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Abstract

Unit disk graphs are the intersection graphs of unit diameter closed disks in

the plane. This paper reduces SATISFIABILITY to the problem of recognizing

unit disk graphs. Equivalently, it shows that determining if a graph has spheric-

ity 2 or less, even if the graph is planar or is known to have sphericity at most

3, is NP-hard. We show how this reduction can be extended to 3 dimensions,

thereby showing that unit sphere graph recognition, or determining if a graph

has sphericity 3 or less, is also NP-hard. We conjecture that K-sphericity is

NP-hard for all �xed K greater than 1.

1 Introduction

A unit disk graph is the intersection graph of a set of unit diameter closed disks in

the plane. That is, each vertex corresponds to a disk in the plane, and two vertices

are adjacent in the graph if the corresponding disks intersect. The set of disks is
said to realize the graph. Of course, the unit of distance is not critical, since the
disks realize the same graph even if the coordinate system is scaled by any convenient

amount. Notice that two disks intersect if and only if the distance between their

centers is at most the disk diameter. Unit disk graphs can therefore be realized just

as well as a set of points in the plane; two vertices are adjacent in the graph exactly
when the Euclidean distance between them is at most 1. A realization of a unit disk

graph is therefore a mapping of the vertices to points which realize the graph in this

way. Again, the unit of distance is not critical. This paper addresses the recognition

problem for unit disk graphs: given a graph, determine if it has a realization.

Unit disk graphs have been used to model several physical problems, for example

radio frequency assignment [Hal80] and ship-to-ship communications (attributed to

Marc Lipman by [Rob91]). They have also been used as test cases for heuristic

algorithms designed for arbitrary graphs [JAMS91]. More applications are described
by [CCJ90] and [MHR92].
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There are several motivations for recognizing unit disk graphs. First, unit disk

graphs are a natural generalization of unit interval graphs, also known as indi�er-

ence graphs [Rob68]. These graphs are interval graphs that do not contain K1;3 as

an induced subgraph [Rob68]. They can therefore be recognized in polynomial time

[FG65, BL76]. Secondly, unit disk graphs can admit more e�cient algorithms than

arbitrary graphs. For example, the NP-complete problem, maximum CLIQUE, can

be solved in polynomial time for unit disk graphs [CCJ90]. There are also several

familiar NP-complete problems whose corresponding optimization problems can be

e�ciently approximated for unit disk graphs [MHR92]. Although these latter prob-

lems remain NP-complete for unit interval graphs, their approximating algorithms

achieve better guarantees than any known for arbitrary graphs. Some of the algo-
rithms for these problems require a realization of the graph. A third motivation is

simply to determine if a graph is a unit disk graph, for example, to test the physical

feasibility of a graph modelling molecules [Hav82a]. We show in this paper that the
problem of determining if a graph has a realization is itself NP-hard. This answers
an open question mentioned in [CCJ90] and [MHR92].

This result has a more general context. The sphericity of a graph is the small-
est dimension for which it is the intersection graph of a set of (hyper) spheres
[Hav82a, Fis83]. Unit disk graphs are therefore graphs with sphericity two, and

our NP-hardness result implies that determining the sphericity of a graph is also

NP-hard. However, graphs with sphericity 1 are the unit interval graphs, so that
the sphericity = 1 question can be answered in polynomial time. This paper reduces

SATISFIABILITY to unit disk graph recognition. In the conclusion to this paper,
we show that a similar reduction applies to the sphericity = 3 question. We also
conjecture that there is an analogous reduction for the sphericity = K question for

any K > 1.

2 2-SPHERICITY is NP-Hard

A K-dimensional realization of a graph G = (V;E) is a function f : V ! RK such
that (v

i
; v

j
) 2 E if and only if d(f(v

i
); f(v

j
)) � 1 where d is the Euclidean distance

between two points.

K-SPHERICITY

INSTANCE: Graph G = (V;E), positive integer K.

QUESTION: Does G have sphericity K, that is, does it have a K-dimensional

realization?

This paper reduces SATISFIABILITY to 2-sphericity. SATISFIABILITY is a

common basis for NP-completeness proofs [GJ79] and is the �rst problem to have
been proved NP-complete [Coo71]. Let U = fu1; u2; : : : ; umg be a set of Boolean

variables. A clause c = fl1; l2; : : : ; lkg is a set of literals, which may be negated,

e.g., u
i
, or unnegated, e.g., u

i
, variables. A truth assignment is a function t : U !
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fTRUE;FALSEg. In terms of literals, u
i
is TRUE if and only if t(u

i
) = TRUE, and

u
i
is TRUE if and only if t(u

i
) = FALSE. A clause is satis�ed by t if at least one

l
i
2 c is TRUE. Finally, a satisfying truth assignment is one which simultaneously

satis�es all the clauses.

SATISFIABILITY

INSTANCE A set U = fu1; u2; : : : ; umg of Boolean variables and a set C = fc1; c2; : : : ; cng

of clauses over U .

QUESTION Is there a satisfying truth assignment for C?

Theorem 1 2-SPHERICITY is NP-hard.

Proof: Given an instance C of SATISFIABILITY, we will construct a graph G
C
=

(V
C
; E

C
) such that G

C
has a realization1 if and only if C is satis�able. We will assume

without loss of generality (see comments for SATISFIABILITY in [GJ79]) that each
clause in C contains at most three literals (jc

i
j � 3) and that each variable appears

in at most 3 clauses. Note that this is not the same as 3SAT.
This paper builds G

C
in several stages. First, Section 3 constructs a graph GSAT

C

that corresponds closely to the instance C of SATISFIABILITY.We de�ne a notion of

orientability for this graph, and prove that it is orientable if and only if C is satis�able
(Lemma 2). Section 4 considers a canonical drawing of this graph on the grid. We
de�ne a notion of orientability for this drawing, and prove that it is orientable if and
only if the underlying graph is orientable (Lemma 3). Finally, Section 5 forms G

C
by

simulating components of the grid drawing. Lemma 8 shows that G
C
has a realization

if and only if the underlying grid drawing is orientable. We �nish by showing that
the entire reduction can be executed in polynomial time. 2

3 A Graph That Simulates SATISFIABILITY

Begin by constructing a graph GSAT

C
from the instance C of SATISFIABILITY. The

vertices of the graph correspond to the clauses, variables, and negated variables of

the SATISFIABILITY instance C. There is an edge between between a literal vertex
and a clause vertex if the literal appears in the clause. More formally, GSAT

C

=
(V SAT

C

; ESAT

C

), where:

V SAT

C
= f~cjc 2 Cg [ fu+ju 2 Ug [ fu�ju 2 Ug

ESAT

C
= f(~c; u+)jc 2 C; u 2 cg [ f(~c; u�)jc 2 C; u 2 cg

This graph models the testing of a truth assignment for SATISFIABILITY. Say
that the graph is orientable if its edges can be directed such that, for each clause

vertex, outdegree(~c) � 1 and, for each pair of literal vertices, indegree(u+) �

indegree(u�) = 0.

1For brevity, and unless stated otherwise, the remainder of this paper abbreviates \two-

dimensional realization" as \realization'.
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Figure 1: The graph corresponding to the SATISFIABILITY instance U =
fu1; u2; u3; u4g, C = ffu2; u4g; fu1; u2; u3g; fu1; u3g; fu1g; fu2; u4gg drawn on the grid.
The clauses are drawn as squares. The literals are embedded as adjacent pairs (by
variable) and so are drawn as rectangles. A literal component has up to three ter-

minals: the three on the left of the variable box belong to the unnegated literal
and the three on the right to the negated literal. Note that the area of the grid is
(6jU j+ 1) � (3jCj+ 2).

Intuitively, an edge directed from ~c to u+ (resp. u�) means that clause c has
selected literal u (resp. u) to satisfy it. That is, it requests that t(u) = TRUE (resp.

t(u) = FALSE). If C is satis�able, it must be possible to orient GSAT

C
since every

clause must be satis�ed (outdegree(~c) � 1), and no truth assignment can set both

a literal and its complement TRUE (indegree(u+) � indegree(u�) = 0). Conversely,

if GSAT

C
is orientable, there must be a satisfying truth assignment for C since, for

every pair of literal vertices indegree(u+) � indegree(u�) = 0 (each variable can be
set either TRUE or FALSE) and, for every clause vertex ~c, outdegree(~c) � 1 (every

clause is satis�ed). This proves the following lemma.

Lemma 2 C is satis�able if and only if GSAT

C
is orientable.

4 Drawing the Graph on the Grid

Continue the construction by drawing the graph on the grid as shown in Figure 1.

Each of the (6jU j + 1) � (3jCj+ 2) grid vertices in this drawing is either unused, or
is associated with a unique component of the drawing. Each component is enclosed

by a unit square centered on its grid vertex.
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The drawing is made up of three groups of components: communication com-

ponents, literals, and clauses. There are, in turn, three groups of communication

components: wires, corners, and cross-overs. A wire is a unit length line segment

passing through a grid vertex, a corner is two half-length line segments meeting at

right angles at a grid vertex, and a cross-over is two unit length line segments crossing

at right angles on a grid vertex. There are therefore two types of wire component

(horizontal and vertical), four types of corners, and one type of cross-over.

Each component in the drawing has one to four terminals. Each terminal ter-

minates a line segment and is centered on a side of the unit square enclosing the

component. The terminal on the top or north side of the unit square is called the T

terminal. Similarly, the terminals on the bottom, left, and right are called the B, L,
and R terminals respectively. Wires and corners have two terminals each. Cross-overs

have four terminals, and literals and clauses have up to three terminals each, equal to

their degree in GSAT

C
. Two components in the drawing are adjacent if they have co-

incident terminals. We consider a complementary pair of literals to be a single truth
setting component, and so do not show terminals between them. Figure 1 depicts the
set of all terminals as small circles.

An orientation of a terminal is a direction, N , S, E, or W . A terminal T (resp.

B, L, R) is directed away from its component if it is oriented N (resp. S, W , E) and

is directed towards its component otherwise. Say that a grid drawing is orientable if
all terminals can be oriented subject to the condition that:

draw1: only terminals adjacent to vertical line segments are directed N or S,

draw2: only terminals adjacent to horizontal line segments are directed E or W ,

draw3: every wire, corner, cross-over line segment, and clause has at least one ter-
minal directed away from it,

draw4: every truth setting component has a literal component with all terminals

directed away from it.

Figure 2 shows an orientation of a portion of Figure 1.

Lemma 3 A grid drawing is orientable if and only if the underlying graph is ori-

entable.

Proof: Suppose we have an orientation for GSAT

C
. Then orient the terminals along

each path in the grid drawing so that they are consistent with the orientation of the

corresponding edge in ESAT

C

. This ensures that every wire, corner, and cross-over line
segment has precisely one terminal directed away from it. It also ensures that each

clause has one terminal directed away from it, since the clause vertices have outdegree

at least one. Finally, every truth setting component has a literal component with all

terminals directed away from it since one of the literal vertices has zero indegree in
GSAT

C

.

Now suppose that grid drawing has been oriented. Condition draw3 ensures

that any path in the drawing, corresponding to an edge in ESAT

C
, contains at most
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Figure 2: An oriented grid drawing. The directions are drawn as arrows. Note that
the path from u+2 to ~c1 has a wire component that has both terminals directed away
from it.

one wire, corner, or cross-over segment with both terminals directed away from the
component. One terminal of such a component can be redirected by reversing the
direction of all terminals in the path from it to the literal. Doing so keeps all con-

ditions satis�ed since this operation does not change the orientation of any clause
terminals, and it directs any literal terminals away from the literal, in keeping with
condition draw4. Condition draw3 then ensures that all terminals along the path

are oriented consistently with some orientation for the corresponding edge. Under
this orientation, all clause vertices have outdegree at least one, since the correspond-

ing terminal is directed away from the clause. Furthermore, condition draw4 ensures

that indegree(u+)� indegree(u�) = 0. 2

Corollary 4 A grid drawing is orientable if and only if the underlying instance of

SATISFIABILITY is satis�able.

5 Reduction from Grid Drawing Orientability

We are now ready to construct G
C
. To do so, we create a graph component for

each grid drawing component: wires, corners, cross-overs, truth setters, and clauses.

Sections 5.2 through 5.6 provide the details. Each of these graph components has two

or more terminals | labelled T , B, L, or R | that correspond to the grid drawing

terminals. Each terminal is an induced subgraph on four vertices, labelled a, b, c,
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and d. To construct G
C
, connect every pair of adjacent2 components together by

identifying the appropriate terminals, by label. Terminal T (resp. B, L, R) should

be identi�ed with an adjacent B (resp. T , R, L) terminal. The reader will �nd that

the example presented in Section 5.7 clari�es this process.

5.1 Properties of Cages

Before giving detailed descriptions of the various graph components, we must describe
the building blocks from which they are constructed. These building blocks are cycles

(\cages") with additional independent vertices (\beads"). A bead is attached to two

vertices (a \hinge") of a cage by a short path through another vertex (\chain"), as
illustrated in Figure 3.

Figure 3: A cage with a double bead on two chain vertices

The capacity of a cage is the maximum number of independent beads that can
be embedded inside a cage in any realization. The capacity is constant for each cage

and depends only on the number of vertices forming the boundary of the cage. A
bead embedded inside a cage diminishes its remaining capacity. It thereby displaces
other beads, which may otherwise have been embedded inside the cage. The following
construction ensures that a bead can only be embedded in one of two adjacent cages.
A displaced bead therefore displaces other beads from whatever cage it is embedded

in. This is the basic mechanism for propagating information in a realization of G
C
.

The corollary to the following lemma shows that the notion of a vertex being
embedded inside the realization of a cycle is well de�ned.

Lemma 5 Let f be a realization of a unit disk graph G = (V;E). Let (v
a
; v

b
) and

(v
c
; v

d
) be edges in E with distinct endpoints, and denote f(v

a
) = a. If the line

segments (a; b) and (c; d) cross, then the subgraph induced by fv
a
; v

b
; v

c
; v

d
g contains

K3 as a subgraph.

Proof: Suppose that (a; b) and (c; d) cross at e. Let ij denote the distance between
point i and point j. Then

ac+ bd � (ae+ ec) + (be+ ed)

= (ae+ be) + (ec+ ed)

= ab+ cd � 1 + 1 = 2

Therefore ac � 1 or bd � 1. Similarly, ad � 1 or bc � 1. Any of these four possibilities

implies a K3 subgraph. 2

2Two graph components are adjacent if the associated grid drawing components are adjacent.
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Corollary 6 A realization of a vertex induced cycle is a plane graph.

De�ne an n-cage as a cage with a capacity for n beads. G
C
requires 0-cages,

1-cages, 2-cages, and 3-cages. These are cycles with 3 to 6 vertices, 7 or 8 vertices, 9

vertices, and 10 vertices respectively. The capacities of these cages can be veri�ed by
considering the optimal disk packings shown in Figure 4. In these packings, all unit

Figure 4: Optimal packings limiting a 0-cage, 1-cage, 2-cage, and 3-cage

disks are adjacent, and the interior beads are themselves optimally packed. These

cases show that a 6-vertex cage cannot contain a bead, an 8-vertex cage cannot contain

two beads, a 9-vertex cage cannot contain three beads, and a 10-vertex cage cannot
contain four beads. Recall that all containments must be strict.

The skeleton of the graph under construction will be composed of many cages
\hooked together". The construction hooks two cages together by identifying two

adjacent hinge vertices from one cage with two adjacent hinge vertices from the other

cage. See Figure 5. This connection strategy ensures that, in any realization, the

Figure 5: How cages are hooked together

orientation of all cages is determined by giving the orientation of any cage in the

connected graph. Lemma 5 also guarantees that cages do not cross or overlap each
other in any realization. It is therefore useful to think of the embedding of the
skeleton of the graph, that is, the cages without chains or beads, to be invariant

under all realizations. Di�erent realizations simply allow beads (and chains) to \
ip"

from one cage into another. The component de�nitions which follow will clarify this
construction.

5.2 Wires

The graph in Figure 6 implements a wire as a string of �ve 1-cages (with eight vertices
each) connected as described in the previous subsection. The vertices in the wire's

two terminals are labelled a
L
, b

L
, c

L
, and d

L
, and a

R
, b

R
, c

R
, and d

R
in Figure 6. The

vertical wire can be obtained from Figure 6 by relabelling terminal R as terminal T ,

and terminal L as terminal B.
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bL

aL

dL

cL

bR

cR

aR

dR

Figure 6: The horizontal wire component: drawn with both terminals oriented W

How do we know that the beads in the wire will be embedded in the cages of
the wire in any realization? The answer is, that as things stand, we do not know.

The solution adopted in this paper is to add mortar | extra vertices | around the

hinge vertices as shown in Figure 7. \Mortar" is a way of constraining a bead to

Figure 7: Wire with mortar

certain cages for all realizations. The e�ect of the mortar is to surround each hinge
vertex with small cages. The bead and chain edges cannot cross any of the added
cage edges by Lemma 5 since the bead is independent of all cage vertices and the

chain is independent of all but the two hinge vertices. Also, neither the bead nor the
chain vertex can be embedded inside any of the cages created by the mortar since all
such cages are 0-cages. It is hard to see the underlying structure of the components

if mortar vertices are shown. The remaining component diagrams, therefore, do not
show any mortar vertices, but they should be understood to be present. Mortar is

also required when two components are connected.

We say that the T (resp. B, L, R) terminal is oriented S (resp. N , E, W ) if its

bead (labelled b) is embedded inside its cage, and that it is oriented N (resp. S, W ,
E) otherwise. The properties of the cages and the mortar ensure that, if the T (resp.
B, L, R) terminal is oriented S (resp. N , E, W ), then its B (resp. T , R, L) terminal

also is oriented S (resp. N , E, W ). Note that it is also possible for the T (resp. L)
terminal to be oriented N (resp. W ) and the B (resp. R) terminal to be oriented S

(resp. E) simultaneously. This ensures that at least one terminal is directed away
from the wire.

5.3 Corners

As can be seen from Figure 8, the graph for corners is also a string of �ve 1-cages.

The corner's two terminals are labelled L and B in Figure 8. The other three corners
can be obtained from Figure 8 by relabelling B as T (and exchanging label a

L
with

d
L
), or L as R (and exchanging label a

B
with d

B
), or both. Again, the properties of

cages ensures that at least one terminal is directed away from the corner.
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bL cL

aL

dL

aB dB

bB

cB

Figure 8: The corner component: drawn with the L terminal oriented E and the B
terminal oriented N

5.4 Cross-Overs

As is typical for this type of reduction, the cross-over component is the most di�cult
to understand. The reader will �nd it easier to consider the cross-over schematic
in Figure 9 before looking at the complete component. In this schematic, cages are

depicted as octagons joined at hinges. Each cage is labelled with its capacity of
independent beads. Independent beads are depicted as short paths of small circles
crossing each hinge. Chain vertices are not shown. Think of the beads as 
ipping
from one cage to another along the hinge.

The heart of the cross-over is the cycle of 3-cages and 2-cages. The following
lemma is crucial to the operation of the cross-over component.

Lemma 7 The 3-cages in the cross-over component each contain precisely one 2-bead

cluster in any realization.

Proof: The 3-cages cannot contain two 2-bead clusters since neither cage can

accommodate four independent beads. Assume for the sake of contradiction that the
3-cage E does not contain either 2-bead cluster in some realization. Then the 2-cages

D and F must each contain the 2-bead cluster that they share with cage E. Since D

and F cannot contain any more than two independent beads, this forces cages A and
C to contain the single beads that they share with cages D and F respectively. But

this means that A and C cannot contain the 2-bead clusters that they share with cage
B. This forces cage B to contain them both. This is the contradiction that proves

the lemma since cage B cannot contain 4 independent beads in any realization. A
symmetric argument applies if we assume that cage B does not contain either 2-bead

cluster. 2

Let us now examine the cross-over in action. Assume the bead on the bottom

hinge (on cage E) is embedded in cage E. This single bead, together with whichever
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A B C

FED

2 3 2

232

Figure 9: Cross-over schematic

2-bead cluster is in the cage by Lemma 7, �lls cage E to capacity. The single bead
shared between cage E and B must therefore lie in cage B. This bead, together with

whichever 2-bead cluster is in the cage, �lls cage B to capacity. This forces the single

bead at the top hinge (on cage B) out of the cage. A symmetric argument applies if
the bead on the top hinge is embedded in cage B.

Assume now that the bead on the left hinge (on cage D) is embedded inside cage

D. It cannot occupy cage D together with the 2-bead cluster shared with cage E.
Hence this 2-bead cluster must lie in cage E. The 2-bead cluster shared with cage F
must therefore lie in cage F , since cage E cannot accommodate two 2-bead clusters.

This 2-bead cluster forces the terminal bead on the right hinge (on cage F ) out of

the cage, and out of the cross-over. Incidently, it also completes the feed-back cycle
exploited in Lemma 7 as follows. It forces a single bead into cage C, which forces
a double bead into cage B, which forces a double bead into cage A, which forces a

single bead back into cage D. A symmetric argument applies if the bead on the right

hinge is embedded inside cage F .

Complete the cross-over component by adding a 1-cage \lead" to the left, top,

and right hinges. Also add a lead, consisting of a string of two 1-cages, to the bottom

hinge. In the schematic, the 2-cages are shown directly connected to one another. In
the actual component, each pair is connected with a 1-cage. The completed cross-

over component is shown in Figure 10. Although no mortar vertices are added, some
mortaring by edges between cages is evident.

The cross-over's four terminals are labelled T , B, L, and R in Figure 10. The

cross-over construction ensures that, if the T (resp. B, L, R) terminal is oriented
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aL

dL

cL
bL

aR

dR

cR bR

bT
cT

dTaT

aB dB

bB

cB

Figure 10: The cross-over component: drawn with the T and B terminals oriented
N , and the L and R terminals oriented E.
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S ( resp. N , E, W ), then the B (resp. T , R, L) terminal also is oriented S (resp.

N , E, W ). However, it is possible for the T and B terminals simultaneously to be

oriented N and S respectively. Similarly, it is possible for the L and R terminals

simultaneously to be oriented W and E respectively.

5.5 Truth Setters

The truth setting component is shown in Figure 11. Its heart is a pair of connected

aTL dTL

aL

dL

aBL dBL aBR dBR

aR

dR

aTR dTR

Figure 11: The truth setting component: drawn with the 3-cluster in the 3-cage
corresponding to the unnegated literal.

3-cages. The cage on the left corresponds to the unnegated literal and the cage on
the right to the negated literal. A cluster of three independent beads is connected
with two chain beads to the common hinge of the 3-cages. Since this cluster is in one

of the two 3-cages in any realization, it displaces all incident single beads, ensuring

that all associated terminals are oriented away from the 3-cage.

5.6 Clauses

The clause testing component is shown in Figure 12. Its heart is a single 2-cage.

Since this cage can contain at most two independent beads, it must be that at least
one terminal is oriented away from it.

If a terminal is not used in the grid drawing, the corresponding graph component
terminal is \capped" by appending a 0-cage to it. Figure 13 shows a clause that has
one terminal with cap and mortar (couldn't resist). This ensures that the terminal

is oriented towards the clause, thereby forcing one of the remaining terminals to be

oriented away by reducing the capacity of the 2-cage by one.
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aT dT

cT

bT

aR

dR

bR

bB

aB dB

Figure 12: Clause component: drawn with T and B terminal oriented N , and R

terminal oriented W .

Figure 13: Clause testing component with bottom terminal capped
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5.7 Building and Realizing GC

Now that all components have been described, we can present an example showing

how components are connected. Note that terminals always have the same structure;

a bead vertex connected to two hinge vertices by a chain vertex. Figure 14 shows
how two components are connected, two corners in this case.

b

c
a d

Figure 14: Two connected corners. The T terminal of the lower corner has been

identi�ed with the B terminal of the upper corner.

Recall that a literal component in the grid drawing has at most 3 terminals,

whereas each literal of the truth setting component above has exactly 3 terminals. The

unused truth setting terminals are not connected to the cages of any other component
in G

C
. In these cases, the incident terminal bead may simply be \absorbed by the

ether", if the adjacent literal 3-cage is occupied in a realization.

Lemma 8 The graph G
C
has a realization if and only if the underlying grid drawing

is orientable.

Proof: Given a realization, orient the grid drawing terminals exactly as the real-

ization terminals. The de�nition of orientation for realization terminals ensures that

conditions draw1 and draw2 are met. The nature of the wire, corner, cross-over,
and clause components ensures that condition draw3 is met. Finally, the nature

of the truth setting component ensures condition draw4 is met. That is, the grid

drawing is orientable if G
C
has a realization.

Now assume that the terminals of the grid drawing have been oriented. From this

we will construct a realization for G
C
. This realization has a unit of distance equal

to 10. Equivalently, divide all coordinates by 10 for a unit of distance equal to 1. Let

the lower left grid corner have x-y coordinates (0, 0).
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-68 -5 -68 5 -59 -9 -59 9 -54 0 bead

-49 -9 -49 9 -45 -15 mortar -45 15 mortar -44 0 chain

-40 -5 -40 5 -35 -15 mortar -35 15 mortar -31 -9

-31 9 -26 0 bead -21 -9 -21 9 -16 0 chain

-14 -15 mortar -14 15 mortar -12 -5 -12 5 -5 -12

-5 12 0 0 bead 5 -12 5 12 7 0 chain

12 -5 12 5 14 -15 mortar 14 15 mortar 21 -9

21 9 26 0 bead 31 -9 31 9 35 -15 mortar

35 15 mortar 36 0 chain 40 -5 40 5 45 -15 mortar

45 15 mortar 49 -9 49 9 54 0 bead 59 -9

59 9 64 0 chain 68 -5 68 5

Table 1: Wire (with mortar) coordinates. This wire is horizontal and has both

terminals oriented W . Rotate the coordinates by 180 degrees to orient the terminals

E and by 90 degrees or -90 degrees to get the vertical wire with terminals oriented S
or N respectively.

The coordinates for each component realization are given in Tables 1 through
5, allowing the reader to verify all claims of adjacency and non-interference. To

make this task somewhat easier, the points for each component are plotted as circles
of radius 5. Note that two circles intersect exactly when the Euclidean distance

between the corresponding points is less than or equal to 10. For each component in

the grid drawing, construct the corresponding component realization, depending on
its orientation. Then translate the component realization to (136x; 136y) where (x; y)
are the grid coordinates of the component. The grid coordinates of a component are
the coordinates of the corresponding grid vertex in all cases but one. Truth setters

are the exception since they are really two literal components (which do have integer
coordinates); variable u

i
has coordinates (3:5 + 6i; 1).

This procedure will result in duplicated points corresponding to terminal hinge
vertices. Remove one set; they were only duplicated for clarity of exposition of each

component. Note that beads and chains on terminals are not duplicated in this
procedure. 2

5.8 The Reduction can be Implemented in Polynomial Time

The grid drawing has area (6jU j + 1) � (3jCj+ 2), and therefore at most this many

components since each component is enclosed by a unit square. Each component of

G
C
has a constant number of vertices and edges belonging to cages, chains, beads,

and mortar. Finally, each connection of components requires only a constant number
of additional mortar vertices. Since the size of the SATISFIABILITY instance is a

polynomial function of jU j and jCj, the entire recognition instance can be built in

polynomial time.
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-68 -5 -68 5 -59 -9 -59 9 -54 0 bead

-49 -9 -49 9 -44 0 chain -40 -5 -40 5

-31 -9 -31 9 -26 0 bead -21 -9 -21 9

-16 0 chain -12 -5 -12 5 -9 -59 -9 -49

-9 -31 -9 -21 -5 -68 -5 -40 -5 -12

-5 12 0 -64 chain 0 -54 bead 0 -36 chain 0 -26 bead

0 -7 chain 0 0 bead 5 -68 5 -40 5 -12

5 12 9 -59 9 -49 9 -31 9 -21

12 -5 12 5

Table 2: Corner coordinates. This corner has the (0,0) grid vertex in the north-
east corner. The L terminal is oriented W and the B terminal is oriented N . The
other orientations and three corners can be obtained by rotating these coordinates

by 90 degrees and by re
ecting about the coordinate axes.

6 Concluding Remarks

This paper shows that unit disk graph recognition, or K-SPHERICITY for K = 2,

is NP-hard by reducing SATISFIABILITY to it. What can be said about the com-
plexity of K-SPHERICITY for other values of K? We mention in the Introduction
that graphs with sphericity 1 are called unit interval graphs and can be recognized in
polynomial time. That is, K-SPHERICITY is solvable in polynomial time for K = 1.

The complexity of 3-SPHERICITY is an open question due to [Hav82a, Hav82b,
HKC83] arising from studies of molecular conformation. This problem, too, is NP-

hard since our reduction for 2-SPHERICITY can be modi�ed for 3-SPHERICITY.
The basic building blocks are again beads in cages, but this time the cages are three-

dimensional. Their capacities again would be deduced by optimal sphere packing

arguments, but in three dimensions. Optimal packing is admittedly more complicated
in higher dimensions, but we simply require that some such packings, and therefore
constrained cages, exist. Note that the optimal packings need not be unique.

Embed the SATISFIABILITY graph in the three-dimensional grid as follows.

Begin by embedding the clauses and variables in a two-dimensional grid, as before.
Think of this as a horizontal layer, with z = 1. Now, add more horizontal layers
to the grid for a total of 3jCj layers, so that each occurrence of a literal in a clause

has its own layer. Route a literal to a clause by �rst routing from the literal to the

corresponding layer, using the third dimension. Then route over to the clause's (x; y)
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-68 -5 -68 5 -63 -13 -63 -2 chain -59 8

-56 -2 bead -54 -13 -50 8 -46 -9 -46 41

-44 0 -44 32 -41 -6 chain -41 11 -41 21

-40 -17 -40 49 -36 -7 bead -36 39 bead -35 3

-35 29 -30 -17 -30 16 bead -30 24 chain -30 38 chain

-30 49 -27 -2 chain -25 3 -25 29 -24 -7 bead

-24 39 bead -20 -17 -20 49 -19 11 -19 21

-19 38 chain -16 0 -16 32 -14 -9 -14 41

-12 9 -12 23 -11 52 -11 61 -10 -3 chain

-9 -60 -9 -50 -9 -32 -9 -22 -6 -2 bead

-6 34 bead -5 -68 -5 -41 -5 -13 -5 16

-5 45 -5 68 -2 6 chain 0 -65 chain 0 -55 bead

0 -37 chain 0 -27 bead 0 7 bead 0 21 chain 0 25 bead

0 36 chain 0 49 chain 0 57 bead 3 -8 chain 5 -68

5 -41 5 -13 5 16 5 45 5 68

6 -2 bead 6 34 bead 9 -60 9 -50 9 -32

9 -22 10 35 chain 11 52 11 61 12 9

12 23 14 -9 14 41 16 0 16 32

19 -6 chain 19 11 19 21 20 -17 20 49

24 -7 bead 25 3 25 29 30 -17 30 -6 chain

30 8 chain 30 16 bead 30 34 chain 30 38 bead 30 49

35 3 35 29 36 -7 bead 40 -17 40 49

41 11 41 21 44 0 44 32 46 -9

46 41 50 8 52 -2 chain 54 -13 56 -2 bead

59 8 63 -13 68 -5 68 5

Table 3: Crossover coordinates. The T and B terminals are oriented N , and the L
and R terminals are oriented E. The other orientations can be obtained by keeping

all cage and bead locations the same, but rearranging the chain vertices as needed by

symmetry.
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-145 0 bead -141 0 chain -136 -5 -136 5 -127 -9

-127 9 -122 0 bead -117 -9 -117 9 -112 0 chain

-108 -5 -108 5 -99 -9 -99 9 -94 0 bead

-89 -9 -89 9 -84 0 chain -82 -64 -82 -54

-82 54 -82 64 -80 -5 -80 5 -73 -68

-73 -50 -73 -12 -73 12 -73 50 -73 68

-68 -77 bead -68 -73 chain -68 -59 bead -68 0 bead -68 59 bead

-68 73 chain -68 77 bead -63 -68 -63 -50 -63 -12

-63 0 chain -63 12 -63 50 -63 68 -58 -59 chain

-58 59 chain -57 -5 -57 5 -54 -64 -54 -54

-54 54 -54 64 -48 -9 -48 9 -45 -68

-45 -50 -45 50 -45 68 -43 0 bead -40 -59 bead

-40 59 bead -39 -44 -39 44 -38 -9 -38 9

-37 -37 -37 37 -35 -68 -35 -50 -35 50

-35 68 -34 -56 chain -34 56 chain -33 0 chain -32 -25

-32 25 -30 -18 -30 18 -29 -31 -29 -5

-29 5 -29 31 -27 -43 bead -27 43 bead -26 -64

-26 -54 -26 -38 chain -26 38 chain -26 54 -26 64

-22 -12 -22 12 -20 -35 -20 -24 bead -20 0 bead

-20 24 bead -20 35 -19 -51 -19 -19 chain -19 19 chain

-19 51 -16 -44 -16 0 chain -16 44 -13 -16

-13 16 -12 -32 -12 32 -11 -6 bead -11 6 bead

-9 -25 -9 25 -5 0 chain -4 -14 -4 14

0 -5 0 5 4 -14 4 14 9 -25

9 25 11 -6 bead 11 6 bead 12 -32 12 32

13 -16 13 16 15 -10 chain 15 10 chain 16 -44

16 44 19 -51 19 51 20 -35 20 -24 bead

20 0 bead 20 24 bead 20 35 22 -28 chain 22 -12

22 12 22 28 chain 24 0 chain 26 -64 26 -54

26 54 26 64 27 -43 bead 27 43 bead 29 -47 chain

29 -31 29 -5 29 5 29 31 29 47 chain

30 -18 30 18 32 -25 32 25 35 -68

35 -50 35 50 35 68 37 -37 37 37

38 -9 38 9 39 -44 39 44 40 -59 bead

40 59 bead 43 0 bead 45 -68 45 -50 45 50

45 68 48 -9 48 9 50 -59 chain 50 59 chain

53 0 chain 54 -64 54 -54 54 54 54 64

57 -5 57 5 63 -68 63 -50 63 50

63 68 64 -12 64 12 68 -63 chain 68 -59 bead

68 59 bead 68 63 chain 69 0 bead 73 -68 73 -50

73 50 73 68 74 -12 74 0 chain 74 12

80 -5 80 5 82 -64 82 -54 82 54

82 64 89 -9 89 9 94 0 bead 99 -9

99 9 104 0 chain 108 -5 108 5 117 -9

117 9 122 0 bead 127 -9 127 9 132 0 chain

136 -5 136 5

Table 4: Truth setter coordinates. This truth setting component realization has the

3-bead cluster inside the left 3-cage. Therefore, the three leftmost T , L, and B

terminals are oriented N , W , and S respectively. The other possible con�gurations

can be obtained by symmetry: retain the coordinates of the cages and beads, but
alter the chain coordinates accordingly. This realization shows the leftmost T , L, and

B terminal beads being absorbed by the ether. In a complete realization, delete those

external chain and bead vertices on terminals connected to wires or corners.
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-14 -74 mortar -14 -64 -14 -54 -14 -46 -14 -36

-14 36 -14 46 -14 54 -14 64 -13 -26

-13 -16 -13 16 -13 26 -5 -74 cap -5 -68

-5 -50 -5 -32 -5 -10 -5 10 -5 32

-5 50 -5 68 0 -64 chain 0 -59 bead 0 -46 chain

0 -41 bead 0 -26 chain 0 -21 bead 0 21 bead 0 36 chain

0 41 bead 0 54 chain 0 59 bead 5 -74 cap 5 -68

5 -50 5 -32 5 -10 5 0 5 10

5 16 chain 5 32 5 50 5 68 12 -9 chain

13 -26 13 -16 13 16 13 26 14 -74 mortar

14 -64 14 -54 14 -46 14 -36 14 36

14 46 14 54 14 64 15 -6 bead 15 6 bead

21 3 chain 22 -14 22 14 25 -5 25 5

31 -13 31 13 36 0 bead 41 -13 41 0 chain

41 13 47 -5 47 5 52 -13 52 13

57 0 bead 62 -13 62 0 chain 62 13 68 -5

68 5

Table 5: Clause (with cap and mortar) coordinates. The Bottom terminal is capped
in this realization. Both the Top and Bottom terminals are oriented N . The Right

terminal is oriented W . Other caps and orientations can be obtained by symmetry.

All cage and bead vertex locations are the same; only the chain vertices need be

rearranged.
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coordinates on the dedicated grid layer. Conclude by routing to the clause using the

third dimension. In this way, no wires interfere, and the construction does not even

require cross-over components. We believe that an analogous construction is possible

also in higher dimensions.

Conjecture 9 K-SPHERICITY is NP-hard for all �xed K greater than 1.

It is apparent from the nature of cages and beads that the assumption of at most

3 literals per clause, and that each variable appears in at most 3 clauses, is not really

necessary to our reduction. Fan out and fan in components can be manufactured

from the basic building blocks used in the construction. They are avoided here in
order to clarify the exposition.

Note that an instance of 2-SPHERICITY constructed by the reduction in this

paper is planar. This is true whether or not it has a realization, since it is always
possible to embed all beads and chains inside their incident cage without crossing
edges. That is, 2-SPHERICITY remains NP-hard even if the graph is planar.

Finally, an instance of 2-SPHERICITY constructed by our reduction has a 3-
dimensional realization. To see this, embed the cages in the (horizontal) plane, as

usual. Then embed the chains and beads directly above their incident hinges, using
the third dimension (imagine helium �lled balloons on strings). Since the hinges
are independent of one another, so are the chains and beads. This implies that

2-SPHERICITY remains NP-hard even if the graph has sphericity at most 3.
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