given a decision procedure our model checker can be adapted to a language
that includes these features, using the same semantic de�nitions that we supply. Section 9.5 describes one
option for a more descriptive speci�cation language called State Transition Assertions.

1.7 The Overall Method

Given an operational speci�cation of system created in STATEMATE, can we create the links necessary
to use a model checker to answer the question of whether a given operational speci�cation satis�es certain
descriptive requirements?

Formal methods rely on having a precise semantics for the language used to describe the model. Stat-
echarts were developed with an accompanying semantics that has since been re�ned and given in di�erent
forms by various authors [8][26][21][13]. These descriptions often di�er from each other or do not always
discuss some of the more subtle aspects of the semantics. Therefore, we also had to use our intuition to
determine the meaning of statecharts. We have embedded an operational semantics for statecharts as a next
con�guration relation in a target language.

The target language is a subset of higher-order logic that can be informally regarded as a functional
programming language. Details of this language and any functions used in the semantics but not de�ned
there can be found in Appendix A (MAP, MEMBER, etc.).

The descriptive speci�cation gives an initial set of con�gurations and a condition that must hold along
all (or some) execution paths starting at those con�gurations, within a certain number of steps. A software
interface extracts the statechart directly from the STATEMATE database and the model checker tests
whether the statechart model satis�es the descriptive requirements.

Many improvements in the speed of model checkers have been made in recent years, most notably giving
symbolic values for variables and using binary decision diagrams for e�cient representation of con�gurations.

HOL-Voss [28] is a hybrid veri�cation tool that combines an interactive proof-assistant, HOL [7], based on
higher-order logic, with an e�cient, automatic symbolic simulator, Voss [27], that uses ordered binary
decision diagrams (BDDs) [3]. By implementing our model checker in this tool we can take advantage of the
expressiveness of higher-order logic to give the semantics of statecharts and then execute the model checking
algorithm using BDDs. The model checker is written as a function in higher-order logic that takes a next
con�guration relation describing the semantics of the model as a parameter. It returns either true or false
depending on whether or not the descriptive speci�cation is satis�ed. The complete method used to do this
is summarized in Figure 1.1.
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Figure 1.1: The overall method
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Given that only the target language is used to express the semantic de�nitions, the question of why we
chose to use HOL should be answered. The �rst reason for this is that there have already been interesting
results from hybrid tools used for hardware veri�cation. Combining a model checker with a theorem prover
allows the use of mathematical reasoning techniques like induction and abstraction to prove results beyond
the capacity of a model checker [28]. Our model checker is created in HOL-Voss so the theorem-prover is
available for this type of use. Sections 6.7 and 9.4 describe ways induction can make use of results returned
by the model checker for particular statecharts.

The second reason is that HOL is a theorem-prover in which properties of the semantics of statecharts
themselves could be veri�ed. The correctness of our de�nitions can only be evaluated relative to our inter-
pretation of the meaning of statecharts. Demonstrating overall properties of the semantics would provide a
formal basis to our claim that these de�nitions match our interpretation. Examples of the types of properties
we would like to demonstrate about the semantics can be found at the end of Chapter 2.

1.8 Results

By linking CASE tools and formal methods both will bene�t. CASE tools provide a graphical interface
to create models to be analyzed using formal methods. Formal methods provide exhaustive techniques to
verify that a speci�cation created in a CASE tool has certain properties. Cross checking descriptive and
operational speci�cations will increase the speci�er's con�dence in the result.

The purpose of this work can be summarized in three main goals :

1. to demonstrate that formal methods can be e�ectively integrated into commercial CASE tools - in
particular, tools intended for use by non-experts

2. to formalize an operational semantics for statecharts

3. to create a model checker for a hierarchical graphical speci�cation language where realistic assertions
can be veri�ed automatically

The main conclusion of this work is that formal techniques can be integrated into the system development
process to provide more thorough analysis of speci�cations than achieved by conventional methods employed
by most commercial CASE tools.

A reader interested in experimenting with the operational semantic de�nitions given in Chapters 4 and 5
or the model checking functions of Chapter 6 should be able to implement them in a functional programming
language such as ML.

1.9 Thesis Outline

The next chapter gives an introduction to statecharts and examines some of the di�culties in giving their

semantics by discussing previous work in this area. Chapters 3, 4 and 5 present an abstract syntax for
statecharts and the operational semantics that express our interpretation of their behaviour.

Chapter 6 describes the descriptive speci�cation language and the model checking algorithm. Examples
of using the model checker on small systems are described in Chapter 7.

Finally, Chapters 9 and 10 present possible extensions to the semantics and the model checker and
overall conclusions for this work.
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Chapter 2

An Introduction to Statecharts

In this chapter, the graphical statechart notation, used for the operational speci�cation of a
system, will be informally introduced. The ideas of concurrency in a hierarchy of states and
transitions that move the system between states based on certain triggers and that modify vari-
ables are explained briey through an example of a tra�c light at a two way intersection. While
statecharts are designed to be a concise and intuitive notation, ambiguous situations can still
arise. These are discussed in the second section of this chapter by looking at how our approach
di�ers from existing versions of the semantics. We conclude with a list of properties to charac-
terize the semantics of statecharts. This chapter is followed by three chapters on the syntax and
semantics of statecharts that will formalize these ideas.

2.1 Statecharts

There is a great deal of interest from both academia and industry in the statecharts formalism. It is an
extended state transition notation for expressing the concurrent operation of real-time systems. It is often
described as:

state-diagrams + depth + orthogonality + broadcast-communication [8]

In statecharts, the diagrammatic layout of the notation has meaning beyond just the labels on states and
transitions. A hierarchy of states is portrayed in a style similar to set inclusion in Venn diagrams to reduce
the complexity of the model and therefore make it more readable. The reader is referred to Harel [10] for
an explanation of the origins of statecharts as a type of higraph that combines the elements of graphs and
Venn diagrams.

The STATEMATE manual describes a tra�c light system controlling a two-way intersection which is
a simple but e�ective example of the expressiveness of statecharts [14]. The statechart for the tra�c light
controller is given in Figure 2.1 (from Figure 6-22 in [14]) and will be used to illustrate the elements of
statecharts.

A statechart models the system as being in a number of states which describe its operation. These states
are depicted by rounded boxes. A state can be considered a point in the computation. For example, the state
labeled NORMAL, at the top of the �gure represents the normal operation of the lights in both directions.
The dashed line through its middle splits it into two substates, north-south(N S) and east-west(E W),
which operate concurrently, representing the two directions of the tra�c light. NORMAL is called an
AND-state because it has these orthogonal components. N S and E W are decomposed into substates
labeled red, yellow, and green to indicate that when the model is in one of those states, the light is showing
that colour, which can be considered the output from this controller. The model can be in only one of them
(i.e. red, green or yellow) at any time makingN S an OR-state (exclusive-OR).

The representation of these substates within the larger rounded box creates a hierarchy of states (depth).
In this hierarchy, the state NORMAL is an ancestor of N S and E W. Similarly,N S and E W are both
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Figure 2.1: Tra�c light statechart
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descendants of NORMAL. When a state is not decomposed into AND or OR-states, it is called a basic
state. There are seven basic states in Figure 2.1.

States are connected by transitions with labels of the form:

event [condition] / action

-

For reference purposes, we have given each transition a unique name like t0 or t1. If the system is currently
in the source state of a certain transition labeled e[c]/a, and the event e occurs when the condition c is
satis�ed then the transition is enabled. Broadcast communication is used; this means that all events and the
values of any data-items can be referenced anywhere in the system. The event and condition are together
referred to as the trigger of the transition.

A condition is a Boolean expression that can include statements like IN(x) to check whether the system
is currently in state x. These are often used to synchronize components as in transition t5 in the E W state,
labeled IN(N S.RED).

An event is generated when there is a change in a condition. This is a discrete version of \the instantaneous
occurrence of a stimulus" [15]. Entering a state x is a change that causes the event en(x) to occur. A timeout,
tm(ev; x), is an event that occurs x time units after the event ev. We will call ev the timeout event and
x the timeout step number. Transition t1 is triggered by the timeout tm(en(N S.YELLOW),2) where
en(N S.YELLOW) is the timeout event and 2 is the timeout step number.

Enabled transitions move the system between states. Following, or taking a transition means exiting its
source state, carrying out the actions on its label, and entering its destination state. Informally, following a
set of these transitions generally corresponds to a step or one time unit. Events occurring in one step can
trigger transitions in the next step.

Transitions can be taken in the substates of an AND-state simultaneously. A transition can be enabled
if it originates in any ancestor of the current set of basic states. Transitions can also terminate at the outer
boundary of a state with substates. Default arrows, given diagrammatically as open circles pointing at a
state, lead the system into a set of basic states. For example, when transition t7 is followed, it terminates
at the state NORMAL, which is made up of two orthogonal components. The default arrows for each of
its substates point at E W.RED and N S.GREEN.

If a transition is followed, the action part of the label is carried out and the system moves into the
destination state. Actions include generating events or modifying values of variables in the data store
through assignment statements. This example does not have any actions on its transitions.

We use the term con�guration to include the set of states the system is currently in, the values for all data-
items, and the events that just occurred.1 The current set of states alone is called the state con�guration.
A set of basic states is a legal state con�guration if it satis�es the constraints of the hierarchy. A discrete

notion of time is used where the system moves between con�gurations as a result of stimuli generated both
from within the system and externally.

Statecharts often include elements like history states, conditional connectives for transitions, static reac-
tions, and transitions with multiple source and destination states. For simplicity, these are not considered
here since they are not included in the subset of statecharts we give semantics for but they will be discussed
Chapter 9.

2.2 A Discussion of the Existing Semantic Approaches

The notation described above may seem very straightforward, however statecharts can be created where
their intended meaning is not so obvious. These are the situations that make it di�cult to give a semantics
for statecharts.

The �rst e�ort towards a formal semantics for statecharts was by Harel et al. [8]. Pnueli and Shalev
[26] pointed out di�culties with the �rst approach and described revisions. They also show that declarative
and operational versions of their semantics are equivalent given a restricted form of the syntax of events.

1The STATEMATE manual calls this concept a status [14].
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The version of statecharts used in STATEMATE has a semantics given by the simulation and analysis tools
which is not entirely consistent with Harel et al. [13][14]. We shall also consider the semantics presented
by Leveson et al. [21] for the notation called Requirements State Machine Language (RSML) which is a
variation of statecharts.

All of this previous work, including less formal discussions of the operation of statecharts [9][10][11][13],
has been used to help determine the less obvious features of statecharts and formalize our interpretation
of the semantics of statecharts. In the following sections, we will highlight situations where the meaning
of a statechart is not graphically apparent and discuss our understanding of the approaches taken to these
situations in previous semantics. If one of the four versions given above is not mentioned in a section then
either this point was not discussed in their work or they agree with one of the other approaches. Each section
concludes with an informal explanation of the interpretation formalized in the next three chapters under the
title \Resolution".

2.2.1 What is a Step?

Transitions move the system between states in a statechart. Following a set of transitions and carrying out
their actions is considered one time unit or step and moves the system between con�gurations. There are
di�erent interpretations of what constitutes this set of transitions.

Intuitively, this set is limited by the following conditions:

1. Any transitions that are followed must be enabled. A transition is enabled if the system is in its source
state and its trigger is true.

2. Within an OR-state, only one transition can be followed.

3. Transitions may be followed within each component (substate) of an AND-state.

The set of transitions that are enabled depend on the events generated in the previous step. Each transi-
tion may generate events and carry out other actions. Most previous versions of the semantics of statecharts
make a distinction between internal and external events and when these are recognized to determine enabled
transitions. Internal events are those that are generated as actions of transitions within this statechart.
They are often used to sequentially order transitions taken in an operation [8], and therefore transitions
enabled by internal events generated in this step should also be taken. Harel et al. calls sets of transitions
a micro-step. The transitions taken in each micro-step may generate internal events which can trigger other
transitions. A step is a maximal sequence of these micro-steps which means at the end there are no more
enabled transitions that could be taken still satisfying the three requirements given above. This is called
a stable con�guration [15]. No external events are admitted for consideration during the execution of the
micro-steps. This satis�es the synchrony hypothesis which says the system can always compute its complete
response to an event before the next external event is ready [26].

When trying to formulate the de�nition of a step, the factors to consider are:

� Can events generated by actions of transitions followed in this step trigger transitions that are also
followed in this step? In Figure 2.2, if the system starts in the states A and C, and follows t0, then
the event f is generated. Is t1 then enabled and followed in the same step?

� Are transitions only from the current set of source states considered or can we move through multiple
states in a path in one step? From Figure 2.3, we can see that this could lead to in�nite loops within
a step [14].

� Do events generated in some micro-step persist throughout all the remain micro-steps?

� Which events are generated for the next step?

� When do the actions on the labels of the transitions chosen take e�ect? And what are the values of
variables in the middle of a step?
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Figure 2.2: What is a step? Example 1

A B

t1: f / e

t0: e / f

Figure 2.3: What is a step? Example 2

In Harel et al.'s original formulation of the semantics, the set of events used to determine whether
transitions are enabled or not consists of the external events given at the beginning of the step and any
events generated in micro-steps before the current one. This means events persist for the length of the step
but are not used in the next step. A new set of external events must be provided to start the next step.
Only transitions from the current set of source states are considered so multiple states in a path can not
be taken. The process is guaranteed to terminate since there are a �nite number of transitions that can be
added to the set taken in a step [26]. At any time during the step, variables still evaluate to their values at
the beginning of the step unless special operators called cr (current) and ny (not yet) are used. At the end
of the step the variables take on the cumulative e�ects of all the modi�cations made by the transitions.

Pnueli and Shalev [26] points out that Harel et al.'s semantics can result in global inconsistency among
micro-steps. For example, if a transition is triggered by the event a and it generates the event :a, another
transition may be enabled by the event :a. Having opposite events both trigger transitions in one step is
not consistent. They resolve this problem by using the following de�nitions for enabled transitions (En) in
a step. Given state con�guration C, set of transitions T , and external events I:2

En(T;C; I) = relevant(C) \ consistent(T ) \ triggered(I [ generated(T ))

where:

� relevant(C) is the set of transitions whose source is in the set C

� consistent(T ) is the set of transitions that do not conict with anything in T (for example, if two
transitions both leave one state, they can not both be taken and therefore they conict)

� triggered(E) is the set of transitions whose triggers are satis�ed by the complete set E. This is where
global inconsistency is eliminated.

2Here we present Leveson et al.'s description of this formula; Pnueli and Shalev left out the parameters C and I on the

left-hand side of the equation.
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Figure 2.4: Step construction

� generated(T ) is the set of events generated by the transitions of T

A random transition is chosen from this set and added to T repeatedly until
En(T;C; I) = T , i.e. a �xed point is reached. The complete set of transitions T is considered one step. In
this description, events last for the duration of the step and only transitions from the state con�guration at
the beginning of the step are considered.

In Pnueli and Shalev's algorithm, the transitions' actions do not take e�ect until the next step unless the
action involves generating an event. In our opinion, dealing with assignments and events di�erently is an
inconsistent treatment of actions. An assignment action could a�ect the set of transitions that are taken if
transition triggers are conditional upon the values of variables. For example, if a and b true at the beginning
of the step and then b is modi�ed, a transition triggered by a ^ :b may become enabled [2].

Leveson et al. show that Pnueli and Shalev's simulation algorithm which chooses one transition at a
time can lead to non-intuitive sets of transitions chosen as a step when considered together. For example
in Figure 2.4 (Figure 14 of [21]), if the event x occurs when the system is in states A and C, Pnueli and
Shalev's algorithm could result in the step ft1; t3g depending on the order in which transitions are chosen
from the set En(T;C; I) even though t4 is enabled by x. (See Table 2.1 from Table 1 in [21])

RSML uses an alternative to this algorithm by �rst considering and executing in random order all the
transitions triggered by the set of external events and then considering the set of transitions triggered by
only the internal events generated in this �rst micro-step, etc. It can also pass through multiple states in a
path. This process stops when there are no more enabled transitions. In Figure 2.4, this algorithm chooses
ft1; t4g �rst. This process may not terminate if the �rst part of the algorithm generates internal events that
return the system to its original con�guration (Figure 2.3).

STATEMATE o�ers two models of timing. In the �rst, called step-dependent, time is incremented after
each simulation step. Assignment actions take e�ect at the end of the step. Internal events generated by
these transitions as well as external events can be used to trigger transitions in the next step. If no transitions
are enabled, time is still incremented.

The second is called step-independent and time is incremented after a super-step in which steps are taken
until the system reaches a stable con�guration. This is de�ned as a point where either an external event
must occur or time must be incremented, perhaps to generate a timeout event, for the system con�guration
to change [13]. Unlike the idea of a micro-step, each step in this super-step is executed independently, with
actions that take e�ect at the end of the step, and generated events that may be used in the next step but
last only for the duration of one step. Each super-step is considered to take one time unit.
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Construction 1

loop # T En(T) generated(T)

0 ; ft1; t4g ;

1 ft1g ft1; t3; t4g fyg

2 ft1; t3g ft1; t3g fy; zg

Construction 2

loop # T En(T) generated(T)

0 ; ft1; t4g ;

1 ft4g ft1; t4g fzg

2 ft1; t4g ft1; t4g fy; zg

Table 2.1: Two possible step constructions

The �rst model is synchronous and the second is asynchronous since it jumps ahead to a point where
some change will occur. In essence, a super-step is Leveson et al.'s model.

Resolution: Our semantics use STATEMATE's step-dependent model, where internal events are not dis-
tinguished from external ones, and assignments and generating events are treated consistently as actions.
This eliminates many of the questions outlined above. For most cases, the simplicity of this interpretation
and its formal expression compensate for the loss of the idea of internal events sequencing an operation and
the synchrony hypothesis. Chapter 9 describes how our semantic de�nitions could be used to generate a
super-step model of time.

2.2.2 Multiple Actions on a Transition and Race Conditions

A transition may have multiple actions separated by a `;`. If more than one of these actions modify the same
variable, what will the value of the variable be at the end of the transition? For example,

=x := 1;x := x+ 2

with 0 as the value of x in the current con�guration, may have the following possible interpretations:

1. The actions are taken sequentially so that after following the transition, x has the value 3.

2. The actions are taken relative to the beginning of the step but their e�ects are evaluated sequentially,
therefore the second action takes precedence and the result is that x becomes 2.

3. The actions are evaluated relative to the beginning of the step, and they are not assumed to happen
in any particular order, however, the actions are atomic and do not conict. With this interpretation,
the result is that x could be 1 or 2 after the transition is taken.

A race condition occurs if transitions followed simultaneously in orthogonal components modify the same
variable in a step. Figure 2.5 provides an example of this, when the con�guration includes states A and C
and the event e occurs so the system follows both t0 and t1. This is similar to having multiple assignments
on the same transition, but has the added possible interpretation that the actions could conict with each
other (i.e. they are not atomic), and the value for x would then be indeterminate.

Harel et al. do not allow multiple assignments to the same variable within a micro-step. The operators
cr and ny can be used to examine modi�cations made in the sequence of micro-steps.
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Figure 2.5: Race conditions

Pnueli and Shalev's consistent(T ) function limits its result to having at most one transition that modi�es
a given variable.

STATEMATE assumes the assignments are carried out in some random order within a step and so e�ects
can be cumulative in both a step and super-step.

Resolution: By eliminating the idea of micro-steps, our semantics do not encounter the problem of what
the value of a modi�ed variable is in the midst of a step. Of the options presented above we have chosen the
third one which states that the variable takes on one of its possible values. All actions, including those on
the same transition, are considered together when determining the next con�guration.

2.2.3 Non-determinism

Enabled transitions may originate at exactly the same state. All previous semantics agree that it is equally
likely that any one of them will be taken creating a non-deterministic situation.

Statecharts also have a hierarchy of states and transitions can originate from states at any level in the
hierarchy. If multiple transition are enabled from states that are descendants or ancestors of each other in
the hierarchy as in Figure 2.6 (B and A), which transition should be taken? Transitions from parent states
are often used to model interrupts or preemption [26].

In Pnueli and Shalev's approach and in STATEMATE, priority is given by the scope (or arena) of the
transition. The scope is the lowest OR-state in the hierarchy that is an ancestor state of both the source
and destination of the transition. For example, in Figure 2.7 (from Figure 2-10 in [14]), transitions t0 and
t1 have the same priority since the scope of each is E.

Pnueli and Shalev discuss a way of expressing priority using the negation of events. Transitions at lower

levels of priority would include in their triggers the negation of the enabling event of higher priority transi-
tions to indicate that these could not be taken. Section 9.3 points out that the negation of events is not a
su�cient expression of priority when the destination states of transitions conict.

Resolution: We base the priority of transitions on source state since making t0 in Figure 2.7 equally
likely to be taken as t1 does not agree with our intuition. If only state C and its transitions are given
we should be able to determine its behaviour without knowing the destination of its transitions. These
restrictions are used to determine the set of transitions that can be followed in a step.
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Figure 2.8: Crossing AND-state boundaries - Example 1

2.2.4 Timeouts

When do timeouts occur?

The statechart for the tra�c light in Figure 2.1 uses several timeouts to trigger di�erent transitions, such
as t0 or t3 . When should the system begin to consider the event upon which the timeout is based? Is it
the last time the timeout event occurred throughout the system? Another possible interpretation is that
the timeout event must occur after we have entered the source state and the system waits the appropriate
number of steps before following the transition.

Resolution: All the explanations of the operation of statecharts agree that if x is the timeout step number
then a timeout occurs exactly x steps after its timeout event occurs relative to the system as a whole. This
is the interpretation used in our semantics.

When is the timeout step number evaluated?

When the timeout step number is a variable, there is the further question of when to evaluate it. Is it
evaluated only when the system arrives in the transition's source state (i.e. the �rst time the transition
could be enabled)? Or can the value change between steps? An example of a situation where this might
occur in the tra�c light is if the NS GREEN TIME is a�ected by a pedestrian button which indicates
someone wants to cross the street. For example, if the timeout step number currently evaluates to 3 and

two steps have passed since the timeout event occurred, then the timeout will not occur in this step. But an

action on a transition taken in this step could change the timeout step number to 2. In the next step, three
steps will have passed since the timeout event occurred which will not equal the timeout step number that
currently holds 2, so the timeout may never occur.

Resolution: This issue is not discussed in any previous versions of the semantics. We have chosen to
evaluate the timeout step number in the current con�guration of the system. That is, the number may
change value while waiting in the source state.

2.2.5 Transitions Among the Components of AND-states

The orthogonal components of AND-states operate concurrently, so it is di�cult to see the need for a
transition that goes between them. However, these transitions are possible, depending on the de�nition of
a legal statechart. In Figure 2.8, we can see that following transition t0, leads into the state C, but the
system must remain in some state of X at all times. At this point, should it follow the default transition
into A to reach a legal state con�guration?

The situation could occur where two transition cross AND-state boundaries at the same time. For
example, in Figure 2.9, if t0 and t3 are followed at the same time, the system will arrive in states B and C,
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Figure 2.9: Crossing AND-state boundaries - Example 2

which is a legal state con�guration.

For the semantics presented in Chapters 4 and 5 we assume that a syntactically correct statechart does
not include:

1. transitions that connect components of an AND-state.

2. transitions that cross from within an AND-state to outside the state. To leave an AND-state the
transitions must originate at its border.

3. transitions that enter a substate of an AND-state directly. To enter an AND-state the transition must
arrive at its border and the defaults followed to enter its components.

Transitions that violate these assumptions could conict in their destination states even though they exit
orthogonal components. Section 9.3 discusses a possible way of modifying the semantics to accommodate
these situations.

2.2.6 Con�guration Representation

In RSML and STATEMATE the statechart model is augmented with ranges for the values of variables. For
a model checker, we need a precise description of each data item to limit the set of possible values. The
semantics presented here use an abstract representation which is implemented by bit vectors.

2.3 Properties of Statecharts

We can begin to give a rigorous characterization of the semantics of statecharts, by stating the following
properties which include the decisions described above:

2.3.1 Conditions on the State Con�guration

1. If the system is in an OR-state, it must be in exactly one of the OR-state's substates.

2. If the system is in an AND-state, it must be in all of its substates.

2.3.2 Conditions on the Transitions

A step means taking a set of transitions that satisfy the following conditions:

1. Any transitions that are followed must be enabled. A transition is enabled if the system is in its source
state and its trigger is true.
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2. Within an OR-state, only one transition can be followed.

3. Transitions may be followed within each substate of an AND-state.

4. If two or more transitions are enabled and have the same source, only one will be taken but it is
indeterminate as to which will be chosen. (Section 2.2.3)

The following conditions are a result of decisions made in the previous sections:

1. Triggers are evaluated relative to the con�guration at the beginning of the step. (There are no micro-
steps so this is the only possibility.)

2. Taking no transitions is a legitimate step if no transitions are enabled. (Section 2.2.1

3. If a transition from a parent state is enabled, it has precedence over one from a descendant, where the
priority is based on the source state of the transition. (Section 2.2.3)

4. Timeouts are determined relative to the last time the timeout event occurred throughout the system.
(Section 2.2.4)

2.3.3 Conditions on the Results of Transitions

Once a set of transitions has been chosen to form a step in the system, the actions of these transitions are
all considered together.

1. If a given transition is taken, at the end of the step the system will be in a con�guration which includes
the destination state of the transition and all its actions will be carried out except where conicts occur
among the actions of all transitions.

2. If a variable is not modi�ed by any transition in a step, then it retains its previous value.

3. If more than one modi�cation is made to the same variable (i.e. a conict occurs) then exactly one of
these modi�cations will be true in the next con�guration. (Section 2.2.2)

Transitions should not cross AND-state boundaries (Section 2.2.5). If this is true, then the above con-
ditions on which transitions can be taken in a step ensure that more than one chosen transition will not
modify the same basic state.

2.4 Conclusions

Statecharts are a state transition notation that alleviates some of the problems encountered with other
notations. In particular, the state explosion problem is lessened by using a hierarchy of states. This also
reduces the complexity of the transitions in the model since some can be grouped together to form one
transition exiting a higher-level state. Through the use of AND-states, statecharts can model concurrent
operations.

Here we have focused on the di�culties in giving the semantics for what appears at �rst glance to be a
clear, and concise graphical notation. This should not be viewed as an argument against the usefulness of
statecharts or graphical notations in general. Rather it is intended to point out some interesting questions
in modeling real-time systems and to stress the importance of having a formal semantics for these notations
before using them.

State transition models are amenable to automatic analysis such as model checking. It is necessary to
have a rigorous semantics for the notation to make this possible. The list of properties given in the preceding
section describing the behaviour of statecharts will be formalized in the next three chapters.
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Chapter 3

An Abstract Syntax for Statecharts

This chapter presents a syntax for statecharts. The statechart is represented as an abstract data
type (ADT) whose attributes can be accessed by selector functions. Chapter 8 will discuss the
concrete representation used in this work. The ADT is intended to hide these details in our
presentation of the semantics.

3.1 Introduction

This chapter describes a representation of statecharts as an abstract data type (ADT) whose attributes can
be accessed by selector functions. The next chapter will use this ADT to de�ne a semantics for statecharts.
The graphical representation used in STATEMATE may be viewed as an instantiation of this ADT. For
our purposes, we use a textual representation which is described in Chapter 8. A tool for extracting the
information about the statechart from STATEMATE and translating it into this textual representation is
also described in Chapter 8.

This chapter gives a \bottom-up" presentation of our abstract syntax for statecharts, beginning with
expressions, events, and actions. The meaning of these was given informally in the previous chapter and will
be supplemented here. These parts of a transition can be accessed through selector functions. Each state
has attributes associated with it which include a list of transitions. These attributes of a state, as well as
information about the overall statechart, are also accessed through functions. The following sections will
describes this ADT and its associated functions.

3.2 Variables and Values

The con�guration of the system has been de�ned informally as the set of states the system is in, the values
of the data-items and the status of events at a given moment. Every element of the con�guration, including
basic states1, data-items (Boolean or arithmetic) and events, is given a variable name. These names are used
to reference the values of variables.

Presently only Boolean and natural number values are considered, but this is not a limitation of the
semantics. Given an underlying representation for values of other types and basic operations on expressions
to deal with them, the semantic functions would not change. We have chosen only to implement these two
types for simplicity.

3.3 Expressions

Expressions are used both in conditions of transition triggers and assignment actions. The syntax for
expressions is given by the following recursive data type:

1We can determine the states the system is in completely from the basic states only.
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step

cf cf’

Figure 3.1: Events occurring in a step

Exp =

VAR Variable j

CONST Constant j

IN Variable j

PLUS Exp Exp j

MULT Exp Exp j

EQUAL Exp Exp j

GREATER Exp Exp j

OR Exp Exp j

AND Exp Exp j

NOT Exp j

TRUE j

FALSE

The expression VAR returns the value of a variable in the current con�guration. CONST returns the
value of its natural number argument. IN statename is the condition that the system is in the state called
statename.

The remaining operators perform arithmetic and logical functions on their arguments. Some of these
expressions operate on natural numbers and some on Boolean values. They have all been grouped together
because it is expected that STATEMATE will have done the type-checking as the user builds the model, not
allowing them to mix types in expressions. As far as the abstract syntax is concerned an expression such as
NOT(CONST 21) is a legal expression which will be assigned a meaning by the semantics in Chapter 4.

The reader will also note the absence of the subtraction and division operations in expressions. These
were left out because they were not needed in any of the examples, but they could easily be added.

3.4 Events

The status of an event is determined by changes between the previous con�guration and the current one. It
can be considered as a Boolean condition that has the value true if the event occurred in the previous step.
The system must be able to determine its truth value relative to the current con�guration only. For example
in Figure 3.1, if event f occurs in the step moving the system from con�guration cf to cf

0, then within cf
0

a ag representing the occurrence of event f will be true.

We can generalize the idea of events to include timeouts, which may depend on events that happened
several steps earlier. A non-timeout event can be interpreted as a timeout with zero as the timeout step
number. For example, en(x) is equivalent to tm(en(x), 0). In this way also, the idea of a ag can be
generalized to be a counter that is maintained in the con�guration as a variable and indicates how many
steps have passed since an event occurred. When the counter has the value 0, the event occurred in the
previous step. These counters are implicit in the graphical version of statecharts presented to a STATEMATE
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Figure 3.2: Example of a primitive event

user, however, we have made them explicit in our abstract syntax.

Timeouts can be expressed relative to single events only. Single events include:

� entering a state (EN stname),

� exiting a state (EX stname), and

� primitive events (EV evn) such as e in Figure 3.2. A Boolean variable is associated with each of these
(evn) and the event occurs when the value of this variable changes.

The tra�c light example of Figure 2.1 has many examples of using the event generated when a state is
entered to trigger a transition.

Primitive events may be external or generated by an action. For example, in Figure 3.2, the event e is a
primitive event that is external to the state Y. The primitive event f is generated by transition t0. If this
transition is taken in the �rst step, then t1 is enabled in the next step, providing the system is in state C.
In this abstract syntax, event e as a trigger on a transition is written EV e. Generating f as an action is
given by the statement GEN f .

A counter variable is created for each single event that is referenced in the statechart. This counter is
given as an argument in the expression of each single event:

SingleEvent =

EN Variable Counter j

EX Variable Counter j

EV Variable Counter

Events, in general, include single events (SE), and the combination of zero or more events:
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Event =

NONE j

SE SingleEvent j

EVEXPR Event Exp j

AND E Event Event j

OR E Event Event j

NOT E Event j

TM SingleEvent Exp

The event NONE is always true. EVEXPR ev c is true if the event ev occurs when the condition c is
true. STATEMATE uses the syntax ev[c] to represent this event. AND E, OR E, are logical connectors used
to combine events. NOT E ev is true if the event ev did not occur. TM ev exp means the single event ev
occurred exactly exp steps earlier.

3.5 Actions

Actions modify the con�guration by changing the values of variables. Statecharts provide two special oper-
ations for changing the values of conditions, MAKE TRUE and MAKE FALSE, which make the value of their
argument true or false respectively. These operate only on variables, not on compound condition expressions.
The action GEN causes a primitive event to occur in this step. This means the variable for the primitive
event changes its value. NILL means the transition's action does not make any changes to the system's
con�guration.

Action =

MAKE TRUE Variable j

MAKE FALSE Variable j

ASN Variable Exp j

BOTH Action Action j

GEN Variable

NILL

Note that the operator BOTH is not sequential and multiple assignments in an action are all evaluated
relative to the con�guration at the beginning of the step.

3.6 Transitions

Transitions have unique names and are made up of a source state, a destination state, a triggering event,
and an action.2 To return the transition associated with a particular name (name) in a statechart (sc), we
use:

TRAN sc name

2Section 9.1.5 discusses transitions with multiple source and/or destination states.
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If the statechart has no transition with this name, it returns a transition that has null values for all its
elements.

Given a particular transition (tr), the following selector functions are provided:
NAME (tr) { returns the name of tr
SRC (tr) { returns the name of the source state of tr
EVENT (tr) { returns the triggering event of tr
ACTION (tr) { returns the action on the label of tr
DEST (tr) { returns the name of the destination state of tr

The null values for each of these are NONAME, NOSTATE (used for both the source and destination
state), NONE, NILL, respectively. Note that the null values for events and actions are legal values.

3.7 States

Every state has the type basic, AND, or OR.

Typ � B j A j O

Given a particular state (stname), its type is returned by:

TYP sc stname

The remaining elements associated with a state are its default state name, its immediate substates, and a
set of transitions that originate at its immediate substates. Given a particular state (stname), these parts
are accessed by the following functions:

SUBSTATESsc stname { returns the names of the immediate substates of stname

DEFAULTsc stname { returns the default state name of the state stname

TRANSOFSTATEsc stname { returns the transitions whose source states are in the set of im-
mediate substates of stname

The transitions are grouped according to their source's parent state since the priority of choosing transitions
for execution is based on the position of their source states in the hierarchy.

Another useful function is one that returns the set of all transitions whose source states are descendants
of a particular state. The function GET TRANS STATE sc stname does this. It can be de�ned in terms
the selector functions already described here.

It is assumed that STATEMATE produces a complete statechart with unique state names and therefore
cases where these functions are given arguments that are not contained in the statechart should not happen.
However, a de�ned null value ( NOTYP, NOSUBSTATES, NODEFAULT, NOTRANS), is returned to make
the functions total. Checks can be done from within STATEMATE to ensure the completeness of the model
so the semantic functions do not usually test for the null values when using these functions. In some of these
cases, no next con�gurations may exist for a given statechart con�guration.

3.8 The Complete Statechart

A statechart is a set of states. Sometimes, we need information about the overall statechart.
It must have one state, called the root, that is an ancestor of all the other states. We can access it using:

ROOT sc

It is also useful to return the set of names for all the transitions within the statechart:

GET TRANS NAMES sc

In the next chapter, we will make use of these functions to give an operational semantics for statecharts.
As much as possible these semantics are given compositionally, decomposing the parts of transition triggers
and actions based on their syntactical components, however, because transitions can conict, higher-level
functions must resolve di�erences to determine the next con�guration of the system.
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Chapter 4

Compositional Aspects of the

Semantics of Statecharts

This chapter begins the presentation of the formalization of our semantics for statecharts. We
�rst describe useful functions that create quanti�er abstractions and then give an abstract model
of the con�guration of the system. The meaning of events and actions are compositional and can
be given in terms of functions de�ned recursively on their syntactical structure.

4.1 Introduction

Meaning is given to a statechart represented by the ADT described in the previous chapter through semantic
functions that translate it into a relation over the current con�guration and next con�guration. Some
aspects of these semantics are compositional and their meaning can be given in terms of functions de�ned
recursively on their syntactical structure. This chapter examines the compositional aspects of the semantics
as a preliminary step in our formalization. The next chapter will look at using these de�nitions to give the
complete next con�guration relation.

The �rst section presents de�nitions for quanti�er abstractions which are used throughout the semantic
de�nitions to deal with �nite sets of elements like states or variables. The next section describes how the
con�guration is modeled, including data-items, events, event counters, and a representation for the states
the system is currently in. In Sections 4.5, 4.7, and 4.9, the semantic functions for expressions, events, and
actions are de�ned over the recursive data types given in the previous chapter. These de�nitions are used

in two main functions:

ENABLED sc tname cf : which is true if the transition tname of statechart sc is enabled in cf (Section 4.8),
and

RESULT sc tname : which returns the list of modi�cations to the con�guration given by the transition
tname of statechart sc (Sections 4.11).

These will be used in the next chapter to de�ne the next con�guration relation.

4.2 Quanti�er Abstractions

As a preliminary step, we de�ne a set of quanti�er abstraction functions that express conditions over �nite
sets.

EVERY : returns the conjunction of applying a predicate p to all elements of a list x:

EVERY p x =def (x = [ ])! T j p (HD x) ^ EVERY p (TL x)
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EXISTS : returns the disjunction of applying a predicate p to the elements of a list x:

EXISTS p x =def (x = [ ])! F j p (HD x) _ EXISTS p (TL x)

ALL FALSE : returns the conjunction of the negation of the predicate p applied to each element in the list
x:

ALL FALSE p x =def (x = [ ])! T j :(p (HD x)) ^ ALL FALSE p (TL x)

X EXISTS : exactly one element of the list x returns true when p is applied to all elements in the list x:

X EXISTS p x =def

(x = [ ])! F j

(p (HD x) ^ALL FALSE p (TL x)) _ (:p (HD x) ^ X EXISTS p (TL x))

PAIR EVERY : given two lists, returns the conjunction of applying the predicate p to pairs made from
corresponding element of the lists:

PAIR EVERY p x1 x2 =def

((x1 = [ ]) _ (x2 = [ ]))! T j p (HD x1;HD x2) ^ EVERY p (TL x1) (TL x2)

ALT X EXISTS : given two predicates p1 and p2, returns the disjunction of the condition on each element n
x that p1 is true for that element and p2 is true for all other elements in the list:

ALT X EX p1 p2 x =def

(x = [ ])! F j

(p1 (HD x) ^ EVERY p2 (TL x)) _ (p2 (HD x) ^ ALT X EX p1 p2 (TL x))

It is also useful to existentially quantify over all the variables in a bit vector. The predicate EXISTSN n p

is used to state the condition that there exists some set of Booleans of size n that satisfy the predicate p. It
existentially quanti�es all the Boolean variables making up the bit vector:1

EXISTSN AUX (SUC n) p list =def

(n = 0)! p list j (9a:EXISTSN AUX n p (CONS a list))

EXISTSN n p =def EXISTSN AUX n p [ ]

4.3 An Abstract Model of the Con�guration

The con�guration of the system is represented by the values of a set of variables which include elements for
the basic states, data-items, and events. As discussed in the last chapter these values can be Booleans or
natural numbers. We can describe a con�guration as a function mapping variables to values:

Config � V ariable! V alue

The variables cf and cf
0 will be used in functions to represent con�gurations. The function that accesses

the value of any variable is called SemVAR and has the following de�nition:

SemVAR v =def �cf: cf v

We also need functions that operate on values. These semantics are parameterized by the underlying
representation used for values through the following functions. Chapter 6 discusses the representation of
values chosen for this work and the de�nitions of these functions.

1Over �nite domains, existential quanti�cation is equivalent to taking the disjunction of the predicate p applied to all the

possible combinations of values for these variables.
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NVAL : Num! V alue - returns the value representation for the number

BVAL : Bool ! V alue - returns the value representation for the Boolean

BOOL : V alue! Bool - returns the Boolean for the value representation

NPLUS : V alue � V alue! V alue - returns the representation for the result of adding the two values

NMULT : V alue� V alue! V alue - returns the representation for the result of multiplying the two values

NGREATER : V alue � V alue ! V alue - returns the representation for the Boolean indicating if the �rst
argument has a greater numeric value than the second one

BOR : V alue � V alue ! V alue - returns the representation for taking the logical OR of the two values
representing Booleans

BAND : V alue� V alue! V alue - returns the representation for taking the logical AND of the two values
representing Booleans

BNOT : V alue ! V alue - returns the representation for taking the logical NOT of the value representing
a Boolean

BFALSE : V alue - returns the representation for False

BTRUE : V alue - returns the representation for True

EQVAL : V alue�V alue! V alue - returns the representation for the Boolean indicating if the �rst argument
is equal to the second one

MAXVALUE : V alue! Bool - test whether a value is equal to the maximum value that can be represented

4.4 Hierarchy of States

The set of variables includes not only the traditional idea of variables used in computation but also a record
of the states the system is currently in since this is explicit in statecharts.

As previously described, statecharts use an AND/OR hierarchy of states for clarity in the graphical rep-
resentation of the system. One Boolean variable represents each basic state to indicate whether or not the
system is currently in that state. Higher-level states are given meaning through the values of the basic states:

INSTATE sc cf stname =def

(TYP sc stname = B) ^ BOOL(SemVAR stname cf) _

(TYP sc stname = A) ^ EVERY (INSTATE sc cf) (SUBSTATES sc stname) _

(TYP sc stname = O) ^ EXISTS (INSTATE sc cf) (SUBSTATES sc stname)

where sc is the statechart, and stname is the name of the state. Providing the system is currently in a
legal state con�guration, EXISTS is equivalent to X EXISTS for the condition on substates of an OR state.

For example, if sc is the tra�c light statechart in Figure 2.1, then INSTATE sc cf N S G2 would partially
evaluate to

BOOL(SemVAR N S G cf)

since it is a basic state. Because NORMAL is an AND-state with two substates and both of these substates
are OR-states each with three basic substates, INSTATE sc cf NORMAL partially evaluates to:

(BOOL (SemVAR N S R cf) _ BOOL (SemVAR N S Y cf) _

BOOL (SemVAR N S G cf)) ^

(BOOL (SemVAR E W R cf) _ BOOL (SemVAR E W Y cf) _

BOOL (SemVAR E W G cf))

2From now on we will use abbreviated names for the states in the tra�c light. For example,N S G refers to N S.GREEN.
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Since all basic states have a truth value, when following a transition, it becomes necessary to explicitly
say that the source basic states are exited (i.e. take on the value false) and the destination basic states are
entered (i.e. take on the value true). Section 4.10 describes how to determine which basic states are a�ected
for a transition.

4.5 Expressions

Expressions are used in the conditions and actions of transition labels. Their semantic functions take
arguments of the type:

Expsem � Config ! V alue

and return an element of type Expsem. They make use of the operations on values in the following ways:
SemCONST n =def �cf:NVAL n

SemPLUS (a1; a2) =def �cf:NPLUS (a1 cf; a2 cf)
SemMULT (a1; a2) =def �cf: NMULT (a1 cf; a2 cf)
SemGREATER (a1; a2) =def �cf:NGREATER (a1 cf; a2 cf)
SemEQUAL (v1; v2) =def �cf:EQVAL (v1 cf; v2 cf)
SemAND (b1; b2) =def �cf:BAND (b1 cf; b2 cf)
SemOR (b1; b2) =def �cf:BOR (b1 cf; b2 cf)
SemNOT b =def �cf:BNOT (b cf)
SemTRUE =def �cf:BTRUE

SemFALSE =def �cf:BFALSE

Putting these all together, we can de�ne the following function of the recursive data type Exp:

SemExp (VAR v) sc =def SemVAR v

SemExp (CONST n) sc =def SemCONST n

SemExp (IN stname) sc =def �cf:BVAL (INSTATE sc cf stname)

SemExp (PLUS a1 a2) sc =def SemPLUS (SemExp a1 sc; SemExp a2 sc)

SemExp (MULT a1 a2) sc =def SemMULT (SemExp a1 sc; SemExp a2 sc)

SemExp (EQUAL a1 a2) sc =def SemEQUAL (SemExp a1 sc; SemExp a2 sc)

SemExp (GREATER a1 a2) sc =def SemGREATER (SemExp a1 sc; SemExp a2 sc)

SemExp (OR b1 b2) sc =def SemOR (SemExp b1 sc; SemExp b2 sc)

SemExp (AND b1 b2) sc =def SemAND (SemExp b1 sc; SemExp b2 sc)

SemExp (NOT b) sc =def SemNOT (SemExp b sc)

SemExp (TRUE) sc =def SemTRUE

SemExp (FALSE) sc =def SemFALSE

SemExp is higher-order because it returns a function giving the denotation of the expression, which can
be evaluated relative to a particular con�guration. This style of function has been used previously to give
the semantics of a small imperative language where all of its elements are compositional [18].

4.6 Conditions

To evaluate a condition in a transition label, we assume the expression represents a Boolean value:

SemCondition cond sc =def � cf:BOOL (SemExp cond sc cf)

Given a con�guration, this predicate is true when the expression evaluates to the Boolean value true.
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4.7 Events

The meaning of an event expression is true if the event occurred in the previous step. The event may involve
examining the values of variables in con�gurations earlier than the current one to determine if values have
changed in a particular step. Except for timeouts, this is relative to the previous con�guration only; for
timeouts, this can involve checking several steps earlier. To minimize the number of values used in the overall
expression, we must determine if a given event occurred by examining the current con�guration only.

A counter is maintained for each event which is reset to zero when the event occurs and otherwise is
incremented in each time step [23]. When the counter is evaluated in the current con�guration, it gives
a measure of how many steps occurred since the event last happened. In the translation process, the
statechart is examined to determine which events trigger transitions and a counter is created for each of
these. To determine if an event occurred in the previous step, we check to see if the counter is zero in the
current step; for a timeout, we check if the counter is equal to the timeout step number. This allows us to
interpret events as Boolean expressions evaluated relative to the current con�guration only.

Since each counter has a maximum value, we must ensure that it does not falsely indicate that the event
occurred when it overows. This is done by incrementing it only up to its maximum value. This maximum
value, say max, can never be used to indicate an event occurring, since it really means the event happened
max or more steps ago. This means that if the timeout step number of a particular timeout is n then n

must be less than max.
A transition is enabled if its trigger, consisting of events, is true in the current con�guration. The

semantic functions for events have the type:

Evsem � Config ! Bool

so they can be evaluated in the current con�guration to determine if the event occurred in the previous step.
Single events and timeouts are evaluated by examining their counters. The semantic function for timeouts

checks whether the denotation of the counter expression (counter) equals the denotation of the expression
(exp) for the timeout step number when both are evaluated in the current con�guration:

SemTM (counter; exp) =def

�cf::MAXVALUE (counter cf) ^ BOOL (EQVAL (counter cf; exp cf))

The timeout step number is always evaluated in the current con�guration resolving the questions raised in
Sect.2.2.4.

As mentioned in the previous chapter, we distinguish between single and compound events so that
timeouts can only be based on single events. Single events include primitive events, and entering and exiting
states, while compound events include timeouts, and events joined by logical connectives. This way a counter
for each single event is su�cient to evaluate any timeout. Keeping a separate counter for each timeout (even
if two timeouts are based on the same event) is a more general method but was judged to be unnecessary
for this research.

The meaning of single events is the value of their counters. This is de�ned over the recursive data type
SingleEvent as:

SemSingleEvent (EX stname counter) =def SemVAR counter

SemSingleEvent (EV evn counter) =def SemVAR counter

SemSingleEvent (EN stname counter) =def SemVAR counter

The function SemSingleEvent gives the denotation of a single event as a function mapping a con�guration
onto the value of the event's counter in that con�guration. Note that the name of the primitive event, or
the name of the state entered or exited is not used at all to determine the truth value of the event.

Compound events can be created using the operators AND E, OR E, and NOT E. These take on their
intuitive meanings:

SemAND E (ev1; ev2) =def �cf: (ev1 cf) ^ (ev2 cf)

SemOR E (ev1; ev2) =def �cf: (ev1 cf) _ (ev2 cf)

SemNOT E ev =def �cf:: (ev cf)
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Note that these functions are not equivalent to the functions that evaluate the meaning of expressions since
SemAND E, SemOR E, and SemNOT E operate on the logical values of events while SemAND, SemOR, and
SemNOT operate on con�guration values.

The complete expression for events can be given as:

SemEvent (NONE) sc =def �cf:T

SemEvent (SE se) sc =def SemTM (SemSingleEvent se; SemCONST 0)

SemEvent (EVEXPR ev cond) sc =def

�cf: SemEvent ev sc cf ^ SemCondition cond sc cf

SemEvent (TM se exp) sc =def SemTM (SemSingleEvent se; SemExp exp sc)

SemEvent (AND E ev1 ev2) sc =def

SemAND E (SemEvent ev1 sc; SemEvent ev2 sc)

SemEvent (OR E ev1 ev2) sc =def

SemOR E (SemEvent ev1 sc; SemEvent ev2 sc)

SemEvent (NOT E ev) sc =def SemNOT E (SemEvent ev sc)

4.8 Enabling a Transition (ENABLED)

Using the semantics for events and what it means to be in a state, we can de�ne when a transition is enabled:

ENABLED sc tname cf =def

let tr = TRAN sc tname in

INSTATE sc cf (SRC tr) ^ SemEvent (EVENT tr) sc cf

where tname is the name of a transition. The trigger is evaluated relative to the con�guration at the
beginning of the step.

4.9 Actions

The transitions are labeled with actions which modify the data items in the system. These actions can all
be de�ned in terms of an assignment statement. The semantic function for an assignment statement returns
a pair, (v; exp), which indicates that the expression exp, evaluated in the current con�guration, should be
assigned to the variable v in the next con�guration.

SemASN v exp =def [(v; exp)]

A SKIP statement makes no changes to the system:

SemSKIP =def [ ]

The BOTH action returns the set made up of the changes from its constituent actions:

SemBOTH a1 a2 =def APPEND a1 a2

MAKE FALSE and MAKE TRUE assign the value false or true to their variable argument. The statement
GEN generates an internal primitive event which means its variable takes on the opposite value than it had
previously to create the occurrence of the event in this time step.

The meaning of the actions can be grouped together and recursively de�ned over the data type Action
as:

SemAction (MAKE TRUE v) sc =def SemASN v (SemTRUE)

SemAction (MAKE FALSE v) sc =def SemASN v (SemFALSE)
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SemAction (ASN v e) sc =def SemASN v (SemExp e sc)

SemAction (BOTH a1 a2) sc =def

SemBOTH (SemAction a1 sc) (SemAction a2 sc)

SemAction (GEN ev) sc =def SemASN ev (SemNOT(SemVAR ev))

SemAction (NILL) sc =def SemSKIP

SemAction returns a list of pairs of variables and denotations of expressions.

4.10 Source and Destination State

The result of executing a transition modi�es the con�guration not only by the actions but also by leaving
the source state and entering the destination state.

The variables for the basic states of the source state must be set to false and the ones for the destination
should be set to true as the defaults allow. If the destination modi�cations overlap with the ones for the
source (for example if a transition loops), then the changes for the destination take precedence.

To enter the destination state, it may be necessary to follow default entrances. Given a destination state
name (stname), the set of modi�cations to the basic states are given by:

ENTERDEST sc stname =def

(TYP sc stname = B)! [(stname; �cf:BTRUE)] j

((TYP sc stname = A)!

FLAT (MAP (ENTERDEST sc) (SUBSTATES sc stname)) j

ENTERDEST sc (DEFAULT sc stname))

For example, in the tra�c light of Figure 2.1 (tls), the transition t7 goes from the state FL (ashing) to
the state NORMAL. This destination state is an AND-state whose components are further decomposed
into OR-states. Following the defaults, ENTERDEST tls NORMAL returns the list:

[(E W R; �cf:BTRUE); (N S G; �cf:BTRUE)]

The modi�cations to exit the source state (stname) are also determined by traversing through the
hierarchy, but in this case, before returning a (variable, expression) pair, the list of modi�cations for entering
the destination are checked so that conicting assignments are not returned. This list is given by the
parameter mods:

EXITSRC mods sc stname =def

((TYP sc stname = B) ^ :MEMBER stname mods)! [(stname; �cf:BFALSE)] j

FLAT (MAP (EXITSRC mods sc) (SUBSTATES sc stname))

Some of these basic states will already have the value false so in e�ect they keep their previous values.
For transition t6 which leaves the state NORMAL, EXITSRC returns the list of pairs to set all the basic

states in NORMAL to false:

[(E W R; �cf:BFALSE); (E W Y; �cf:BFALSE); (E W G; �cf:BFALSE);
(N S R; �cf:BFALSE); (N S Y; �cf:BFALSE); (N S G; �cf:BFALSE)]

4.11 Executing a Transition (RESULT)

The complete semantics for the result of one transition combines the functions for entering and exiting the
source and destination and the actions:
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Figure 4.1: Relationship among compositional de�nitions

RESULT sc tname =def

let tr = TRAN sc tname in

let mods = ENTERDEST sc (DEST tr) in

APPEND mods (APPEND (EXITSRC (MAP FST mods) sc (SRC tr))

(SemAction (ACTION tr) sc))

4.12 Summary

This chapter has presented the compositional aspects of the semantics of statecharts. Figure 4.1 shows the
\uses" diagram for the primary functions de�ned in this chapter; each arrow may be read as \is de�ned in
term of".

The de�nitions ENABLED, RESULT, INSTATE and SemVAR will be used in the next chapter.
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Chapter 5

A Semantics for Statecharts

This chapter presents the formalization of an operational semantics for statecharts as a next
con�guration predicate that holds true if one system con�guration is a successor to another for a
given statechart. The compositional aspects of the semantics were given in the previous chapter

and will be used here. The di�culty comes in determining both which transitions can be taken
and what the combined result is of following a set of transitions. Particular attention is given to
issues such as what is a step, race conditions, and multiple actions associated with one transition.
The parts of the semantics are illustrated using the tra�c light example.

5.1 Introduction

The previous chapter described the compositional aspects of the meaning of a statechart. These functions
are used by other de�nitions to create a relation over the current con�guration and next con�guration of a
given statechart. This relation, called NC, has the form:

NC sc varlist cf cf

0

where,
sc is the statechart,

varlist is the set of internal variables,
cf is the current con�guration, and
cf

0 is the next con�guration.

NC is true if cf 0 is a con�guration that the system, described by the statechart sc, could be in one step
after being in cf . The statechart controls the variables in the list varlist. All other variables could possibly
change their values in a step. Because of non-determinism, there may be multiple next con�gurations that
satisfy the relation for a given current con�guration.

The di�culty in giving the semantics for statecharts comes in expressing both which transitions can be
taken and what the combined result is of following a set of transitions. The set of transitions that can be

taken is limited by which ones are enabled, the hierarchy of the statechart and the priority within that
hierarchy. The result of following a transition may depend on whether other transitions modify the same
variables. It is also necessary to express the condition that if an internal variable is not modi�ed in a given
step then it retains its previous value.

NC is de�ned using four semantic functions that formalize the properties of statecharts stated in Chapter
2:
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NC sc varlist cf cf
0 =def

let tnames = GET TRANS NAMES sc in

EXISTSN (LENGTH tnames) (�tflags:
TRANS COND cf sc tflags ^ (5.1)
STATE COND sc cf

0
^ (5.2)

VAR COND sc cf cf
0
tflags varlist ^ (5.3)

EVENT COND sc cf cf
0) (5.4)

Informally, this relation checks whether there is any way (EXISTSN) of choosing a set of transitions to
follow that will move the system from cf to cf 0 in one step. The sections in this chapter de�ne the following
parts of the next con�guration relation:

TRANS COND: conditions on the set of transitions that can be taken, including hierarchy, priority and that
the chosen transitions are enabled (Section 5.2)

STATE COND: ensuring that the next state con�guration is legal (Section 5.3)

VAR COND: conditions on all the variables in the next con�guration (i.e. whether they are modi�ed by a
transition that is taken or keep their previous values) (Section 5.4)

EVENT COND: determining if events occur in a step to update the event counters mentioned in the previous
chapter (Section 5.5)

The functions given in the previous chapter return denotations for transition triggers (ENABLED) and ex-
pressions used in assignment statements (RESULT). These are evaluated relative to the current con�guration.
Assignments are made to variables in the next con�guration.

The validity of these semantics depends on our interpretation of the operation of statecharts, and in
the correctness of expressing this interpretation in the target language. They have been informally checked
using a mechanical proof-assistant to reduce the semantic functions to Boolean expressions over the variables
for particular problems. They have also been executed in the model checker described in the next chapter.
Through this process, errors were discovered and �xed, and we have increased con�dence in the result.

5.2 Transition Condition (TRANS COND)

A step was de�ned previously as following zero or more transitions that satisfy a number of conditions. In
this section, we will formalize the meaning of those conditions.

Each transition is represented by a Boolean ag indicating if the transition is taken in this step. If a
vector of transition ags satis�es the transition condition then following these transitions is a step. Because
statecharts can describe non-deterministic operation, there may be several possible sets. The purpose of the

transition condition is to ensure that the set chosen satis�es the various relationships that must hold among
transitions:

1. Any transitions that are followed must be enabled. A transition is enabled if the system is in its source
state and its trigger is true.

2. Within an OR-state, only one transition can be followed.

3. Transitions may be followed within each substate of an AND-state.

4. If two or more transitions are enabled and have the same source, only one will be taken but it is
indeterminate as to which will be chosen.

5. Triggers are evaluated relative to the con�guration at the beginning of the step.

6. Taking no transitions is a legitimate step if no transitions are enabled, however, there may still be
changes in the con�guration such as updating event counters.
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7. If a transition from a parent state is enabled, it has precedence over one from a descendant, where the
priority is based on the source state of the transition.

8. Timeouts are determined relative to the last time the timeout event occurred throughout the system.

Providing the system is currently in a legal state con�guration, the next con�guration will be legal if the
set of transitions taken satis�es these conditions. A step does not include transitions triggered by events
occurring in this step and therefore only transitions out of the set of states at the beginning of the step are
considered. These issued were discussed in Section 2.2.1.

To formulate these conditions on transitions, we can �rst write a predicate that determines if the set
of transitions among the descendants of a given state (stname) satis�es these conditions. This predicate
depends on transitions chosen throughout its descendant states. Using tnames as the set of transition
names of statechart sc, and tflags as the bit vector of ags for the transitions, the complete de�nition for
this predicate is:

TRANS COND AUX cf sc tnames tflags stname =def

(TYP sc stname = B)! T j

(TYP sc stname = A)!

EVERY (TRANS COND AUX cf sc tnames tflags) (SUBSTATES sc stname) j

let here = MAP NAME (TRANSOFSTATE sc stname) and

below = FLAT (MAP (GET TRANS NAMES sc) (SUBSTATES sc stname)) in

let prioritytest = EXISTSN (LENGTH here) (ONE LEVEL cf sc here) in

(prioritytest ^

ONE LEVEL cf sc here (MAP (GET TR FLAG tnames tflags)here) ^

ALL FALSE (GET TR FLAG tnames tflags) below) _

(:prioritytest ^

ALL FALSE (GET TR FLAG tnames tflags)here ^

EVERY (TRANS COND AUX cf sc tnames tflags) (SUBSTATES sc) stname)

The above de�nition can be explained by considering the three main parts corresponding to the three types
of states. If stname is a basic state (TYP sc stname = B), then there are no transitions below it and
therefore no limits are speci�ed on any transitions in the statechart for this predicate to hold true for this
state.

For AND-states (TYP sc stname = A), there are no transitions to consider at this level but it must

ensure that TRANS COND AUX holds for all substates (orthogonal components) of the AND-state.
The last case is if the state is an OR-state which may have transitions among its substates. These names

of these transitions can be determined by:

let here = MAP NAME (TRANSOFSTATE sc stname)

The system can take exactly one of these transitions providing it is enabled. Using the parameter flags to
represent a possible set of ags for the transitions in here, this exclusive-OR condition can be stated as:

ONE LEVEL cf sc here flags =def

X EXISTS (�y: y) flags ^

PAIR EVERY (�(flag; tname): flag =) ENABLED sc tname cf) flags tnames

This predicate says that exactly one transition ag from the set given in flags must be set to true and if it
is true then it must be enabled.

The priority of transitions is given by checking if there is any set of ags for transitions given by here

that satisfy the function ONE LEVEL:

let prioritytest = EXISTSN (LENGTH here) (ONE LEVEL cf sc here)
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If the priority test is satis�ed then the ags for the transitions in here are set by ONE LEVEL and all ags
for transitions originating within this state's substates should be set to false (ALL FALSE). The labels for
transitions originating within the substates of a state are determined by:

let below = FLAT (MAP (GET TRANS STATE sc) (SUBSTATES sc stname))

When the priority test at this level is false, the ags for transitions at this level are set to false, and
EVERY substate of the OR-state is examined. Assuming that the system is already in a legal con�guration,
it should only be in one substate of an OR-state, therefore no transitions will be enabled in any of the other
substates and their transition conditions will reduce to true.

This completes the explanation of the parts of TRANS COND AUX. Note that if the priority test is
never satis�ed then all the basic states will be considered. This means all the transition ags for transitions
originating at descendant states of stname will be set to false. This is still a step as given in the sixth
property at the beginning of this section.

5.2.1 Evaluating the Transition Condition

To illustrate the meaning of the auxiliary transition condition, we can look at the partial evaluation of it for
the state E W. Within this state, the transitions t3, t4, and t5 could possibly be taken. The ags x3, x4,
and x5 are used in the priority test:

let prioritytest = 9x3 x4 x5:

((x3 ^ :x4 ^ :x5) _ (:x3 ^ x4 ^ :x5) _ (:x3 ^ :x4 ^ x5)) ^

(x3 =) (INSTATE sc cf E W G^

SemEvent (TM(EN(E W G;EN E W G); EW G T)) sc cf)) ^

(x4 =) (INSTATE sc cf E W Y ^

SemEvent (TM(EN(E W Y;EN E W Y);CONST 2)) sc cf)) ^

(x5 =) (INSTATE sc cf E W R ^

SemEvent (INN S R) sc cf))

If the priority test holds then the transition ags are set appropriately for this level, otherwise these ags
are set to false. Since the substates of E W are all basic states, the transition condition reduces to true for
each of them. Therefore, TRANS COND AUX partially evaluates to:

(prioritytest ^

((t3 ^ :t4 ^ :t5) _ (:t3 ^ t4 ^ :t5) _ (:t3 ^ :t4 ^ t5)) ^

(t3 =) (INSTATE sc cf E W G ^

SemEvent (TM(EN(E W G;EN E W G); EW G T)) sc cf)) ^

(t4 =) (INSTATE sc cf E W Y ^

SemEvent (TM(EN(E W Y;EN E W Y);CONST 2)) sc cf)) ^

(t5 =) (INSTATE sc cf E W R ^

SemEvent (IN N S R) sc cf))

_

(:prioritytest ^ (:t3 ^ :t4 ^ :t5))

If the system is currently in the E W R state (the source of transition t5) and the N S R state in the
other component ofNORMAL then transition t5 will be enabled. Making x5 true and x3 and x4 false will
satisfy the priority test. There are no transitions from states below these and this part of the condition does
not limit any of the other transition ags. Therefore, a bit vector for the transition ags that will satisfy the
above condition is:
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t0 t1 t2 t3 t4 t5 t6 t7

. . . F F T . .

where \." represents a \don't care" value.

Using the same con�guration cf , the following assignment of values to the transition ags:

t0 t1 t2 t3 t4 t5 t6 t7

. . . T F T . .

would make TRANS COND AUX false since the exclusive-OR of taking transitions within a state is not
satis�ed.

5.2.2 The Complete Transition Condition

For the complete statechart, the transition condition has to hold starting from the root state:

TRANS COND cf sc tflags =def (5.1)

let tnames = GET TRANS NAMES sc in

TRANS COND AUX cf sc tnames tflags (ROOT sc)

5.3 State Condition (STATE COND)

The system is in a legal state con�guration, if it satis�es the following two conditions:

1. If the system is in an OR-state, it must be in exactly one of the OR-state's substates.

2. If the system is in an AND-state, it must be in all of its substates.

If the system tries to follow a set of transitions that result in a non-legal state con�guration then these
conditions will not hold. For some statecharts, there maybe not be any possible next con�gurations, because
TRANS COND can only be satis�ed by a set of transitions that lead to states that violate the state conditions.

Starting at a particular state in the hierarchy (stname) that the system is currently in: if it is an AND-
state, then we have to be in all of its components; if it is an OR-state, we must be in exactly one of its
substates. For the substates that the system is not in then all descendent basic states must have the value

false.

ALL F STATES sc cf stname =def

(TYP sc stname = B)! :BOOL (SemVAR stname cf) j

EVERY (ALL F STATES sc cf) (SUBSTATES sc stname)

STATE COND AUX sc cf stname =def

(TYP sc stname = B)! BOOL (SemVAR stname cf) j

((TYP sc stname = A)!
EVERY (STATE COND AUX sc cf) (SUBSTATES sc stname) j

ALT X EX (STATE COND AUX sc cf) (ALL F STATES sc cf)
(SUBSTATES sc stname))

By starting at the root state, we ensure that the state condition holds for the entire statechart:

STATE COND sc cf =def STATE COND AUX sc cf (ROOT sc) (5.2)
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5.3.1 Evaluating the State Condition

Turning again to the tra�c light example in Figure 2.1, the STATE COND AUX condition for the OR-state
N S would partially evaluate to:

ALT X EX (STATE COND AUX sc cf) (ALL F STATES sc cf) (SUBSTATES sc N S)

The substates ofN S are: N S G,N S R,N S Y. The system must be in exactly one of these basic states:

(SemVAR N S G cf ^ :SemVAR N S R cf ^ :SemVAR N S Y cf) _

(:SemVAR N S G cf ^ SemVAR N S R cf ^ :SemVAR N S Y cf) _

(:SemVAR N S G cf ^ :SemVAR N S R cf ^ SemVAR N S Y cf)

Overall the STATE COND limits the con�guration to one of the columns of values for the basic states in
the following table, where blanks entries have the value F:

FL T

N S G T T T

N S Y T T T

N S R T T T

E W G T T T

E W Y T T T

E W R T T T

5.4 Variable Condition (VAR COND)

Given the set of transitions that can be taken, we now have to determine the e�ects of these transitions
on the whole system. Their e�ects include modifying variables, generating events, and entering and exiting
states. In order to resolve conicts among transitions, all these modi�cations are collected and then resolved
together. The function RESULT de�ned in the previous chapter gives the meaning of the actions, and entering
and leaving states, as a set of pairs of variables and denotations of expressions, which can be evaluated relative
to a particular con�guration.

As stated in Chapter 2, the values for the variables in the next con�guration must satisfy the following
three properties:

1. If a given transition is taken, at the end of the step the system will be in a con�guration that includes
the destination state of the transition and all its actions will be carried out except where conicts occur
among the actions of all transitions.

2. If a variable is not modi�ed by any transition in a step, then it retains its previous value.

3. If more than one modi�cation is made to the same variable (i.e. a conict occurs) then exactly one of
these modi�cations will be true in the next con�guration.

Only variables under this system's control should necessarily keep their previous value if they are not
modi�ed, i.e. internal variables. External data-items and external events may not retain their previous
values between steps. The variables for the basic states are all internal, but the classi�cation of events and
data items as external or internal must be given. We assume that the argument varlist includes only the
internal variables.

All modi�cations are considered together, whether they came from the same transition, perhaps in a
BOTH statement, or from di�erent transitions. The variable condition resolves conicts among assignments
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(CH de�ned in Section 5.4.2) and ensures the last property for variables that are not changed (UNCH de�ned
in Section 5.4.1):

VAR COND sc cf cf
0
tflags varlist =def (5.3)

EVERY (�v:UNCH sc v cf cf
0
tflags _

CH sc v cf cf
0
tflags) varlist

where,
sc is the textual representation for the statechart,
varlist is the set of internal variables,
cf is the current con�guration,
cf

0 is the next con�guration,
tflags is a bit vector containing the ags for the transitions.

5.4.1 Unchanged Variables

Since the function RESULT returns a list of modi�cations to variables, we can determine the set of variables

that are modi�ed by taking the �rst element of each pair in the list of modi�cations:

CHANGEDVAR modlist =def MAP FST modlist

The transition ags, tflags, give the set of transitions that are followed. For a given variable (v), the
predicate UNCH will be true if, for each transition (1) the transition is not followed (transcheck), or (2) the
transition does not modify v, and v keeps its previous value:

UNCH sc v cf cf
0
tflags =def

let tnames = GET TRANS NAMES sc in

let transcheck tname = :GET TR FLAG tnames tflags tname

and varcheck tname = :MEMBER v (CHANGEDVAR (RESULT sc tname)) in

EVERY (�tname: (transcheck tname) _ (varcheck tname)) tnames ^

BOOL(EQVAL (SemVAR v cf
0
; SemVAR v cf))

This predicate expresses the second property which states that variables keep their previous values if
they are not modi�ed by a transition.

5.4.2 Resolving Conicts

When conicts occur, there are several di�erent possible results, as was discussed in Section 2.2.2. The
interpretation that was chosen is that the actions are atomic and exactly one of the possible modi�cations to
the variable occurs. Actions generated by BOTH statements fall into this category as well since no sequencing
is assumed among multiple actions on a transition.

The function ACT looks at the list of modi�cations (modlist) and forms the disjunction of all possible
modi�cations to a variable (v):

ACT v modlist cf cf
0 =def

EXISTS

(�asn: (FST asn = v) ^ BOOL(EQVAL (SemVAR v cf
0
; (SND asn) cf)))

modlist

Applying the ACT function to the results of each transition and then taking the disjunction of these
clauses for all chosen transitions produces the e�ect of taking the disjunction of all possible modi�cations to
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a variable (v) in a step:

CH sc v cf cf
0
tflags =def

let tnames = GET TRANS NAMES sc in

EXISTS

(�tname:GET TR FLAG tnames tflags tname ^

ACT v (RESULT sc tname) cf cf
0)

tnames

The variable condition results in a Boolean expression for each variable in one of two forms:

1. cf 0
v = cf v when the variable has not been a�ected in this step, or

2. (cf 0
v = e1 cf) _ (cf 0

v = e2 cf) _ : : : (cf 0
v = en cf) where a variable takes on one of the

modi�cations made to it in this step

A basic state variable will never be assigned multiple possible values for a given set of transitions.

5.4.3 Evaluating the Variable Condition

In the tra�c light example, there are no conicts in modi�cations to variables and only the values of basic
states are changed in any step, but the expansion of the variable condition for one variable will provide
an idea of what it reduces to for any statechart. Using t0 through t7 as the ags associated with the
transitions in Figure 2.1, the predicate VAR COND evaluated for the variable FL representing the basic
state FLASHING, for the current con�guration (cf) and the next con�guration (cf 0), partially evaluates
to:

(:t7 ^ :t6 ^ BOOL (EQVAL (SemVAR FL cf
0
; SemVAR FL cf))) _

(t7 ^ BOOL (EQVAL (SemVAR FL cf

0
;BFALSE))) _

(t6 ^ BOOL (EQVAL (SemVAR FL cf
0
;BTRUE)))

This means if the transitions that could modify FL are not taken (t6 and t7) then FL keeps its previous
value. Otherwise the changes given by each transition when it is followed are stated.

5.5 Event Condition (EVENT COND)

Evaluating events by examining counters means another another condition must be added to the next
con�guration relation to update the event counters. This condition looks at the events labeling each transition
to update any event counters used by it:

EVENT COND sc cf cf
0 =def (5.4)

let tnames = GET TRANS NAMES sc in

EVERY (�tname:UpdateEvent (EVENT (TRAN sc tname)) sc (cf; cf 0)) tnames

where tnames is the set of transition names. This does not put any restrictions on the variables of the next
con�guration other than the event counters. The event counters are considered external so that they will

not be a�ected by VAR COND.

In order to de�ne UpdateEvent, we need predicates that state the conditions that the counter is reset to
zero when an event occurs and otherwise it is incremented providing it is not already at its maximum value.
RESET states that the counter has the value zero in the con�guration cf .

RESET counter cf =def BOOL(EQVAL (SemVAR counter cf; SemCONST 0 cf))
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INC expresses the relationship between the current and next con�guration when the counter is incremented.
Note that if the counter already holds its maximum value it is not changed:

INC counter cf cf
0 =def

(MAXVALUE (SemVAR counter cf) ^

BOOL (EQVAL (SemVAR counter cf
0
; SemVAR counter cf))) _

(:(MAXVALUE (SemVAR counter cf)) ^

BOOL (EQVAL (SemVAR counter cf
0
;

PLUS (SemVAR counter cf; SemCONST 1 cf))))

For each single event, we can de�ne a relation that holds true if the event occurs in this step. The
following functions determine if the system enters or exists a state (stn):

SemEN sc stname =def �(cf; cf 0)::INSTATE sc cf stname ^ INSTATE sc cf
0
stname

SemEX sc stname =def �(cf; cf 0): INSTATE sc cf stname ^ :INSTATE sc cf
0
stname

A primitive event occurs when the variable representing it (evn) changes its value between cf and cf
0:

SemEV evn =def �(cf; cf 0)::BOOL (EQVAL (SemVAR evn cf

0
; SemVAR evn cf))

The predicate to update the counters for single events, uses one of the three functions de�ned above,
given as a parameter in check, to determine if it should reset or increment the counter:

Update check counter =def

�(cf; cf 0):

(check (cf; cf 0) ^ RESET counter cf
0) _

(:(check (cf; cf 0)) ^ INC counter cf cf
0)

Grouping these together, UpdateSingleEvent, takes a pair of con�gurations and returns a predicate limiting
the value of the counter in the next con�guration for the single events:

UpdateSingleEvent (EV evn counter) sc =def

Update (SemEV evn) counter

UpdateSingleEvent (EX stname counter) sc =def

Update (SemEX sc stname) counter

UpdateSingleEvent (EN stname counter) sc =def

Update (SemEN sc stname) counter

Finally, UpdateEvent is a recursively de�ned predicate that uses the above parts to express what it means
to update any event:

UpdateEvent (NONE) sc =def �(cf; cf 0):T

UpdateEvent (EVEXPR ev exp) sc =def UpdateEvent ev sc

UpdateEvent (SE se) sc =def UpdateSingleEvent se sc

UpdateEvent (TM se exp) sc =def UpdateSingleEvent se sc

UpdateEvent (AND E ev1 ev2) sc =def

�(cf; cf 0): (UpdateEvent ev1 sc (cf; cf 0) ^ UpdateEvent ev2 sc (cf; cf 0) )

UpdateEvent (OR E ev1 ev2) sc =def

�(cf; cf 0): (UpdateEvent ev1 sc (cf; cf 0) ^ UpdateEvent ev2 sc (cf; cf 0) )

UpdateEvent (NOT E ev) sc =def UpdateEvent ev sc
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5.6 Summary

This chapter and the previous one together present an operational semantics for a working subset of stat-
echarts as a next con�guration relation. Because these are all total functions, every statechart has an
interpretation. Some current con�gurations in statecharts that violate the assumptions made about their
form may have no possible next con�gurations so the relation will always fail.

The di�culty in giving these semantics is that the components of statecharts are not completely compo-
sitional. The meaning of expressions and actions are expressed simply by examining their parts. Timeout
events use counters so they can be evaluated relative to the current con�guration only. But the overall
conditions on transitions and values of variables in the next con�guration have to consider all parts of the
statechart.

Our de�nition of a step is simpler than that used by other versions of the semantics but is easier and
clearer to express. It expresses non-determinism among transitions on the same level and priority among
transitions from states related in the hierarchy. Interpretations for enabled transitions with conicting
destination states and those that go between orthogonal components have not yet been included. Race
conditions and multiple conicting actions on a transition are resolved by considering all actions together
when assigning values to the variables in the next con�guration.

Given a current con�guration, it may be indeterminite as to which set of transitions will be chosen for this
step. If there are conicts among the actions of the transitions chosen for the step, it is also indeterminate as
to what value a variable will take on. The result is that several next con�gurations may satisfy the relation
for the same current con�guration.

These semantics have been used in a model checker for statecharts which is presented in the next chapter.
They could also form the basis for other types of analysis and simulation or to examine properties of the
semantics themselves.

50



Chapter 6

The Model Checker

A model checker shows that a given property or descriptive speci�cation is true of a model of a
system. In this chapter we present a model checking algorithm implemented as a higher-order

logic function. It takes as a parameter a next con�guration relation characterizing the semantics
of the model. This could be the NC relation de�ned in the previous chapter for statecharts. The
descriptive speci�cation is a predicate on con�gurations which should eventually be true within
a bounded number of steps along either some or all execution paths starting from an initial set of
con�gurations. To execute this function, we represent the con�guration in Boolean values. The
tra�c light example is used to demonstrate the model checker. Invariants can be veri�ed using
the model checker to prove the induction step in an inductive proof that some property holds for
all times.

6.1 Introduction

Many forms of model checking have been developed and used for di�erent purposes. In general, a model
checker tests whether a given property holds true in a �nite state machine model of a system. A statechart can
be considered as a �nite \state" machine where the \states" of the machine are all the possible con�gurations
and the \state" transition relation is given by the next con�guration relation NC. The descriptive speci�cation
is the property to test.

Treating the values of elements of the con�guration symbolically, it is possible to show that the property
is true over a class of con�gurations in one run of the model checker. We can also examine the consequences
of external events occurring at any time.

In the past, these tools have su�ered from the con�guration explosion problem1 when all con�gurations
were explicitly represented. The symbolic model checking algorithm used here is a limited form of the one
presented by McMillan [24] where binary decision diagrams (BDDs) are used for e�cient representation of

the possible con�gurations. Boolean functions give characteristic functions for possible con�gurations under
evaluation.

The sections in this chapter describe the following elements required to carry out the model checking:

� a way of representing the system con�guration in Boolean variables so that it can be executed (Sec-
tion 6.2)

� notation for expressing the descriptive speci�cation (Section 6.3)

� an algorithm for doing the model checking (Section 6.4)

The model checker is independent of the next con�guration relation which characterizes the semantics.
Two examples based on the tra�c light are used to illustrate the model checker. Section 6.7 looks at using

invariants to prove a property for all execution times in the model. The chapter concludes with discussions
on e�ciency and another descriptive speci�cation notation that could be used.

1This is usually called the state explosion problem.
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6.2 Representing the Con�guration

The con�guration can be represented in Boolean variables (bits) so that the next con�guration relation,
NC, de�ned in the previous chapter can be executed. By execution, we mean giving two con�gurations as
arguments to the relation and automatically simplifying the relation to true or false.

In the previous chapter the con�guration is described as a mapping from variables to values. These values
are represented as vectors of Booleans:

V alue � (Bool)list

A con�guration is created by applying the function MEM to a list of variable records, varlist and a bit
vector bv. MEM varlist bv takes a variable name and returns a bit vector for the value of that variable. Since
some variables require more than one bit, it needs information on how many bits are associated with each
variable. The argument varlist is actually an ordered list of records that have �elds for the variable name,
the status of the variable as external or internal and the number of bits that should be used to represent
that variable.

Using the function SPLITBV which, given a number of bits x and a bit vector bv, returns the pair where
the �rst element is the �rst x bits of bv and the second element is the remaining bits of bv, the function
MEM can be de�ned as:

MEM varlist bv varname =

(varlist = [ ])!= [T] j

let bits = SPLITBV (SND (SND (HD varlist))) bv in

((FST (HD varlist) = varname) ) FST bits j MEM (TL varlist) (SND bits) varname)

For example, if varlist contains:

[(X; Int; 1); (Y;Ext; 5); (Z;Ext; 2)]

and bv is
[b0; b1; b2; b3; b4; b5; b6; b7]

then applying the con�guration MEM varlist bv to the variable Z would return [b6; b7].
Note that if a variable is not contained in varlist, the one element bit vector containing only the value true

is returned. Obviously there is the potential for errors in generating the list of records for the variables and
Chapter 8 will describe a tool that does this automatically for a particular statechart. This tool determines
the status of the variable as internal or external by examining how the variable is used in the statechart.
This �eld may be modi�ed by the user. Making a variable external is a more conservative veri�cation test
than assuming that the variable maintains its value unless explicitly changed.

There are many di�erent types of variables that can be used in statecharts. Basic states are represented
by one bit vectors treated as one Boolean variable. Booleans and primitive event variables are also one
bit vectors. Natural numbers and event counters can be vectors of any length which are interpreted as
numbers. The tool automatically generates this information giving natural numbers and event counters a
default length of one, since fewer bits are more e�cient for the model checker to compute. This information
can be changed easily before it is used and it is expected that the user would tailor the number of bits to
the expected values of these variables.

In the tra�c light example, the data-items are EW GREEN TIME and
NS GREEN TIME (EW G T and NS G T respectively) which give the timeout step number for how
long the light stays green in a each direction. If each of these could take on the possible values 0 through
3, then they can be represented in two bits. Their associated event counters would need three bits so that
the legitimate value 3 is not the maximum value of the counter (Section 4.7). The event counters for the
transitions that move the system into the yellow light state in each component must have at least two bits
since they have to count up to the value 2. The other event counters (EV MALF, EV RESET) only
need one bit since we only have to check if the event happened in the previous step or not. The complete
information for the variables in the tra�c light statechart of Figure 2.1 is called tlsINFO and given by the
following chart:
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Variable Type Name # Bits Internal/External

Basic states FL 1 Int
E W R 1 Int
E W Y 1 Int
E W G 1 Int
N S Y 1 Int
N S R 1 Int
N S G 1 Int

Data items NS G T 2 Ext
EW G T 2 Ext

Primitive Event ags MALF 1 Ext
RESET 1 Ext

Event counters EV MALF 1 Ext
EV RESET 1 Ext
EN N S G 3 Ext
EN N S Y 2 Ext
EN E W G 3 Ext
EN E W Y 2 Ext

6.2.1 Operations on Values

The operations outlined in Section 4.3 can now be de�ned as operations on bit vectors. For example, BOOL
returns the �rst element of the bit vector, to convert a value into a Boolean:

BOOL (x : V alue) =def HD x

The operations on Boolean values convert them to Booleans and then carry out the appropriate logical
connective, as in:

BAND (x : V alue; y : V alue) =def BVAL(BOOL x ^ BOOL y)

NVAL is somewhat more complicated because it has to convert a natural number into a bit vector. Values
for numbers are unsigned bit vectors of any length in little endian format.2

NVAL n =def

(n = 0)) [ ] j CONS (nMOD 2 = 1) (NVAL (nDIV 2))

The operations on numbers may involve resizing the bit vectors to accommodate carry bits. For example for
PLUS, we have to call on an auxiliary function that adds two values and a carry bit where the �rst carry in
is F:

PLUS a b =def PLUS AUX a b F

PLUS AUX a b c =

(a = [ ])) PLUS2 AUX b c j

((b = [ ])) PLUS2 AUX a c j

CONS ((HDa) ^ :(HD b) ^ :c _ :(HD a) ^ (HD b) ^ :c _

:(HD a) ^ :(HD b) ^ c _ (HD a) ^ (HD b) ^ c )

(PLUS AUX (TL a) (TL b) ((HD a) ^ (HD b) _ c ^ (HD b) _ (HD a) ^ c)))

The auxiliary function puts a true value at the head of the list if one or all of the �rst bits of the three values
are true. The carry bit is true if any two of the �rst bits of the three values are true. The �nal function adds
the carry bit to the result:

PLUS2 AUX a c =

CONS (c ^ :(HD a) _ :c ^ (HD a)) (PLUS2 AUX (TL a) (c ^ (HD a)))

2Little endian format means the rightmost bit is the most signi�cant.
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The equality operator sets the bits of its �rst argument bv1 equal to the bits of its second argument bv2.
If bv2 has more bits than bv1 then these extra bits are not used:

EQUAL (x : V alue; y : V alue) =def BVEQUALx (SIZED (LENGTH x) y)

These operations are based on de�nitions given in a bit vector package for HOL [28] and the de�nitions

for the remaining functions are given in Appendix B.

6.3 Descriptive Speci�cations

The descriptive speci�cation language for this model checker includes bounded eventually temporal logic
statements in one of two forms:

� Starting from an initial set of con�gurations i, the property f eventually holds within n steps on all

execution paths.

� Starting from an initial set of con�gurations i, the property f eventually holds within n steps on some

execution path.

where i and f are predicates on con�gurations which can be considered characteristic functions for a set of
con�gurations.

The operational speci�cation is given by the relation NextCon�g which relates two con�gurations.

To model check a particular statechart sc we would supply NC sc for NextCon�g but the model checking
algorithmwould work for any other model whose operation can be described by a next con�guration relation.

To show the �rst type of statement is true we show that the following predicate is true:

MC A n i NextCon�g f

Similarly, the second statement is veri�ed using:

MC E n i NextCon�g f

The functions MC A and MC E implement the model checking algorithm and will be described in the
next section. Section 6.7 shows how MC A can be used as part of an inductive proof to show f is true for all
times, not just within a time constraint.

6.4 The Model Checking Algorithm

The task for a model checker is to show that the descriptive speci�cation is true. The model checking
algorithm depends on the descriptive speci�cation language. It uses the representation of the con�guration
of the system and tests if a given property holds in that con�guration. If the property does not hold in all
con�gurations that the system is currently in, then it determines the representation for the next con�guration
of the system and iterates this process until either the formula does hold along all paths leading to the current
set of con�gurations or it has tried the number of iterations given by the timing constraint. We will begin
by explaining the algorithm that determines if property holds along every execution path (MC A) and then
describe the simple changes to calculate MC E.

To describe the model checking algorithm, we make use of the following:

i is the characteristic function for the set of initial con�gurations,

NextCon�g is the next con�guration relation, and

f is the characteristic function for the set of con�gurations that satisfy the property to verify

These are all predicates that take con�gurations as arguments and return true or false depending on whether
their arguments satisfy the predicate.
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Over a limited number of steps, the model checker determines the set of next con�gurations that do
not satisfy the formula and therefore need to be checked further. A characteristic function for the set of
next con�gurations (cf 0) is given by asking if there are any elements of the initial con�guration(cf) that are
related by NextCon�g to cf

0.3

�cf
0
: 9cf: i cf ^NextCon�g cf cf

0 (6:1)

To check if the property f holds in all possible next con�gurations, we formulate the question of whether any
cf

0's exist that do not satisfy f:

let check = 9cf
0
: 9cf: i cf ^ NextCon�g cf cf

0
^ :f cf 0 (6:2)

If this expression is false then the property is true in all current con�gurations (:check) and the model
checking process can stop. If, however, this expression is true, then f does not hold in all next con�gurations
of the set of current con�gurations and the model checking process should continue to check if f will eventually
be satis�ed along all execution paths.

A representation for the set of next con�gurations that do not satisfy f is needed, since these are the
only paths we need to continue to examine. The characteristic function for this set is given in the above
expression (Equation 6.2) without the quanti�cation over the next state:

let nextX = �cf
0
: 9cf: i cf ^ NextCon�g cf cf

0
^ :f cf 0 (6:3)

This then becomes the initial state i used in the next iteration. The complete model checking process is
given by the following recursively de�ned function, called MC A, where step is a constant natural number
giving the time constraint:

MC A step i NextCon�g f =def

let check = 9cf
0
: 9cf: i cf ^ NextCon�g cf cf

0
^ :f cf 0 in (6:2)

let nextX = �cf
0
: 9cf: i cf ^ NextCon�g cf cf

0
^ :f cf 0 in (6:3)

(step = 0)) False j :(check) _ MC A (step � 1) nextX NextCon�g f

If the process has checked all steps without �nding that the property is satis�ed along all paths, it returns
false.

To test whether the property f eventually holds along some execution path rather than along all paths,
MC E checks if the f holds true in any con�guration (check), and if not continues iterating with all execution
paths because one has not yet been found that satis�es the formula:

MC E step i NextCon�g f =def

let check = 9cf
0
: 9cf: i cf ^ NextCon�g cf cf

0
^ f cf 0 in

let nextX = �cf
0
: 9cf: i cf ^ NextCon�g cf cf

0 in

(step = 0)) False j (check) _ MC E (step � 1) nextX NextCon�g f

6.4.1 Variations on these Algorithms

A variation of this process checks whether the descriptive speci�cation is true in the initial con�guration,
rather than starting in the next con�guration as above. For each of the tests given above, the corresponding
functions MC A I and MC E I also check f in the initial con�guration:

MC A I step i NextCon�g f =def

let check = 9cf: i cf ^ :f cf in

let nextX = �cf

0
: 9cf: i cf ^ :f cf ^ NextCon�g cf cf

0 in

(step = 0)) False j :(check) _ MC A I (step � 1) nextX NextCon�g f

3Throughout this explanation, the expression 9cf will be used to indicate existential quanti�cation over all the bits of the

con�guration. This is actually implemented using the function EXISTSN de�ned in Chapter 4.
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MC E I step i NextCon�g f =def

let check = : 9cf: i cf ^ f cf 0 in

let nextX = �cf

0
: 9cf: i cf ^ NextCon�g cf cf

0 in

(step = 0)) False j (check) _ MC E I (step � 1) nextX NextCon�g f

For the same step number, these will check execution paths one unit smaller in length than the algorithms
that start at the next con�guration. This variation is often useful when checking if a certain action is
accomplished (liveness) and it is equally good if the action is already accomplished.

MC A and MC E will be called MC A NS and MC E NS respectively to indicate that they start the model
checking in the next step from the initial con�guration.

6.4.2 Running the Model Checker

The model checker can run any of these model checking functions. MC is a general function that precalcu-
lates the number of bits needed to represent the con�guration (GETNUMBITS) and determines the internal
variables (INTVAR) from the variable records (frame). The function MEM with the set of variable records
is passed to the model checking functions. The particular model checking function to be used is given by
mc. The next con�guration relation to be used is ns.

MCmc step i ns f frame =def

let nbits = GETNUMBITS frame in

(let intvar = INTVAR frame in

mc step nbits (MEM frame) i (ns intvar) f)

6.5 Descriptive Speci�cations for Statecharts

The property to check is expressed in the target language making reference only to the current con�guration.
It must be given as a function that takes a con�guration as an argument and returns true or false depending
on whether the property is satis�ed in that con�guration. A safety property of the tra�c light is that it
never shows either a green or yellow light in both directions at the same time. A descriptive speci�cation
for a con�guration where this situation might exist is:

TROUBLE =def

�cf:

(BOOL(SemVAR N S Y cf) _ BOOL(SemVAR N S G cf)) ^

(BOOL(SemVAR E W Y cf) _ BOOL(SemVAR E W G cf))

The model checker could test whether this property ever becomes true (MC E) within a limited number of
steps.

6.5.1 Initial Con�guration

The possible initial con�gurations of the system are speci�ed by a characteristic function of a set of con�g-
urations. The model checking algorithm can begin from all possible system con�gurations, by giving �cf:T
as its initial set of con�gurations. Sometimes, however, all possible system con�gurations are not reachable
within the model given by the statechart. For example, it is a legal state con�guration to have both lights
showing green, but we hope that this is not a reachable con�guration. An overly large set of possible initial
con�gurations could result in the model checker returning false negatives if the formula is shown to be false
along a path of execution that began at an unreachable con�guration.
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Often the model checker should start in the starting con�guration of the system. Similar to the semantic
function for entering the source state of a transition (ENTERSRC) which returns a list of assignment pairs
to set the basic states to true, ENTERDEF is true if the basic states determined by following the defaults
from a given state are all true:

ENTERDEF sc stname =def

�cf:

(TYP sc stname = B)) BOOL (SemVAR stname cf) j

((TYP sc stname = A))

EVERY (�stn:ENTERDEF sc stn cf) (SUBSTATES sc stname) j

ENTERDEF sc (DEFAULT sc stname) cf

For any statechart that has the necessary default entrances, the predicate describing the starting con�g-
uration uses ENTERDEF starting from the root state and also ensures that the system is in a legal state
con�guration so that the values of basic states not set by ENTERDEF will be false:
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Figure 6.1: Running the model checker for the tra�c light

INITIAL sc =def

�cf:

ENTERDEF sc (ROOT sc) cf ^ STATE COND sc cf

Data-items and events may be assigned symbolic values or constants in the initial con�guration.

6.6 Tra�c Light Example

Earlier we de�ned TROUBLE as a characteristic function for con�gurations where the tra�c light is green or
yellow in both directions. Using the MC E function, we can check whether this property is ever true within
a certain number of steps from the starting con�guration of the tra�c light statechart.

The de�nitions for the semantic and model checking functions have been de�ned in HOL. To run the model
checker, we only need to load the tra�c light statechart (tls) and its associated con�guration representation
information (tlsINFO) and then provide the de�nitions for the descriptive speci�cation, before giving Voss
the model checking expression to evaluate.

The output in Figure 6.1 shows `T` or `F` to indicate whether the expression is true or false. The results
of the model checker tell us that �ve steps from the starting con�guration, the tra�c light could end up

58



in a situation where both lights are showing either green or yellow. Referring back to Figure 2.1, we can
see how this could occur. The characteristic function for the initial set of con�gurations does not limit the
event counters at all so in the �rst step, t0 can be followed since NS G T could be equal to the counter
EN N S G and the system moves into the states N S Y and E W R. In this �rst step the event counter
EN N S Y is reset to 0. For the next two steps, the system remains in this state con�guration as the event
counters get updated. In the fourth step, the event counter EN N S Y has the value 2 so transition t1 can
be taken moving the system into both red light states. In the next step the triggers for both t2 and t5 are
true so both of these transitions can be taken and after �ve steps the tra�c light is showing a green light
in both directions! In other words, we have used the model checker to demonstrate the property SAFE does
not hold in the the tra�c light statechart of Figure 2.1.

Obviously this is a situation we want to avoid and the solution is to strengthen the triggering events of
t2 and t5 so that they can not both occur at the same time. As suggested in the discussion of this example
in the STATEMATE manual [14], the model is revised so that the trigger for moving from a red to a green
state is that the system has just entered the other component's red light state. This is given by Figure 6.2
(from Figure 3-22 in [14]). This should eliminate the previous problem because the system will have been
in E W R for a number of steps before the N S component arrives in its red state and the tra�c changes
direction.

6.7 Invariants

We could continue to check the new tra�c light statechart to see if it ever enters a con�guration that satis�es
TROUBLE but there is a �nite number of steps that we can test in this model checker. It would be better
to show that the model is always in a safe con�guration, which can be de�ned as the opposite of TROUBLE,
where tls is the statechart:

SAFE =def

�cf:

(BOOL(SemVAR N S R cf) _ BOOL(SemVAR E W R cf) _

BOOL(SemVAR FL cf)) ^

STATE COND tls cf

Using MC A, we could show that starting from the initial con�guration, after multiple steps the system
always ends up in a con�guration that satis�es this property. This approach still su�ers from only being able
to run the model checker for a �nite number of steps when the execution of the tra�c light could continue
inde�nitely.

An alternative approach is to use MC A to prove that if the system starts in a con�guration that satis�es
this property then, after one step, it always ends up in one that also satis�es this property. If this property
is also true in the starting con�guration of the model then by induction the property holds in all reachable
con�gurations of the system. The model checker can be used to automatically prove the induction step.

If we try verifying the above descriptive speci�cation of SAFE for one step as in Figure 6.3, we �nd
it does not hold. This does not necessarily mean that the invariant does not hold in the model. It just
may not be strong enough. Figure 6.4 illustrates what is happening. We can limit the set of all possible
con�gurations to those that have legal state con�gurations (L). The property SAFE describes a subset of
these given by S. We used MC A to try to show that all the con�gurations within S lead to con�gurations
also in S in one step. This was not true because, as the model checker has shown, some next con�gurations
fall outside of S resulting in X. For example, if N S R and E W R are both entered in a step then in
the resulting con�guration the event counters EN E W R and EN N S R both have the value 0. This
con�guration satis�es the predicate SAFE but in the next step both t2 and t5 can be taken, leading to an
unsafe con�guration.

The predicate SAFE may still be true in all reachable con�gurations of the system. If we �nd a subset of
S, called INV, where all of its elements lead to con�gurations that also belong to INV as in Figure 6.5 and
INV holds in the starting con�guration of the statechart then by induction we have a property that holds
for all reachable con�gurations.
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Figure 6.2: Corrected tra�c light
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Figure 6.3: First attempt at an invariant for the tra�c light

Next configurationsCurrent configurations

L = legal
S = safe

S S

L L

X

Figure 6.4: Why SAFE is not an invariant
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Next configurationsCurrent configurations

L = legal
S = safe

S

L

INV

S

INV

L

INV = invariant

Figure 6.5: Invariants

In order to determine a possible candidate for INV we note that the property SAFE does not put any
restrictions on the event counters that were triggering the transitions that led to an unsafe con�guration as
mentioned above. Changing the invariant to include the condition that if in the state N S R then the value
of EN E W R is greater than 0 means that transition t2 can not be taken since the system has been in
the state E W R for at least one step. Taking the disjunction of this condition and the corresponding one
for E W R implies that the property SAFE will always be true. The system can still make progress because
when it enters one of the red states, the disjuncts change as to which one is true:

INV =def

�cf:

(BOOL(SemVAR N S R cf) ^

SemGREATER(SemVAR EN E W R; SemCONST 0) cf) _

(BOOL(SemVAR E W R cf) ^

SemGREATER(SemVAR EN N S R; SemCONST 0) cf) _

BOOL(SemVAR FL cf) ^

STATE COND newtls cf

The property INV includes restrictions on the event counters. To use induction, we must ensure that

the starting con�guration also satis�es INV. Only the counters for the events of entering the default states
should have the value 0. All other event counters should be greater than 0. This satis�es our invariant
because,

BOOL(SemVAR N S R cf) ^

SemGREATER(SemVAR EN E W R; SemCONST 0) cf

will be true. Therefore by induction, we have shown the invariant to be true for all reachable con�gurations
of the model. Since the invariant implies SAFE, this property is always true for systems whose variables can
take on the same range of values as those given in the variable records.
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Figure 6.6: Checking the correct invariant for the tra�c light

6.8 E�ciency

Executing the model checker can take a long time (10-15 minutes real-time) on machines with lots of memory
(48 meg) even for small problems. The number of steps a�ect the execution time and proving an invariant
over one step can be fairly quick.

Running the model checker is in e�ect executing the operational semantics given in the previous chapter.
These functions were not written with e�ciency as a priority, therefore there is room for reworking them to
speed up the execution of the model checker.

Executing a Boolean expression in a BDD package can also be made more e�cient by changing the
variable ordering for the BDDs. Using Voss through HOL, we have not taken advantage of this ability.

One can argue that for small problems, time for execution is not a problem and therefore the convenience
gained from letting the package take care of this is well worthwhile. For larger problems, execution time
may become more of a factor and this is another way the model checker could work faster.

We believe that there is room to exploit the hierarchy of statecharts to reduce the con�guration space
that must be explored to verify a property of the model. For example, it should be possible to ignore details
of substates and transitions among substates if they are not needed for a particular property. This would
reduce the size of the con�guration that needs to be represented. Given the priority of transitions in the
hierarchy, decomposing states should not violate a proven property.

6.9 Other Descriptive Speci�cation Notations

Higher-order functions can be used to write more complex descriptive speci�cations for our model checker
but these must be given relative to the current con�guration only and within a bounded time. Properties
that depend on future con�gurations as well as the current one can be expressed in formalisms used by
other model checkers. Computational Tree Logic (CTL) is a branching temporal logic that has operators to
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express properties for all times, and paths [24]. For those familiar with CTL, the MC A function is closest
to the AF f operator of CTL which means for all paths eventually f, and correspondingly, MC E is like EF
f . The major di�erence is that CTL checks for all lengths of paths using a �xed point operator where as
our model checking tests only within a restricted time. For expressing properties of hard real-time systems,
bounded temporal operators should be su�cient.

CTL requires a more complex model checking algorithm than the one presented here. Section 9.5 will
look at the possibility of using another notation called State Transition Assertions [6] to give more expressive
descriptive speci�cations with only small changes in the model checking algorithm used here.

6.10 Conclusions

This chapter describes the language for descriptive speci�cations and its associated model checking algorithm.
The con�guration of the system is represented as Boolean values. The process is symbolic over the range
of values that the bits can represent. We have taken advantage of BDDs for e�cient representation of the
con�guration but the process may still su�er from the con�guration explosion problem for large models.

If the result of checking a property using the model checking algorithm returns false then it is very useful
to give an example showing the complete set of steps leading up to a con�guration where the property does
not hold. This scenario is called a counter-example. Currently, our model checker does not provide this.

Determining an invariant that limits the set of con�gurations enough to prove a property for all reachable
con�gurations is not an easy process. The bene�ts are that the model checker only has to be run for one
step. It would be useful to formalize the induction argument made using invariants. Section 9.4 describes
how to do this within HOL.

The errors in the tra�c light statechart can also be found using the reachability of conditions test in
STATEMATE. In the next chapter, more examples of model checking are presented. The �rst of these
demonstrates the use of symbolic values to prove a functional property of a system.
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Chapter 7

Examples

This chapter presents two examples where the model checker has been used to prove properties
about small systems. In each case, the operational and descriptive speci�cations of the model

are given along with the output of a run of the tests. The �rst example demonstrates the use of
symbolic values and how di�erent information about the representation of the con�guration can
a�ect the results of the model checker.

7.1 Swap Operation

This �rst example demonstrates the use of symbolic values to prove the functionality of an operation. The
swap operation just interchanges the values of two variables using one temporary value. The statechart
describing its operation is given in Figure 7.1. The three actions are all placed on separate transitions so
that they will happen sequentially. These transitions are enabled as soon as their source state is entered

since there are no events to trigger them.
To verify that the model accomplishes the swap operation, we should prove that beginning from the

starting system con�guration, within three steps the model always results in a state where the values have
been swapped. VAR1 and VAR2 are given the values of X and Y which can be constants or symbolic
values depending on how they are set in the starting con�guration. They must be considered part of the
con�guration so that they can be referred to in both the characteristic function for the initial con�guration
(START) and the property showing the operation has been accomplished (END). They are considered
internal so that they can not change their values between steps. The de�nition of the statechart is given by
the constant swap used in these de�nitions.

In our �rst test, we allocate one bit to all data items and symbolic values. The constant swapINFO1
holds the following information:

Variable Type Name # Bits Internal/External

Basic states A 1 Int
B 1 Int
C 1 Int
D 1 Int

Data Items TEMP 1 Int
VAR1 1 Int
VAR2 1 Int

Symbolic Values X 1 Int
Y 1 Int

The results of the test in Figure 7.2 show that after three steps the model successfully completes the operation.

To demonstrate the importance of the variable records, we can run the model checker with di�erent sets
of variable information. Making all the data-items and symbolic values two bits, the constant swapINFO2
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A

D

B

C

ROOT

t1: / VAR1 := VAR2

t0: / TEMP := VAR1

t2: / VAR2 := TEMP

Figure 7.1: Swap operation

contains the following variable records:

Variable Type Name # Bits Internal/External

Basic states A 1 Int
B 1 Int
C 1 Int
D 1 Int

Data Items TEMP 2 Int
VAR1 2 Int
VAR2 2 Int

Symbolic values X 2 Int
Y 2 Int

Figure 7.3 shows the results of running the model checker with the revised variable records.

If TEMP has fewer bits than the other data-items then values will be lost in execution. For example,
if TEMP is only one bit and the others are two bits. The following variable records are contained in
swapINFO3:

Variable Type Name # Bits Internal/External

Basic states A 1 Int
B 1 Int
C 1 Int
D 1 Int

Data Items TEMP 1 Int
VAR1 2 Int
VAR2 2 Int

Symbolic values X 2 Int
Y 2 Int

The results of the model checker are shown in Figure 7.4.

If, however, the symbolic values have only one bit as well, then swapINFO4 contains the following
information:

66



Figure 7.2: Swap test #1

Figure 7.3: Swap test #2

Figure 7.4: Swap test #3

67



Figure 7.5: Swap test #4

Variable Type Name # Bits Internal/External

Basic states A 1 Int
B 1 Int
C 1 Int
D 1 Int

Data Items TEMP 1 Int
VAR1 2 Int
VAR2 2 Int

Symbolic values X 1 Int
Y 1 Int

This time no information is lost and the tests are successful (Figure 7.5).

7.2 Arbiter

The second example is a model of one node in an arbiter circuit described by Staunstrup and Greenstreet
[29]. The complete arbiter is a binary tree where one token is passed down to a leaf node that is the only one
to have access to the shared resource. Each node has a request (REQP) and grant (GRP) signal connected
to its parent and the same signals for each of its children (REQL, GRL, REQR, and GRR). The node
sets REQP to true to request the token. It receives the token when GRP becomes true. It can then pass
it to one of its children and the left child has precedence over the right. It returns the token to its parent by
setting REQP to false and can again make a request once GRP becomes false. The signals GRP, REQR,
and REQL are external to this node. However once the token has been granted GRP must remain true.

Staunstrup and Greenstreet model the node using Synchronized Transitions which is a notation that
describes a program or circuit by a set of guarded transitions operating atomically but in any order. Their
speci�cation can be directly translated into a statechart by having transitions loop around one state. These
transitions all have equal priority so any one of them could be taken providing its trigger is satis�ed.
Figure 7.6 gives the statechart operational speci�cation for the model.1 The signal GRP is modeled using
an extra component since the signal is set to true outside of this arbiter. This action is caused by the external
event SET which would be generated by a parent node following its t1 or t2 transition. Once the token is
given to a node, it can not be taken away untilREQP is false. Other transitions rely on knowing that GRP
does not change its value from true. MakingGRP internal ensures that it maintains its value unless directly
changed within the statechart. In this way part of the environment is included as a concurrent component
of the arbiter statechart.

Informally, the transitions in the statechart, describe the following operations:

t0 ask for the token

t1 pass the token to the left child

t2 pass the token to the right child

t3 get the token back from the left child, if there is no longer a request for it

t4 get the token back from the right child, if there is no longer a request for it

t5 pass the token back up the tree since no children want it

These transitions correspond directly to the synchronized transition description of the arbiter.
The variable records for this model (arbiter1INFO) gives each signal one bit:

1
tr! and fs! are short for MAKE TRUE andMAKE FALSE respectively.
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t1: GRP /\ REQP /\ REQL /\ ~GRR 
/ tr!(GRL)

t0: ~GRP /\ (REQL \/ REQP) 
/ tr!(REQP)

NO_TOKEN

B

A

ROOT

NODE

t2: GRP /\ REQP /\ REQR /\ ~GRL /\ ~REQL / tr!(GRR)

t3: ~REQL / fs!(GRL)

t4: ~REQR / fs!(GRR)

t5: GRP /\ ~GRL /\ ~GRR / fs!(REQP)

TOKEN

t6: SET [REQP] / tr!(GRP)

Figure 7.6: Arbiter statechart
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Figure 7.7: Model checking the arbiter invariant

Basic states TOKEN 1 Int
NO TOKEN 1 Int
CIRCUIT 1 Int

Data items GRP 1 Int
REQP 1 Int
GRR 1 Int
GRL 1 Int
REQR 1 Ext
REQL 1 Ext

Events SET 1 Ext

Event counters EV SET 1 Ext

It is important that the arbiter does not grant the token to both of its children at the same time because
this would violate exclusive access to the shared resource. The property that we would like to prove is:

�cf::(BOOL(SemVARGRL cf) ^ BOOL(SemVARGRR cf))

Figure 7.7 shows the results of proving the induction step for this invariant. For the initial con�guration of
the statechart, the signals would have to be set appropriately to satisfy the invariant.

7.3 Sequential Arbiter

The previous model for an arbiter was developed directly from the synchronized transition program so it
was not necessary to study in detail the meaning of the transitions. One result of executing all transitions
in parallel is that the triggers must be very detailed to ensure that operations progress in order. For the
arbiter, an alternate, more sequential model was developed to understand its operation. This statechart is
presented in Figure 7.8. In this model the state names give some mnemonic information about what the
node is currently attempting to do:

IDLE: the node does not have the token and is not currently asking for it

REQ IN: the node is asking for the token

TOKEN: the node has the token

LEFT: the left child has the token
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IDLE

REQ_IN

LEFT RIGHT

ROOT

TOKEN

x3: [REQL] / tr!(GRL)

x0: [REQL \/ REQR] / tr!(REQP)

x1:[GRP]

x2: [~(REQL\/REQR)] / fs!(REQP)

x5: [REQR /\ ~ REQL] / tr!(GRR)

x6: [~REQR] / fs!(GRR)

x4: [~REQL] / fs!(GRL)

Figure 7.8: Sequential arbiter statechart
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Figure 7.9: Checking the invariant in the sequential arbiter

RIGHT: the right child has the token

The intent is that this model describes the same operation as the one in Figure 7.6. We will not attempt to
verify that the functionality of these two models is the same but we can verify that the same invariant holds.

Slightly di�erent bit vector information is used for this second model (arbiter2INFO). GRP can be
considered external since it is not referenced again once it has been granted and we can just assume that
the parent node of this one changes GRP just as this node changes GRR and GRL.

Basic states TOKEN 1 Int
NO TOKEN 1 Int
CIRCUIT 1 Int

Data items GRP 1 Ext
REQP 1 Int
GRR 1 Int
GRL 1 Int
REQR 1 Ext
REQL 1 Ext

Figure 7.9 shows that the same invariant does not hold. As with the tra�c light, this does not necessarily
mean that the invariant does not hold of the reachable con�gurations. We need to strengthen the invariant
to limit the set of con�gurations under consideration.

This model assumes certain information once a particular state has been reached. This means the triggers
on the transitions are much less complicated. For example,

x3: [REQL] / tr!(GRL)

corresponds to,

t1: GRP ^ REQP ^ REQL ^ :GRR / tr!(GRL)

in the �rst arbiter where the token is passed to the left child. Given that we are in the state TOKEN, we
can assume that the signals GRP, REQP are true and GRR is false.

These assumptions need to be built into the invariant. We can rephrase the property depending on what
state the system is in:

INV2 =def

�cf:

(EXISTS (�v:BOOL(SemVAR v cf)) [REQ IN; IDLE;TOKEN]
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Figure 7.10: Revised invariant for the sequential arbiter

=) :BOOL(SemVARGRR cf) ^:BOOL(SemVARGRL cf)) ^

(BOOL(SemVARLEFT cf) =) :BOOL(SemVARGRR cf)) ^

(BOOL(SemVARRIGHT cf) =) :BOOL(SemVARGRL cf))

Figure 7.10 shows the result of checking this invariant. Since all possible states are covered in this descriptive

speci�cation, it implies the previous invariant and therefore both models satisfy the property.

7.4 Conclusions

The swap example demonstrated the symbolic veri�cation of a simple functional property. If the operation
took many steps, then it could take the model checker quite a long time to check the property. We also
showed how the ranges of the values of variables are an important part of the speci�cation of the system.
The user has to be aware that the property veri�ed only holds for a con�guration that can be described in
the given number of bits.

The arbiter demonstrated how statecharts can also be used to model hardware. In this example, we
directly translated a Synchronized Transition program into a statechart and veri�ed an invariant automat-
ically using the model checker. There are interesting possibilities for using this technique to model check
parallel programs.

The sequential arbiter demonstrated that by using the sequential aspects of statechart the operational
speci�cation may be more understandable. It may be more di�cult to determine the invariant of a sequential
program since certain aspects of the computation are assumed to have happened once a particular state has
been reached.

We have only proved an invariant for one node in the arbiter circuit. It would be very useful if the
result from one node could be combined with other nodes of the same structure to prove that the token only
belongs to one node in the complete tree at any one time. McMillan looks at doing inductive proofs over
the structure of a system in the model checker SMV [24].
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Chapter 8

Implementation

This chapter presents a textual representation for statecharts as an implementation of the ab-
stract data type given in Chapter 3. The software interface that extracts information about the
statechart directly from the STATEMATE database and produces this textual representation is
described. The �nal sections discuss embedding the semantic functions in HOL and the tool that
extracts information about the variables used in a particular statechart.

8.1 Introduction

This chapter presents the concrete details of the representation used for the statecharts and the implemen-
tation of the semantic functions in HOL. This information is not necessary to understand the main ideas
presented in this work.

8.2 Textual Representation of Statecharts

The abstract data type presented in Chapter 3 can be given a textual representation. Textual representations
for more complicated languages like hybrid statecharts have been given previously [19] but these contain more
detail than is necessary here.

The following sections will present the concrete syntax for transitions and states which together create a

statechart. The names of all elements of the con�guration are represented as strings. These are written as
a word in single quotes, as in `X` for the variable X.

8.2.1 Transitions

Transitions are given unique numeric names and are made up of source and destination state names, a
triggering event, and an action. They have the type:

Trans � Num # Variable # Event # Action # Variable
" " "

name source destination

state name state name

For example, the transition originated in N S.RED from Figure 2.1 looks like:

(2,`N S.RED`,(EVEXPR NONE (IN `E W.RED`) ), NILL, `N S.GREEN`)
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8.2.2 States

Every state has the type basic, AND, or OR.

Typ � B j A j O

A state consists of its name, type, the name of its default state, a list of its immediate substates, and a
list of transitions that originate at its substates.

All information about a state can be grouped together as an element with type:

State � Variable # Typ # Variable # (Variable) # (Trans)
list list

" " " " "

state BjAjO default substates transitions
name state

8.2.3 The Complete Statechart

A statechart is a list of states. The complete model begins at the highest level state which is assumed to be
the �rst element in the list. The order in the rest of list is irrelevant since the hierarchy is given through the
lists of substates.

Sc � (State) list

Using abbreviated names for some of the states, the textual representation for the tra�c light example
of Figure 2.1 is:

[

(`ROOT`, O, `N`, [`N`; `FL`],

[(7,`FL`,SE (EV `RESET` `EV_RESET`), NILL, `N`);

(6,`N`, SE (EV `MALF` `EV_MALF`), NILL, `FL`)]);

(`N`, A, ``, [`N_S`; `E_W`], []);

(`N_S`, O, `N_S_G`, [`N_S_G`; `N_S_R`; `N_S_Y`],

[(0,`N_S_G`, (TM (EN `N_S_G` `EN_N_S_G`) (VAR `NS_G_T`)), NILL, `N_S_Y`);

(1,`N_S_Y`, (TM (EN `N_S_Y` `EN_N_S_Y`) (CONST 2)), NILL, `N_S_R`);

(2,`N_S_R`,(EVEXPR NONE (IN `E_W_R`) ), NILL, `N_S_G`)]);

(`N_S_G`, B, ``,[],[]);

(`N_S_R`, B, ``,[],[]);

(`N_S_Y`, B, ``,[],[]);

(`E_W`, O, `E_W_R`, [`E_W_G`; `E_W_Y`; `E_W_R`],

[(3,`E_W_G`, (TM (EN `E_W_G` `EN_E_W_G`) (VAR `EW_G_T`)), NILL, `E_W_Y`);

(4,`E_W_Y`, (TM (EN `E_W_Y` `EN_E_W_Y`) (CONST 2)), NILL, `E_W_R`);

(5,`E_W_R`,(EVEXPR NONE (IN `N_S_R`)), NILL, `E_W_G`)]);

(`E_W_G`, B, ``,[],[]);

(`E_W_Y`, B, ``,[],[]);

(`E_W_R`, B, ``,[],[]);

(`FL`, B, ``,[],[]);

]

8.3 Selector Functions

The selector functions hide the concrete details of the implementation of the ADT. In this section, we give
de�nitions for the functions described in Chapter 3.

Given an element of type Trans, the following selectors may be de�ned:

LABEL (tr : Trans) =def FST tr

SRC (tr : Trans) =def FST (SND tr)

EVENT (tr : Trans) =def FST (SND (SND tr))

ACTION (tr : Trans) =def FST (SND (SND (SND tr)))

DEST (tr : Trans) =def SND (SND (SND (SND tr)))
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The remaining functions isolate parts of the complete statechart sc. The �rst function is used only by
the selector functions to return all the information about a state given its name, stname:

FMEMBER sc stname =def

( sc = [ ])! [ ] j ( (FST (HD sc) = stname)! [ HD sc ] j FMEMBER (TL sc) stname)

The following functions return the type, default state name, substates, and transition list of a state, given
its name. If the state name is not found in the statechart, they return the null values NOTYP, NOSTATE,
NOSUBSTATES, and NOTRANS respectively.

TYP sc stname =def

let state = FMEMBER sc stname in

(state = [ ])! NOTYP j FST (SND (HD state))

DEFAULT sc stname =def

let state = FMEMBER sc stname in

(state = [ ])! NOSTATE j FST (SND (SND (HD state)))

SUBSTATES sc stname =def

let state = FMEMBER sc stname in

(state = [ ])! NOSUBSTATES j FST (SND (SND (SND (HD state))))

Beginning from the state representing the complete system, usually called `ROOT`, and using the above
function, it is possible to traverse the complete hierarchy of states.

TRANSOFSTATE sc stname =def

let state = FMEMBER sc stname in

(state = TRANS)! NOTRANS j SND (SND (SND (SND (HD state))))

The functions ROOT and GET TRANS NAMES are de�ned as:

ROOT sc =def FST (HD sc)

GET TRANS NAMES sc =def

(sc = [ ])! [ ] j

APPEND (MAP NAME (SND (SND (SND (SND (HD sc))))))

(GET TRANS NAMES (TL sc))

The function TRAN which returns a transition associated with a particular name also has to traverse
the complete statechart. The following two functions are used to do this. The second one collects all the
transitions in the statechart and then the �rst one goes through the list to �nd the appropriate one.

TRAN AUX sc tname =def

(sc = [ ])) (NOLABEL;NOSTATE;NONE;NILL;NOSTATE) j

(FST (HD sc) = tname)! (HD sc) j TRAN AUX (TL sc) tname
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TRAN sc tname =def

let translist = FLAT (MAP (�state: SND (SND (SND (SND state)))) sc) in

TRAN AUX translist tname

Finally, the selector function which returns the names of all transitions originating at descendants of
a particular state also traverses the hierarchy of states and makes use of previously de�ned functions for
getting the transitions of each state.

GET TRANS STATE sc stname =def

(TYP sc stname = [ ])) [ ] j

APPEND(MAP NAME (TRANSOFSTATE sc stname))

(FLAT(MAP(GET TRANS STATE sc)(SUBSTATES sc stname)))

These are not the most e�cient implementations of these functions. There is potential for increasing the
speed of the model checker by optimizing these functions.

8.4 Translation Process

STATEMATE provides a set of C functions to access its database and extract information about the states
and the transitions of the model [16]. The textual representation for a statechart is generated automatically
by a program that uses these functions to access the STATEMATE database, replaces symbols with words
(like PLUS for `+`), and organizes the information in the above format. This program was written using
the parsing tools Lex and Yacc [17][20]. The event counters are generated by concatenating the name of the
event (EN, EV, etc) with the state name or variable for the event.

The output from this translation program is a �le of ML code which includes a statement that creates
a HOL de�nition for a statechart in the above syntax. This can be given directly as an argument to the
semantic functions. This process does not check for completeness of the statechart at all. We rely on
STATEMATE to ensure this before the textual representation is extracted from its database.

8.5 Embedding the Semantics in HOL

Most of the semantic de�nitions can be input directly into HOL, but in a few cases recursive de�nitions
over the hierarchy of the statechart are used. Since HOL does not support general recursion, we have used
primitive recursion. It is possible to do this by providing an extra argument to recurse over that initially is
the length of the list of states in the statechart. This is an upper bound on the recursion since the statechart
hierarchy would have to be a degenerate tree to reach this bound. De�nitions like INSTATE become:

(INSTATE 0 sc cf stname = F) ^

(INSTATE (SUC n) sc cf stname =

((TYP sc stn = B) ^ BOOL(SemVAR stname cf)) _

((TYP sc stname = A) ^ EVERY (INSTATE n sc cf) (SUBSTATES sc stname)) _

((TYP sc stname = O) ^ EXISTS (INSTATE n sc cf) (SUBSTATES sc stname))

8.6 Determining Con�guration Information

A tool has been written in a combination of HOL and ML that parses a given statechart and determines: the
list of all variables (including state names), whether they are external or internal, and allocates one bit to
each one. It sets this information up in the format expected by the model checker as a list of records. This
information is then used by the MEM con�guration function to return the bits associated with a particular
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variable. The model checking function uses the status of the variable as internal or external to determine
the set of internal variables that must be given as an argument to the next con�guration relation.

In HOL, we use recursively de�ned functions to check each expression, event, and action of all transitions
in the statechart for variables. By default these variables are considered external unless they are modi�ed
in some action, in which case, they are then considered internal. All basic states are considered internal.

These HOL de�nitions are \executed" using a rewriting conversion. The list produced may have some
duplicates in it so a small amount of ML code is used to eliminate the duplicates for e�ciency but this could
be implemented in HOL. The result is a de�nition containing a list of variable records which can be modi�ed
by the user before it is supplied as a parameter to the model checking function.
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Chapter 9

Future Work

This chapter looks at possible extensions to the semantics of statecharts and other uses for the
model checker. The �rst sections cover elements of statecharts that are not included in our
syntax. We also discuss situations where destination states of transitions conict. These violate
our assumption about the syntactic form of the statechart and require a revision to the transition
condition of the semantics. The �nal two sections describe possible uses for the model checker.

9.1 The Complete Statechart Notation

In order to justify our claim that we have formalized the semantics for statecharts and not just a subset
of statecharts, we will briey explain how elements of statecharts found in STATEMATE that we have not
included can be formalized within this framework.

The �rst three sections on static reactions, conditional connectives, and scheduled actions demonstrate
how these elements can be written in the subset of statecharts that we have formalized and therefore they
require no changes to the semantics. These are followed by discussions about elements that would require
changes to the semantics.

9.1.1 Static Reactions

Static reactions are event and action pairs associated with a particular state that are examined in each step
provided that the state is not exited. If their event has occurred then the associated action is carried out,
even if transitions take place among substates of the state.

It is di�cult to represent these graphically and they would require a new type of element to be introduced
into the statechart notation since they are considered separately from transitions. We can produce the same
e�ect by using a concurrent component that has the static reactions as loops around a state. Providing
the system stays within the AND-state, these can be executed in parallel with the transitions in the other
component.

9.1.2 Conditional Connectives

A useful feature of the statechart notation that we have not considered are transitions joined by connectors.
Conditional connectives, as seen in Figure 9.1, are a way of decomposing transitions into smaller parts when
multiple transitions share the same event but perhaps have di�erent conditions in their label. The intention
is that only one path from the source to the destination will be followed. In STATEMATE [14], one of
the transitions leaving the connector must be enabled or else it is considered an error when executing the
transition. We can construct separate transitions for each path of the connected transition thereby giving
an interpretation for these error situations because no transition will be taken if none are enabled. The
statechart given in Figure 9.1 would be equivalent to the one in Figure 9.2.
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9.1.3 Scheduled Actions

In STATEMATE, the possible set of actions include schedule(act; t) which means the action act will be
performed t steps from now. There is no explicit provision within our semantics for scheduling events since
the only values manipulated are those of the current and next con�gurations. One can imagine that there
might be a transition taken in the step where the action is to be performed, that a�ects the same variable
as the scheduled action. This would have to be resolved in the way that conicting actions are resolved for
the present step.

Rather than trying to determine a way to include an action like this in our syntax, we can write a

statechart that will accomplish the same task by generating an event on the transition whose label had the
schedule action. This event is the timeout event for a transition in an orthogonal component. The timeout
step number is how many steps are to occur before the scheduled action. The action of this transition is the
scheduled action. Figure 9.3 shows two corresponding statecharts using this method.

9.1.4 History

Statecharts often include history connectors, marked with an H which can also be the destination of a
transition. It dynamically represents the substate this state was in at the time it was last exited. If there
is no history (i.e. the system has never been in this state before or the history has been cleared) then a
transition from the history connector is followed if it exists or else the default transition is taken.

As it currently stands, the functions ENTERDEST and EXITSRC always return exactly the same infor-
mation for a given transition. With history states the values returned by these functions would change
depending on the con�guration at the time they were called.

Initially, we tried representing the state information in the con�guration using one variable for each
OR-state whose value gives the current substate. The advantage in this approach is that only one value
could ever be assigned to this variable at any point in time, which automatically creates the exclusive-OR
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of substates. This method was not used because everything has to be converted to an underlying Boolean
representation so the state names would have to be encoded. This makes it more di�cult to determine if a
condition like IN(statename) is true.

This encoding of states could be used to incorporate history states into our semantics. A history con-
nector, represented by a variable, could be the destination of a transition and functions could interpret the
value of this variable in terms of the basic states that should be entered. Provisions would have to made for
updating these history variables when states are exited.

Not surprisingly, the use of history connectors can create some interesting situations which the semantics
must be able to handle. A description of some of these can be found in the STATEMATE manual [13].

9.1.5 Transitions with Multiple Sources and Destinations

Transitions with multiple sources (or destinations) must originate from (or lead to) states that are in or-
thogonal components as in Figure 9.4. A transition should exit (or enter) all of its source (or destination)
states. Even though the source and destination of each transition can easily be extended to be sets of states
within our semantics, these situations violate our assumption about the syntactical form of the statechart.
The revisions proposed in Section 9.3 should make it possible to allow these transitions. Rules would have
to be established about the priority of transitions with multiple source states.

9.1.6 Super-steps

For simplicity, our semantics do not incorporate the idea of super-steps, however, Pnueli and Shalev [26]
present an example of a system where micro-steps and the associated distinction between external and
internal events is very important. The relevant part of the example is a three bit counter, where as the �rst
bit toggles its value based on a tick of a clock occurring, the e�ect should ripple through the other bits. This
statechart is given in Figure 9.5 (from Figure 1 in [26]). The value returned by the counter is not accurate
until the e�ects of a change in the bit have been passed along to the other bits. This can take a maximum
of three steps. If the external clock is only incremented every three steps, then this may be acceptable.

The idea of a super-step could be added to our semantics using a super-step relation that enforces the

NC relation between each step. A step still incorporates all the e�ects of assignments but the system repeats
steps until no more transitions are enabled.

9.2 Useful Extensions to Statecharts

9.2.1 Communication

Leveson et al. [21] has pointed out in their work on the TCAS II system that individual components
can be described using a formalism similar to statecharts, but the interface between components requires
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more description. In particular, they chose to use point-to-point message communication between system
components since this is a more realistic representation of the way the system actually operates [21]. Ways
of integrating other communications methods into statecharts would be useful but would require additions
to the semantics.

9.2.2 Continuous Systems

The process being controlled by a statechart may also have to be modeled to check properties of the overall
system. This may be di�cult because the physical process may operate in the continuous domain. Work is
underway at both UBC and Cornell to develop interfaces with these types of models [1][22][30], and it will
be interesting to see what role automatic veri�cation tools can play in these hybrid domains.

9.2.3 Multiple Objects

Many components in a system may have the same behaviour. For example sensors used to monitor the
position of a train on track can all be described by similar statecharts. Leveson et al. [21] describes
statechart arrays which model this kind of situation. The statechart for a particular element is referenced
by a unique number. Harel and Kahana [12] describe extensions to the semantics where statecharts could
overlap. Another method is called Objectcharts [4] where the behaviour of a class of objects is given by a
statechart. The CASE tool ObjecTime models system in a similar manner [25].

Extensions for multiple objects create interesting di�culties for the model checker. It might have to treat
each object separately in the con�guration leading to an explosion in the size of the con�guration. McMillan
looks at doing inductive proofs over the structure of the structure of a system in the model checker SMV
[24] which could be a solution to this problem.

9.2.4 Dynamic Objects

There may also be systems where objects enter and leave the system dynamically and we only need to model
their behaviour for a �nite amount time. An example of this is modeling only a section of train track. Trains
enter and leave the model and temporarily the system must be aware of their behaviour.

9.3 Conicting Destination States

The semantics presented in Chapter 5 assume that there are no conicts in the destination states of transitions
chosen by the transition condition. While it is unusual to have destination conicts occur, they are possible,
especially when we begin to consider transitions with multiple source and destination states. This section
describes the problem and outlines a possible way of expressing the statechart's behaviour in these situations.
We outline how the semantic functions would be written to maintain the priority of transitions.
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Figure 9.7: Second example of destination conicts

In Figure 9.6, we can see that following transitions t0 and t2 moves the system to a con�guration that
includes states A and E which is not a legal state con�guration, even though these transitions have source
states in orthogonal components. Figure 9.7 presents a slightly more complicated example where following
t0 and t3 will move the system to a legal state con�guration but t3 is at a lower level in the hierarchy than
t2 and t2 may be enabled. The questions of priority also become important in these situations.

The semantics we presented in Chapter 5 do not check for destination conicts and therefore decide on
the set of transitions to follow based on those that are enabled, the AND-state hierarchy and the priority
among OR states. For Figure 9.7 if all transitions are enabled, and the system is currently in the states E
and G, the transition condition would return true for the sets of transition ags where t0 and t2 are true
and also for t1 and t2.

Without regard for priority, the sets of transitions that do not conict are the following:

1. t1, t2

2. t0, t3

3. t1, t4

The approach taken by Pnueli and Shalev, and STATEMATE of only choosing transitions from orthogonal
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scopes would never allow the set (t0, t3) since both these transitions have the same scope.

We can see that each orthogonal component can not be considered individually since the destinations of
transitions chosen separately may conict. Basing priority on source state, the set of transitions (t1, t2)
should be chosen before (t1, t4) when t2 is enabled. This is because the source of t2 is an ancestor of the
source of t4 and the other transitions in each set are the same. The set (t0, t3) should have equal priority
with the other two sets.

Pnueli and Shalev do not explicitly describe how priority of transitions is expressed in a statechart,
however, they do discuss using negation of events. For example, if t1: a and t2: b are both enabled and t1
is to have priority over t2 then modifying the label of t2 to be b ^ :a would be su�cient.

Their description of priority as the negation of events will not provide the type of priority outlined above
when destination states conict because the set (t0, t3) could never be chosen when t2 is enabled because
the trigger of t3 would include the negation of the event enabling t2.

To rule out accepting transitions where the destination sets of transitions conict but to maintain the
priority based on source state, we can revise the transition condition given in Section 5.2 is the following
ways:

� Include with the requirement that a transition be enabled when chosen (ENABLED) that its destination
state (by following defaults) also be true in the next con�guration.

� The STATE CONDmust still hold so any transitions whose destination states conict can not be chosen
as part of the same set.

� Separate priority from the expression by removing the priority test. The transition condition in this
form will admit all sets of enabled but non-conicting transitions.

� To deal with priority, we can say that a given set of transitions is admissible if there is no way to
set one transition ag to false and a ag for a transition of higher priority to true and still satisfy
the transition condition. To test this, we must existentially quantify over the basic states of the next
con�guration.

Conicting destination states are de�ned as those where having both of them assigned the value true in the
next con�guration will not satisfy the state condition. For example, in Figures 9.8, the destinations of t0
and t4 do not conict even though they have the same destination state. In Figure 9.9, however, t0 and
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t3 do conict because following t0 would lead to state J and t3 leads to K. J and K are not in orthogonal
components.

This solution is under development, but we also have to consider that if a transition is followed that exits
an AND-state, the orthogonal components of the state must all be exited. Also, if a transition is followed
that enters one component of an AND-state, the default entrances for the other components must be entered.
This is called the default completion by Pnueli and Shalev [26].

We hope to take all these factors into consideration when presenting a revised transition condition to
handle these situations. The problems described in Section 2.2.5 also fall under this category. Giving a
solution to this problem will also give an interpretation for transitions that cross AND-state boundaries and
the assumption that a statechart does not do this can be eliminated.

9.4 Linking the Model Checker with HOL

Section 6.7 discussed the use of invariants where the model checker proves the induction step and induction
is used to show that the property holds for all times. Since our model checker is implemented in HOL-Voss,
the framework is available to formally prove this induction in a theorem-prover.

The HOL-Voss tool has been used in this manner for hardware veri�cation where checking the circuit
description using Voss is considered a tactic1 within an HOL proof [28]. The tactic uses the \make theorem"
primitive to return the results to HOL. This method must trust Voss to return a legitimate theorem since it
has not been proven by secure HOL proof steps.

In the same way, the model checker could be a tactic available for use within the theorem prover as a
tactic. The primitives for induction could use its result to formally prove the invariant for all times in the
model's execution.

1A tactic is proof step built up from a small secure set of inference rules.
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9.5 State Transition Assertions

The descriptive speci�cation language used for our model checker only permits statements evaluated rel-
ative to the current con�guration. Another possible language for giving descriptive speci�cations is State
Transition Assertions (STAs), developed by Gordon [6], where higher-order logic expressions describe both

a starting state and invariants that must hold through a sequence of states if the concluding formula is
expected to be satis�ed. They can be given in the semi-graphical notation described in Figure 9.10 (similar
to Figure 4 in [6]). 2

The notation means that if the system is ever in a con�guration satisfying the predicate A and the

next sequence of inputs satis�es P, then the system will arrive in a con�guration satisfying B, having gone
through a series of con�guration satisfying Q. The STA must hold true everywhere in the system.

Our model checking algorithm can be adapted to check properties given as STAs providing a more
expressive descriptive speci�cation formalism.

2Gordon has revised the notation slightly since this reference.
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Chapter 10

Conclusions

The main conclusion of this work is that integrating formal techniques into the system develop-
ment process is an e�ective method of providing more thorough analysis of speci�cations than
can be achieved by conventional methods employed by commercial CASE tools. In completing
this research, the semantics of statecharts have been clari�ed and a model checker for statecharts
was created in the hybrid veri�cation tool HOL-Voss.

10.1 Contributions and Conclusions

This work is original in the way existing tools are combined to create ways of doing useful analysis of speci�-
cation models for real-time systems. An automatic model checker is linked to the CASE tool STATEMATE
to perform checking of symbolic properties of the model. This link is based on a formal semantics for
statecharts.

While we can argue that the STATEMATE methodology is an intuitive representation of a reactive
system, there is still no guarantee that the model that is created, accurately represents what the system
should do. We gain con�dence that the operational speci�cation does indeed describe the intended behaviour
of the system by showing that it satis�es a set of global properties.

The main conclusions of this work can be summarized in the following points:

System Development. This work has demonstrated that formal techniques can be used to provide more
thorough analysis of speci�cations than conventional methods employed by most commercial CASE tools.
Using a model checker, we have provided a way to check a descriptive speci�cation against an operational
model given by a statechart developed in the CASE tool STATEMATE. This work has demonstrated that
an operational semantics expressed as a next con�guration relation is an appropriate choice for semantics
when using automatic veri�cation techniques.

A Semantics for Statecharts. The operational semantics given here for statecharts are simpler and
more rigorously de�ned than previous published versions referred to in this work. A relation models their
non-deterministic behaviour. By using total functions, the semantic de�nitions cover all cases. We believe
the de�nition of a step is easier to understand while still taking into account non-determinism and priority of
transitions based on source state. Race conditions and multiple actions on a single transitions are interpreted
in an intuitive manner. Assignments and events are treated consistently since they are both actions. The
meaning of variables is precisely given by the limits of the bit vectors used to represent them.

The semantic de�nitions treat triggering events as Boolean expressions over variables eliminating the
need to have events as a separate type of element. Because of this, broadcast communication is expressed
completely as shared variables. To characterize the priority of transitions, our semantics use existential
quanti�cation over the possible set of transitions. This technique shows promise for expressing priority
where the destination states of transitions conict as outlined in Chapter 9.
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Throughout this thesis, examples of interesting statecharts can be found that could be used as a bench-
mark for statechart simulators. These semantics could form the basis for other tools or one could examine
the semantics themselves and prove theorems about the behaviour of any statechart model.

While there are features of statecharts, such as history states and transition connectors, that are not
included in our working subset of the notation, Chapter 9 gave an outline for how some of these can be
incorporated into the semantics.

The Model Checker. Our model checker automatically checks simple properties of any model whose
semantics can be given as a next con�guration relation. It provides the foundation for implementing algo-
rithms that can check more expressive temporal properties or for using induction to achieve results previously
unattainable by automatic techniques alone.

An important result is the ease of implementing a model checker in a hybrid veri�cation tool. This work
has demonstrated the useful combination of:

� BDD-based support for the e�cient manipulation of large Boolean expressions,

� a functional programming language with higher-order functions, and

� a general-purpose reasoning environment such as the HOL system.

The framework now exists for using the theorem-prover to combine the results generated automatically
by the model checker to prove global constraints for all times and all execution paths of the model.

10.2 Summary

This work shows the possibility of making formal veri�cation tools easily accessible to non-experts by linking
a fully automatic veri�cation tool to an existing CASE tool that uses a graphical formalism. Once the work
of formalizing the semantics has been completed, the output from the CASE tool can be given to the model
checker and the result returned automatically. In this way, we have also provided a graphical user interface
for developing the models used in formal methods.

This work has served three purposes. The �rst is to demonstrate the usefulness of integrating commercial
CASE tools with formal methods. The second and the perhaps most useful for other researchers is a
clari�cation of the operational semantics for statecharts given as a next con�guration relation. The third is
to create a model checker for a hierarchical graphical speci�cation language where realistic assertions can be
veri�ed automatically.
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Appendix A

The Target Language

The target language is an executable subset of higher-order logic which consists of the following elements:

1. Variables (of any de�ned type)

2. Boolean constants: F, T

3. Boolean logical operators: ^ (and), _ (or), : (not)

4. Existential quanti�cation over Booleans (9x: : : :)

5. Conditional expressions: A ! B j C where A does not contain any symbolic values

6. Natural numbers: 0, 1, 2, : : :

7. Operations on natural numbers: SUC

8. Pairs (x,y). An expression of the form:

(x0; x1; x2; : : :; xn)

is equivalent to, (using brackets to show the pairs):

(x0; (x1; (x2; : : : ; xn) : : :)

9. Operations on pairs: FST, SND

10. Operations on lists: HD, TL, CONS, [ ], MEMBER, MAP , FLAT, EL, APPEND

11. Function application (f x)

12. �-expressions (�x: f (x))

13. let expressions

Some de�nitions for the list processing functions are included below.

MEMBER is a predicate which returns true if an element e is a member of a list x:

MEMBER e x =def (x = [ ])! F j ((e = (HD x))! T j MEMBER e (TL x))

MAP applies a function to each element in a list:

MAP f x =def (x = [ ])! [ ] j CONS (f (HD x)) (MAP f (TL x))

FLAT reduces a list of lists to one list:

FLAT x =def (x = [ ])! [ ] j APPEND (HDx) (FLAT(TL x))

EL returns the nth element of the list x:

EL n x =def (n = 0)! (HD x) j EL (n � 1) x
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Appendix B

Bit Vector Operations

These functions are part of a bit vector package prepared for use with HOL-Voss [28].

De�nitions

BV2NUM ` (BV2NUM [ ] = 0) ^ (8h t:BV2NUM (CONSh t) = (h) 1 j 0) + 2� BV2NUM t)

NUM2BV AUX ` (8m:NUM2BV AUX0m = [ ]) ^ (8nm:NUM2BV AUX (SUCn)m = ((m = 0)) [ ] j
CONS (mMOD 2 = 1) (NUM2BV AUXn (m DIV 2))))

NUM2BV ` 8n:NUM2BVn = NUM2BV AUXnn

ZEROS ` (ZEROS0 = [ ]) ^ (8n:ZEROS (SUCn) = CONSF (ZEROSn))

SIZED ` (8b: SIZED0 b = [ ]) ^ (8n b: SIZED (SUCn) b = (NULL b) ZEROS (SUCn) j
CONS (HD b) (SIZEDn (TL b))))

BVPLUS2 AUX ` (8c:BVPLUS2 AUX [ ] c = [c])^ (8h r c:BVPLUS2 AUX (CONSh r) c = CONS (c ^ :h _ :c ^
h) (BVPLUS2 AUXr (c ^ h)))

BVPLUS AUX ` (8b c:BVPLUS AUX [ ] b c = BVPLUS2 AUXb c) ^ (8h r b c:BVPLUS AUX (CONSh r) b c =
((b = [ ])) BVPLUS2 AUX (CONSh r) c j CONS (h ^ :HD b ^ :c _ :h ^ HD b ^ :c _

:h ^ :HD b ^ c _ h ^ HD b ^ c) (BVPLUS AUX r (TL b) (h ^ HD b _ c ^ HD b _ h ^ c))))

BVPLUS ` 8a b: aBVPLUS b = BVPLUS AUXa bF

BVMULT ` (8av: av BVMULT [ ] = [F]) ^ (8av h r: av BVMULTCONSh r =
MAP (�v: h ^ v) av BVPLUS CONSF (av BVMULT r))

BVEQUAL ZERO ` (BVEQUAL ZERO [ ] = T)^ (8h t:BVEQUAL ZERO (CONSh t) = :h^BVEQUAL ZERO t)

BVEQUAL ` (8b: [ ] BVEQUAL b = BVEQUAL ZERO b) ^
(8h t b:CONSh t BVEQUAL b = (NULL b) BVEQUAL ZERO (CONSh t) j
((h = HD b) ^ t BVEQUAL TL b)))

BVGREATER AUX ` (8b res:BVGREATER AUX [ ] b res = res ^ BVEQUAL ZERO b) ^
(8h t b res:BVGREATER AUX (CONSh t) b res = (NULL b) (res _ h _ :BVEQUAL ZERO t) j
BVGREATER AUX t (TL b) (h ^ :HD b _ res ^ (h = HD b))))

BVGREATER ` 8a b: aBVGREATER b = BVGREATER AUXa bF

BOOL ` 8a:BOOLa = HD a

BVAL ` 8a:BVALa = [a]
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NVAL ` NVAL = NUM2BV

NPLUS ` 8a b:NPLUS (a; b) = a BVPLUS b

NMULT ` 8a b:NMULT (a; b) = a BVMULT b

NGREATER ` 8a b:NGREATER (a; b) = BVAL (a BVGREATER b)

BAND ` 8a b:BAND (a; b) = BVAL (BOOLa ^ BOOL b)

BOR ` 8a b:BOR (a; b) = BVAL (BOOLa _ BOOL b)

BNOT ` 8a:BNOTa = BVAL (:BOOLa)

BFALSE ` BFALSE = BVALF

BTRUE ` BTRUE = BVALT

EQVAL ` 8a b:EQVAL (a; b) = BVAL (a BVEQUALSIZED (LENGTH a) b)

MAXVALUE ` (MAXVALUE [ ] = T) ^ (8h t:MAXVALUE (CONSh t) = h ^MAXVALUE t)

96



Bibliography

[1] Rajeev Alur, Costa Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho. Hybrid automata:an algo-
rithmic approach to the speci�cation and veri�cation of hybrid systems.

[2] Andrei Borshchev. Private communication, June 1992.

[3] Randel E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on

Computers, C-35(8):677{691, August 1986.

[4] Derek Coleman, Fiona Hayes, and Stephan Bear. Introducing objectcharts or how to use statecharts in
object-oriented design. IEEE Transactions on Software Engineering, 18(1):9{18, January 1992.

[5] Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice
Hall, Englewood Cli�s, NJ, 1991.

[6] Mike Gordon. A formal method for hard real-time programming. Computer Laboratory, Cambridge,
UK.

[7] M.J.C. Gordon and T.F. Melham. Introduction to HOL: a theorem proving environment for higher order

logic. Cambridge University Press, 1993.

[8] D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the formal semantics of statecharts. In
Proceedings of the 2nd IEEE Symposium on Logic in Computer Science, pages 54{64, Ithaca, New
York, June 1987.

[9] David Harel. Statecharts: A visual formalism for complex systems. Science of Computing, 8:231{274,
1987.

[10] David Harel. On visual formalisms. Communications of the ACM, 31(5):514{530, May 1988.

[11] David Harel. Biting the silver bullet. IEEE Computer, 25(1):8{20, January 1992.

[12] David Harel and Chaim-Arie Kahana. On statecharts with overlapping. ACM Transactions on Software

Engineering and Methodology, 1(4):399{421, October 1992.

[13] i-Logix Inc., Burlington, MA. The Semantics of Statecharts, January 1991.

[14] i-Logix Inc., Burlington, MA. Statemate 4.0 Analyzer User and Reference Manual, April 1991.

[15] i-Logix Inc., Burlington, MA. Statemate 4.0 User and Reference Manual, April 1991.

[16] i-Logix Inc., Burlington, MA. Statemate Dataport 4.0, August 1991.

[17] Stephen C. Johnson. Yacc: Yet Another Compiler-Compiler. Bell Laboratories, Murray Hill, New
Jersey.

[18] Je�rey J. Joyce. Totally veri�ed systems: Linking veri�ed software to veri�ed hardware. Technical
Report No. 178, University of Cambridge Computer Laboratory, September 1989.

97



[19] Y. Kesten and A. Pnueli. Timed and hybrid statecharts and their textual representation. Weizmann
Institute of Science.

[20] M.E. Lesk and E. Scmidt. Lex - A Lexical Analyzer Generator. Bell Laboratories, Murray Hill, New
Jersey.

[21] Nancy G. Leveson, Mats P.E. Heimdahl, Holly Hildreth, and Jon D. Reese. Requirements speci�cation
for process-control systems. Technical Report 92-106, University of California, Irvine, Information and
Computer Science, 1992.

[22] Andrew K. Martin. Discrete conservative models of continuous systems. Phd work underway at the
University of British Columbia.

[23] Andrew K. Martin. Private communication, March 1993.

[24] Kenneth L. McMillan. Symbolic Model Checking. PhD thesis, Carnegie Mellon University, May 1992.

[25] ObjecTime Limited. Introduction to ObjecTime, 1992.

[26] A. Pnueli and M. Shalev. What is in a step: On the semantics of statecharts. In Proceedings of the

Symposium on Theoretical Aspects of Computer Software, Lecture Notes in Computer Science, vol.526,
pages 244{264. Springer-Verlag, 1991.

[27] C. Seger. Voss | a practical formal veri�cation system based on symbolic trajectory evaluation. In
preparation.

[28] Carl-Johan H. Seger and Je�rey J. Joyce. A mathematically precise two-level formal hardware veri�-
cation methodology. Technical Report 92-34, University of British Columbia, Department of Computer
Science, December 1992.

[29] J. Staunstrup, editor. Formal Methods for VLSI Design, chapter 2. North-Holland, 1990.

[30] Zhang Ying. A formal model and logic for robotic systems and behaviours: A proposal for doctoral
dissertation. Department of Computer Science, University of British Columbia.

98


