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Abstract

We simplify the red/blue segment intersection algorithm of Chazelle et al: Given sets of n

disjoint red and n disjoint blue segments, we count red/blue intersections inO(n logn) time using

O(n) space or report them in additional time proportional to their number. Our algorithm uses

a plane sweep to presort the segments; then it operates on a list of slabs that e�ciently stores a

single level of a segment tree. With no dynamic memory allocation, low pointer overhead, and

mostly sequential memory reference, our algorithm performs well even with inadequate physical

memory.

1 Introduction

Geographic information systems frequently organize map data into various layers. Users can make

custom maps by overlaying roads, political boundaries, soil types, or whatever features are of

interest to them. The ARC/INFO system [8] is organized around this model; even a relatively

inexpensive database like the Digital Chart of the World [9] contains seventeen layers, several with

sublayers. An algorithm for map overlay must be able to handle large amounts of data and compute

the overlay quickly for good user response performance.

We consider a geometric abstraction of the map overlay problem. Suppose R is a set of red

line segments in the plane and B is a set of blue segments such that no interiors of segments of the

same color intersect. The red/blue segment intersection problem asks for an e�cient algorithm to

count or report the red/blue intersections.

Chazelle et al. [3] give output-sensitive solutions for this problem, meaning that the running time

of their algorithms depends on the amount of output. They outlined relatively simple algorithms

that run in O(n log2 n+K) time and use O(n logn) space, where K is the number of intersections

for the reporting problem and K = 1 for the intersection counting problem. We describe their

method in section 2. They also state that the space can be reduced to linear by streaming [7] and

the time to O(n logn + K) by a dynamic form of fractional cascading [4, 5], which they admit is
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complicated. This paper presents an alternative way to reduce space that yields a much simpler

approach to reducing the time.

The red/blue intersection problem was �rst considered while researchers were searching for

general output-sensitive line segment intersection routines. Shamos and Hoey [13] gave a plane-

sweep algorithm to detect an intersection in �(n logn) time. Bentley and Ottmann [1] turned their

algorithm into a general intersection reporting procedure that runs in O((n+K) logn) time and uses

linear space. Mairson and Stol� [11] applied plane-sweep to the red/blue intersection problems and

obtained O(n) space algorithms for reporting in O(n logn+K) time and for counting in O(n logn+

(nK)1=2) time. Chazelle and Edelsbrunner [2] �nally gave an output-sensitive algorithm for the

general intersection problem with optimal running time: their algorithm runs in O(n logn+K) and

uses O(n+K) space. One can, of course, use these general routines to report red/blue intersections

if one is willing to pay the time penalty of Bentley-Ottmann or the space penalty of Chazelle and

Edelsbrunner. They do not, however, adapt to e�ciently solve the intersection-counting problem.

2 Preliminaries

The hereditary segment tree data structure, which stores the set S = R[B of red and blue segments,

forms the basis of the red/blue intersection procedure of Chazelle et al. [3]. To de�ne the hereditary

segment tree, we must �rst de�ne the segment tree [12]. Our de�nition is slightly non-standard|we

use midpoints instead of endpoints to de�ne vertical slabs and allow several segments of the same

color to end in a slab.

Let fx1; x2; :::; xkg be the set of distinct x-coordinates of segment endpoints
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Figure 1:

Intersections in a

slab

in increasing order. We make three \general position assumptions" that sim-

plify the description of the algorithm and data structures: First, no red or blue

endpoint lies on an oppositely colored segment. Second, no red/blue intersec-

tion point has an x-coordinate xi, for 1 � i � k. Third, all segments with

an endpoint on the line x = xi have the same color. We will remove these

assumptions in section 3.4.

Now, form the set of midpoints M = fm1; m2; :::; mk+1g, where m1 = �1,

mk+1 =1 and mi = (xi�1+xi)=2, for 1 < i � k. Then form a balanced binary

tree on k leaves such that the ith leaf node �i is associated with the leaf slab

s(�i) of all points whose x-coordinates lie in the halfopen interval [mi; mi+1).

Notice that the leaf slab s(�i) contains endpoints of at most one color. Each internal node �0 is

associated with the slab s(�0) that is the union of the leaf slabs in the subtree rooted at �0.

Now, let us look at the relation of the red and blue segments to the slab s(�) of an internal or

leaf node �. Some segments may end in s(�); we call them short in � and store them in red or blue

short lists in � depending on their color. Others, which we call long, cut completely through s(�);

if a segment � cuts through s(�) and not through the parent's slab s(parent(�)), then store � in

the red or blue long list for �.

Lemma 2.1 On each level of the tree, a segment is stored in at most two short lists and two long

lists.

Proof: The slabs stored at any given level of the tree are disjoint. A segment, �, is stored as
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short, therefore, in the at most two slabs that contain its endpoints. � is stored as long in at

most one child of each node where � is stored as short.

We can e�ciently compute the intersections between long red segments and blue segments in

the slab s(�). To begin, sort the long red segments vertically within the slab s(�). Then clip each

blue segment to the slab and locate the endpoints of each clipped blue segment in the red long

list by binary search. The red segments that a clipped blue segment intersects are exactly those

between the blue endpoints|one can report them in time proportional to their number or count

them in constant time by subtracting the ranks of the segments above the blue endpoints (see

�gure 1). Similarly, one can report the intersections of short red segments with long blue segments

that appear in the slab.

If we perform this procedure for every tree node �|reporting the intersections between the

long red and long and short blue segments and the long blue and short red segments|then we can

show that every intersection is reported exactly once.

Lemma 2.2 Every intersection point is the intersection of a long segment and another segment in

exactly one slab.

Proof: Consider an intersection point of a red segment r and a blue segment b, namely p = r\b.

In the leaf slab that contains p, there are short segments of at most one color, so either r or

b must be long. Assume that b is long, and if r is also long assume that r is not stored at a

higher level than b.

Let � be the node that stores b as long. By the assumptions, r is stored either as long or

short at �, so the intersection point p will be reported at �. Since the portion of b containing

p is stored as long only at � and the portion of r is not stored as long above �, the point p is

reported only at �.

How much space and time is taken by this procedure, excluding the amount used to report

output? If we construct the entire segment tree, each segment is stored in at most four slabs per

level by lemma 2.1, so the total space is O(n logn). In each slab we sort long segments and locate

long and short segments; both can be done in O(logn) time per segment. This gives a total of

O(n log2 n) time.

This algorithm and analysis is contained in Chazelle et al. [3]. They also state that one can

remove the logarithmic factor from the space by the technique of streaming [7]: rather than building

the entire segment tree, one builds the succession of root to leaf paths, starting with the path to

the leftmost leaf and ending with the path to the rightmost leaf. In moving from one path to the

next only the nodes that change need to be recomputed. They also state that a logarithmic factor

can be removed from the time bound by using a dynamic form of fractional cascading [4]: because

each endpoint will be located in O(logn) lists, sharing elements between the lists allow repeated

searches to be performed more e�ciently.

In the next section we develop an alternative way of reducing the space to linear that gives an

easier way to reduce the time to O(n logn). Our approach actually eliminates the segment tree

data structure and replaces it by a linear list of slabs. This is an advantage because the overhead

of a segment tree may not be negligible in practice. Furthermore, our approach can bene�t from
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preprocessing the data into a special sorted order. Finally, the sequential nature of processing

results in localized memory references, which reduces memory swapping and allows running of

large numbers of segments. Our approach has been parallelized recently by Devillers and Fabri [6].

3 The Improved Algorithm

We have already made a key observation that allows us to reduce the space to linear. Since by

lemma 2.1 each segment appears in at most four lists in each level, we can store a complete level

of the segment tree in linear space. Thus, rather than streaming, we will compute the tree level by

level.

An extra logarithmic factor enters the time complexity of the algorithm of Chazelle et al. [3]

in two ways: sorting the segments in the long lists within each slab and locating in these long lists

the endpoints of segments that are clipped to the slab. We can do most of the sorting and point

location in advance: De�ne the aboveness relation on sets in the plane: A � B if there are points

(x; yA) 2 A and (x; yB) 2 B with yA > yB (see �gure 2). When applied to disjoint convex sets, the

aboveness relation is a partial order [12].

A i+1

A i

A i-1

x

Figure 2:

Ai�1 � Ai � Ai+1

and Ai�1 � Ai+1.

Lemma 3.1 The aboveness relation for disjoint convex sets in the plane is

acyclic.

Proof: Suppose that A1 � A2 � � � � � Ak � A1 is a cycle of minimum

length. We will derive a contradiction. (Note that k > 2.)

Let x0 = min8jmax fx j (x; y) 2 Ajg and let Ai be a set that attains

x0 as in �gure 2. The line x = x0 must intersect Ai�1 above Ai above

Ai+1 since Ai�1 and Ai+1 are comparable to Ai. Omitting Ai, therefore,

gives a smaller cycle, which contradicts minimality.

On the set of red segments and blue endpoints, we can extend the partial

order de�ned by � to a total order. In section 3.2 we describe how to do

this e�ciently using a simple sweep algorithm. If we add the red segments and blue endpoints to a

level of the tree according to this order, two things happen automatically: 1) in each slab, the long

red segments are inserted in sorted order, and 2) when a blue endpoint appears in a slab then the

segment immediately above it was the last to be added to the slab. Thus, the sorting of long red

segments can be omitted and (original) endpoint location is a simple matter of looking at the last

long red segment added to the slab containing the blue endpoint.

The only task that remains is locating the clipped ends of blue segments. If we also use a

total order of the set of blue segments and red endpoints to insert blue segments into slabs, then

we obtain the ends of clipped blue segments in sorted order along the slab boundaries. Merging

these blue endpoints with the long red list gives us the ranks of all clipped blue endpoints, in time

proportional to the number of long segments and endpoints.

In section 3.1, we describe the data structure requirements for our algorithm. Section 3.2

outlines the sweep algorithm for pre-sorting the segments and points. Section 3.3 outlines the

intersection algorithm. Section 3.4 discusses how to handle degenerate cases (in sections 3.2 and 3.3

we will assume that no degeneracies exist in our data).
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3.1 Data Structure Requirements

We de�ne a global structure for storing information on each color. We need one structure for red

information and one for blue information. In each structure, we store the following: the number

of points (twice the number of segments), the list of segments stored as point pairs, the list of

endpoints sorted by x-coordinate (used by the sorting phase) and the sorted list of segments and

endpoints (created by the sorting phase and passed to the intersection phase). To store point

information, we de�ne a structure that holds the (x; y) coordinate of each point p, the index to the

current slab containing p, a count of the number of long segments above p and a pointer to be used

in a linked list of point structures.

During the sorting phase of the algorithm, we use two tree structures. The �rst tree, which we

call the search tree, maintains the segments that currently intersect the sweep line in sorted order

by aboveness. We use this tree for �nding the predecessor of the current point being swept|that is,

the segment directly above the point. The second tree, which we call the sweep tree, is built during

the sweep by making each segment a child of the segment immediately above its right endpoint.

When the sweep is complete, the sweep tree holds the set of segments and endpoints so that an

inorder traversal gives a total ordering consistent with the aboveness relation.

Figure 3 illustrates a sweep tree. We modify the standard trick of
a

b c

d

child pointer

sibling pointer

Figure 3: Sweep Tree

using child and sibling pointers to represent a higher degree tree as a

binary tree [10, p. 333], and use pointers to the rightmost child and left

sibling. The segment d is the child of c (because its right endpoint is

below c), segments b and c are siblings, and c (along with b) is the child

of a. The data structures for both trees are the standard structures for

binary trees. Each node has a left (sibling) pointer and a right (child)

pointer. The search tree and sweep tree structures are needed during the

sorting phase only. A segment in the search tree also has a pointer to its

location in the sweep tree.

For the intersection phase, we de�ne a structure to store the slab

information. For each slab, we de�ne two head pointers to linked lists

storing the long segments on the left and right boundaries of the slab. We also store two counts

for the number of long segments above points on the left and on the right boundaries of the slab.

A list of these structures represents the list of slabs at the current level of the segment tree. Our

convention is to number the slabs starting from zero so that each even/odd pair of slabs represents

the two nodes in the segment tree that will be merged together in the next level of the segment tree.

To form the actual slab boundaries we need the list of midpoints|the points between x-coordinates

of endpoints as described in section 2.

3.2 The Sweep Algorithm For Pre-Sorting

We initialize the sweep tree to a node H containing a horizontal line from (�1;1) to (1;1) so

that all segments and endpoints will be below this line. Before the sweep begins, a node for each

segment and endpoint is pre-allocated. As the sweep proceeds, these nodes are linked together

forming a forest of trees. Eventually, all of these subtrees will be linked to H , forming the �nal
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sweep tree. The head node, H , will then have the entire list of segments and endpoints as its child

subtree and will not have any siblings. The total sorted order of the segments and points can then

be recovered by traversing this tree in inorder.

Next, the sets R and B are each sorted individually by the smaller x-coordinate of each segment.

The endpoints in these lists will be swept from left to right by increasing x-coordinate. We then call

this sorting routine once for the red segments and blue endpoints, and once for the blue segments

and red endpoints, creating two sorted lists. We describe the procedure only for red segments and

blue endpoints.

The sweep begins with the line x = �1 that intersects only the dummy red segment from

(�1;1) to (1;1). When the �rst endpoint, p, of a red segment is encountered, we insert the

segment into the search tree. When the second red endpoint, q, is encountered, we delete the red

segment pq from the search tree and, in the sweep tree, link pq as the child of the segment above q

and make the former child the sibling of pq. When a blue point r is encountered, we �nd the red

segment, s, above the point r in the search tree and, in the sweep tree, link r as the child of s and

link the former child as the sibling of r. This process takes logarithmic time for each point if the

search tree is kept balanced|all other operations are constant time.

The sorted order of the segments and points can now be recovered from the sweep tree. We

can number the nodes of the tree from 1 to the highest number, n, in inorder: starting from the

root, we recursively number the siblings of a node, number the node, increment the counter, and

then recursively number the children of the node. By lemma 3.2, this gives us a list of segments

and points sorted according to the aboveness relation. The �rst element (segment or endpoint) in

the list will be the highest element and the last element in the list will be the lowest element.

Lemma 3.2 Ordering the segments and endpoints stored in the nodes in increasing order of node

numbers gives a total order that is consistent with the aboveness relation.

Proof: De�ne the rightward path for a segment (or point) s to be the path beginning at the

left endpoint of s and then repeatedly continuing to the right endpoint of the segment that it

lies on and extends vertically to the segment above the right endpoint. The rightward paths

for two segments (or points) s and t cannot cross: when they meet, they must meet along a

segment where they will join.

Look at the segment u where the rightward paths for s and t join. (Recall that a dummy

in�nite segment is stored at the root of the sweep tree.) if s is above t, then either u = s or s

and t are in subtrees of the sweep tree that are rooted at children of u. In the former case, s is

the parent of t and an inorder traversal of the sweep tree numbers children of s after s. In the

latter case, the root of the subtree containing s is a sibling to the left of the root of the subtree

containing t; again, an inorder traversal numbers s before t.

3.3 The Red/Blue Intersection Algorithm

This algorithm takes two topologically ordered lists of segments and points, assigns each segment

and point to its slabs and computes the number of intersections in each slab. Figure 4 outlines

our intersection algorithm. We pass the head pointers to the sorted lists of red segments and
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blue endpoints, and blue segments and red endpoints to this routine. When all of the red/blue

intersections are found, we return the total number of intersections.

long int intersection_count(red, blue)

color_data *red, *blue;

{ /* count intersections given sorted orders */

register int i,j;

nslabs = prepare_first_slabs(red, blue); /* initialize slabs, */

/* storing the slab index for each point */

do /* for each level in the segment tree */

{ clear_slabs(nslabs, red); /* initialize slabs */

clear_slabs(nslabs, blue);

make_longs(red); /* put long segments in place */

make_longs(blue);

total_long_long(nslabs, red, blue); /* find intersections */

total_long_short(nslabs, red, blue);

total_long_short(nslabs, blue, red);

fix_inslab(red); /* fix indices and halve number of slabs */

fix_inslab(blue);

for (i = 1, j = 2; j < nslabs; i++, j +=2)

mid[i] = mid[j];

nslabs = (nslabs + 1) >>1;

mid[nslabs] = COORDMAX; /* set last midpoint on the right */

}

while (nslabs > 1); /* we are done when one slab remains */

return(total); /* return number of intersections found */

}

Figure 4: Computing red/blue segment intersections

We create (by the routine prepare first slabs()) a

S

S
S

S

4

2

3

1

0 1 2 3 4

Figure 5: Inserting long segments

into slabs

list of slab boundaries so that each slab contains one seg-

ment endpoint as described in section 2. This routine also

stores with each point p the index to the slab containing p.

Now, we count the number of intersections found at each

level in the segment tree and return the sum of these totals.

For each level in the segment tree, we must assign each

long segment to the proper slabs. To do this the routine

make longs() traverses the list of segments and endpoints

and inserts the long segments into the slabs in sorted order

from highest to lowest. When a segment, S, is encountered, we examine the left and right slab

indices, l and r, already stored with each endpoint of S. If l and r are adjacent slabs, or the same
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slab, then S is not stored long anywhere (see segment S3 in �gure 5). If l is an even slab, then S is

stored long in slab l+ 1 (see segments S2 and S4 in �gure 5). If r is an odd slab, then S is stored

long in slab r � 1 (see segment S1 and S4 in �gure 5). When an endpoint, p, is encountered, the

number of long segments already in the slab is recorded with p as the count of long segments (of

opposite color) above p.

Next, we �nd the intersections between long red segments and long blue segments (by the routine

total long long()). For each long red segment, we count the number of long blue segments above

each of its endpoints. To do this, we merge the long red list with the long blue list along both

boundaries of each slab by comparing y-coordinates. For each slab, starting with the left boundary

of the slab, we step through each long list from top to bottom. When a blue segment is crossed, we

increment a counter by one. When a red segment is reached, we store the current counter with the

left red endpoint as its above count. (Note that we do not actually create a �nal merged list since

we set the red endpoint counts during the merging process.) Similarly, we perform the merge on the

right slab boundary. Then by subtracting the left and right counts for each long red segment, we

obtain the number of blue segments that cross (intersect) the long red segment. For example, back

in �gure 1 the number of long blue segments above the left endpoint, pl, of the long red segment is

5, and the number for the right endpoint, pr, is 3. So the number of intersections along the long

red segment is 2. We add the absolute value of the di�erence between the left and right endpoint

counts to the total intersection count.

Finally, we count the intersections between long blue segments and short red segments, remem-

bering that we have already stored the number of long blue segments above each red endpoint

with each original red endpoint (in the routine make longs()). We traverse the original list of red

segments in sorted order. For each red segment we know the slabs containing each endpoint of the

segment. If both endpoints are inside the same slab, we simply add the absolute di�erence of the

counts for each endpoint to the total number of intersections. If the slabs are di�erent, we must

count the number of long blue segments above each point on the slab boundaries. Starting with the

�rst short red segment, we clip the segment to the slab boundary. As before, we use the y-value of

this intersection point to �nd the number of long blue segments above it on the slab boundary. The

absolute di�erence between this count and the count stored with the starting endpoint is added to

the total number of intersections. We do the same for the second short segment.

We use the same procedure to �nd the intersections between long blue segments and short red

segments. Once this is completed for all slabs, we proceed to the next level in the segment tree

by throwing out every other slab boundary and merging pairs of adjacent slabs. Then, we update

the slab indices stored with each endpoint (by the routine fix inslab()). When all levels of the

segment tree have been processed, we return the total number of intersections found.

3.4 Special Cases

So far, we have assumed that degenerate cases do not occur; that no red or blue endpoint lies on

an oppositely colored segment, that no red/blue intersection point lies on a slab boundary, and

that no red and blue segment endpoints lie on the same vertical line. In practice, such situations

do arise and we must ensure that they are handled properly.
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When a red and blue segment intersect at the boundary dividing two slabs,

1
s s

2

Figure 6:

Intersection on

boundary

s1 and s2 (left and right respectively), as in �gure 6. We want the intersection

point to be detected in only one slab, either s1 or s2. By our de�nition of slabs

in section 2, only the left slab boundaries are stored with each slab, not the right

boundaries. This means that the intersection should be detected in s2, not in

s1. When we merge the y-values on slab boundaries for �nding the number of

long segments above a point, if we detect equal y values then we can count the

intersection point only if we are on the left slab boundary.

We can detect the remaining degeneracies and handle most of them during

the presorting phase of the algorithm.

When red and blue endpoints lie on the same vertical line, then we conceptually perturb the

blue endpoints to the right of the line. If endpoints coincided or endpoints lay on vertical segments,

then this perturbation can change the intersection count. The count should be repaired, depending

on the policy of how to count endpoint intersections.

If a blue endpoint, b1, lies somewhere on a red segment, rs, then we must decide whether b1

is above or below rs. If the second blue endpoint, b2, is not on the line through rs, then we can

make one endpoint above rs and one below rs, so the intersection point will be detected during the

intersection algorithm. That is, if b2 is above rs, then we choose b1 to be below rs. If b2 is below

rs, then we choose b1 to be above rs.

If the point b2 is also on rs, then the two segments are colinear. In this case, we must test

to see if the two segments intersect only at an endpoint, in which case we arbitrarily make one

endpoint above rs and one below rs. If there are an in�nite number of intersection points, then we

report this to the user (in addition to the �nal intersection count). These cases are problematic|

we either have to trust the 
oating point computations to consistently �nd that these segments

overlap whenever they are both stored long in a slab, or we need to mark such segments to force this

consistency. Our implementation does the former (and therefore occasionally counts overlapping

segments as multiple intersections); in the GIS overlay problem it is much more appropriate to

do the latter. In other ways, our algorithm has been more robust than sweep algorithms such

as Bentley-Ottmann [1] because all other computation can be performed on original data points

instead of derived points.

4 Results of Implementation

We have implemented this algorithm in about 750 lines of C, excluding the I/O and debugging

code. Total execution times and time after the initial topological sorting are reported in table 1.

Synthetic data sets and GIS data from Littleton, Colorado, and the UBC research forest were used

on a Sun 4/75 and a Silicon Graphics Crimson. By way of comparison, the direct implementation

(checking all pairs of segments) on the Crimson takes 0.5 seconds for 400 segments of each color,

50.88 seconds for 4 000, and over 80 minutes for 40 000.
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Number of No. that Sun 4/75 (secs) SGI Crimson

Data Set Name Segments Intersect total after total after

Complete 400� 400 160 000 0.42 0.27 0.14 0.09

Grid 4 000� 4 000 16 000 000 5.93 4.00 1.77 1.12

40 000� 40 000 1:6� 109 79.40 52.07 29.81 19.95

200 000� 200 000 4� 1010 | | 181.88 123.79

Horizontal 4 000� 4 000 15297 7.19 5.30 1.89 1.34

& Slanted 4 000� 4 000 290 876 10.70 7.18 2.88 1.79

40 000� 40 000 1 523 785 118.67 79.93 35.55 24.32

40 000� 40 000 29 249 076 181.72 99.52 61.23 36.94

roads/survey 11 074� 239 536 8.87 5.33 2.70 1.51

roads/vegitation 11 074� 5 562 202 14.12 8.98 4.130 2.44

forest/compart 116 359� 8 053 4 637 128.82 80.97 40.22 24.39

biogeo/compart 235 635� 8 053 3 548 | | 81.93 49.73

biogeo/forest 235 635� 116 359 50 045 | | 136.66 92.53

Table 1: Total and \after-sorting" execution times on a 16 Meg Sun 4/75 (spark 2) and a 64 Meg

SGI Crimson

5 Conclusions

The main advantage of this algorithm is that a segment tree data structure is not required. We

merely store one level of the segment tree as a list of slabs. This means that fewer pointers are

needed, less memory is required and the algorithm is easier to implement.

Another advantage is that the sorting of the segments and endpoints is done �rst, independently

from the intersection calculation phase. In GIS overlay applications, this means that data can be

pre-sorted just once prior to storage. Future accesses to this data need not sort again. This would

save considerable time with little or no additional memory costs.
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Appendix A: C code for Red/Blue Segment Intersection

This section contains the code for the main data structures and procedures for our red/blue segment inter-

section algorithm. (Procedures for display, debugging, and threaded binary search tree manipulation have

been omitted to save space.) We list the de�nitions of data structures and the main procedure �rst. Then

we list code for phase 1 and phase 2 computations.

/* Red/Blue Intersection Counting 5 July 93

*

* From L. Palazzi and J. Snoeyink, "Counting and Reporting Red/Blue Segment Intersections",

* WADS'93, Springer Verlag, LNCS , 1993. with thanks to Scott Andrews for debugging and

* modifications to read GIS data.

* WARNING: this code was written for tight memory. There are some dangerous hacks (such as using

* the LSB of a pointer field as a tag bit, two names for one variable, unions...) that you should

* watch out for if you modify this code.

* It was also written for speed, so it sacrifices modularity and structure.

* Degeneracies are handled by perturbing blue segments down and to the right. As a result,

* invocations with files in a different order may give different answers for degenerate inputs.

*/

#define MAXSLABS 100001

#define MAXSEGS 200002

#define MAXSEGSx2 400004

#define MAXSEGSx3 600006

#define MASK_LSB 0xfffffffe

typedef float COORD;

const float COORDMAX = 1e30; =� "In�nity"|bigger than any coordinate �=

/* A segment is a pair of POINTs and each POINT comes with three pointers/integers: tree pointers

* during the topological sort (phase 1) and slab information during the intersection counting

* (phase 2). We use unions to save storage.

*/

typedef struct treenode { =� Phase 1: TREENODE structure for POINT �=

struct POINT *child, =� Points to child subtree �=

*left, =� Left & right children in "balanced" tree of segs

intersecting sweep (threaded) �=*right;

} treenode;

#define sibling left =� ** WARNING: Dangerous hack *** "left" does

double duty|it becomes "sibling" once a node leaves
the sweep �=typedef struct slabentry { =� Phase 2: SLABENTRY structure for POINT �=

int inslab; =� Slab containing this point �=

int above; =� Count of long segments above endpoint �=

struct POINT *lnext; =� Next long seg in slab's linked list �=

} slabentry;

typedef struct POINT { =� POINT structure �=

COORD x, y; =� Coordinates �=

union {

treenode t; =� P1: balanced tree & top sort tree node �=

slabentry e; =� P2: entry in slab list �=

} u;

} POINT;
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/* Each color (red/blue) has an associated list of segments (point pairs), a topological order of

* segments & opposite colored points, & list of slabs (phase 2) or points in x-order (phase 1).

*/

typedef struct { =� Phase 2: SLAB structure �=

int abovel, abover; =� # of longs above on left and right �=

POINT *longl, *longr; =� Heads for left & right long lists �=

} SLAB;

typedef struct { =� color data: All info for a color �=

int n; =� Number of points == twice # of segments �=

POINT p[MAXSEGSx2]; =� Segments stored as POINT pairs �=

POINT *toporder[MAXSEGSx3]; =� P1� >P2: Top order of segs & other points �=

union {

POINT *pptr[MAXSEGSx2]; =� P1: Pointers to endpoints sorted by x �=

SLAB slab[MAXSLABS]; =� P2: Slab structures for long segments �=

} u;

} color_data;

color_data red, blue; =� Data structures for red and blue segments. WARN-

ING: Address tests assume that red is before blue. �=

COORD mid[MAXSLABS]; =� Current slab boundaries �=

int nslabs; =� Number of slabs in current use �=

/* Compare points: TRUE if p > q. Breaking ties with pointer addresses makes blue points greater

* than red points when the x coordinates are equal. */

#define PointGT(p, q) (((p)->x > (q)->x) || (((p)->x == (q)->x) && ((p) > (q))))

#define SegmentP(x, color) =� True if point is a segment of given color �=

(((unsigned) (x - (color)->p)) < MAXSEGSx2)

#define EndpointP(pt, color) =� True if point is endpoint of "color" seg �=

((pt - (color)->p) & 1)

/* definitions for phase 1 tree handling */

#define DET2(a, b, c, d) =� 2x2 determinant �=

((a)*(d) - (c)*(b))

#define DETPts(p, q) =� 2x2 determinant for points �=

DET2((p)->x, (p)->y, (q)->x, (q)->y)

#define CCW(p, q, r) =� Counterclockwise test �=

DET2((q)->x - (p)->x, (q)->y - (p)->y, (r)->x - (p)->x, (r)->y - (p)->y)

#define Swap(p, q, tmp) =� Swap function using temporary tmp �=

{ tmp = *(p); *(p) = *(q); *(q) = tmp; }

#define ZeroP(x) (x == 0) =� Zero test (maybe use epsilon later) �=

/* The tree of segments intersecting the sweep line is threaded for easy deletion and pred

* computation. Thus, we have to tag predecessor and successor pointers (that would otherwise be

* nil). We do so by setting the last bit, assuming that the valid addresses are even. This works

* on sgi, because the fields are multiples of 4 bytes long and are aligned to 4 byte boundaries,

* but may fail on other c compilers/machines. */

#define Tag(x) =� Tag a pointer �=

((POINT *) (((unsigned int) (x)) | 1))

#define NullP(x) =� True if the pointer is tagged �=

(((unsigned int) (x)) & 1)

#define cleanPtr(x) =� Remove any tag to get a valid pointer �=

((POINT *) (((unsigned int) (x)) & MASK_LSB))
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/* definitions for phase 2 intersection counting */

#define AbsDiff(x,y) =� Absolute value of di�erence jx� yj �=

((x) < (y) ? (y) - (x) : (x) - (y))

#define GetStartEnd(seg, segs, st, en) =� Get start and end pts of seg �=

if (EndpointP(seg, segs)) st = (en = seg) - 1; else en = (st = seg) + 1;

#define SegIntNumer(st, en, wallx) =� Numerator of seg/wall intersection �=

DET2(wallx - st->x, st->y, wallx - en->x, en->y)

#define SegIntDenom(st, en) =� Denominator of seg/wall intersection �=

(en->x - st->x)

main(argc,argv) =� Main routine �=

int argc;

char **argv;

{

input_segs(&red, infileRed); =� Get segment information �=

input_segs(&blue, infileBlue);

before_sweep(&red); =� Here begins the real work �=

before_sweep(&blue);

topological_sort(&red, &blue);

topological_sort(&blue, &red);

printf(" %ld ", intersection_count(&red, &blue));

}

The code for phase 1 must sort segments according to the topological order.
int PointCompare(p, q) =� For qsort �=

POINT *p, *q;

{ return (PointGT(p, q) ? 1 : -1); }

int PointPtrCompare(p, q) =� For qsort �=

POINT **p, **q;

{ return (PointGT(*p, *q) ? 1 : -1); }

void before_sweep(color)

color_data *color;

{

register int i;

register POINT *ptr;

POINT tmp;

for (ptr = color->p; ptr < color->p + color->n; ptr += 2)

if (PointGT(ptr, ptr+1)) Swap(ptr, ptr+1, tmp); =� Make sure startpt preceeds endpt �=

qsort(color->p, color->n >> 1,

2*sizeof(POINT), PointCompare); =� Sort segments by start x coord �=

color->p[color->n].x = COORDMAX; =� Last segment is backwards at y=infty �=

color->p[color->n].y = COORDMAX;

color->p[color->n+1].x = 0;

color->p[color->n+1].y = COORDMAX;

for (i=0; i < color->n + 2; i++) color->u.pptr[i] = color->p + i;

qsort(color->u.pptr, color->n,

sizeof(POINT *), PointPtrCompare); =� Sort pointers to points by x �=

}
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POINT *Init_tree(color)

color_data *color;

{ =� Initialize root node of tree of "color" �=

POINT *root;

root = color->p + color->n; =� Use sentinel as root node �=

root->u.t.child = NULL;

root->u.t.left = root->u.t.right = Tag(root);

return(root);

}

void insert_left(parent, node) =� Insert node as left child of parent Code omitted

to save space �=POINT *parent, *node;

void insert_right(parent, node) =� Insert node as right child of parent Code omitted

to save space �=POINT *parent, *node;

POINT *delete(node) =� Delete node from the threaded tree and return

predecessor. Code omitted to save space �=POINT *node;

/* topological_sort(segs, pnts)

* Takes color data for a set of segments and points that have previously been sorted and computes a

* total order consistent with aboveness. Uses a left/right sweep to compute a tree whose inorder

* traversal is consistent with aboveness. Assumes segments and points have been sorted and the

* last segment has x coord of COORDMAX.

*/

void topological_sort(segs, pnts)

color_data *segs, *pnts;

{

POINT **sgptr, **ptptr;

register POINT *sg, *pt;

register POINT *root, *curr, *pr;

register float test;

root = Init_tree(segs); =� Init root: segment at in�nity �=

sg = *(sgptr = segs->u.pptr);

pt = *(ptptr = pnts->u.pptr);

while ((pt->x < COORDMAX) || (sg->x < COORDMAX))

{

if (PointGT(sg, pt)) =� x-order, with red before blue on ties �=

{ =� Sweep a point �=

curr = root->u.t.left;

pr = root; =� Search for segment above curr point �=

while (!NullP(curr))

{ test = CCW(curr, curr+1, pt);

if (ZeroP(test)) =� Point on seg|resolve using other endpoint �=

{ if (EndpointP(pt, pnts)) test = -CCW(curr, curr+1, pt-1);

else test = -CCW(curr, curr+1, pt+1);

if (ZeroP(test)) =� Segments are colinear{move blue below �=

test = ((pt > sg) ? -1.0 : 1.0);

}

if (test > 0) curr = curr->u.t.left; =� If point above curr seg, else �=

else { pr = curr; curr = curr->u.t.right; }

}
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pt->u.t.sibling = pr->u.t.child; =� Insert in forest �=

pt->u.t.child = NULL;

pr->u.t.child = pt;

pt = *(++ptptr);

}

else * We have the start or endpoint of a seg. */

{ if (EndpointP(sg, segs)) =� Sweep a segment endpoint �=

{ curr = sg - 1;

pr = delete(curr); =� Delete from sweep �=

curr->u.t.sibling = pr->u.t.child; =� Insert in forest �=

pr->u.t.child = curr;

sg = *(++sgptr);

}

else =� Sweep a segment start point �=

{ if (NullP(root->u.t.left)) insert_left(root, sg);

else

{ curr = root->u.t.left;

while (1) =� Insert into sweepline �=

{

test = CCW(curr, curr+1, sg);

if (ZeroP(test)) =� On the segment{make consistent �=

test = CCW(curr, curr+1, (sg)+1);

if (test > 0) =� New seg above curr seg �=

if (!NullP(curr->u.t.left)) curr = curr->u.t.left;

else =� Space available here �=

{ insert_left(curr, sg); break; }

else =� Point below curr seg �=

if (!NullP(curr->u.t.right)) curr = curr->u.t.right;

else { insert_right(curr, sg); break; }

}

}

sg = *(++sgptr);

}

}

}

sgptr = segs->toporder; =� Stackless tree traversal to extract the topological
order from the tree. �=curr = root;

curr->u.t.right = root;

do

{ =� Invariant: sibling of curr is NULL here. �=

if ((pt = curr->u.t.child) == NULL)

curr = curr->u.t.right; =� Leaf node: go to successor and output �=

else

{ =� Not a leaf: traverse u.t.child subtree �=

pt->u.t.right = curr->u.t.right; =� Save successor �=

curr = pt;

while ((pt = curr->u.t.sibling) != NULL)

{ pt->u.t.right = curr; curr = pt; } =� Make parent (=successor) pointer �=

}

*(sgptr++) = curr;

}

while (curr != root);

}
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The code for phase 2 uses the ordering of the segments to count the intersections.
long int total = 0; =� GLOBAL: accumulate total intersections �=

int prepare_first_slabs(red, blue)

color_data *red, *blue; =� Find slab boundaries and give each point the index
of slab containing it �={

register POINT *rp, *bp, **rptr, **bptr;

register int i, blueslab;

register COORD last;

rp = *(rptr = red->u.pptr); =� Points in x-coord sorted order �=

bp = *(bptr = blue->u.pptr);

mid[i = 0] = last = -COORDMAX;

blueslab = PointGT(rp, bp); =� Is �rst slab red or blue? �=

do

{ if (blueslab != PointGT(rp, bp)) =� Is next point di�erent color? �=

if (blueslab = !blueslab) =� Switch slab color �=

mid[++i] = (last + bp->x) / 2.0; =� Blue point next �=

else mid[++i] = (last + rp->x) / 2.0; =� Red point next �=

if (blueslab) =� Invariant: blueslab == PointGT(rp, bp) �=

{ last = bp->x; =� Get next blue �=

bp->u.e.inslab = i;

bp = *(++bptr);

}

else

{ last = rp->x; =� Get next red �=

rp->u.e.inslab = i;

rp = *(++rptr);

}

}

while ((rp->x < COORDMAX) || (bp->x < COORDMAX));

return(i+1); =� Return number of slabs used �=

}

void clear_slabs(nslabs, longs)

int nslabs;

color_data *longs;

{ =� Clear slabs initially �=

register SLAB *sptr;

for (sptr = longs->u.slab; sptr < longs->u.slab + nslabs; sptr++)

{ sptr->abovel = sptr->abover = 0; sptr->longl = sptr->longr = NULL; }

}

void fix_slabs(nslabs, longs)

int nslabs;

color_data *longs;

{ =� Reinit once long lists are computed �=

register SLAB *sptr;

for (sptr = longs->u.slab; sptr < longs->u.slab + nslabs; sptr++)

{ sptr->abover = sptr->abovel = 0; sptr->longr = sptr->longl; }

}
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void make_longs(segs)

color_data *segs; =� Inserts points and segs into slabs according to topo-

logical order �={

register int start_slab, end_slab;

register SLAB *slab;

register POINT *point, *epoint;

POINT **order;

for (order = segs->toporder; ((point = *order)->x < COORDMAX); order++)

if (!SegmentP(point, segs)) =� Is this a point? �=

point->u.e.above = segs->u.slab[point->u.e.inslab].abovel;

else

{ =� Item is a segment|place it long �=

start_slab = point->u.e.inslab;

end_slab = (epoint = point+1)->u.e.inslab;

if (start_slab + 1 < end_slab)

{ =� If slabs are not the same or adjacent, add long

segment in slab adjacent to start �=if (!(start_slab & 1))

{

slab = segs->u.slab + (start_slab | 1);

if (slab->longl == NULL) =� Is head of list NULL? �=

slab->longl = slab->longr = point; =� Insert at head & tail �=

else

{ =� Insert tail & advance �=

slab->longr->u.e.lnext = point;

slab->longr = point;

}

point->u.e.lnext = NULL;

slab->abovel++; =� Count as we insert �=

}

if (end_slab & 1) =� Add long seg in slab adj to end �=

{

slab = segs->u.slab + (end_slab & MASK_LSB);

if (slab->longl == NULL) =� Is head of list NULL? �=

slab->longl = slab->longr = epoint; =� Insert at head & tail �=

else

{ =� Insert tail & advance �=

slab->longr->u.e.lnext = epoint;

slab->longr = epoint;

}

epoint->u.e.lnext = NULL;

slab->abovel++; =� Count as we insert �=

}

}

}

}
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void total_long_long(nslabs, red, blue)

int nslabs;

color_data *red, *blue;

{ =� For each slab, compute long/long int. �=

register int i; =� Slab index �=

register POINT *redp, =� Current red seg pointer and �=

*blp, *brp; =� Blue segs intersecting lf & rt above red �=

int left, right; =� # of blues seen on left & right �=
=� Intersections with the lf & rt walls �=

register POINT *st, *en; =� Start and endpoint of segment �=

register double rlnum, rrnum, blnum, brnum; =� Numerators �=

register double rdenom, bldenom, brdenom; =� Denominators �=

for (i = 0; i < nslabs; i++)

{

redp = red->u.slab[i].longl;

blp = brp = blue->u.slab[i].longl;

if ((redp != NULL) && (blp != NULL)) =� If both lists non-empty �=

{ left = right = 0;

GetStartEnd(blp, blue, st, en); =� Find blue wall intersections �=

blnum = SegIntNumer(st, en, mid[i]);

brnum = SegIntNumer(st, en, mid[i+1]);

brdenom = bldenom = SegIntDenom(st, en);

do

{ GetStartEnd(redp, red, st, en); =� Red wall intersections �=

rlnum = SegIntNumer(st, en, mid[i]);

rrnum = SegIntNumer(st, en, mid[i+1]);

rdenom = SegIntDenom(st, en);

while ((blp != NULL) && (rlnum*bldenom < blnum*rdenom))

{ left++; =� While red below blue on left get next blue �=

if ((blp = blp->u.e.lnext) == NULL)

break;

GetStartEnd(blp, blue, st, en);

blnum = SegIntNumer(st, en, mid[i]);

bldenom = SegIntDenom(st, en);

}

while ((brp != NULL) && (rrnum*brdenom < brnum*rdenom))

{ right++; =� While red below blue on right get next blue �=

if ((brp = brp->u.e.lnext) == NULL)

break;

GetStartEnd(brp, blue, st, en);

brnum = SegIntNumer(st, en, mid[i+1]);

brdenom = SegIntDenom(st, en);

}

total += AbsDiff(left, right); =� Accumulate total �=

redp = redp->u.e.lnext; =� Get next red �=

}

while (redp != NULL);

}

}

}
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void total_long_short(nslabs, longs, shorts)

int nslabs;

color_data *longs, *shorts; =� Intersects shorts with longs by inserting shorts in

topological order �={

register POINT *point, *st, *en;

register SLAB *start_slab, *end_slab;

register COORD middle;

register double wallnum, walldenom, test;

POINT **order;

fix_slabs(nslabs, longs); =� Reinitialize slab wall counts �=

for (order = shorts->toporder; ((point = *order)->x < COORDMAX); order++)

if (SegmentP(point, shorts)) =� If segment, check if ends in same slab �=

if ((start_slab = longs->u.slab + point->u.e.inslab)

== (end_slab = longs->u.slab + (point+1)->u.e.inslab))

total += AbsDiff(point->u.e.above, (point+1)->u.e.above);

else

{ =� Start and end slabs are di�erent �=

if (start_slab->longr != NULL)

{ GetStartEnd(point, shorts, st, en); =� Handle slab containing start point �=

middle = mid[point->u.e.inslab+1];

wallnum = SegIntNumer(st, en, middle);

walldenom = SegIntDenom(st, en);

do

{ =� Loop past longs above current short �=

GetStartEnd(start_slab->longr, longs, st, en);

test = (wallnum * SegIntDenom(st, en) - walldenom * SegIntNumer(st, en, middle));

if ((test > 0) =� Next long is below me? �=

|| (ZeroP(test) && (point>st))) =� Or tie? Move blue down �=

break;

start_slab->abover++;

}

while ((start_slab->longr = start_slab->longr->u.e.lnext) != NULL);

}

total += AbsDiff(start_slab->abover, point->u.e.above);

if (end_slab->longl != NULL)

{ GetStartEnd(point, shorts, st, en); =� Handle slab containing end point �=

middle = mid[(point+1)->u.e.inslab];

wallnum = SegIntNumer(st, en, middle);

walldenom = SegIntDenom(st, en);

do

{ =� Loop past longs above current short �=

GetStartEnd(end_slab->longl, longs, st, en);

test = (wallnum * SegIntDenom(st, en) - walldenom * SegIntNumer(st, en, middle));

if ((test > 0) =� Next long is below me? �=

|| (ZeroP(test) && (point>st))) =� Or tie? Move blue down �=

break;

end_slab->abovel++;

}

while ((end_slab->longl = end_slab->longl->u.e.lnext) != NULL);

}

total += AbsDiff(end_slab->abovel, (point+1)->u.e.above);

}

}
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void fix_inslab(color)

color_data *color;

{ =� Shift slab indices for next go-round �=

register POINT *ptr;

for (ptr = color->p; ptr < color->p + color->n; ptr++) ptr->u.e.inslab >>= 1;

}

long int intersection_count(red, blue)

color_data *red, *blue;

{ =� Count intersections (given top. orders) �=

register int i, j;

nslabs = prepare_first_slabs(red, blue);

do

{

mid[nslabs] = COORDMAX;

clear_slabs(nslabs, red);

clear_slabs(nslabs, blue);

make_longs(red); =� Put long segs in place �=

make_longs(blue);

total_long_long(nslabs, red, blue);

total_long_short(nslabs, red, blue);

total_long_short(nslabs, blue, red);

fix_inslab(red); =� Halve the number of slabs and �x indices �=

fix_inslab(blue);

for (i = 1, j = 2; j < nslabs; i++, j +=2)

mid[i] = mid[j];

nslabs = (nslabs + 1) >> 1;

mid[nslabs] = COORDMAX;

}

while (nslabs > 1); =� We are done when one slab remains �=

return(total);

}
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