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Abstract

We proposed an algorithm that generates x-monotone polygons for any given set of n points

uniformly at random. The time complexity of our algorithm is O(K), where n � K � n
2 is the

number edges of the visibility graph of the x-monotone chain whose vertices are the given n points.

The space complexity of our algorithm is O(n).
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1 Introduction

This paper details some recent results that we have obtained in our study of generating random

polygons. In particular, we describe an algorithm for generating x-monotone polygons uniformly

at random. The remainder of this section provides motivation for this research and a detailed

description of this problem. In Section 2, we give the general notation and de�nitions of our

algorithm. In Section 3, we present our monotone polygon generating algorithm with the counting

procedure and generating procedures. In Section 4 we prove that our algorithm can generate

monotone polygons uniformly at random. In Section 5, we give the visibility computing procedures

with the correctness proofs. In Section 6 we analyze the time and space complexity of our algorithm.

A summary of our results and related open problems are presented in Section 7.

1.1 Motivation

As well as being of theoretical interest, the generation of random geometric objects has applica-

tions which include the testing and veri�cation of time complexity for computational geometry

algorithms.

Algorithm Testing: The most direct use for a stream of geometric objects generated at

random is for testing computational geometry algorithms. We can test such algorithms in two

ways. The �rst involves the construction of geometric objects that the implementer considers

di�cult cases for the algorithm. For example, our polygon-nesting algorithm, based on a plane

sweep, may require special case code for some polygons. It is important to make those polygons

candidates for exposing errors of the algorithm. The second approach to testing involves executing

the algorithm on a large set of geometric objects generated at random. We expect errors to be

exposed if enough di�erent valid inputs are applied to the algorithm.

Veri�cation of Average Time Complexity: In implementation-oriented computational

geometry research, we are often given the problem of verifying that an implementation of an

algorithm achieves the stated algorithm time complexity. This is done by timing the execution of

the algorithm for various inputs of di�erent sizes. There are many possible inputs of any given

size, and the choice is important, since an algorithm may take more time on some inputs than

others of the same size. If an average execution time is computed over a set of randomly generated

objects of a given size, the relationship between time and problem size will typically follow a curve

corresponding to its complexity. We can then check this complexity against the stated algorithm's

complexity.

Research has been done on generating geometric objects at random, such as Epstein [1]. This

paper gives an algorithm to generate monotone polygons at random.

1.2 Problem

Let Sn = fs1; s2; :::; sng be a set of n arbitrary points sorted according to their x coordinate. We

want to generate a simple polygon de�ned by Sn at random. At this beginning stage we only

consider generating a monotone polygon from Sn. Figure 1 shows a monotone polygon generated

from a set of 12 points.

In [1] Epstein gives an O(n4) algorithm to generate triangulation of a given simple polygon

at random. His algorithm, although not generating simple polygons at random, inspires us in

constructing our algorithms for generating monotone polygons at random.

In Section 3, we will give an algorithm that generates a monotone polygon randomly on a set

of n points in O(K) time and in O(n) space, where K is the total number of above-visible and

below-visible points (see Section 2 for de�nitions) of the points in the point set.
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Figure 1: A monotone polygon generated from S12

In related work, Meijer and Rappaport [4] study monotone traveling salesmen tours and show

that the number of x-monotone polygons on n vertices is between (2 +
p
5)(n�3)=2 and (

p
5)(n�2).

Mitchell and Sundaram [5] have independently developed a routine to generate random monotone

polygons in O(n) space and O(n2) time.

2 Preliminaries

Notation. We refer to a probability space as (
; E; Pr), where 
 is the sample space, E is the event

space, and Pr is the probability function. The sample space 
 is the set of all elementary events

that are the possible outcomes of the experiment being described. The event space E is the set of

all subsets of 
 that are assigned a probability. The function Pr : E ! <+
0 de�nes the probability

of events.

A geometric object generator is an algorithm that produces a stream of geometric objects of a

given type. We say that a generator is complete if it can produce every object in a given sample

space 
.

The Uniform Probability Distributions. Probability theory de�nes both discrete and

continuous uniform probability distributions. We are interested only in the discrete case: the

discrete uniform probability space for a �nite sample space 
U is de�ned as (
U ; EU ; PrU), where

EU is the set of all subsets of 
U , and PrU(A) = 1=j
U j for all A 2 
U . In other words, in a �nite

sample space, a uniform distribution is one in which each elementary event is equally likely.

Since the sample space we deal with is �nite, we use the discrete uniform probability distribu-

tion.

We de�ne that a monotone polygon generator is uniform if each of the monotone polygons has

the same probability of being generated.

De�nitions. Let Sn = fs1; s2; :::; sng be a set of n arbitrary points sorted according to their x

coordinate. Let Si = fs1; s2; :::; sig be a subset of Sn for 1 � i � n. The total number of monotone

polygons can be generated with point set Si is denoted as N(i).
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Any monotone polygon constructed from Si can be divided into two monotone chains of which

the leftmost vertex is s1 and rightmost vertex is si. In Figure 2 the top monotone chain is

f1; 2; 3; 6; 7; 11; 12g and bottom monotone chain is f1; 4; 5; 8; 10; 12g. Any point in Si is either

on the top or bottom chain, except s1 and si are on both chains because they are the beginning

and ending points of the chains.
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Figure 2: The top and bottom monotone chains

Let T (i) be the set of monotone polygons that are generated from Si with the edge (i� 1; i)

on their top chains. Let B(i) be the set of monotone polygons that are generated from Si with

the edge (i� 1; i) on their bottom chains. We de�ne TN(i) = jT (i)j to be the total number of the
monotone polygons included in T (i) and BN(i) = jB(i)j to be the total number of the monotone

polygons included in B(i).

Let l(j; i) be the line determined by sj and si. Now we de�ne above-visible or below-visible for

a point. We say that a point sk is above-visible from si if sk is above all l(j; i), for j = i�1; :::; k�1.

And a point sk is below-visible from si if sk is below all l(j; i), for j = i� 1; :::; k� 1. For example,

in Figure 3, s10 is above-visible from s12, and fs9; s7g are below-visible from s12.

Let Vt(i) be the set of all the points that are above-visible from point si. Let Vb(i) be the set of

all the points that are below-visible from point si. For example, in Figure 3, the Vt(12) = f10g and
Vb(12) = f9; 7g. The number of points in Vt(i) and Vb(i) is denoted jVt(i)j and jVb(i)j respectively.

3 Generating Monotone Polygons at Random

We have two steps to generate monotone polygons randomly from Sn. The �rst one is to calculate

the number of monotone polygons that can be generated from Sn. Then we scan Sn backward to

generate monotone polygons.
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Figure 3: The above-visible and below-visible points from point f12g

3.1 Counting Monotone Polygons

Before we give the procedure to count monotone polygons we prove several theorems to build up

the theoretical background.

Lemma 3.1 The set of monotone polygons that are generated from Sk with edge (k � 1; k) on

their top chains is disjoint from the set of monotone polygons that are generated from Sk with edge

(k � 1; k) on their bottom chains. That is

T (k)
\

B(k) = ;:

Proof. Clearly, there is no polygon in T (k) that could include edge (k � 1; k) in its bottom

chain. And there is no polygon in B(k) that could include edge (k � 1; k) in its top chain. So

T (k)
T
B(k) = ;. 2

From this lemma we get the following result.

Theorem 3.2 For any point set Sk, with k > 2, the number of monotone polygons generated with

point set Sk is

N(k) = TN(k) +BN(k) (1)

Proof. Let P be any monotone polygon that is generated from Sk. Then we know that the

edge (k � 1; k) is either on the top chain of P which means P 2 T (k) or on the bottom chain of

P which means P 2 B(k). In both cases P is counted by either TN(k) or BN(k). According to

Lemma 3.1, we have N(Sk) = TN(k) + BN(k). 2

For any simple monotone polygon generated from Sk , its top chain and bottom chain are paths

from s1 to sk. The edge (k�1; k) is either on the top chain or on the bottom chain of the monotone

polygon. For the chain that does not contain edge (k � 1; k), there exists a point sj , (j < k � 1),

that connects to sk. For the point sj we have the following results.

Lemma 3.3 Let P be any simple monotone polygon that is generated from Sk.

(1) If the edge (k� 1; k) is on the top chain of P and sj , (j < k� 1), is the point that connects to

sk, then sj is below-visible from sk.
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(2) If the edge (k � 1; k) is on the bottom chain of P and sj, (j < k � 1), is the point of the top

chain that connects to sk, then sj is above-visible from sk.

Proof. We prove (1). If sj is below-visible from sk then the lemma holds. If sj is not

below-visible from sk, there exists a line l(i; k) such that sj is above l(i; k), where j < i < k � 1.

Because P is a monotone polygon, si is on the top chain of P . But si is below l(j; k). Hence P can

not be a simple monotone polygon. This contradiction proves that (1) is true. 2

The proof for (2) is the same as that for (1).

Lemma 3.4 Let P (j; k) = T (k)
Tfedge (j; k) is on the bottom chaing for j 2 Vb(k). Then the

number of monotone polygons in the set of P (j; k) is BN(j + 1).

Proof. For the monotone polygons in P (j; k), we know that points sj and sk are on the

bottom chains, and sj+1; : : : ; sk are on the top chains. So the path of sj ; sk; sk�1;; sj+1 is �xed.

We can treat the path sj ; sk; sk�1; : : : ; sj+1 as an edge (j; j + 1) that is on the bottom chain.

Figure 4 shows an example. Now we know that the number of monotone polygons in the set of

P (j; k) equals the number of monotone polygons generated from Sj+1 with the edge (j; j + 1) on

the bottom chains. Hence the lemma is true. We call the set of B(j + 1) the equivalent set for

P (j; k). 2

Using a similar proof we have the following result.

Lemma 3.5 The number of polygons in B(k)
Tfedge (j; k) is on the top chaing for j 2 Vt(k) is

TN(j + 1).

Theorem 3.6 For any point set Sk, we have

TN(k) =
X

j2Vb(k)

BN(j + 1) (2)

BN(k) =
X

j2Vt(k)

TN(j + 1) (3)

Proof. We prove formula 2. According to lemma 3.3, for any P 2 T (k), its bottom chain

must use one of the points of Vb(k). Let sj be the point. Obviously P 2 P (j; k). From lemma 3.4,

we know that the number of monotone polygons in P (j; k) is BN(j + 1). Then the total number

of di�erent monotone polygons is
P

j2Vb(k)
BN(j + 1). So 2 holds. 2

The proof for formula 3 is the same as that for formula 2.

This theorem gives us the idea to calculate TN and BN , assuming that we have Vb(k) and

Vt(k). The following is the procedure.

getTNandBN(n)

TN(2) = 1;

BN(2) = 1;

FOR i = 3, TO n

TN(i) = 0;

BN(i) = 0;

FOR ALL j 2 Vb(i)

TN(i) = TN(i) + BN(j + 1);

FOR ALL j 2 Vt(i)

BN(i) = BN(i) + TN(j + 1);

N(n) = TN(n) + BN(n);

After we get TN(i) and BN(i) for i = 2; : : : ; n, we start to generate a monotone polygon on

S(n) at random, under the uniform distribution. The following section gives the details.
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Figure 4: The original set and its equivalent set.

3.2 Generating Monotone Polygons

For the general case, we give an algorithm to generate monotone polygons from Sn at random.

Again we assume that we have Vb(k) and Vt(k), the below-visible and above-visible vertices. The

algorithm scans the point set Sn backward from the right to the left to generate monotone polygons.

Generate

PICK AN x WITHIN [1; N(n)] UNIFORMLY AT RANDOM;

ADD sn TO top chain; ADD sn TO bottom chain;
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IF x � TN(n)

ADD sn�1 TO top chain;

Generate Top(n; x);

ADD s1 TO bottom chain;

ELSE

x = x� TN(n);

ADD sn�1 TO bottom chain;

Generate Bottom(n; x);

ADD s1 TO top chain;

END IF

Generate Top and Generate Bottom deal with two cases. Generate Top deals with the

case in which sk�1 is on the bottom chain and sk is on the top chain of the monotone polygon.

In this case the undetermined points are fs1; : : : ; sk�2g. Then the set of all monotone polygons

that can be generated from the original set is equivalent to that from the subset S(k) with edge

(k� 1; k) on the bottom chains; that is B(k). Generate Bottom deals with the case in which sk

is on the bottom chain and sk�1 is on the top chain. In this case the set of all monotone polygons

that can be generated is equivalent to T (k). These two cases are shown in Figure 5.

Generate Top(k, x)

1. IF k � 2 RETURN;

2. FIND THE SMALLEST i SUCH THAT i SATISFIES:

x �P
j2Vb(k)^j�i

BN(j + 1);

3. ADD POINT si TO bottom chain;

4. ADD ALL THE POINTS sk�2; sk�3; : : : ; si+1 TO top chain;

5. k = i+ 1;

6. x = x�P
j2Vb(k)^j<i

BN(j + 1);

7. Generate Bottom(k, x)

Generate Bottom(k, x)

1. IF k � 2 RETURN;

2. FIND THE SMALLEST i SUCH THAT i SATISFIES:

x �P
j2Vt(k)^j�i

TN(j + 1);

3. ADD POINT si TO top chain;

4. ADD ALL THE POINTS sk�2; sk�3; : : : ; si+1 TO bottom chain;

5. k = i+ 1;

6. x = x�P
j2Vb(k)^j<i

TN(j + 1);

END IF

7. Generate Top(k, x);

Our generating algorithm is to combine getTNandBN and Generate together.

Algorithm

getTNandBN(n)

Generate
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Figure 5: The generating process.

The following section will show us that our Algorithm can generate monotone polygons

uniformly at random.

4 The Analysis of the Algorithm

Let all the monotone polygons that can be generated from Sn be fP1; P2; : : : ; PN(n)g. Let 
(n) =
fP1; P2; : : : ; PN(n)g. Then 
(n) is a sample space. Each event in 
(n) is an unique monotone

polygon Pi that can be generated from Sn. We map 
(n) to an integer set of [1; N(n)]. Each

x 2 [1; N(n)] corresponds to an unique monotone polygon Px 2 
(n). Now we have the following

results.

Lemma 4.1 For n � 2 and 8x 2 [1; TN(n)], Generate Top generates an unique monotone

polygon Px 2 T (n) � 
(n); For n � 2 and 8x0 2 [1; BN(n)], Generate Bottom generates an

unique monotone polygon P
x

0 2 B(n) � 
(n).

Proof We use induction on n (the size of the point set). Our base case is n = 2. Because

of TN(2) = 1 and BN(2) = 1, we know that x is 1. From the procedure Generate the input

of Generate Top is that s1 and s2 are on the top chain and x = 1, and the input of Gener-

ate Bottom is that s1 and s2 are on the bottom chain and x = 1. For this trivial base case

Generate Top and Generate Bottom generate the correct trivial monotone polygon by simply
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returning to Generate.

Now for all k < n, we assume that 8x 2 [1; TN(n)] Generate Top generates an unique

monotone polygon Px 2 T (k) and 8x0 2 [1; BN(n)], Generate Bottom generates an unique

monotone polygon P
x

0 2 B(k).

For k = n, let x1; x2 2 [1; TN(n)] and Px1 ; Px2 2 T (n) be the monotone polygons that are

generated byGenerate Top according to x1 and x2. Now we prove that if x1 6= x2, then Px1 6= Px2 .

From Generate we know that sn�1 and sn are on both top chains of Px1 and Px2 . Let i1 � 1

and i2 � 1 be the below visible points found in Generate Top. There are two cases in this

situation.

Case 1: i1 6= i2. Without loss of generality, let i1 < i2. From Generate Top we know that

for Px1 , point si1 is on the bottom chain and point si2 is on the top chain. For Px2 , point si2 is on

the bottom chain. This proves Px1 6= Px2 .

Case 2: i1 = i2. From Generate Top we know that k01 = k
0

2 = i1 + 1; Since x1 � TN(n)

and x2 � TN(n), we have

x
0

1 = x1 �
X

j2Vb(k)^j<i1

BN(j + 1) � BN(i1 + 1)

and

x
0

2 = x2 �
X

j2Vb(k)^j<i2

BN(j + 1) � BN(i2 + 1):

Because of x1 >
P

j2Vb(k)^j<i1
BN(j + 1) and x2 >

P
j2Vb(k)^j<i1

BN(j + 1), we have x01 � 1.

Then we have x
0

1 6= x
0

2, and x
0

1 2 [1; BN(k01)] and x
0

2 2 [1; BN(k02)]. From our assumption,

Generate Bottom generates two di�erent monotone polygons Px0

1

and Px0

2

with edge (i1; i1 + 1)

on the bottom chains. From lemma 3.4 and lemma 3.5, we know that Px0

1

; Px0

2

2 B(k01) and B(k01)

is the equivalent set of P (k01; k). Then we know that the part of polygons of Px0

1

and Px0

2

without

edge (i1; i1+ 1) are on the monotone polygons of Px1 and Px2 . Hence Px1 6= Px2 . 2

Using the similar proof, we can prove that for 8x0 2 [1; BN(n)],Generate Bottom generates

an unique monotone polygon Px0 2 B(k).

From this lemma we immediately get the following result.

Theorem 4.2 For n � 2Generate generates monotone polygons from 
(n) uniformly at random.

Proof Generate picks an x 2 [1; N(n)] uniformly at random. If x � TN(n) Generate calls

Generate top. If x > TN(n) Generate calls Generate bottom. From lemma 4.1 Generate

generates an unique monotone polygon Px 2 
(n); We know that the x picking behavior determines

the generating behavior of Generate. Hence the probability of a monotone polygon generated by

Generate equals to the probability of picking a x from [1; N(n)]. So the theorem is true. In other

words, Generate retains an uniform monotone polygon generator. 2

Corollary 4.3 Generate is complete.

5 Computing Visibility

The algorithms of the previous section assumed that the above-visible and below-visible sets, Vt(i)

and Vb(i) for i = 1; : : : ; n, were available. A closer look, however, shows that these sets are only

needed for one index i at a time: algorithm getTNandBN needs the sets in increasing order and

algorithms Generate top and Generate top need them in decreasing order.
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In this section, we show how to calculate each of the sets Vt(i) incrementally as i increases (In

Section 5.1) and as i decreases (In Section 5.2), using time proportional to jVt(i)j and O(n) space

to compute Vt(i) from Vt(i� 1) or Vt(i+ 1).

The idea is the following. Let Sk denote the monotone chain with vertices s1, s2, : : : , sk . If

we think of Sk as a fence and compute the shortest paths in the plane above Sk from sk to each

si with i � k, then we obtain a tree that is known as the shortest path tree rooted at sk [2, 3].

The above-visible set Vt(i) is exactly the set of children of sk in the shortest path tree rooted at

sk . Thus, we will incrementally compute shortest path trees rooted at s1, s2, : : : , sk to get the

above-visible sets.

We represent shortest path trees (in which a node may have many children) by binary trees in

which each node has pointers to its uppermost child and next sibling. Section 5.1 gives the details

for computing these trees in the forward direction: computing Vt(i) from Vt(i � 1). Section 5.2

gives the details for the reverse direction: computing Vt(i) from Vt(i+ 1).

5.1 Computing Visibility Forward

We use a tree data structure to calculate Vt(k) and Vb(k) recursively. Assuming Vt(k � 1) and

Vb(k � 1) have been calculated, we calculate Vt(k) and Vb(k) according to the results of Vt(k � 1)

and Vb(k � 1). The data structure that we use in the calculation is the tree of the shortest paths

rooted at vertex k.

We store top tree(i) and bot tree(i) using child and sibling pointers. For each vertex j 2 [1; n],

we have a record for top tree

j: ptr ptr stores the coordinates of vertex j

upc upc is a pointer pointing the upper child of j in top tree(k)

sib sib is a pointer pointing the sibling of j in top tree(k)
and a record for bot tree

j: ptr ptr stores the coordinates of vertex j

lwc lwc is a pointer pointing the lower child of j in bot tree(k)

sib sib is a pointer pointing the sibling of j in bot tree(k)

We de�ne Children(k) be the set of points that contains the upper and lower children of k and

their siblings in the top tree and bot tree. The initial value of top tree for the recursive calculation

is 1:ptr = s1, 1:upc = nil and 1:sib = nil. We assume that top tree(i � 1) has been completed.

Then we call Make Vt to calculate the above-visible set, Vt. In order to get Vt, the procedure

Make Vt calls the procedure Make top to calculate the top tree(i).

Make Vt(i)

t = tmp;

Make top(i� 1; i;Var : t);

i:upc = tmp:sib;

Procedure Make top(i�1; i; lastsib) makes the tree edge from k to j in top tree(k), and puts

it as the sibling of lastsib and updates lastsib. Then it recursively build the top tree(k). One

example is shown in Figure 6.

Make top(j; k;Var : lastsib)
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WHILE j:upc 6= nil and k is above l(j:upc; j)

Make top(j:upc; k;Var : lastsib);

/* make subtree for this child of j, which can be seen by k. */

j:upc = j:upc:sib; /* consider next child of j */

END WHILE

lastsib:sib = j; /* make the connection to j, one of the children of k */

lastsib = j;

1

2

3

4

5

nil

3

nil

nil

nil

nil

nil

2 1

4

5

Figure 6: A point set S5 and the data of top tree(5).

To compute the bot tree is similar to computing the top tree. We need only change upc

and `above' in procedure Make Vt(i) and Make top into lwc and `below' to get the procedures

Make Vb(i) and Make bot. We use Make Vb(i) and Make bot to compute bot tree(i) from

bot tree(i� 1). One example is shown in Figure 7.

3

2

4

5
1

nil

nil

nil

nil

nil

4

51

2

3

Figure 7: A point set S5 and the data of bot tree(5).

Knowing top tree(k) and bot tree(k), we know the above-visible and below-visible point sets,

Vt(k) and Vb(k) of vertex k. Now we give the theorem to show us how to get Vt(k) and Vb(k) from

top tree(k) and bot tree(k).

Let r be a record in the top tree or bot tree. We de�ne that r:sibi = r:sib
i�1

:sib, for any

integer i � 0, and r:sib
0 = r. Then we know that the upper child of k and its siblings are this kind

of format. Now we claim that the upper child of k and its siblings are the vertices visible from k,
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and any vertex that is visible from k is either the upper child of k or its sibling. This is proved in

the next theorem.

Theorem 5.1 Let CT (k) be the set of points in top tree(k) that satisfy 8j 2 Children(k); 9i such
that j = k:upc:(sib)i: Let CB(k) be the set of points in bot tree(k) that satisfy 8j 2 Children(k); 9i
such that j = k:lwc:(sib)i: We have Vt(k) = CT (k)� fk � 1g and Vb(k) = CB(k)� fk � 1g:
Proof First we prove Vt(k) = CT (k)� fk � 1g. If Vt(k) = ;, there is no point that is above

line l(k� 1; k). This means that there is no l(i; k� 1) that is below k. From Make top, we know

that CT (k) = fk � 1g. hence Vt(k) = CT (k)� fk � 1g. If CT (k) = fk � 1g there is no l(i; k� 1)

that is below k for i = 1; : : : ; k � 2. So there exists no point that is above l(k � 1; k). Hence

Vt(k) = ; = CT (k)� fk � 1g.
For the general situation, 8j 2 Vt(k), we have j is above all l(i; k) for i = j + 1; : : : ; k � 1

that implies that k is above all l(j; i) for i = j + 1; : : : ; k � 1. Now we prove j = k:upc:(sib)i,

i � 0. If there is no j
0 2 Vt(k) and j

0

< j such that k is above l(j
0

; j) then j = k:upc. Otherwise,

j = j
0

:sib. Similarly this induction can be applied to j
0

, that is, j
0

= k:upc:(sib)i
0

. Then we have

j = k:upc:(sib)i
0

+1. So Vt(k) � CT (k)� fk � 1g.
8j 2 CT (k)�fk�1g, we know j = k:upc:(sib)i: Then j is above all l(i; k), for i = j+1; : : : ; k�1.

Otherwise, there exists a point, say j
0

, such that j
0

> j and j is below l(j
0

; k). Then l(j; k) is below

l(j
0

; k) that means k is below l(j; j
0

). From Make top we know that j can not be the format of

k:upc:(sib)i, i � 0. This contradiction proves that j is above all l(i; k), for i = j+1; : : : ; k�1. Then

we have that j 2 Vt(k) that implies Vt(k) � CT (k)�fk�1g. Now we have Vt(k) = CT (k)�fk�1g.
2

The proof for Vb(k) = CB(k)� fk � 1g is similar to the proof above.

5.2 Computing Visibility backward

In procedure Generate Top and Generate Bottom, we need to �nd the smallest i in line 2.

Here we assume that top tree(k + 1) and bot tree(k + 1) have been completed, we use procedures

Back top and Back bot to generate top tree(k) and bot tree(k). Let ti�j = (k + 1):upc:sibj, for

j = 0; 1; : : : ; i. Then ti = (k+ 1):upc and t0 = k. Let Q = ftj ; j = 0; : : : ; ig. From theorem 5.1, we

know Q = Vt(k+1)�fkg. If we take t0 as the origin of of coordinates, according to the above-visible

de�nition, the points in Q are sorted lexicographically by polar angle and distance from t0. Then

from Graham-Scan we can get the correct top tree(k). This is similar for calculating bot tree(k).

The following are the procedures.

Back top(k + 1, k)

1. FIND i, SUCH THAT (k + 1):upc:sibi = k;

2. FOR j = 0 TO i

3. ti�j = (k + 1):upc:sibj;

4. IF i = 0 RETURN;

ELSE IF i � 1

5. Graham-Scan-Top(i; t0; : : : ; ti);

END IF

Graham-Scan-Top(i; t0; : : : ; ti)

1. Push(t0,S); /* S is a stack */

2. t1 = t0:upc;
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3 t0:upc = t1;

4. Push(t1,S);

5. FOR j = 2 TO i

6. WHILE the angle formed by points NEXT-TO-Top(S), Top(S),

and tj makes nonleft turn

7. Pop(S);

END WHILE

8. tj = Top(S):upc;

9. Push(S,tj);

One example to calculate top tree(k) from top tree(k + 1) is shown in Figure 8.

1
k+1

k

k-1

Figure 8: top tree(k) is generated from top tree(k + 1).

Similarly we have the procedure to compute bot tree(k) from bot tree(k + 1). They are called

Back bot and Graham-Scan-Bot(i; Q). We get them simply by changing upc and `nonleft turn'

of Back top and Graham-Scan-Top(i; Q) into lwc and `nonright turn'.

Now we prove that these procedures compute correct results.

Theorem 5.2 Back top and Graham-Scan-Top(i; Q) correctly compute top tree(k) from

top tree(k + 1). Back bot and Graham-Scan-Bot(i; Q) correctly compute bot tree(k) from

bot tree(k + 1).

Proof We prove thatBack top andGraham-Scan-Top(i; Q) correctly compute top tree(k)

from top tree(k+1). In Back bot we �rst �nd the upper child of k+1 and its siblings. In order to

get top tree(k) from top tree(k+1) we must cut the edges of these vertices with k+1 and reconnect

them with appropriate vertices. These points are the only points that need to be reconnected.

In Graham-Scan-Top(i; Q) point k is always kept in the bottom of the stack S. For any

vertex visible from k + 1, there two cases. Case 1 is that it is visible from k. Case 2 is that it is

not visible.

Case 1: point j, is visible from k, then all the points in the stack S are popped out but k. Now

we output edge (j; k) and point j is pushed into S. Now there are at least two points in the stack

S.

Case 2: point j is not visible from k. We know that j must be visible from a vertex in S, say

j
0. Then all the points on top of j0 are popped out, and we output the edge (j; j0) and j is pushed

into S.

After we checked all the points visible from k + 1, we reconnect the points correctly. 2

Similarly we can that proveBack bot andGraham-Scan-Bot(i; Q) correctly compute bot tree(k)

from bot tree(k + 1).
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Now we have all the procedures to build up our algorithm. Next we give its time and space

complexity.

6 Time and Space Complexity Analysis

Lemma 6.1 The runtime of Make top(k � 1; k;Var : t) is O(jVt(k)j). And the runtime of

Make bot(k � 1; k;Var : t) is O(jVb(k)j).
Proof Because of the similarity, we only prove the runtime of Make top(k � 1; k;Var : t)

is O(jVt(k)j).
Let us assign the following amortized costs:

WHILE checking 1

updating j:upc 1

updating lastsib 1

and each time we encounter the upper child, k:upc or its sibling k:upc:sibi, but excluding k� 1, we

get 3 credits. Clearly from theorem 5.1, we know that the total number of k:upc and k:upc:sib
(
i),

excluding k � 1, is jVt(k)j.
We shall now show that we can pay any operation costs by charging the amortized costs.

We start from Make top(k � 1; k;Var : t) and we have 3 credits. Clearly if j is visible from

k, WHILE checking succeeds. From this we get 3 more credits to pass to the next call to

Make top(j; k;Var : lastsib). Then this call receives 3 credits to pay for its own checking

and updating costs. If j is not visible from k, WHILE checking fails. Then the current call to

Make top saves 1 credit for upper level Make top to pay another WHILE checking. We know

thatMake top(j; k;Var : lastsib) with 3 credits can pay their own costs and the number of total

recursive calling forMake top(j; k;Var : lastsib) is jVt(k)j. Then 3� jVt(k)j will pay all the costs.
So the runtime of Make top(k � 1; k;Var : t) is O(jVt(k)j). 2
Theorem 6.2 Algorithm has time complexity of O(K) and space in O(n). where K is the total

number of above-visible and below-visible points of the points in the point set.

Proof From lemma 6.1 we have the runtime of getTNandBN is, for some constant c,

nX

k=3

c � (jVt(k)j+ jVb(k)j) � cK = O(K):

Clearly the runtime of Back top is O(jVt(k)j) and the runtime of Back bot is O(jVb(k)j).
The time complexity of Generate depends on the time complexity of Generate Top and

Generate Bottom. Because they have a similar structure the time complexity ofGenerate Top

and Generate Bottom is the same. Let tk be the run time of Generate Top(k; x) From line 2

to 6, the time depends on the number of above-visible and below-visible points of sk. Then we have,

for some constant c

tk =
kX

j=i+1

c � (jVt(k)j+ jVt(k)j+ k � i) + ti+1:

So

tn �
nX

k=1

c � (jVt(k)j+ jVb(k)j) + n � c � (K + n):

15



Hence the run time of Generate is O(n +K). Obviously, n � K � n
2. The time complexity of

our Algorithm is O(n+K) + O(K) = O(K).

In the process of generating we need only to store the point set Sn, top tree(n), bot tree(n),

and TN(i) with BN(i), for i = 2; : : : ; n. Since each of the data structures use no more than O(n)

memory space, we have that the memory space of Algorithm is O(n). 2

7 Conclusion

We have presented an algorithm to generate monotone polygons uniformly at random. The time

complexity of our algorithm is O(K). The space complexity of our algorithm is O(n). We have

given the detail analysis of the algorithm and the proof of its correctness. A random monotone

polygon generator is useful for testing the many algorithms that accept a simple polygon or a group

of simple polygons as input.

We are also interested in �nding a polynomial algorithm to generate general simple polygons

randomly from an arbitrary set of points. We have not found any useful property for generating

general simple polygons.
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