Generating Random Monotone Polygons

Jack Snoeyink Chong Zhu

Technical Report 93-28
September 1993

Department of Computer Science
The University of British Columbia
Vancouver, B. C. V6T 1Z4
Canada

Abstract

We proposed an algorithm that generates x-monotone polygons for any given set of n points uniformly at random. The time complexity of our algorithm is $O(K)$, where $n \leq K \leq n^{2}$ is the number edges of the visibility graph of the x-monotone chain whose vertices are the given n points. The space complexity of our algorithm is $O(n)$.

1 Introduction

This paper details some recent results that we have obtained in our study of generating random polygons. In particular, we describe an algorithm for generating x-monotone polygons uniformly at random. The remainder of this section provides motivation for this research and a detailed description of this problem. In Section 2, we give the general notation and definitions of our algorithm. In Section 3, we present our monotone polygon generating algorithm with the counting procedure and generating procedures. In Section 4 we prove that our algorithm can generate monotone polygons uniformly at random. In Section 5, we give the visibility computing procedures with the correctness proofs. In Section 6 we analyze the time and space complexity of our algorithm. A summary of our results and related open problems are presented in Section 7.

1.1 Motivation

As well as being of theoretical interest, the generation of random geometric objects has applications which include the testing and verification of time complexity for computational geometry algorithms.

Algorithm Testing: The most direct use for a stream of geometric objects generated at random is for testing computational geometry algorithms. We can test such algorithms in two ways. The first involves the construction of geometric objects that the implementer considers difficult cases for the algorithm. For example, our polygon-nesting algorithm, based on a plane sweep, may require special case code for some polygons. It is important to make those polygons candidates for exposing errors of the algorithm. The second approach to testing involves executing the algorithm on a large set of geometric objects generated at random. We expect errors to be exposed if enough different valid inputs are applied to the algorithm.

Verification of Average Time Complexity: In implementation-oriented computational geometry research, we are often given the problem of verifying that an implementation of an algorithm achieves the stated algorithm time complexity. This is done by timing the execution of the algorithm for various inputs of different sizes. There are many possible inputs of any given size, and the choice is important, since an algorithm may take more time on some inputs than others of the same size. If an average execution time is computed over a set of randomly generated objects of a given size, the relationship between time and problem size will typically follow a curve corresponding to its complexity. We can then check this complexity against the stated algorithm's complexity.

Research has been done on generating geometric objects at random, such as Epstein [1]. This paper gives an algorithm to generate monotone polygons at random.

1.2 Problem

Let $S_{n}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be a set of n arbitrary points sorted according to their x coordinate. We want to generate a simple polygon defined by S_{n} at random. At this beginning stage we only consider generating a monotone polygon from S_{n}. Figure 1 shows a monotone polygon generated from a set of 12 points.

In [1] Epstein gives an $O\left(n^{4}\right)$ algorithm to generate triangulation of a given simple polygon at random. His algorithm, although not generating simple polygons at random, inspires us in constructing our algorithms for generating monotone polygons at random.

In Section 3, we will give an algorithm that generates a monotone polygon randomly on a set of n points in $O(K)$ time and in $O(n)$ space, where K is the total number of above-visible and below-visible points (see Section 2 for definitions) of the points in the point set.

Figure 1: A monotone polygon generated from S_{12}
In related work, Meijer and Rappaport [4] study monotone traveling salesmen tours and show that the number of x-monotone polygons on n vertices is between $(2+\sqrt{5})^{(n-3) / 2}$ and $(\sqrt{5})^{(n-2)}$. Mitchell and Sundaram [5] have independently developed a routine to generate random monotone polygons in $O(n)$ space and $O\left(n^{2}\right)$ time.

2 Preliminaries

Notation. We refer to a probability space as $\left(\Omega, E, P_{r}\right)$, where Ω is the sample space, E is the event space, and P_{r} is the probability function. The sample space Ω is the set of all elementary events that are the possible outcomes of the experiment being described. The event space E is the set of all subsets of Ω that are assigned a probability. The function $P_{r}: E \rightarrow \Re_{0}^{+}$defines the probability of events.

A geometric object generator is an algorithm that produces a stream of geometric objects of a given type. We say that a generator is complete if it can produce every object in a given sample space Ω.

The Uniform Probability Distributions. Probability theory defines both discrete and continuous uniform probability distributions. We are interested only in the discrete case: the discrete uniform probability space for a finite sample space Ω_{U} is defined as ($\Omega_{U}, E_{U}, P_{r U}$), where E_{U} is the set of all subsets of Ω_{U}, and $P_{r U}(A)=1 /\left|\Omega_{U}\right|$ for all $A \in \Omega_{U}$. In other words, in a finite sample space, a uniform distribution is one in which each elementary event is equally likely.

Since the sample space we deal with is finite, we use the discrete uniform probability distribution.

We define that a monotone polygon generator is uniform if each of the monotone polygons has the same probability of being generated.

Definitions. Let $S_{n}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be a set of n arbitrary points sorted according to their x coordinate. Let $S_{i}=\left\{s_{1}, s_{2}, \ldots, s_{i}\right\}$ be a subset of S_{n} for $1 \leq i \leq n$. The total number of monotone polygons can be generated with point set S_{i} is denoted as $N(i)$.

Any monotone polygon constructed from S_{i} can be divided into two monotone chains of which the leftmost vertex is s_{1} and rightmost vertex is s_{i}. In Figure 2 the top monotone chain is $\{1,2,3,6,7,11,12\}$ and bottom monotone chain is $\{1,4,5,8,10,12\}$. Any point in S_{i} is either on the top or bottom chain, except s_{1} and s_{i} are on both chains because they are the beginning and ending points of the chains.

Figure 2: The top and bottom monotone chains
Let $T(i)$ be the set of monotone polygons that are generated from S_{i} with the edge $(i-1, i)$ on their top chains. Let $B(i)$ be the set of monotone polygons that are generated from S_{i} with the edge $(i-1, i)$ on their bottom chains. We define $T N(i)=|T(i)|$ to be the total number of the monotone polygons included in $T(i)$ and $B N(i)=|B(i)|$ to be the total number of the monotone polygons included in $B(i)$.

Let $l(j, i)$ be the line determined by s_{j} and s_{i}. Now we define above-visible or below-visible for a point. We say that a point s_{k} is above-visible from s_{i} if s_{k} is above all $l(j, i)$, for $j=i-1, \ldots, k-1$. And a point s_{k} is below-visible from s_{i} if s_{k} is below all $l(j, i)$, for $j=i-1, \ldots, k-1$. For example, in Figure $3, s_{10}$ is above-visible from s_{12}, and $\left\{s_{9}, s_{7}\right\}$ are below-visible from s_{12}.

Let $V_{t}(i)$ be the set of all the points that are above-visible from point s_{i}. Let $V_{b}(i)$ be the set of all the points that are below-visible from point s_{i}. For example, in Figure 3 , the $V_{t}(12)=\{10\}$ and $V_{b}(12)=\{9,7\}$. The number of points in $V_{t}(i)$ and $V_{b}(i)$ is denoted $\left|V_{t}(i)\right|$ and $\left|V_{b}(i)\right|$ respectively.

3 Generating Monotone Polygons at Random

We have two steps to generate monotone polygons randomly from S_{n}. The first one is to calculate the number of monotone polygons that can be generated from S_{n}. Then we scan S_{n} backward to generate monotone polygons.

Figure 3: The above-visible and below-visible points from point $\{12\}$

3.1 Counting Monotone Polygons

Before we give the procedure to count monotone polygons we prove several theorems to build up the theoretical background.
Lemma 3.1 The set of monotone polygons that are generated from S_{k} with edge $(k-1, k)$ on their top chains is disjoint from the set of monotone polygons that are generated from S_{k} with edge ($k-1, k$) on their bottom chains. That is

$$
T(k) \bigcap B(k)=\emptyset .
$$

Proof. Clearly, there is no polygon in $T(k)$ that could include edge $(k-1, k)$ in its bottom chain. And there is no polygon in $B(k)$ that could include edge $(k-1, k)$ in its top chain. So $T(k) \cap B(k)=\emptyset$.

From this lemma we get the following result.
Theorem 3.2 For any point set S_{k}, with $k>2$, the number of monotone polygons generated with point set S_{k} is

$$
\begin{equation*}
N(k)=T N(k)+B N(k) \tag{1}
\end{equation*}
$$

Proof. Let P be any monotone polygon that is generated from S_{k}. Then we know that the edge ($k-1, k$) is either on the top chain of P which means $P \in T(k)$ or on the bottom chain of P which means $P \in B(k)$. In both cases P is counted by either $T N(k)$ or $B N(k)$. According to Lemma 3.1, we have $N\left(S_{k}\right)=T N(k)+B N(k)$.

For any simple monotone polygon generated from S_{k}, its top chain and bottom chain are paths from s_{1} to s_{k}. The edge $(k-1, k)$ is either on the top chain or on the bottom chain of the monotone polygon. For the chain that does not contain edge $(k-1, k)$, there exists a point $s_{j},(j<k-1)$, that connects to s_{k}. For the point s_{j} we have the following results.
Lemma 3.3 Let P be any simple monotone polygon that is generated from S_{k}.
(1) If the edge $(k-1, k)$ is on the top chain of P and $s_{j},(j<k-1)$, is the point that connects to s_{k}, then s_{j} is below-visible from s_{k}.
(2) If the edge $(k-1, k)$ is on the bottom chain of P and $s_{j},(j<k-1)$, is the point of the top chain that connects to s_{k}, then s_{j} is above-visible from s_{k}.
Proof. We prove (1). If s_{j} is below-visible from s_{k} then the lemma holds. If s_{j} is not below-visible from s_{k}, there exists a line $l(i, k)$ such that s_{j} is above $l(i, k)$, where $j<i<k-1$. Because P is a monotone polygon, s_{i} is on the top chain of P. But s_{i} is below $l(j, k)$. Hence P can not be a simple monotone polygon. This contradiction proves that (1) is true.

The proof for (2) is the same as that for (1).
Lemma 3.4 Let $P(j, k)=T(k) \bigcap\{$ edge (j, k) is on the bottom chain $\}$ for $j \in V_{b}(k)$. Then the number of monotone polygons in the set of $P(j, k)$ is $B N(j+1)$.
Proof. For the monotone polygons in $P(j, k)$, we know that points s_{j} and s_{k} are on the bottom chains, and s_{j+1}, \ldots, s_{k} are on the top chains. So the path of $s_{j}, s_{k}, s_{k-1}, \leadsto s_{j+1}$ is fixed. We can treat the path $s_{j}, s_{k}, s_{k-1}, \ldots, s_{j+1}$ as an edge $(j, j+1)$ that is on the bottom chain. Figure 4 shows an example. Now we know that the number of monotone polygons in the set of $P(j, k)$ equals the number of monotone polygons generated from S_{j+1} with the edge $(j, j+1)$ on the bottom chains. Hence the lemma is true. We call the set of $B(j+1)$ the equivalent set for $P(j, k)$.

Using a similar proof we have the following result.
Lemma 3.5 The number of polygons in $B(k) \bigcap\{$ edge (j, k) is on the top chain $\}$ for $j \in V_{t}(k)$ is $T N(j+1)$.
Theorem 3.6 For any point set S_{k}, we have

$$
\begin{align*}
& T N(k)=\sum_{j \in V_{b}(k)} B N(j+1) \tag{2}\\
& B N(k)=\sum_{j \in V_{t}(k)} T N(j+1) \tag{3}
\end{align*}
$$

Proof. We prove formula 2. According to lemma 3.3, for any $P \in T(k)$, its bottom chain must use one of the points of $V_{b}(k)$. Let s_{j} be the point. Obviously $P \in P(j, k)$. From lemma 3.4, we know that the number of monotone polygons in $P(j, k)$ is $B N(j+1)$. Then the total number of different monotone polygons is $\sum_{j \in V_{b}(k)} B N(j+1)$. So 2 holds.

The proof for formula 3 is the same as that for formula 2 .
This theorem gives us the idea to calculate $T N$ and $B N$, assuming that we have $V_{b}(k)$ and $V_{t}(k)$. The following is the procedure.

```
\(\operatorname{get} T \mathrm{NandBN}(n)\)
    \(T N(2)=1 ;\)
    \(B N(2)=1\);
    FOR \(i=3\), TO \(n\)
        \(T N(i)=0 ;\)
            \(B N(i)=0\);
            FOR ALL \(j \in V_{b}(i)\)
                \(T N(i)=T N(i)+B N(j+1) ;\)
            FOR ALL \(j \in V_{t}(i)\)
                        \(B N(i)=B N(i)+T N(j+1) ;\)
        \(N(n)=T N(n)+B N(n) ;\)
```

After we get $T N(i)$ and $B N(i)$ for $i=2, \ldots, n$, we start to generate a monotone polygon on $S(n)$ at random, under the uniform distribution. The following section gives the details.

(a) The original monotone polygon in $P(k)$

(b) The equivalent set of monotone polygons $B(j+1)$

Figure 4: The original set and its equivalent set.

3.2 Generating Monotone Polygons

For the general case, we give an algorithm to generate monotone polygons from S_{n} at random. Again we assume that we have $V_{b}(k)$ and $V_{t}(k)$, the below-visible and above-visible vertices. The algorithm scans the point set S_{n} backward from the right to the left to generate monotone polygons.

Generate

PICK AN x WITHIN $[1, N(n)]$ UNIFORMLY AT RANDOM;
ADD s_{n} TO top_chain; $\operatorname{ADD} s_{n}$ TO bottom_chain;

```
IF \(x \leq T N(n)\)
    ADD \(s_{n-1}\) TO top_chain;
    Generate_Top \((n, x)\);
    ADD \(s_{1}\) TO bottom_chain;
ELSE
    \(x=x-T N(n) ;\)
    ADD \(s_{n-1}\) TO bottom_chain;
    Generate_Bottom \((n, x)\);
    ADD \(s_{1}\) TO top_chain;
END IF
```

Generate_Top and Generate_Bottom deal with two cases. Generate_Top deals with the case in which s_{k-1} is on the bottom chain and s_{k} is on the top chain of the monotone polygon. In this case the undetermined points are $\left\{s_{1}, \ldots, s_{k-2}\right\}$. Then the set of all monotone polygons that can be generated from the original set is equivalent to that from the subset $S(k)$ with edge ($k-1, k$) on the bottom chains; that is $B(k)$. Generate_Bottom deals with the case in which s_{k} is on the bottom chain and s_{k-1} is on the top chain. In this case the set of all monotone polygons that can be generated is equivalent to $T(k)$. These two cases are shown in Figure 5.

Generate_Top (k, x)

1. IF $k \leq 2$ RETURN;
2. FIND THE SMALLEST i SUCH THAT i SATISFIES:

$$
x \leq \sum_{j \in V_{b}(k) \wedge j \leq i} B N(j+1) ;
$$

3. ADD POINT s_{i} TO bottom_chain;
4. ADD ALL THE POINTS $s_{k-2}, s_{k-3}, \ldots, s_{i+1}$ TO top_chain;
5. $k=i+1$;
6. $\quad x=x-\sum_{j \in V_{b}(k) \wedge j<i} B N(j+1)$;
7. Generate_Bottom (k, x)

Generate_Bottom (k, x)

1. IF $k \leq 2$ RETURN;
2. FIND THE SMALLEST i SUCH THAT i SATISFIES:

$$
x \leq \sum_{j \in V_{t}(k) \wedge j \leq i} T N(j+1) ;
$$

3. ADD POINT s_{i} TO top_chain;
4. ADD ALL THE POINTS $s_{k-2}, s_{k-3}, \ldots, s_{i+1}$ TO bottom_chain;
5. $k=i+1$;
6. $x=x-\sum_{j \in V_{b}(k) \wedge j<i} T N(j+1)$;

END IF
7. Generate_Top (k, x);

Our generating algorithm is to combine getTNandBN and Generate together.

```
Algorithm
\(\operatorname{get} T N a n d B N(n)\)
Generate
```


Figure 5: The generating process.

The following section will show us that our Algorithm can generate monotone polygons uniformly at random.

4 The Analysis of the Algorithm

Let all the monotone polygons that can be generated from S_{n} be $\left\{P_{1}, P_{2}, \ldots, P_{N(n)}\right\}$. Let $\Omega(n)=$ $\left\{P_{1}, P_{2}, \ldots, P_{N(n)}\right\}$. Then $\Omega(n)$ is a sample space. Each event in $\Omega(n)$ is an unique monotone polygon P_{i} that can be generated from S_{n}. We map $\Omega(n)$ to an integer set of $[1, N(n)]$. Each $x \in[1, N(n)]$ corresponds to an unique monotone polygon $P_{x} \in \Omega(n)$. Now we have the following results.
Lemma 4.1 For $n \geq 2$ and $\forall x \in[1, T N(n)]$, Generate_Top generates an unique monotone polygon $P_{x} \in T(n) \subseteq \Omega(n)$; For $n \geq 2$ and $\forall x^{\prime} \in[1, B N(n)]$, Generate_Bottom generates an unique monotone polygon $P_{x^{\prime}} \in B(n) \subseteq \Omega(n)$.
Proof We use induction on n (the size of the point set). Our base case is $n=2$. Because of $T N(2)=1$ and $B N(2)=1$, we know that x is 1 . From the procedure Generate the input of Generate_Top is that s_{1} and s_{2} are on the top chain and $x=1$, and the input of Generate_Bottom is that s_{1} and s_{2} are on the bottom chain and $x=1$. For this trivial base case Generate_Top and Generate_Bottom generate the correct trivial monotone polygon by simply
returning to Generate.
Now for all $k<n$, we assume that $\forall x \in[1, T N(n)]$ Generate_Top generates an unique monotone polygon $P_{x} \in T(k)$ and $\forall x^{\prime} \in[1, B N(n)]$, Generate_Bottom generates an unique monotone polygon $P_{x^{\prime}} \in B(k)$.

For $k=n$, let $x_{1}, x_{2} \in[1, T N(n)]$ and $P_{x_{1}}, P_{x_{2}} \in T(n)$ be the monotone polygons that are generated by Generate_Top according to x_{1} and x_{2}. Now we prove that if $x_{1} \neq x_{2}$, then $P_{x_{1}} \neq P_{x_{2}}$.

From Generate we know that s_{n-1} and s_{n} are on both top chains of $P_{x_{1}}$ and $P_{x_{2}}$. Let $i_{1} \geq 1$ and $i_{2} \geq 1$ be the below_visible points found in Generate_Top. There are two cases in this situation.

Case 1: $i_{1} \neq i_{2}$. Without loss of generality, let $i_{1}<i_{2}$. From Generate_Top we know that for $P_{x_{1}}$, point $s_{i_{1}}$ is on the bottom chain and point $s_{i_{2}}$ is on the top chain. For $P_{x_{2}}$, point $s_{i_{2}}$ is on the bottom chain. This proves $P_{x_{1}} \neq P_{x_{2}}$.

Case 2: $i_{1}=i_{2}$. From Generate_Top we know that $k_{1}^{\prime}=k_{2}^{\prime}=i_{1}+1$, Since $x_{1} \leq T N(n)$ and $x_{2} \leq T N(n)$, we have

$$
x_{1}^{\prime}=x_{1}-\sum_{j \in V_{b}(k) \wedge j<i_{1}} B N(j+1) \leq B N\left(i_{1}+1\right)
$$

and

$$
x_{2}^{\prime}=x_{2}-\sum_{j \in V_{b}(k) \wedge j<i_{2}} B N(j+1) \leq B N\left(i_{2}+1\right) .
$$

Because of $x_{1}>\sum_{j \in V_{b}(k) \wedge j<i_{1}} B N(j+1)$ and $x_{2}>\sum_{j \in V_{b}(k) \wedge j<i_{1}} B N(j+1)$, we have $x_{1}^{\prime} \geq 1$. Then we have $x_{1}^{\prime} \neq x_{2}^{\prime}$, and $x_{1}^{\prime} \in\left[1, B N\left(k_{1}^{\prime}\right)\right]$ and $x_{2}^{\prime} \in\left[1, B N\left(k_{2}^{\prime}\right)\right]$. From our assumption, Generate_Bottom generates two different monotone polygons $P_{x_{1}^{\prime}}$ and $P_{x_{2}^{\prime}}$ with edge ($i_{1}, i_{1}+1$) on the bottom chains. From lemma 3.4 and lemma 3.5, we know that $P_{x_{1}^{\prime}}, P_{x_{2}^{\prime}} \in B\left(k_{1}^{\prime}\right)$ and $B\left(k_{1}^{\prime}\right)$ is the equivalent set of $P\left(k_{1}^{\prime}, k\right)$. Then we know that the part of polygons of $P_{x_{1}^{\prime}}$ and $P_{x_{2}^{\prime}}$ without edge $\left(i_{1}, i_{1}+1\right)$ are on the monotone polygons of $P_{x_{1}}$ and $P_{x_{2}}$. Hence $P_{x_{1}} \neq P_{x_{2}}$.

Using the similar proof, we can prove that for $\forall x^{\prime} \in[1, B N(n)]$, Generate_Bottom generates an unique monotone polygon $P_{x^{\prime}} \in B(k)$.

From this lemma we immediately get the following result.
Theorem 4.2 For $n \geq 2$ Generate generates monotone polygons from $\Omega(n)$ uniformly at random. Proof Generate picks an $x \in[1, N(n)]$ uniformly at random. If $x \leq T N(n)$ Generate calls Generate_top. If $x>T N(n)$ Generate calls Generate_bottom. From lemma 4.1 Generate generates an unique monotone polygon $P_{x} \in \Omega(n)$; We know that the x picking behavior determines the generating behavior of Generate. Hence the probability of a monotone polygon generated by Generate equals to the probability of picking a x from $[1, N(n)]$. So the theorem is true. In other words, Generate retains an uniform monotone polygon generator.
Corollary 4.3 Generate is complete.

5 Computing Visibility

The algorithms of the previous section assumed that the above-visible and below-visible sets, $V_{t}(i)$ and $V_{b}(i)$ for $i=1, \ldots, n$, were available. A closer look, however, shows that these sets are only needed for one index i at a time: algorithm getTNandBN needs the sets in increasing order and algorithms Generate_top and Generate_top need them in decreasing order.

In this section, we show how to calculate each of the sets $V_{t}(i)$ incrementally as i increases (In Section 5.1) and as i decreases (In Section 5.2), using time proportional to $\left|V_{t}(i)\right|$ and $O(n)$ space to compute $V_{t}(i)$ from $V_{t}(i-1)$ or $V_{t}(i+1)$.

The idea is the following. Let S_{k} denote the monotone chain with vertices $s_{1}, s_{2}, \ldots, s_{k}$. If we think of S_{k} as a fence and compute the shortest paths in the plane above S_{k} from s_{k} to each s_{i} with $i \leq k$, then we obtain a tree that is known as the shortest path tree rooted at s_{k} [2, 3]. The above-visible set $V_{t}(i)$ is exactly the set of children of s_{k} in the shortest path tree rooted at s_{k}. Thus, we will incrementally compute shortest path trees rooted at $s_{1}, s_{2}, \ldots, s_{k}$ to get the above-visible sets.

We represent shortest path trees (in which a node may have many children) by binary trees in which each node has pointers to its uppermost child and next sibling. Section 5.1 gives the details for computing these trees in the forward direction: computing $V_{t}(i)$ from $V_{t}(i-1)$. Section 5.2 gives the details for the reverse direction: computing $V_{t}(i)$ from $V_{t}(i+1)$.

5.1 Computing Visibility Forward

We use a tree data structure to calculate $V_{t}(k)$ and $V_{b}(k)$ recursively. Assuming $V_{t}(k-1)$ and $V_{b}(k-1)$ have been calculated, we calculate $V_{t}(k)$ and $V_{b}(k)$ according to the results of $V_{t}(k-1)$ and $V_{b}(k-1)$. The data structure that we use in the calculation is the tree of the shortest paths rooted at vertex k.

We store top_tree(i) and bot_tree (i) using child and sibling pointers. For each vertex $j \in[1, n]$, we have a record for top_tree

j :	ptr	$p t r$ stores the coordinates of vertex j
	upc	$u p c$ is a pointer pointing the upper child of j in top_tree(k)
	sib	$s i b$ is a pointer pointing the sibling of j in top_tree (k)

We define Children (k) be the set of points that contains the upper and lower children of k and their siblings in the top_tree and bot_tree. The initial value of top_tree for the recursive calculation is 1.ptr $=s_{1}, 1 . u p c=$ nil and $1 . s i b=$ nil. We assume that top_tree $(i-1)$ has been completed. Then we call Make_ V_{t} to calculate the above-visible set, V_{t}. In order to get V_{t}, the procedure Make_ \mathbf{V}_{t} calls the procedure Make_top to calculate the top_tree (i).

```
Make_V \({ }_{t}(i)\)
    \(t=t m p ;\)
    Make_top( \(i-1, i, \operatorname{Var}: t\) );
    \(i . u p c=t m p . s i b ;\)
```

Procedure Make_top $(i-1, i$, lastsib $)$ makes the tree edge from k to j in top_tree (k), and puts it as the sibling of lastsib and updates lastsib. Then it recursively build the top_tree(k). One example is shown in Figure 6.

```
Make_top(j,k,Var: lastsib)
```

WHILE $j . u p c \neq$ nil and k is above $l(j . u p c, j)$
Make_top(j.upc, k, Var: lastsib);
/* make subtree for this child of j, which can be seen by k. */
$j . u p c=j . u p c . s i b ; /^{*}$ consider next child of $j^{*} /$
END WHILE
lastsib.sib $=j ; /^{*}$ make the connection to j, one of the children of $k * /$ lastsib $=j$;

Figure 6: A point set S_{5} and the data of top_tree(5).
To compute the bot_tree is similar to computing the top_tree. We need only change upc and 'above' in procedure Make_ $\mathbf{V}_{t}(i)$ and Make_top into $l w c$ and 'below' to get the procedures Make_ $\mathbf{V}_{b}(i)$ and Make_bot. We use Make_ $\mathbf{V}_{b}(i)$ and Make_bot to compute bot_tree(i) from bot_tree $(i-1)$. One example is shown in Figure 7.

Figure 7: A point set S_{5} and the data of bot_tree(5).
Knowing top_tree (k) and bot_tree (k), we know the above-visible and below-visible point sets, $V_{t}(k)$ and $V_{b}(k)$ of vertex k. Now we give the theorem to show us how to get $V_{t}(k)$ and $V_{b}(k)$ from top_tree(k) and bot_tree (k).

Let r be a record in the top_tree or bot_tree. We define that r.sib ${ }^{i}=r . s i b^{i-1} . s i b$, for any integer $i \geq 0$, and $r . s i b^{0}=r$. Then we know that the upper child of k and its siblings are this kind of format. Now we claim that the upper child of k and its siblings are the vertices visible from k,
and any vertex that is visible from k is either the upper child of k or its sibling. This is proved in the next theorem.
Theorem 5.1 Let $C T(k)$ be the set of points in top_tree (k) that satisfy $\forall j \in$ Children $(k), \exists i$ such that $j=k . u p c .(s i b)^{i}$. Let $C B(k)$ be the set of points in bot_tree (k) that satisfy $\forall j \in \operatorname{Children}(k), \exists i$ such that $j=k . l w c .(s i b)^{i}$. We have $V_{t}(k)=C T(k)-\{k-1\}$ and $V_{b}(k)=C B(k)-\{k-1\}$.
Proof First we prove $V_{t}(k)=C T(k)-\{k-1\}$. If $V_{t}(k)=\emptyset$, there is no point that is above line $l(k-1, k)$. This means that there is no $l(i, k-1)$ that is below k. From Make_top, we know that $C T(k)=\{k-1\}$. hence $V_{t}(k)=C T(k)-\{k-1\}$. If $C T(k)=\{k-1\}$ there is no $l(i, k-1)$ that is below k for $i=1, \ldots, k-2$. So there exists no point that is above $l(k-1, k)$. Hence $V_{t}(k)=\emptyset=C T(k)-\{k-1\}$.

For the general situation, $\forall j \in V_{t}(k)$, we have j is above all $l(i, k)$ for $i=j+1, \ldots, k-1$ that implies that k is above all $l(j, i)$ for $i=j+1, \ldots, k-1$. Now we prove $j=k$.upc. $(\operatorname{sib})^{i}$, $i \geq 0$. If there is no $j^{\prime} \in V_{t}(k)$ and $j^{\prime}<j$ such that k is above $l\left(j^{\prime}, j\right)$ then $j=k$.upc. Otherwise, $j=j^{\prime}$.sib. Similarly this induction can be applied to j^{\prime}, that is, $j^{\prime}=k$.upc. $(\text { sib })^{i^{\prime}}$. Then we have $j=k . u p c .(s i b)^{i}+1$. So $V_{t}(k) \subseteq C T(k)-\{k-1\}$.
$\forall j \in C T(k)-\{k-1\}$, we know $j=k . u p c .(s i b)^{i}$. Then j is above all $l(i, k)$, for $i=j+1, \ldots, k-1$. Otherwise, there exists a point, say j^{\prime}, such that $j^{\prime}>j$ and j is below $l\left(j^{\prime}, k\right)$. Then $l(j, k)$ is below $l\left(j^{\prime}, k\right)$ that means k is below $l\left(j, j^{\prime}\right)$. From Make_top we know that j can not be the format of k.upc. $(s i b)^{i}, i \geq 0$. This contradiction proves that j is above all $l(i, k)$, for $i=j+1, \ldots, k-1$. Then we have that $j \in V_{t}(k)$ that implies $V_{t}(k) \supseteq C T(k)-\{k-1\}$. Now we have $V_{t}(k)=C T(k)-\{k-1\}$.

The proof for $V_{b}(k)=C B(k)-\{k-1\}$ is similar to the proof above.

5.2 Computing Visibility backward

In procedure Generate_Top and Generate_Bottom, we need to find the smallest i in line 2. Here we assume that $\operatorname{top} _\operatorname{tree}(k+1)$ and $\operatorname{bot} \operatorname{tree}(k+1)$ have been completed, we use procedures Back_top and Back_bot to generate top_tree (k) and $\operatorname{bot_ tree}(k)$. Let $t_{i-j}=(k+1)$.upc.sib ${ }^{j}$, for $j=0,1, \ldots, i$. Then $t_{i}=(k+1)$.upc and $t_{0}=k$. Let $Q=\left\{t_{j}, j=0, \ldots, i\right\}$. From theorem 5.1, we know $Q=V_{t}(k+1)-\{k\}$. If we take t_{0} as the origin of of coordinates, according to the above-visible definition, the points in Q are sorted lexicographically by polar angle and distance from t_{0}. Then from Graham-Scan we can get the correct top_tree (k). This is similar for calculating bot_tree(k). The following are the procedures.

```
Back_top \((k+1, k)\)
1. FIND \(i\), SUCH THAT \((k+1) \cdot u p c \cdot s i b^{i}=k\);
2. FOR \(j=0 \mathrm{TO} i\)
3. \(t_{i-j}=(k+1) . u p c . s i b^{j}\);
4. IF \(i=0\) RETURN;
    ELSE IF \(i \geq 1\)
5.
                        Graham-Scan-Top \(\left(i, t_{0}, \ldots, t_{i}\right)\);
    END IF
```

Graham-Scan-Top $\left(i, t_{0}, \ldots, t_{i}\right)$

1. $\quad \operatorname{Push}\left(t_{0}, \mathrm{~S}\right) ; \quad / * \mathrm{~S}$ is a stack */
2. $t_{1}=t_{0} \cdot u p c$;
$3 \quad t_{0} . u p c=t_{1} ;$
3. $\operatorname{Push}\left(t_{1}, \mathrm{~S}\right)$;
4. FOR $j=2 \mathrm{TO} i$
5. WHILE the angle formed by points NEXT-TO-Top(S), $\operatorname{Top}(S)$, and t_{j} makes nonleft turn
6. $\quad \operatorname{Pop}(\mathrm{S})$;
7. $\quad t_{j}=\operatorname{Top}(\mathrm{S}) . u p c$;
8. \quad Push $\left(\mathrm{S}, t_{j}\right)$;

One example to calculate top_tree(k) from $\operatorname{top}_{-} \operatorname{tree}(k+1)$ is shown in Figure 8.

Figure 8: top_tree (k) is generated from top_tree $(k+1)$.
Similarly we have the procedure to compute bot_tree (k) from $b o t _t r e e ~(k+1)$. They are called Back_bot and Graham-Scan-Bot (i, Q). We get them simply by changing upc and 'nonleft turn' of Back_top and Graham-Scan-Top (i, Q) into $l w c$ and 'nonright turn'.

Now we prove that these procedures compute correct results.
Theorem 5.2 Back_top and Graham-Scan-Top (i,Q) correctly compute top_tree (k) from top_tree $(k+1)$. Back_bot and Graham-Scan-Bot (i, Q) correctly compute bot_tree (k) from bot_tree $(k+1)$.
Proof We prove that Back_top and Graham-Scan-Top (i, Q) correctly compute top_tree (k) from top_tree $(k+1)$. In Back_bot we first find the upper child of $k+1$ and its siblings. In order to get top_tree (k) from top_tree $(k+1)$ we must cut the edges of these vertices with $k+1$ and reconnect them with appropriate vertices. These points are the only points that need to be reconnected.

In Graham-Scan- $\operatorname{Top}(i, Q)$ point k is always kept in the bottom of the stack S . For any vertex visible from $k+1$, there two cases. Case 1 is that it is visible from k. Case 2 is that it is not visible.

Case 1: point j, is visible from k, then all the points in the stack S are popped out but k. Now we output edge (j, k) and point j is pushed into S. Now there are at least two points in the stack S.

Case 2: point j is not visible from k. We know that j must be visible from a vertex in S , say j^{\prime}. Then all the points on top of j^{\prime} are popped out, and we output the edge $\left(j, j^{\prime}\right)$ and j is pushed into S.

After we checked all the points visible from $k+1$, we reconnect the points correctly.
Similarly we can that prove Back_bot and Graham-Scan-Bot (i, Q) correctly compute bot_tree (k) from bot_tree $(k+1)$.

Now we have all the procedures to build up our algorithm. Next we give its time and space complexity.

6 Time and Space Complexity Analysis

Lemma 6.1 The runtime of Make_top $\left(k-1, k\right.$, Var: t) is $O\left(\left|V_{t}(k)\right|\right)$. And the runtime of Make_bot $(k-1, k$, Var : $t)$ is $O\left(\left|V_{b}(k)\right|\right)$.
Proof Because of the similarity, we only prove the runtime of Make_top $(k-1, k$, Var : t) is $O\left(\left|V_{t}(k)\right|\right)$.

Let us assign the following amortized costs:

$$
\begin{array}{ll}
\text { WHILE checking } & 1 \\
\text { updating j.upc } & 1 \\
\text { updating lastsib } & 1
\end{array}
$$

and each time we encounter the upper child, $k . u p c$ or its sibling k.upc.sib ${ }^{i}$, but excluding $k-1$, we get 3 credits. Clearly from theorem 5.1, we know that the total number of $k . u p c$ and $k . u p c . s i b(i)$, excluding $k-1$, is $\left|V_{t}(k)\right|$.

We shall now show that we can pay any operation costs by charging the amortized costs. We start from Make_top $(k-1, k$, Var : t) and we have 3 credits. Clearly if j is visible from k, WHILE checking succeeds. From this we get 3 more credits to pass to the next call to Make_top $(j, k$, Var: lastsib). Then this call receives 3 credits to pay for its own checking and updating costs. If j is not visible from k, WHILE checking fails. Then the current call to Make_top saves 1 credit for upper level Make_top to pay another WHILE checking. We know that Make_top (j, k, Var: lastsib) with 3 credits can pay their own costs and the number of total recursive calling for Make_top $(j, k$, Var : lastsib $)$ is $\left|V_{t}(k)\right|$. Then $3 *\left|V_{t}(k)\right|$ will pay all the costs. So the runtime of Make_top $(k-1, k$, Var : $t)$ is $O\left(\left|V_{t}(k)\right|\right)$.
Theorem 6.2 Algorithm has time complexity of $O(K)$ and space in $O(n)$. where K is the total number of above-visible and below-visible points of the points in the point set.
Proof From lemma 6.1 we have the runtime of $\operatorname{getTNandBN}$ is, for some constant c,

$$
\sum_{k=3}^{n} c *\left(\left|V_{t}(k)\right|+\left|V_{b}(k)\right|\right) \leq c K=O(K) .
$$

Clearly the runtime of Back_top is $O\left(\left|V_{t}(k)\right|\right)$ and the runtime of Back_bot is $O\left(\left|V_{b}(k)\right|\right)$.
The time complexity of Generate depends on the time complexity of Generate_Top and Generate_Bottom. Because they have a similar structure the time complexity of Generate_Top and Generate_Bottom is the same. Let t_{k} be the run time of Generate_Top (k, x) From line 2 to 6 , the time depends on the number of above-visible and below-visible points of s_{k}. Then we have, for some constant c

$$
t_{k}=\sum_{j=i+1}^{k} c *\left(\left|V_{t}(k)\right|+\left|V_{t}(k)\right|+k-i\right)+t_{i+1}
$$

So

$$
t_{n} \leq \sum_{k=1}^{n} c *\left(\left|V_{t}(k)\right|+\left|V_{b}(k)\right|\right)+n \leq c *(K+n) .
$$

Hence the run time of Generate is $O(n+K)$. Obviously, $n \leq K \leq n^{2}$. The time complexity of our Algorithm is $O(n+K)+O(K)=O(K)$.

In the process of generating we need only to store the point set S_{n}, top_tree (n), bot_tree (n), and $T N(i)$ with $B N(i)$, for $i=2, \ldots, n$. Since each of the data structures use no more than $O(n)$ memory space, we have that the memory space of Algorithm is $O(n)$.

7 Conclusion

We have presented an algorithm to generate monotone polygons uniformly at random. The time complexity of our algorithm is $O(K)$. The space complexity of our algorithm is $O(n)$. We have given the detail analysis of the algorithm and the proof of its correctness. A random monotone polygon generator is useful for testing the many algorithms that accept a simple polygon or a group of simple polygons as input.

We are also interested in finding a polynomial algorithm to generate general simple polygons randomly from an arbitrary set of points. We have not found any useful property for generating general simple polygons.

References

[1] P. Epstein and J. Sack. Generating triangulation at random. In 4th $C C C G$, pages $305-310$, 1992.
[2] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209233, 1987.
[3] Leonidas J. Guibas and John Hershberger. Optimal shortest path queries in a simple polygon. Journal of Computer and System Sciences, 39(2):126-152, October 1989.
[4] Henk Meijer and David Rappaport. Upper and lower bounds for the number of monotone crossing free hamiltonian cycles from a set of points. ARS Combinatoria, 30:203-208, 1990.
[5] Joseph S. B. Mitchell and Gopalakrishnan Sundaram. Generating random geometric objects. unpublished manuscript, 1993.

