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Abstract: De�ne f on the integers n > 1 by the recurrence

f(n) = minfn;min
mjn

2f(m) + 3f(n=m)g:

The function f has f(n) = n as its upper envelope, attained for all prime n. Our goal

in this paper is to determine the corresponding lower envelope. We shall show that this

has the form f(n) � C(logn)1+1= for certain constants  and C, in the sense that for

any " > 0, the inequality f(n) � (C + ")(log n)1+1= holds for in�nitely many n, while

f(n) � (C � ")(log n)1+1= holds for only �nitely many. In fact,  = 0:7878 : : : is the

unique real solution of the equation 2� + 3� = 1, and C = 1:5595 : : : is given by the

expression

C =
 (2� log 2 + 3� log 3)1=

( + 1)
�
15� log+1 5

2
+ 3�

P
5�k�7 log

+1 k+1
k

+
P

8�k�15 log
+1 k+1

k

�1= :
We also consider the function f0 de�ned by replacing the integers n > 1 with the reals

x > 1 in the above recurrence:

f0(x) = minfx; inf
1<y<x

2f0(y) + 3f0(x=y)g:

We shall show that f0(x) � C0(log x)
1+1= , where C0 = 1:5586 : : : is given by

C0 = 6e (2� log 2� + 3� log 3�)1=
�



 + 1

�1+1=

and is smaller than C by a factor of 0:9994 : : : .

* This research was partially supported by an NSERC Operating Grant.



1. Introduction

Our goal in this paper is an analysis of the recurrence

f(n) = minfn;min
mjn

2f(m) + 3f(n=m)g (1:1)

for the function f : N ! N , where N denote the set of integers exceeding 1. The

value of f(n) depends strongly on the factorization of n. Thus for example we have

f(n) = n whenever n is prime, since then the inner minimization is over an empty set

of factorizations. This example characterizes the \upper envelope" of f , since the outer

minimization ensures that f(n) � n always holds.

In the motivation for the study of this recurrence, which will be presented in Section

2, f(n) is interpreted as a \cost" and n as a \bene�t". We are thus led to seek the

corresponding \lower envelope" of the function f , where the relationship between cost and

bene�t is most favorable. Our main result, Theorem 6.1, shows that this lower envelope

takes the form

f(n) � C(logn)1+1= (1:2)

(for certain constants  and C), in the sense that for any " > 0 the inequality

f(n) � (C + ")(log n)1+1= (1:3)

is satis�ed for in�nitely many values of n, while

f(n) � (C � ")(log n)1+1= (1:4)

is satis�ed for only �nitely many. The constant  = 0:78788 : : : is the unique real solution

of the equation

2� + 3� = 1; (1:5)

while the constant C = 1:5595 : : : is given by

C =
 (2� log 2 + 3� log 3)1=

( + 1)
�
15� log+1 5

2
+ 3�

P
5�k�7 log

+1 k+1
k

+
P

8�k�15 log
+1 k+1

k

�1= : (1:6)

It may seem surprising that a recurrence as simple as (1:1) can give rise to an expression

as complicated as (1:6); nevertheless, we shall �nd a simple interpretation for each of the

twelve terms that are summed in the denominator.
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In preparation for the derivation of our main result, it will be convenient to analyze

some related recurrences that provide upper and lower bounds for f , while being much

easier to analyze. Firstly, for any integer d > 1, we may consider the function fd that is

de�ned by the same recurrence as f , but with the domain being restricted from the set N

of all integers exceeding 1 to the set Nd of all integral powers of d exceeding 1:

fd(n) = minfn;min
mjn

2fd(m) + 3fd(n=m)g: (1:7)

The multiplicative semigroup formed by the integral powers of d constitutes a subsemigroup

of the multiplicative semigroup of integers. Thus we have fd(n) � f(n) wherever the

left-hand side is de�ned, since any factorization that participates in the minimization

on the left-hand side also participates on the right-hand side. On the other hand, the

factorizations that participate on the left-hand side are su�ciently uniform as to eliminate

the discrepancy between the upper and lower envelopes, so that we shall obtain a simple

asymptotic expression for fd.

We shall show in Theorem 4.1 that for d � 5 we have

fd(n) � Cd(logn)
1+1; (1:8)

where

Cd =
4d

 + 1

�
2� log 2 + 3� log 3

log+1 d

�1=

: (1:9)

The expression (1:9) assumes its minimum for d = 10, with C10 = 1:6296 : : : .

For 2 � d � 4 the situation is more complicated, since in these cases the �rst member

of the outer minimization in (1:7) can minorize the second when n is a power of d, whereas

this occurs only for n = d when d � 5. Nevertheless, we shall show in Theorem 4.2 that

(1:8) continues to hold, with C2 = 1:5909 : : : given by

C2 =


 + 1

�
2� log 2 + 3� log 3

(4� + 12�) log+1 2

�1=

; (1:10)

C3 = C9 = 1:6311 : : : , and C4 = 1:6867 : : : given by

C4 =


 + 1

�
2� log 2 + 3� log 3

(28� + 36�) log+1 4

�1=

: (1:11)

Thus the minimum of Cd over all d occurs for d = 2.
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Finally, we may consider the function f0 that is de�ned by the same recurrence as f ,

but with the domain being extended from the set N of all integers exceeding 1 to the set

N0 of all reals exceeding 1:

f0(x) = minfx; inf
1<y<x

2f0(y) + 3f0(x=y)g: (1:12)

(The in�mum in (1:12) is in fact achieved as a minimum, as will become clear from the

analysis, but we shall not need this fact.) Here we have a supersemigroup of the multi-

plicative semigroup of integers, so that we have f0(n) � f(n) for all integers n > 1. Again

the discrepancy between upper and lower envelopes disappears, and we obtain a simple

asymptotic formula for f0.

We shall show in Theorem 5.1 that

f0(x) � C0(log x)
1+1= ; (1:13)

where C0 = 1:5586 : : : is given by

C0 = 6e (2� log 2 + 3� log 3)1=
�



 + 1

�1+1=

; (1:14)

in which e = 2:7182 : : : is the base of natural logarithms.

2. Non-Blocking Networks

The analysis of the recurrence (1:1) may be followed without reference to or knowl-

edge of non-blocking networks. For the sake of motivation, however, we shall derive the

recurrence against its historical background.

A \network" is an interconnection of \nodes" by means of \switches". In a network

there are some distinguished nodes called \inputs", some other distinguished nodes called

\outputs", and some distinguished sets of switches called \routes", each of which forms

a path from an input to an output. A network is \non-blocking" if, given any disjoint

set of routes (no two of which have a node or switch in common), and given any free

input and free output (neither of which are involved in any of the given routes), there

is a free route (disjoint from the given routes) from the given input to the given output.

(The knowledgeable reader will recognize here the de�nition of a \strictly" non-blocking

network. As this is the only type with which we shall have to deal in this paper, we shall

omit the quali�cation \strictly".)
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One of the basic questions concerning non-blocking networks is: given integers n > 1

and m > 1, what is the smallest possible number G(n;m) of switches in a non-blocking

network with n inputs and m outputs? Since inputs and outputs appear symmetrically in

the de�nitions, we have

G(n;m) = G(m;n) (2:1)

by taking \mirror images".

A non-blocking network can be constructed by letting the inputs and outputs be the

only nodes, and by installing a separate switch between each input and each output. Such

a network, which is called a \crossbar", shows that

G(n;m) � nm: (2:2)

In 1953, Clos [C2] introduced what has become the most widely known method for

the construction of non-blocking networks. His idea is to construct a large non-blocking

network by interconnecting smaller subnetworks. In his construction the subnetworks are

arranged in three \stages", as shown in Figure 1. The �rst stage, shown at the left, contains

a subnetworks, each with b inputs and 2b outputs. The second stage contains 2b subnet-

works, each having a inputs and a outputs. The inputs of the �rst-stage subnetworks are

the inputs of the overall network; the outputs of the �rst-stage subnetworks are identi�ed

with (that is, connected by \wires" to) the inputs of the second-stage subnetworks, in such

a way that each �rst-stage and each second-stage subnetwork have exactly one node in

common. The third stage, shown on the right, contains a subnetworks, each having 2b

inputs and b outputs. The outputs of the third-stage subnetworks are the outputs of the

overall network; the outputs of the second-stage subnetworks are identi�ed with the inputs

of the third-stage subnetworks, in such a way that each second-stage and each third-stage

subnetwork have exactly one node in common. Each route in the overall network consists of

a route through a �rst-stage subnetwork, its extension through a second-stage subnetwork,

and �nally its extension through a third-stage subnetwork.

A simple argument based on the pigeon-hole principle shows that the overall network

is non-blocking if each of the subnetworks is non-blocking. This construction thus shows

that

G(ab; ab) � aG(b; 2b) + 2bG(a; a) + aG(2b; b)

� 2aG(b; 2b) + 2bG(a; a): (2:3)
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(The attentive reader may have noticed that the argument remains valid even if 2b is

replaced by 2b � 1. We shall ignore this sharpening of the inequality, however, as it leads

o� the path we wish to follow.)

If crossbars are used in each of the three stages, and if the parameters a and b are

each chosen to be about n1=2, the resulting construction shows that G(n; n) = O(n3=2).

It is clear that further progress can be made by using the method recursively, but Clos

did not succeed in �nding the best way of doing this. In 1971, Cantor [C1] presented the

two principles that underlie the best recursive use of Clos's method. Firstly, since the

subnetworks in the outer stages have inputs and outputs in the proportion 1 : 2 (or 2 : 1,

which is equivalent by taking mirror images), the recursion should be based entirely on such

networks. This can be accomplished by giving the inner subnetworks inputs and outputs

in the proportion 1 : 2, whence the overall network will have inputs and outputs in the

same proportion. When this has been done, the second-stage subnetworks have a inputs

and 2a outputs, and there are 2a third-stage subnetworks. The resulting construction,

shown in Figure 2, shows that

G(ab; 2ab) � aG(b; 2b) + 2bG(a; 2a) + 2aG(2b; b)

� 3aG(b; 2b) + 2bG(a; 2a): (2:4)

If the parameters a and b were given equal values, the outer subnetworks would be

more numerous than the inner ones in the proportion 3 : 2, and any diseconomy of scale

would manifest itself more acutely in the outer stages. It follows that the sizes of the outer

subnetworks should be reduced, and those of the inner subnetworks increased. To discover

the optimal choices of a and b, let F denote the the largest function de�ned on the integers

exceeding 1 and satisfying the inequalities

F (n) � 2n2 (2:5)

and

F (ab) � 3aF (b) + 2bF (a): (2:6)

Comparing (2:2) and (2:4) with (2:5) and (2:6), we see that F (n) is the smallest possible

number of switches in a non-blocking network built according to the construction of Clos

and Cantor. Furthermore, if we set f(n) = F (n)=2n, we see that f satis�es the recurrence

(1:1). Thus the minimizations occurring in (1:1) correspond to the optimizations available

in the construction of Clos and Cantor.
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Cantor ([C1], Section 3) showed that for any " > 0,

f(n) = O
�
(logn)1+1=+")

�
(2:7)

for an in�nite sequence of n, and Pippenger ([P1], Section 6) showed that

f(n) = O
�
(logn)1+1=)

�
(2:8)

for an in�nite sequence. Our Theorems 4.1, 4.2 and 6.1 can all be viewed as re�nements

of and complements to (2:7) and (2:8) for various sequences.

The construction for non-blocking networks that we study is not the best asymptot-

ically. Indeed, Cantor ([C1], Section 4) gave a construction using O
�
n(logn)2

�
switches,

and Bassalygo and Pinsker [BP] gave a probabilistic argument showing the existence of

non-blocking networks with O(n log n) switches. By an old result of Shannon [S], the rate

of growth of this last result is the best possible. The result of Bassalygo and Pinkser has

since been obtained through an explicit construction; see Pippenger [P1] for a presentation

of all these results.

It is interesting to note that the results of Section 4 for �xed d > 1 correspond to

the assumption that all crossbars in a non-blocking network have certain �xed sizes, d or

a power of d; and it is curious that the choices d = 10 and d = 2 should have certain

optimality properties, since precisely these values have been favored historically in the

construction of telephone switching networks (following the widespread use of the decimal

and binary number representations by humans and computers, respectively). The results

of Section 5 similarly correspond to the assumption (contrary to fact) that crossbars could

have any real (not necessarily integral) numbers of inputs and outputs; and it is curious

how little could be gained in this way: C and C0 di�er by less than one part in one

thousand!

3. Derivations

In this section we shall reinterpret our problem in terms of trees, which will become

the main objects of our attention in later sections. To see the relevance of trees, consider

the task of proving that

f(n) � p (3:1)
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for some particular n and p. If n � p, then (3:1) follows by the �rst member of the outer

minimization of (1:1). Otherwise, we must have f(n) = 2f(m) + 3f(n=m) for some m j n.
In this case we can reduce the task of proving (3:1) to that of proving

f(m) � q (3:2)

and

f(l) � r (3:3)

for some m and l such that ml = n and some q and r such that p = 2q + 3r. In either

case, we may represent the proof of (3:1) in the form of a tree: in the �rst case the tree

reduces to a single vertex, its root; in the second case, the root has two children, which are

the roots of subtrees representing the proofs of (3:2) and (3:3). In the remainder of this

section we present the combinatorial machinery that formalizes this representation.

For the purposes of this paper, the \in�nite tree" is the set V = f2; 3g� of �nite words
over the alphabet � = f2; 3g. The words of V are called \vertices". The empty word � is

called the \root". If v is a word, the word v2 is called its \left child" and v3 is called its

\right child", v is called the \parent" of v2 and v3, and v2 and v3 are called \siblings" of

each other.

A \�nite tree" (or simply a \tree") is a non-empty �nite subset T � V that is closed

under taking parents and siblings. Every tree contains the root �. If vertex v has a child

in a tree T , then both its children are in T , and v is called an \internal vertex" of T . If

v belongs to T but has no children in T , then v is called a \leaf" of T . The number of

internal vertices in a tree is one less than the number of leaves.

The \weight"W (v) of a vertex v is the product of the letters appearing in v, with each

letter appearing as a factor with the same multiplicity that it has in v. (This de�nition

accounts for our rather unorthodox use of 2 and 3 as the letters of a binary alphabet.)

A \derivation" D = (T; l) is a tree T = TD together with an assignment l = lD of

integers exceeding 1 to the leaves of T . If D is a derivation, the integer assigned to a

leaf v will be called the \load" of v and will be denoted lD(v). The \capacity" L(D) of a

derivation D is the product of the loads of its leaves. The \cost" C(D) of a derivation D

is the sum, over all leaves, of the product of the weight of the leaf and the load of the leaf.

The main result of this paper is based on the following observation: the solution f(n)

of the recurrence (1:1) is equal to the minimum cost of a derivation with capacity n. This is

easily proved by the inductive argument sketched in the opening paragraph of this section.

7



Furthermore, we can extend this reinterpretation to the recurrences (1:7) and (1:12)

simply by restricting or extending the set of allowable loads. Speci�cally, if we de�ne a

\d-derivation" for d > 1 to be a derivation in which all the loads are integral powers of

d, then fd(n) is the minimum possible cost of a d-derivation with capacity n. Similarly, if

we de�ne a \0-derivation" to be like a derivation, except that the loads may be any reals

exceeding 1, then f0(x) is the minimum possible cost of a 0-derivation with capacity x.

4. Integral Powers of d

In this section we shall analyze the recurrence (1:7), starting with the case d � 5; later

we shall also consider 2 � d � 4. The case d � 5 could actually be solved by reduction to

a recurrence dealt with by Fredman and Knuth [FK], but we shall use a slightly di�erent

analysis, in order to prepare for other cases treated later.

Theorem 4.1: For d � 5, the solution fd to the recurrence (1:7) satis�es

fd(n) � Cd(logn)
1+1; (4:1)

where

Cd =
4d

 + 1

�
2� log 2 + 3� log 3

log+1 d

�1=

: (4:2)

As observed in Section 3, fd(n) is the minimum possible cost of a d-derivation of

capacity n. When d � 5, our problem is simpli�ed by the following observation: for every

n = dk, there exists a minimum-cost d-derivation of capacity n in which the load of every

leaf is d. To see this suppose that every minimal-cost d-derivation with capacity n has a

leaf with load at least dl, where l � 2. Let D be a d-derivation with capacity n and the

minimum possible number of loads equal to dl, and let v be a leaf in TD with load equal

to lD(v) = dl. Consider the derivation D0 obtained from D by making v an internal vertex

with leaves as children. If we let lD0(v2) = dl�1 and lD0(v3) = d, the capacity of D0 is

the same as that of D. Furthermore, the cost of D0 is no greater than that of D, since

the contribution dlW (v) to D has been replaced by the contribution (2dl�1 + 3d)W (v) to

D0, and 2dl�1 + 3d � dl when d � 5. This contradicts the assumption that D has the

minimum possible number of loads equal to dl, and completes the proof of the observation.

We shall refer to the number of leaves in a tree as the \scale" of the tree, and the

sum of the weights of its leaves as its \total weight". When the load of every leaf is d,

the capacity of a d-derivation is just dk, where k is the scale of its tree, and the cost of a

d-derivation is just d times the total weight of its tree. Thus a minimum-cost d-derivation
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is one based on a tree that, among those with a given scale, has the smallest possible total

weight. This yields

fd(d
k) = d	(k); (4:3)

where 	(k) denotes the minimum possible total weight of leaves in a tree with k leaves.

If T is a tree, we shall call its set of internal vertices its \kernel", and denote it by

K(T ). The kernel of a tree is closed under taking pre�xes. Conversely, any set K closed

under taking pre�xes is the kernel of a tree T (K), obtained from K by adjoining as leaves

those vertices that are children of vertices in K but do not themselves appear in K. Thus

there is a one-to-one correspondence between trees and their kernels.

For any tree T , the set T nK(T ) is the set of leaves of T . It will be called the \frontier"

of T and denoted F (T ).

If v is any vertex, we have W (v2) +W (v3) = 5W (v). Summing this identity over all

v 2 K(T ), we obtain X
u2F (T )

W (u) = 1 + 4
X

u2K(T )

W (u);

since a leaf u 2 F (T ) appears once as v2 or v3, the root � appears once as v, and each

other internal vertex u 2 K(T ) appears once as v2 or v3 and once as v. Thus, among trees

of a given scale, those with the minimum total weight of their leaves are also those with

the minimum total weight of their internal vertices. This yields

	(k) = 1 + 4�(k � 1); (4:4)

where �(k � 1) denotes the minimum possible total weight of internal vertices in a tree

with k � 1 internal vertices.

We shall say that a tree is a \threshold tree" if the weight of every internal vertex is

less than or equal to the weight of every leaf. If from the set of vertices we choose k�1 with
the smallest weights, the resulting set of vertices is closed under taking pre�xes, since the

parent of a vertex v has a strictly smaller weight than v. Such a set thus constitutes the

set of internal vertices of a threshold tree with k leaves. Thus there exist threshold trees

of every scale. Furthermore, among trees of a given scale, threshold trees have minimum

total weight of their internal vertices (since this is how their internal vertices were chosen),

and thus have minimum total weight of their leaves. This yields

fd(d
k) = d

�
1 + 4�(k � 1)

�
; (4:5)
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where �(k�1) can now be interpreted as the sum of the weights of the k�1 smallest-weight

vertices in the in�nite tree. Our problem is now to determine the asymptotic behavior of

�.

Let h(x) denote the number of vertices of the in�nite tree having weight at most x.

This function satis�es the asymptotic formula

h(x) � x

H
; (4:6)

where

H = 2� log 2 + 3� log 3: (4:7)

(Information theorists will recognize H as the entropy per independent ip of a biased coin

that falls heads with probability 2� and tails with probability 3� .) Formula (4:6) was

proved by Fredman and Knuth [FK], who used an analytic argument; an elementary proof

(in the technical sense) can be found in Pippenger [P2]. (This formula is the only point at

which the present paper is not self-contained.)

Let Wj denote the weight of the j-th vertex of the in�nite tree (when the vertices are

arranged in non-decreasing order by weight). Inverting (4:6) by raising each side to the

power 1=, we see that

Wj � H1=j1= : (4:8)

Summing over j we obtain

�(k) =
X

1�j�k

Wj

� 

 + 1
H1=k1+1=: (4:9)

Combining (4:9) with (4:5), and using k = logd n, yields Theorem 4.1.

For 2 � d � 4, the analysis given above breaks down: there may be no minimum-cost

d-derivations in which all loads equal d. This is best illustrated by the case d = 2, which

we treat now.

Theorem 4.2: We have

f2(n) � C2(logn)
1+1= ; (4:10)

where

C2 =


 + 1

�
2� log 2 + 3� log 3

(4� + 12�) log+1 2

�1=

: (4:11)
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We begin with a simple observation we shall call the \ordering principle". Suppose

that we �x a tree T and a suite (that is, multiset) S of loads, and ask which loads should be

assigned to which leaves in order to minimize the resulting cost. If A1 � � � � � Ak are the

weights in non-decreasing order and B1 � � � � � Bk are the loads in non-increasing order,

then the minimum possible cost is
P

1�j�k AjBj (this is simply Chebyshev's inequality).

In particular, the smallest load should be assigned to the leaf with the largest weight, and

vice versa.

Our next task is to determine what loads can appear on leaves of a minimum-cost

2-derivation; we claim that, excluding the trivial case n = 2, these are 4, 8 and 16.

Suppose there is an optimal 2-derivation D in which some leaf has load 2. By the

odering principle, we may assume this leaf has the largest weight of any leaf in the tree;

thus it is of the form v3 for some word v (this is the point at which we must exclude the

case n = 2), and v2 is also a leaf (for if it were the root of a subtree, all the leaves of

this subtree would have weight larger than that of v3). Let 2l be the load of the leaf v2

in D. Let D0 be the 2-derivation obtained from D by making v a leaf with load 2l+1.

Then D0 has the same capacity as D. Furthermore, D0 has smaller cost than D, since the

contribution 2l+1W (v) of v to C(D0) is less than the contribution (2 � 2l+3 � 2)W (v) of v2

and v3 to D. This contradicts the assumption that an optimal 2-derivation can contain a

leaf with load 2.

Suppose now that there is an optimal 2-derivation D in which some leaf v has load 2l,

where l � 5. Let D0 be the 2-derivation obtained from D by making v an internal vertex,

with leaves as children. If we let lD0(v2) = 2l�2 and lD0(v3) = 4, then the capacity of

D0 is the same a that of D. Furthermore, the cost of D0 is less than that of D, since the

contribution (2 � 2l�2 +3 � 4)W (v) of v2 and v3 in D0 is less than the contribution 2lW (v)

of v to D. This contradicts the assumption that an optimal 2-derivation can contain a leaf

with load 2l, where l � 5, and completes the proof of the claim that optimal 2-derivations

contain only 4, 8 and 16 as loads.

Next we claim that in an optimal 2-derivation, no leaf of the form v2 (that is, no \left

leaf") can have load 4. Suppose that D is an optimal 2-derivation in which lD(v2) = 4. If

the subtree rooted at v3 has capacity greater than 4, then we may obtain a 2-derivation

with the same capacity as, but lower cost than, D by exchanging the subtrees rooted at v2

and v3. On the other hand, if v3 is a leaf with load 4, we may obtain a 2-derivation with

the same capacity as, but lower cost than, D by making v a leaf with load 16. In either

case we obtain a contradiction, proving that no left leaf can have load 4.
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In what follows we shall con�ne our attention to 2-derivations in which all loads are 4, 8

and 16, and in which no left leaf has load 4; we shall call these \admissible" 2-derivations.

De�ne D0 to be the admissible 2-derivation in which the root � is the only leaf, with

load 8. Consider now three operations, which we shall call \promotions", that transform

admissible 2-derivations into other admissible 2-derivations. The promotion (v; 4) will be

applicable to any admissible 2-derivation D in which v is a leaf with lD(v) = 4; the result

of applying (v; 4) to D is the admissible 2-derivation obtained from D by increasing the

load of v to 8. The promotion (v; 8) will be applicable to any admissible 2-derivation D

in which v is a leaf with lD(v) = 8; the result of applying (v; 8) to D is the admissible

2-derivation obtained from D by increasing the load of v to 16. The promotion (v; 16) will

be applicable to any admissible 2-derivation D in which v is a leaf with lD(v) = 16; the

result of applying (v; 16) to D is the admissible 2-derivation obtained from D by making

v an internal vertex with leaves as children, assigning 8 as the load of v2 and 4 as the laod

of v3.

Any admissible 2-derivation D with capacity at least 8 can be obtained by starting

with D0 and applying a sequence of promotions; this is easily proved by induction on the

capacity of D. (The basis is capacity 8. The inductive step breaks into three cases: if

D has a leaf v with load 16, then D can be obtained by applying promotion (v; 8) to an

admissible 2-derivation with one-half the capacity (which can by the inductive hypothesis

be obtained from D0 by promotions); if D has a right leaf v with load 8, then D can

be obtained by applying promotion (v; 4) to an admissible 2-derivation with one-half the

capacity; and otherwise D, if it is not the basis, must contain an internal vertex v with

leaves as children, with 8 as load of v2 and 4 as load of v3, so that D can be obtained by

applying promotion (v; 16) to an admissible 2-derivation with one-half the capacity.)

Any promotion doubles the capacity of the admissible 2-derivation to which it is

applied. We shall assign a \cost" C(P ) to each promotion P as follows: the cost of the

promotion (v; 4) is 4W (v), the cost of (v; 8) is 8W (v), and the cost of (v; 16) is 12W (v).

Then if application of promotion P to admissible 2-derivation D yields D0, then we have

C(D0) = C(D) +C(P ).

Among promotions, some are prerequisite to others: the promotion (v; 8) is prereq-

uisite to (v; 16), the promotion (v; 16) is prerequisite to both (v2; 8) and (v3; 4), and the

promotion (v3; 4) is prerequisite to (v3; 8). In every case, however, if P is prerequisite to

Q, then the cost of P is at most the cost of Q. In particular, we can order all possible pro-

motions in a sequence P1; P2; : : : ; Pj ; : : : in such a way that (1) the costs are non-decreasing

and (2) each promotion is preceded by all of its prerequisites. It follows that the result
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of applying P1; : : : ; Pk�3 in order to D0 is a minimum-cost 2-derivation with capacity 2k.

This yields

f2(2
k) = 8 +

X
1�j�k�3

C(Pj): (4:12)

Our problem is now to determine the asymptotic behavior of C(Pj).

Let g(x) denote the number of promotions with cost at most x. We can write

g(x) = g4(x) + g8(x) + g16(x); (4:13)

where g4(x), g8(x) and g16(x) denote the numbers of promotions of the form (v; 4), (v; 8)

and (v; 16), respectively, with cost at most x. Since the cost of (v; 16) is 12W (v), we have

g16(x) = h(x=12): (4:14)

Since the cost of (v; 8) is 8W (v), we have

g8(x) = h(x=8): (4:15)

There is a promotion (v; 4) if and only if v is of the form u3; since the cost of (v; 4) is

4W (v) = 12W (u), we have

g4(x) = h(x=12): (4:16)

This yields

g(x) = 2h(x=12) + h(x=8)

� (2 � 12� + 8�)
x

H

� (12� + 4�)
x

H
; (4:17)

where we have used the identity (1:5) to obtain the last line from its predecessor.

Inverting (4:17) by raising each side to the power 1=, we see that

C(Pj) �
�

H

12� + 4�

�1=

j1= : (4:18)

Substituting this formula in (4:12) and summing yields (4:10) and (4:11), completing the

proof of Theorem 4.2.

It is worth observing that the promotion (v; 16) that creates a load of 4 has the same

cost as the promotion (v3; 4) that destroys the load of 4. It follows that the sequence of
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optimal promotions can be arranged so that the resulting optimal 2-derivations each have

at most one leaf with load 4. Thus we can arrange that \almost all" the loads in an optimal

2-derivation are either 8 or 16.

The cases d = 3 and d = 4 are similar to d = 2, and we shall only describe the key

points in the analyses. For d = 3, we easily show that no optimal 3-derivation can have a

load as large as 81, and need not have any load as large as 27 (since this can be replaced

without increasing the cost by children with loads 9 and 3). Futhermore, no left leaf can

have a load of 3. Thus we need only consider \admissible" 3-derivations in which all loads

are either 3 or 9, and no left leaf has a load of 3. We can analyze these by introducing

promotions as before. We then observe that the promotion that creates a load of 3 has the

same cost as the promotion that destroys the load of 3. Thus we can arrange that optimal

3-derivations have at most one leaf with load 3. Since almost all the loads are then 9, we

obtain the same asymptotic result as in the case d = 9: C3 = C9.

For d = 4, a similar analysis shows that all loads in an optimal 4-derivation must be

either 4 or 16. Furthermore, no left leaf can have a load of 4. We can then continue the

analysis using promotions, and the result is

C4 =


 + 1

�
2� log 2 + 3� log 3

(28� + 36�) log+1 4

�1=

: (4:19)

It is worthwhile observing that for 2 � d � 4 the trees underlying optimal d-derivations

are threshold trees, just as they were for d � 5; this is easily seen by considering the

promotions that increase the number of leaves in the tree.

5. Reals

In this section we shall analyze the recurrence (1:12) obtained by eliminating the

integrality constraint from (1:1).

Theorem 5.1: We have

f0(x) � C0(log x)
1+1= ; (5:1)

where C0 = 1:5586 : : : is given by

C0 = 6e (2� log 2 + 3� log 3)1=
�



 + 1

�1+1=

: (5:2)

As indicated in Section 3, our quest is for optimal 0-derivations. To determine these,

let us �x a tree T , and ask how the loads of its leaves should be assigned so as to minimize
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the cost, while achieving a prescribed capacity. (Later we shall determine how the tree T

should be chosen.)

We �rst claim that, among 0-derivations based on a prescribed tree T and having a

prescribed capacity x, a 0-derivation D with minimum cost must be such that there exists

a constant c such that for all leaves v 2 F (TD),

lD(v)W (v) = c: (5:3)

Thus the loads must vary as the reciprocal of the weights of their leaves. To see this,

suppose to the contrary that lD(u)W (u) > lD(v)W (v) for some leaves u and v. Set

c0 =
p
lD(u)W (u)lD(v)W (v), and let D0 be the 0-derivation obtained from D by changing

the loads of u and v to lD0(u) = c0=W (u) and lD0(v) = c0=W (v). Then D0 has the

same capacity as D, but lower cost (as follows from the inequality between geometric and

arithmetic means). This contradiction proves the claim.

We shall next ask which tree T , among those with k leaves, should be used to construct

an optimal 0-derivation. (Later we shall determine how k should be chosen.)

If the capacity of D is to be x, we must have

Y
v2F (TD)

lD(v) = x: (5:4)

Multiplying (5:3) over all v 2 F (TD) yields

ck =
Y

v2F (TD)

lD(v)W (v)

= x
Y

v2F (TD)

W (v);

and thus

c = x1=k

0
@ Y
v2F (TD)

W (v)

1
A

1=k

: (5:5)

Since each leaf contributes c to the cost of D, we have

C(D) = kx1=k

0
@ Y
v2F (TD)

W (v)

1
A

1=k

: (5:6)

Thus the optimal tree T is one that minimizes the geometric mean of the weights of the

leaves and therefore, given that the number of leaves is �xed, minimizes the product of the
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weights. And since the logarithm is an increasing function, it is equivalent to minimuize

the sum of the logarithms of the weights of the leaves.

If v is any vertex, we have logW (v2)+ logW (v3) = log 6+2 logW (v). Summing this

identity over all v 2 K(T ), we obtain

X
u2F (T )

logW (u) = log 1 + (k � 1) log 6 +
X

u2K(T )

logW (u); (5:7)

since each leaf u 2 F (T ) appears once as v2 or v3, the root � appears once as v, and each

other internal vertex u 2 K(T ) appears once as v2 or v3 and once as v. When k is �xed,

the right-hand side of (5:7) is minimized by choosing the k� 1 vertices v with the smallest

W (v) to be the internal vertices in K(T ). Thus threshold trees, which emerged as optimal

for d-derivations (d > 1), are also optimal for 0-derivations.

It remains to determine the optimal value of k as a function of the capacity x. To do

this we shall determine the asymptotic behavior of the geometric mean U(k) of the weights

of the leaves in a threshold tree with k leaves. We shall show that

U(k) � 6e�1=H1=k1=: (5:8)

Using (5:7) we have

U(k) = exp
1

k

X
v2F (T )

logW (v)

= exp
1

k

0
@(k � 1) log 6 +

X
v2K(T )

logW (v)

1
A

= exp
1

k

0
@(k � 1) log 6 +

X
1�j�k�1

logWj

1
A (5:9)

From (4:8) we obtain

logWj =
1


log j +

1


logH + o(1): (5:10)

Substituting (5:10) into (5:9) and estimating the sum by an integral yields (5:8).

From (5:8) we can complete the proof of Theorem 5.1 as follows. From (5:6) we have

C(D) = kx1=kU(k)

� 6e�1=H1=k1+1=x1=k: (5:11)
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Choosing k to minimize k1+1=x1=k yields

k �  + 1


logx (5:12)

and

k1+1=x1=k �
�

e

 + 1

�1+1=

(log x)1+1= : (5:13)

Substituting (5:13) into (5:11) yields

C(D) � 6eH1=

�


 + 1

�1+1=

(log x)1+1= ; (5:14)

which completes the proof of Theorem 5.1.

6. Integers

We arrive in this section at our main result, the solution of the recurrence (1:1).

Theorem 6.1: For every " > 0, we have

f(n) � (C + ")(log n)1+1= (6:1)

for in�nitely many values of n, but

f(n) � (C � ")(log n)1+1= (6:2)

for only �nitely many, where

C =
 (2� log 2 + 3� log 3)1=

( + 1)
�
15� log+1 5

2
+ 3�

P
5�k�7 log

+1 k+1
k

+
P

8�k�15 log
+1 k+1

k

�1= : (6:3)

Because f(n) is large when n is prime, we must focus attention on the lower envelope.

We do this by de�ning

C 0 = lim inf
n!1

f(n)=(log n)1+1=; (6:4)

so that our task is to prove that C 0 = C.

Let us say that an integer n is \good" if there is no larger integer m > n such that

f(m) � f(n). If n is not good, then for some larger m we have

f(m)=(logm)1+1= < f(n)=(log n)1+1= :
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Thus the limes inferior in (6:4) remains unchanged if we con�ne attention to good n.

We begin as in Section 4 with an analysis of the possible load values; we shall not obtain

the sharpest bounds here, but merely aim to reduce the range that must be considered

later. Let us consider a minimum cost derivation D for a good integer n, and let us further

suppose that, among derivations of this minimum cost, D has the largest possible number

of leaves.

Firstly, we claim that D can have no load as small as 2. For if any leaf had load 2,

this would certainly have to be the case for the leaf v3 of largest weight (by the ordering

principle), and the sibling of v3 is another leaf v2 (else it would subtend a leaf of greater

weight than v3). Suppose the load of v2 is l. Then the derivation obtained from D by

making v a leaf with load 2l would have the same capacity as, but lower cost than, D.

Secondly, D cannot have a leaf v with load of 24: replacing v by leaves v2 with load 6

and v3 with load 4 would leave the capacity and cost unchanged, but increase the number

of leaves.

Thirdly, D cannot have a leaf v with load of 25: replacing v by leaves v2 with load 5

and v3 with load 5 would leave the capacity and cost unchanged, but increase the number

of leaves.

Finally, D cannot have a leaf v with load l as large as 26. To see this, it will su�ce

to show that we can �nd integers i and j such that ij > l and 2i + 3j = l, for then we

could replace v by leaves v2 with load i and v3 with load j, and increase the capacity

while leaving the cost unchanged; this contradicts the assumption that the capacity of D

is good.

If we plot the line 2i + 3j = l and the hyperbola ij = l in the real (i; j) plane, they

intersect at two points with i-coordinates

i =
l �pl2 � 24l

4
: (6:5)

The di�erence between these i-coordinates is

�i =

p
l2 � 24l

2
: (6:6)

We will have �i > 3 if l2 � 24l > 36; this in turn holds when l > 12 + 2
p
45, and thus

certainly when l � 12 + 2
p
49 = 26.

The line 2i + 3j = l contains in�nitely many lattice points (points with integral

coordinates); the i-coordinates of successive such lattice points di�er by 3, since adding

18



3 to i and subtracting 2 from j leaves the sum 2i + 3j unchanged. Thus there must be

a lattice point whose i-coordinate lies in the interval whose endpoints are given by (6:5).

For this point (i; j) we have 2i+ 3j = l and ij > l, as desired.

Thus every load on an optimal derivation with a good capacity and a maximal number

of leaves is at least 3 and at most 23. We also claim that, in such a derivation D, if v

has leaves v2 with load i and v3 with load j for children, then 2i + 3j � 24. For the

maximum of ij subject to the constraint 2i + 3j = l is l2=24. Thus if 2i + 3j < 24, the

derivation obtained from D by making v a leaf with load ij will have the same capacity

as, but smaller cost than, D.

We next claim that the tree T underlying the derivationD is a threshold tree. Suppose

to the contrary that T contains an internal vertex u and a leaf v with W (u) > W (v). We

may assume that u has leaves u2 and u3 as children (since if not we may transfer attention

from u to one of its children). Let h, i and j be the loads of the leaves v, u2 and u3,

respectively. As we have seen above, we must have h � 23 and 2i + 3j � 24. Thus we

obtain

�h+ 2i+ 3j > 0: (6:7)

Consider now the tree T 0 obtained from T by making u a leaf and making v an internal

vertex with children v2 and v3 as leaves. Let us now create a derivation D0 from the tree

T 0 by assigning the loads h, i and j in some order to the leaves u, v2 and v3, and letting

the loads of all other leaves be the same as in D. Then D0 has the same capacity as D.

We shall show that there is some order of assignment that results in D0 having a smaller

cost than D. The analysis breaks into three cases, depending on how W (u) ranks among

2W (v) < 3W (v).

Firstly, suppose that 3W (v) < W (u). Then by the ordering principle we should assign

h, i and j to v2, v3 and u, respectively. These three loads contribute hW (v) + i2W (u) +

j3W (u) to C(D), and h2W (v) + i3W (v) + jW (u) to C(D0). If this does not decrease the

cost, that is if C(D0) � C(D) � 0, then

hW (v) + i
�
3W (v)� 2W (u)

�� j2W (u) � 0: (6:8)

Multiplying (6:7) by W (v) and adding the result to (6:8) yields

i
�
5W (v) � 2W (u)

�
+ j
�
3W (v) � 2W (u)

�
> 0: (6:9)

This is a contradiction, since 3W (v) < W (u) implies that the coe�cients of i and j are

each strictly negative.
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Secondly, suppose that 2W (v) < W (u) � 3W (v). Then we assign h, i and j to v2, u

and v3, respectively. These three loads contribute hW (v) + i2W (u) + j3W (u) to C(D),

and h2W (v) + iW (u) + j3W (v) to C(D0). If this does not decrease the cost, then

hW (v)� iW (u) + j
�
3W (v)� 3W (u)

� � 0: (6:10)

Multiplying (6:7) by W (v) and adding the result to (6:10) yields

i
�
2W (v) �W (u)

�
+ j
�
6W (v) � 3W (u)

�
> 0: (6:11)

This is a contradiction, since 2W (v) < W (u) implies that the coe�cients of i and j are

each strictly negative.

Finally, suppose that W (v) < W (u) � 2W (v). Then we assign h, i and j to u, v2 and

v3, respectively. These three loads contribute hW (v) + i2W (u) + j3W (u) to C(D), and

hW (u) + i2W (v) + j3W (v) to C(D0). If this does not decrease the cost, then

�h�W (v) �W (u)
�
+ 2i

�
W (v)�W (u)

�
+ 3j

�
W (v) �W (u)

� � 0: (6:12)

But this contradicts (6:7), since W (v) < W (u). Thus the assumption that an internal

vertex v has greater weight than a leaf u leads to a contradiction, completing the proof

that threshold trees are optimal.

Now that we know that optimal derivations are based on threshold trees, and that

their loads are at least 3 and and most 23, it remains to determine the number of leaves

that should be assigned each of these loads (since then the ordering principle will tell us

which loads to assign to which leaves). Let T be a threshold tree and let y denote the

largest weight of an internal vertex. We shall renormalize the weights of the leaves by

setting �v =W (v)=y for each leaf v 2 F (T ). Then we have �v � 1, since T is a threshold

tree. Furthermore, we have �v � 3, since the weight of a leaf is at most thrice the weight

of its parent, which is an internal vertex. Finally, we have �v � 2 unless v is a \right" leaf

(that is, a leaf of the form u3), since the weight of a left leaf is at most twice the weight

of its parent, which is an internal vertex.

We shall show that, if we choose a leaf v at random from a threshold tree with k

leaves, with all k leaves being equally likely, the value of �v has a distribution that tends

as k !1 to a particular density function on the interval 1 � � � 3, which is continuous

except for a single jump at � = 2.

Firstly, let us �x � and " such that 2 < � < � + " < 3, and consider the number

E(y; �; ") of leaves v such that � < �v � � + ". Such leaves are right leaves (since �v > 2),
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and are in one-to-one correspondence with internal vertices u such that �y=3 < W (u) �
(� + ")y=3. Using (4:6), we obtain

E(y; �; ") = h
�
(� + ")y=3

� � h
�
�y=3

�
�
�
(� + ")y=3

�
H

�
�
�y=3

�
H

� y

H

�
3���1"+O("2)

�
: (6:13)

Again using (4:6), we have k � y=H. Thus the distribution of leaves in the interval

2 < � < 3 aymptotically follows the density function

�(�) = 3���1: (6:14)

We have normalized � so that

Z 3

2

�(�) d� = 1� (2=3) ; (6:15)

the reason for this will become clear shortly.

Next, let us �x � and " such that 1 < � < � + " < 2, and consider the number

E(y; �; ") of leaves v such that � < �v � � + ". Such leaves may be either right leaves or

left leaves. The right leaves are in one-to-one correspondence with internal vertices u such

that �y=3 < W (u) � (�+ ")y=3, and the left leaves are in one-to-one correspondence with

internal vertices u such that �y=2 < W (u) � (� + ")y=2. Using (4:6) and (1:5), we obtain

E(y; �; ") = h
�
(� + ")y=3

� � h
�
�y=3

�
+ h

�
(� + ")y=2

� � h
�
�y=2

�
�
�
(� + ")y=3

�
H

�
�
�y=3

�
H

:

+

�
(� + ")y=2

�
H

�
�
�y=2

�
H

� y

H

�
��1"+O("2)

�
(6:16)

Thus the distribution of leaves in the interval 1 < � < 2 aymptotically follows the density

function

�(�) = ��1: (6:17)

21



We have normalized � so that

Z 2

1

�(�) d� = 2 � 1; (6:18)

from (6:15), (6:18) and (1:5) we have
R 3
1
�(�) d� = 1, so that � can be viewed as a proba-

bility density function on the interval 1 < � < 3.

For each good integer n, let D(n) denote an optimal derivation with capacity n. Let

k(n) denote the number of leaves in TD(n). For 3 �m � 23, let km(n) denote the number of

leaves v of TD(n) such that lD(n)(v) = m, and let �m(n) = km(n)=k(n) denote the fraction

of such leaves. From the sequence of good integers, let us extract an in�nite subsequence of

\special" integers such that, as n runs through the special integers, (1) f(n)=(log n)1+1=

tends to C 0 (as de�ned in (6:4)), and (2) for each m in the range 3 � m � 23, �m(n)

tends to a limit �m. Condition (1) can be ful�lled by the de�nition of C 0, and condition

(2) because for each of the �nitely many values of m, �m(n) varies in the compact interval

0 � �m(n) � 1. Henceforth we con�ne our attention to these special n. Of course, we have

X
3�m�23

�m = 1: (6:19)

For each m, de�ne �m and �m such that

Z �m

1

�(�) d� =
X
m<l

�l (6:20)

and Z 3

�m

�(�) d� =
X
l<m

�l: (6:21)

Let M denote the set of m such that �m > 0. Then we have 1 � �m � �m � 3, and

�m < �m if and only if m 2 M . The half-open intervals (�m; �m] for m 2 M form a

partition of the interval (1; 3]. Thus for 1 < � � 3 we may de�ne a non-increasing left-

continuous step function  on the interval (1; 3] by letting  (�) be the unique value of m

such that �m < � � �m.

For special n we have

log n =
X

v2F (TD(n))

log lD(n)(v) (6:22)
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and

f(n) =
X

v2F (TD(n))

lD(n)(v)W (v): (6:23)

The limiting distribution� of the weights of leaves in threshold trees, the ordering principle,

and the de�nition of  allow us to express the asymptotic behavior of the sums in (6:22)

and (6:23) using integrals,

logn � k

Z 3

1

�(�) log (�) d� (6:24)

and

f(n) � ky

Z 3

1

�(�)� (�) d�: (6:25)

Since k � y=H and f(n)=(log n)1+1= � C 0, we conclude that

C 0 =
H1=P

Q1+1=
: (6:26)

where

P =

Z 3

1

�(�)� (�) d� (6:27)

and

Q =

Z 3

1

�(�) log (�) d�: (6:28)

If now we let  be any any non-increasing left-continuous step function de�ned on

(1; 3] and taking values in f3; : : : ; 23g, then for each m in the range M of  , there  (�)

takes on the value m for � in an interval of the form (�m; �m]. From any threshold tree

Tk with k leaves and threshold y, we can obtain a derivation Dk by assigning to each leaf

v 2 F (Tk) the load  
�
W (v)=y

�
. Letting k (and with it y) tend to in�nity, we obtain a

sequence of derivations with capacities

lognk � k

Z 3

1

�(�) log (�) d� (6:29)

and costs

C(Dk) � ky

Z 3

1

�(�)� (�) d�: (6:30)

Since we must have f(nk) � C(Dk), we conclude that

C 0 = min
 

�( ); (6:31)
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where

�( ) =
H1=P ( )

Q( )1+1=
; (6:310)

P ( ) =

Z 3

1

�(�)� (�) d� (6:32)

and

Q( ) =

Z 3

1

�(�) log (�) d�; (6:33)

and where the minimum is taken over all non-increasing left-continuous step functions  

de�ned on (1; 3] and taking values in f3; : : : ; 23g. Thus we have reduced the determination

of C 0 to the solution of the variational problem (6:31).

Firstly, we claim that the range M of the function  minimizing (6:31) must be an

interval of consecutive integers. Suppose to the contrary that for some h > i > j we have

1 < �h = �i = �i = �j < 3. Let us denote this common value by �, and suppose for now

that � 6= 2. Let us de�ne a new function  0 by choosing " > 0, changing �h = �i = � to

�0
h
= �0

i
= � � "(i � j) and changing �i = �j = � to �0

i
= �0

j
= � + "(h � i). The e�ect of

this change on P is

P ( 0)� P ( ) = (i � h)

Z �

��"(i�j)

�(�)� d� + (i � j)

Z �+"(h�i)

�

�(�)� d�

= (i � h)
�
"(i � j)�(�)� +O("2)

�
+ (i � j)

�
"(h� i)�(�)� +O("2)

�
= O("2) (6:34)

for " > 0 su�ciently small. The e�ect on Q is

Q( 0)�Q( ) =

�
log

i

h

�Z �

��"(i�j)

�(�) d� +

�
log

i

j

�Z �+"(h�i)

�

�(�) d�

=

�
log

i

h

��
"(i � j)�(�) +O("2)

�
+

�
log

i

j

��
"(h� i)�(�) +O("2)

�
=
�
(h� j) log i� (i � j) log h� (h� i) log j

�
�(�)" +O("2) (6:35)

For su�ciently small " > 0. The quantity in square brackets in (6:35) is strictly positive,

by the concavity of the logarithm. Thus the change from  to  0 increases Q to �rst-

order in ", but increases P only to second-order in ". It follows that by choosing " > 0

su�ciently small, we obtain a contradiction to the assumption that  minimizes (6:31). In

the exceptional case that � = 2, the same argument works if we introduce a factor of 3

to compensate for the discontinuity of �: if we set �0
h
= �0

i
= � � "(i � j) as before, but
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now set �0
i
= �0

j
= � + "(h� i)3 , we again obtain cancellation to �rst-order in P but not

in Q. Thus we conclude that M is an interval of consecutive integers.

Next we claim that if m+ 1 and m both belong to M , and if  minimizes �( ) (and

therefore also log �( )), then we must have

�m+1 = �m = % log
m+ 1

m
; (6:36)

where

% =
 + 1



P ( )

Q( )
: (6:37)

Suppose that �m+1 = �m and denote this common value by �. Suppose for now that � 6= 2.

Let us de�ne a new function  0 by choosing a small number # (of either sign) and setting

�0
m+1 = �0

m
= � + #. The e�ect of this change on P is

P ( 0)� P ( ) =

Z
�+#

�

�(�)� d�

= #�(�)� +O(#2); (6:38)

and the e�ect on Q is

Q( 0)�Q( ) =

�
log

m+ 1

m

�Z
�+#

�

�(�) d�

= #

�
log

m+ 1

m

�
�(�) +O(#2): (6:39)

The e�ect on log � is

log �( 0)� log �( ) =
#�(�)�

P ( )
�  + 1



#
�
log m+1

m

�
�(�)

Q( )
+O(#2): (6:40)

Thus if (6:36) did not hold, we could choose a small value of # (with appropriate sign)

and make the right-hand side of (6:40) strictly negative. This contradicts the assumption

that  minimizes �( ), and proves (6:36). In the exceptional case that � = 2, the same

argument works if we interpret �(�) = �(2) (which has not yet been de�ned) correctly.

Speci�cally, if we wish to choose # > 0, we should set �(2) = 3�2�1 (to make � right-

continuous at 2), and if we wish to choose # < 0, we should set �(2) = 2�1 (to make �

left-continuous at 2).

Finally, we claim that if % log m+1
m

falls in the open interval (1; 3), then m+ 1 and m

both belong to M . Suppose to the contrary that the largest element of M is q � m. Let
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us de�ne a new function  0 by choosing " > 0, changing �q = 1 to �q = 1+ ", and setting

�0
m+1 = 1 and �0

m+1 = 1+ ". The change to P is (m+ 1� q)"�(1) +O("2), the change to

Q is
�
log m+1

q
"�(1) +O("2), and the change to log � is

log �( 0) � log �( ) =
"�(1)

P ( )
�  + 1



"
�
log m+1

q

�
�(1)

Q( )
+O("2) (6:400)

which is strictly negative for " > 0 su�ciently small because % log m+1
q

� % log m+1
m

> 1.

This contradiction shows that m+1 belongs toM when % log m+1
m

> 1; a similar argument

(setting �0m = 3� " and �0m = 3) shows that m belongs to M when % log m+1
m

< 3.

At this point we have reduced the determination of the minimizing function  to the

determination of the single parameter %. Although % is de�ned by (6:37), we do not yet

know the values of P ( ) and Q( ), and thus we seek a more explicit characterization of %.

Assume for now that the set of values f% log m+1
m

: 3 �m;m+1 � 23g is disjoint from
the set f1; 2; 3g. Then from (6:36) we can write

 (�) =

&
1

exp �

%
� 1

'
: (6:41)

Thus if we de�ne r =  (1), s =  (2) and t =  (3), we have

r =

&
1

exp 1
%
� 1

'
(6:42)

s =

&
1

exp 2
%
� 1

'
(6:43)

t =

&
1

exp 3
%
� 1

'
: (6:44)

We can now evaluate the integrals in (6:32) and (6:33) by breaking the range of

integration into intervals, over each of which  is constant; the results are

P ( ) = r

Z % log r
r�1

1

� d� +
X
r>q>s

q

Z % log
q

q+1

% log
q+1

q

� d� + s

Z 2

% log
s+1

s

� d�

+ s

Z % log s
s�1

2

3�� d� +
X
s>q>t

q

Z
% log

q

q+1

% log
q+1

q

3�� d� + t

Z 3

% log
t+1

t

3�� d�

= P0 + %+1P+1; (6:45)
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where

P0 =
 + 1


(3t+ 2s� r) (6:46)

and

P+1 =
 + 1



0
@ X
r>q�s

log+1 q + 1

q
+ 3�

X
s>q�t

log+1 q + 1

q

1
A ; (6:47)

and

Q( ) = (log r)

Z % log r
r�1

1

��1 d� +
X
r>q>s

(log q)

Z % log
q

q+1

% log
q+1

q

��1 d�

+ (log s)

Z 2

% log
s+1

s

��1 d� + (log s)

Z % log s
s�1

2

3���1 d�

+
X
s>q>t

(log q)

Z % log
q

q+1

% log
q+1

q

3���1 d� + (log t)

Z 3

% log
t+1

t

3���1 d�

= Q0 + %Q ; (6:48)

where

Q0 = log
st

r
(6:49)

and

Q =
X
r>q�s

log+1 q + 1

q
+ 3�

X
s>q�t

log+1 q + 1

q
: (6:50)

Note that P+1 =
+1


Q . Combining (6:37) with (6:45)|(6:50), we conclude that

% =
3t+ 2s� r

log st

r

: (6:51)

We now observe that (6:42)|(6:44) and (6:51) have a unique solution, namely

r = 16; s = 8; t = 5 (6:52)

and

% =
15

log 5
2

: (6:53)

To verify this, it is convenient to de�ne %p;q = p= log q+1

q
, which is the value of % for which

 makes the step from q+1 to q at p. Since r � 23, we must have % � %1;23 = 23:4964 : : : ;

and if % = %1;23, then (6:43) and (6:44) yield s = 12 and t = 8. Since t � 3, we must have

% � %3;2 = 7:3989 : : : ; and if % = %3;2, then (6:42) and (6:43) yield r = 7 and s = 4. Thus
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we have r 2 f7; : : : ; 23g, s 2 f4; : : : ; 12g, t 2 f3; : : : ; 8g. The transitions among these possi-

bilities occur when % takes on one of the values %1;7; : : : ; %1;22; %2;4; : : : ; %2;11; %3;3; : : : ; %3;7.

These 29 points, when sorted into increasing order, divide the interval [%3;2; %1;23] into 30

subintervals, and the values of r, s and t given by (6:42)|(6:44) are constant throughout

each of these subintervals. Thus there is a unique value of % given by (6:51) for each of these

subintervals. In only one case does this value of % fall into the subinterval: throughout

the subinterval from %1;15 = 15:4949 : : : to %3;5 = 16:4544 : : : , (6:42)|(6:44) give r = 16,

s = 8 and t = 5, whence (6:51) gives % = 15= log 5
2
= 16:3703 : : : . (There are 30 cases

to be considered here; the calculations could be done by hand with patience, but were in

fact done by a computer.) Thus we have established (6:52) and (6:53), on the assumption

that the set of values f% log m+1
m

: 3 � m;m+ 1 � 23g is disjoint from the set f1; 2; 3g, or
equivalently that % is not one of the values %1;7; : : : ; %1;23; %2;4; : : : ; %2;11; %3;2; : : : ; %3;7. To

lift this assumption, we need only verify that (6:37) does not hold if % takes on one of these

values. (There are 31 cases to be considered here, and again the calculations were done by

a computer.) Substituting (6:52) and (6:53) into (6:45)|(6:50) and (6:26) and simplifying

yields C 0 = C for C given by (6:3).

The outcome of the �nal search for r, s, t and % may seem fortuitous or obscure,

but it has a simple explanation. The complications of this section are due to the fact

that loads, and thus the function  , can take on only integral values. If we drop this

constraint, recovering the problem of Section 5, we may describe the solution by saying that

 (�) = 6e=� is then the minimizing choice of  . This corresponds to dropping the ceiling

brackets, replacing exp(�=%) by the �rst two terms 1+ (�=%) of its power series expansion,

and taking % = 6e = 16:3096 : : : in (6:41); and the values of r, s and t corresponding to

this value of % according to (6:42)|(6:44) are r = 16, s = 8 and t = 5.

We can also interpret the individual terms in the denominator of (1:6) in terms of

\promotions". Speci�cally, we can associate the term log+1 q+1

q
(for 8 � q � 15) or

3� log+1 q+1

q
(for 5 � q � 7) with the promotion of a load from q to q + 1; and we can

associate the term 15� log 5
2
with the promotion of leaf with load 16 to a parent of leaves

with loads 8 and 5. The expression for C is thus analogous to those for C2 and C4, though

the justi�cation is much more elaborate.

Finally, we observe that for any �xed " > 0, (1:3) is ful�lled for in�nitely many n in a

geometric progression. To see this, observe that we may replace the optimal values of �m

for 5 � m � 16 by rational numbers pm=q without increasing the value of �( ) to more

than C + ". If we then consider a sequence Ti of trees having qi leaves, and form from

these a sequence Di of derivations in which there are pmi leaves with load m, the resulting
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derivations will have capacity
�Q

5�m�16m
pm
�i

and cost satisfying (1:3). It should be

noted that this observation does not contradict the results of Section 4, which dealt with

the behavior of (1:1) restricted to geometric progressions: in the observation the capacity

n is con�ned to a geometric progression, but the divisor m of n in (1:1) ranges over all

proper divisors; in Section 4, both n and m were con�ned to the geometric progression.
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