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Abstract 

The aim of this thesis is to explore computational methods for the ~hape from shading 

problem as formulated through the image irradiance equation. We seek to develop robust, 

efficient methods and test our algorithms on synthetic images ranging from simple smooth 

surfaces to complex digital terrain model data. We consider three different approaches. 

The first approach revisits the method of characteristic strips with a view to using 

more stable integration schemes than had been used in earlier works. Stable schemes, 

coupled with projections onto the image irradiance equation are used. Although the 

effects of noise are thereby reduced, the solution is still deemed unsatisfactory even for 

very simple surfaces. 

The second approach considers Horn's variational technique as a basis for producing 

a fast solver. We devise a discretization scheme coupled with a special continuation­

multigrid method for this formulati?n. We also allow for multiple image data and explicit 

knowledge of the location of discontinuities in surface height and orientation. Given 

multiple image data. we obtain excellent results even in the presence of discontinuities. 

The third approach examines a class of solution techniques based on fluid flow which 

are new to the shape from shading literature. This formulation is ill-posed in general, 

so we propose a regularization of the problem. We observe that the algorithm is prone 

to producing spurious results. Analysis shows that these are due to the non-random 

accumulation of errors in the computed solution. 

Of the three approaches considered, the variational method yields the most promising 

results. Efficient. good quality reconstructions are obtained, especially when data from 

more than one image a.re available. 
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Chapter 1 

Introduction 

1.1 Overview 

The field of computer vision, while having its roots in a biological function which most of 

us consider effortless. is an area of research containing a wealth of problems which have 

proved to be anything but effortless to solve. It has become clear that the building of a 

vision system requires the construction of many component parts. Shape from shading 

is just one of those components. 

Shape from shading consists of a class of problems which aim to recover the depth map 

of the surface giving rise to a shaded image or images. Under certain lighting conditions 

and with assumptions on the reflectance properties of the surface, it can be shown that 

mathematically the pr.oblem reduces to one of solving a nonlinear, first order, partial 

differential equation known as the image irradiance equation. 

1.2 Historical background 

The image irradiance equation has been solved using both the method of characteristic 

strips, see Horn [21], and by variational techniques, see Horn & Brooks [23]. Woodham 

[.j5] developed a technique called photometric stereo which uses data from multiple images 

to determine surface slopes which are then integrated to produce the surface height. 

The method of characteristic strips has proved to be difficult to implement in the 

presence of image noise as accumulation of t=>rrors leads to a tendency for characteristics 



Chapter 1. Introduction 2 

to cross. It has also been criticized for not having its roots in a corresponding biolog­

ical function. This method now appears to have been abandoned in favour of iterative 

solutions arising from variational formulations of the problem. 

The variational formulation arises not out of a desire to solve the image irradiance 

equation exactly but rather to find the surface which best satisfies this equation ( thus 

allowing for noise) as well as perhaps some other constraint or constraints. The imposi­

tion of additional constraints turns out to be not so much an option as a necessity if a 

reasonable solution is to be attained. Examples of such constraints are penalty terms for 

non-smoothness and non-integrability of the computed surface slopes . 

• The differential equations arising from the variational formulation, known as the 

Euler equations, have been solved using iterative techniques most of which appear to 

suffer from poor convergence rates. It has been suggested that the multigrid method, 

which has proved to be a fast, efficient solver for elliptic partial differential equations. 

may be used to improve the convergence rate, see Terzopoulos [50]. However, as we 

shall see. the application of this method to the shape from shading problem is one which 

requires due care and attention. 

Oliensis & Dupuis [39] and Lions, Rouy & Tourin [34] [51) [46) have recently devel­

oped new techniques based on ideas in Control Theory and Dynamical Systems. These 

techniques use information at singular points (which we define later in the chapter) to 

determine the solution at other points in the domain. Hence, singular points, rather 

than boundary information at the edge of the image, are seen as the determining factor 

in resolving ambiguities in solutions. 

Bruckstein [11] and Kimmel & Bruckstein [28) present algorithms for computing the 

height of an object directly from a shaded image via level sets. Their work is inspired by 

wavefront propagation techniques . 

Leclerc & Babick [30] present a variational technique for computing surface height 
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directly. An iterative minimization technique based on the conjugate gradient method is 

employed. They also demonstrate the possibility of using stereo processing of images to 

provide boundary and initial data for their shape from shading algorithm. 

Lee & Kuo [32][33] present a finite element solution method which computes surface 

height directly on a triangular mesh. They use linear basis functions and linearize the 

reflectance map about the previous iterate. A smoothing term is added to regularize the 

problem which can gradually be reduced to zero in the case when two images are input. 

They show that the data from two images serve to greatly improve the accuracy of their 

algorithm. 

\tVhile many authors assume that the light source direction is known a priori, others 

( Zheng & Chellappa [.59], Brooks & Horn [7]) have developed methods for estimating the 

light source direction from the image data. Gibbins, Brooks & Chojnacki [17] present 

a comparative performance analysis of existing algorithms for estimating light source 

direction. They indicate that methods which aim to determine light source direction 

as a preprocessing step in a shape from shading algorithm tend not to be particularly 

robust. It was suggested that methods which couple together the estimation of light 

source direction and computation of surface height. such as Brooks & Horn [7], tend to 

be more reliable. 

There has been comparatively little work in the area of existence and uniqueness of 

shape from shading problems. Bruss [12] and Brooks, Chojnacki & Kozera [8][9] have 

presented existence and non-uniqueness results for the shape from shading problem when 

a single image with overhead illumination is given as input. Oliensis [37][38] has also given 

uniqueness results for the single image problem although his work is generalized to the 

case of oblique illumination. In the latter case he deduces that the shape from shading 

problem is only partially well constrained. His results are based on the interpretation 

of the shape from shading problem as a "flow•· of characteristics over the surface, see 
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also Sax berg [4 7]. Horn. Szeliski & Yuille [26] demonstrate the existence of images which 

cannot arise from the shading of a smooth surface with uniform reflectance properties. 

They refer to such images as impossible shaded images. Onn & Bruckstein [40] and 

Kozera [29] show that two image photometric stereo generally gives rise to a unique 

solution of the shape from shading problem. 

1.3 Shape from Shading 

Ramachandran [4.5] has demonstrated that shape from shading is without doubt a com­

ponent of the human \·ision system. The presence of boundaries (whether illusory or real) 

was found to be important for depth perception. It was also shown that the same shad­

ing pattern with different boundary information gives the impression of quite different 

surfaces lit from different directions indicating the importance of boundary information 

for the human vision system. However, depth cues from shading were easily over-ridden 

by stereographic cues and other higher-level visual processes such as object recognition. 

Marr [36] has commented that extracting shape from shading is something that the hu­

man visual system does not do particularly well but he went on to say that "Nevertheless, 

we do make some use of shading, so there is definitely something there to be understood." 

As a process which explicitly reconstructs the depth-map of a surface, shape from 

shading has received some criticism. Blake & Zisserman (3] have commented that "direct 

applications for depth maps, as descriptions of visible surfaces, are at best limited and 

at worst, perhaps, non-existent." They argued that in terms of object recognition, the 

depth-map has no place at all. Other uses of vision. such as collision-avoidance, may well 

require the use of a depth-map but they argue that bounding the object by a polygon 

is a more compact way of describing the position of the object to be avoided. However. 

the depth map can be useful for tasks involving object manipulation. There are also 
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situations when the human visual system reconstructs a surface solely from shading 

cues, for example, when looking at shaded topographic maps or satellite images of the 

earth, moon or planet. If the extraction of shape from shading is a function of the human 

visual system ( and it undoubtedly is) , we believe that it also has a place in computer 

vision systems even though its role in the overall scheme of things may not be that great. 

The earliest and most general solution to the shape from shading problem was pre­

sented as part of Horn's 1970 Ph.D. thesis. The relevant part of this thesis is reprinted 

in Horn [20]. The solution was general in the sense that the simplifying assumptions of 

distant viewer and distant light source, which figure in later works, were not made. Also, 

the application of the solution technique to imaging systems such as the electron mi­

croscope and surfaces such as that found on the moon, demonstrated further generality. 

The governing equations were solved using the method of characteristics, which yields a 

set of five, coupled, ordinary differential equations. 

Later authors, including Horn, found the assumptions of distant viewer and distant 

light source to be quite reasonable in many imaging situations and with the ensuing 

mathematical simplification their adoption has proved to be popular. It was Horn & 

Sjoberg [25] who demonstrated how a reflectance map, giving scene radiance as a function 

of surface slope, could be derived under these assumptions with a knowledge of the 

Bidirectional Reflectance Distribution Function (BRDF) and the location of light sources. 

The BRDF is defined by the National Bureau of Standards to be the ratio of the scene 

radiance reflected towards the viewer to the scene irradiance coming from the light source 

for a given source and viewer position and has units of steradian -l. 

We denote the reflectance map by R(p, q) where (p, q) is the surface gradient at a point 

(x,y) that is, p = =x and q = zy where ::(x.y) denotes surface height and a subscript 

denotes partial differentiation with respect to the indicated variable. Further, we denote 

the image brightness at this point by E( .r, y). Then under the assumption that image 
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irradiance equals scene radiance we have: 

E(.T, y) = R(p. q) . ( 1.1) 

This equation is known as the image irradiance equation. In general. R(p, q) is a non­

linear function of p and q and so equation ( 1.1) can be described as a non-linear. first 

order, partial differential equation in z, the surface height . 

Horn later reworked his solution to make use of the reflectance map (see Horn [21]). 

However, the successful solution of the governing equations by means of characteristic 

strips depends on a noise-free image which under normal circumstances cannot be guar­

anteed. 

\,\Toodham [54] presented the first attempt at an iterative means of determining shape 

from shading. Constraints on local topography were used to iteratively restrict the gradi­

ent space contours on which the slope (p, q) of a particular point must lie. The algorithm 

was highly dependent on the ability to hypothesize an ordering of image points with 

respect to viewing angle and directi-0n of steepest descent along the surface. As imple­

mented, the algorithm required an initial guess which served as a framework to locally 

order closely spaced points. Iterative refinement then aimed to modify this surface with 

its local constraints into a surface which represented a "simple distortion" of the initial 

guess. 

Woodham [56] later showed how surface orientation can be determined when a priori 

knowledge of the object is at hand. Cases dealt with include convex surfaces, developable 

surfaces (for example, right circular cones and cylinders) and generalized cones (for which, 

in cylindrical coordinates (r,0,::), r = h(z)f(0) where hand fare continuous functions 

of the indicated independent variable). It was shown, for example, that points on a 

clevelopable surface whose axis is parallel to the image plane, have slopes which lie on a 

one parameter curve in gradient space. Hence surface orientation may be determined by 
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systematically scanning along image lines and determining the single parameter, t, for 

which R(p(t).q(t)) = E(x,y). 

Also at this time, vVooclham [.5.5] presented a scheme for determining surface orienta­

tion from multiple images. The method is referred to as photometric stereo. Woodham 

showed that for a. special case of a J'vlinnaert surface ( which is commonly used to model 

the Moon's surface) for which we have the linear reflectance map: 

R( ) 
( 1 + PoP + qoq) 

p,q = p-=====-J1 + P6 + q5 
( 1.2) 

only two images ( obtained from different light sources) are required to uniquely determine 

p and q provided p, the surface albedo, and (p0 , q0 ), which specifies the light source 

direction in each image, are known. 

It was also shown that for a Lambertian surface for which we have the nonlinear 

reflectance map: 

( 1.3) 

only three images are required to uniquely determine p, p and q at each point provided 

the light sources used to obtain each image are not coplanar and that there are no non­

illuminated regions in any of the three images. Note that R achieves its maximal value 

of 1 when p = p0 and q = q0 • At such points RP = Rg = 0. We refer to these points as 

singular points. Note that (1.3) can be interpreted as: 

R = max {O. pcos(0)} (1.4) 

where 0 is the angle between the light source direction, ( -p0 , -q0 , 1 ), and the surface 

normal. ( -p, -q, 1 ). Here we assume that the viewer is located at +oo on the z-axis. 

Next we consider the man:v schemes that have arisen from variational techniques. 

Such techniques have proved popular given the apparent limitations of the method of 
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characteristics mentioned earlier. The idea behind the variational technique is to deter­

mine the functions p(x,y) and q(x,y) which minimize the functional: 

(1..5) 

where the domain of integration, n, is the image under consideration. Hence we set out 

not to solve the image irradiance equation exactly but to determine the functions p and 

q which minimize the error in this equation. In other words, we determine the surface 

slopes which in some sense best solve the image irradiance equation thus allowing for the 

presence of noise. 

Unfortunately, the problem is ill-posed in the sense that it does not always have a 

unique solution, see Poggio & Torre [44], even under the imposition of boundary con­

ditions. Various authors have presented different means of dealing with the problem of 

non-uniqueness. An excellent overview is to be found in Horn & Brooks [24]. Of par­

ticular note in this work is th~ realization that the search for a unique solution must 

ensure that the orientation map produced should be integrable. In other words, it is of 

little use to provide the surface gradient which minimizes equation (LS) if that gradient 

cannot be integrated to yield the depth-map. In this vein, Horn and Brooks considered 

the addition of a term which adds a penalty for non-integrability of the surface slopes. 

1.e. they considered the minimization of 

(1.6) 

Notice that here they do not strictly enforce integrability at each point; schemes which 

attempted to do this by means of a Lagrange Multiplier were found not to be convergent. 

It was concluded that exact imposition of integrability at each point was too restrictive. 

A necessary condition for the functions p and q to be extremals of the functional 

F(p. q) is that they satisfy the corresponding Euler equations, see Courant & Hilbert 
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[15]. For the functional given in equation (1.6) it was shown that the corresponding 

Euler equations are 

µ(pyy - qxy) + (£ - R)Rp : 0 } 

µ(qxx - Pxy) + (E - R)Rq - 0 
(1.7) 

These equations were solved in [24] using a simple Jacobi iteration. They reported very 

accurate results for tests conducted on synthetic images but also said that "like most 

shape from shading methods, it typically takes many iterations to converge." It was 

suggested that slow convergence could be remedied by the use of the multigrid method 

but they did not pursue this. Sweldens & Roose [49] however, present a parallel multigrid 

algorithm for this formulation. 

Having obtained the orientation map, the corresponding depth-map is also obtained 

using variational techniques. The problem now is to determine the function z( x, y) which 

minimizes the functional 

(1.8) 

The corresponding Euler equation was shown to be: 

(1.9) 

subject to the natural boundary conditions (see Courant & Hilbert (15]) 

(1.10) 

where n is the outward unit normal to the boundary curve. Hence, surface height is 

obtained to within an arbitrary constant of integration. 

The availability of boundary value information appears to be a questionable issue. 

The gradient space formulation assumes some knowledge of p and q on a closed curve 

forming the boundary of the image. In many cases it is not unreasonable to assume that 
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a priori knowledge of the scene being imaged will give us such information. However. 

there is a class of problems for which gradient space formulation is not the most practical. 

In cases where the boundary of the object is an occluding boundary, one of p and q will 

become infinite and cannot therefore be used as boundary information. 

Previously, Ikeuchi & Horn [27], presented a scheme where surface orientation 1s 

parametrized using stereographic coordinates, (f, g). Such co-ordinates remain finite on 

occluding boundaries so that the values of f and g on 80 may be used as boundary 

conditions for the problem. However, there is a drawback in that the integrability condi­

tion cannot easily be expressed in stereographic coordinates. In order to obtain a unique 

solution. Ikeuchi and Horn considered the addition of a smoothing term and hence set 

out to minimize the functional 

The corresponding Euler equations are 

,\t;;J'2J + (E - R)R1 

>.'11.r; + (E - R)R9 

= 0} 
= 0 

(1.11) 

(1.12) 

Again. these equations were solved using a simple Jacobi iteration. This scheme had 

good convergence properties but accuracy depended largely on the parameter >.. In cases 

where the image was synthetically produced and ).. was small, very accurate results were 

reported. however. when there was noise in the image and ).. was large, large errors in 

the solution were observed due to excessive smoothing of the surface. Terzopoulos [50] 

reported a successful application of the multigrid method to this scheme, the convergence 

rate being improved significantly. Lee [31] gives an algorithm based on this variational 

formulation which is provably convergent provided ).. lies within a certain given interval. 

Horn & Brooks [2-!] also presented a scheme which parametrized surface slope in terms 

of the unit surface normal. Occluding boundary information could again be employed 



Chapter 1. Introduction 11 

and a penalty term for non-integrability was also incorporated easily. Later this work 

was extended by Malik & Maydan [35] who set out to reconstruct the depth map of an 

object which consists of piecewise smooth surfaces. Their scheme included the labelling 

of edges in the images. However. the integrability penalty term was dropped and replaced 

with a constraint on surface smoothness. It was suggested that the scheme of Frankot & 

Chellappa [16] could be used to project the non-integrable surface slopes onto the nearest 

integrable surface slopes after each iteration. Vega & Yang [53] also parametrize surface 

slope in terms of the unit surface normal. Their algorithm, however, rather than being 

based on a variational formulation, is heuristic in nature. They do not incorporate any 

penalty for non-integrability of the computed surface slopes. 

In his latest paper, Horn [22] returns to the gradient space parametrization of surface 

slope and presents a new "Height and Gradient from Shading" scheme. This scheme 

couples together the process of determining an orientation map and determining the 

depth map which had hitherto been dealt with sequentially. Again using variational 

techniques, Horn sets out to find functions :: . p and q which minimize the functional 

(1.13) 

The first of these terms represents a penalty for departure from smoothness. In cases 

where there is little or no noise in the image it was expected that ,\ may be taken small 

or even reduced to zero. The second term is the integrability penalty term. The third 

term requires no explanation. The Euler equations were shown to be 

Xv' 2p + µ(zx - p) + (E - R)R,, - 0 

,\V2q+µ(:: 11 -q) + (E - R)Rq 0 

V 2.:: - (vx+ qy) - 0 

(1.14) 

Horn solves these equations on staggered grids - the grid for z being offset from the one 

for p and q by half a pixel. A discretization is devised such that the discrete equations 
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closely follow the underlying continuous equations: a discretization for °92 z is derived 

by convolving the discrete operators for Zr and ::y with themselves, the latter being 

second order central differences. This procedure ensures complete consistency in the last 

equation of system ( 1.14). 

The Euler equations were again solved using a simple .Jacobi iteration; however. an 

important addition to the scheme was the use of linearization for the reflectance map so 

that R(pn+I, qn+l) is replaced by 

(1.15) 

where (pn, qn) is the previous iterate and (pn+l, qn+i) is the iterate to be computed. Horn 

reported that this linearization process added stability to his scheme. 

It was demonstrated that the scheme was extremely accurate for synthetic images 

where >. could be reduced to zero as the iteration proceeded. However. the convergence 

rate was very slow, especially when ,\ became small. Again it was suggested that the 

multigrid method could be used to speed up the convergence rate but this was not carried 

out. 

1.4 Objectives and Contributions of the Thesis 

The aim of this thesis is to propose and to investigate fast, efficient, robust numerical 

solutions to the shape from shading problem in computer vision as formulated through 

the image irradiance equation. 

In Chapter 2, we examine stable numerical schemes for the method of characteristic 

strips which was the first solution method for the shape from shading problem. We show 

that even with stable integration schemes and projection methods, the scheme is still 

prone to produce significant errors in the computed solution when there is noise in the 

image data. as was observed previously for less stable ODE integration schemes. 
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In Chapter 3. we extend the work of Horn [22] in providing a fast, efficient multigrid 

solver for his variational formulation (1.14) of the shape from shading problem. Using 

a discretization on a nonstaggered grid. we propose a special multigrid algorithm where 

continuation in the regularization parameter .,\ is incorporated into a nested multigrid 

scheme. The resulting algorithm provides speedups of more than an order of magnitude 

over the algorithm in [22]. We also extend the formulation to include availability of data 

from more than one image and knowledge of the location of discontinuities in surface 

height and orientation. We show that when the same information is offered to our 

algorithm as to a photometric stereo algorithm, we can also achieve excellent results. 

In Chapter 4. we examine a class of solution techniques which have so far not been 

considered in the shape from shading literature, namely upwinding schemes for flow for­

mulations. This section is inspired by solution techniques for the incompressible Navier­

Stokes equations which govern fluid flow. We establish the connection between the latter 

equations and a certain formulation of the shape from shading problem. At this point our 

work ties in with the work of Sax berg [4 7] and Oliensis [37] [38] who describe the shape 

from shading problem in terms of a "flow" of characteristics on the surface. We show that 

these solution techniques perform well in the absence of singular points, that is, points 

where the gradient of the reflectance map, in (p, q) space, vanishes: Rp = R9 = 0. How­

ever. when singular points are present we show that the algorithm is prone to producing 

spurious results. We relate this to the ill-posed nature of this particular formulation when 

there are singular points in the image. We further examine the tendency of the algo­

rithm to produce spurious results by turning to a one dimensional version of the problem 

which lends itself to easier analysis. \Ve also examine fundamental differences between 

the "flow" of shape from shading problems and fluid flow governed by the incompressible 

~ avier-Stokes equations. Particular difficulties associated only with the flow of shape 

from shading problems are identified. 
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Finally, in Chapter 5 we state the conclusions arising from our investigations. 



Chapter 2 

The Method of Characteristic Strips 

2.1 Introduction 

Historically, the method of characteristic strips was among the first to be used as a 

solution technique for the general shape from shading problem, see Horn [20]. In light of 

difficulties arising when using this technique, the method began to receive less attention 

in favour of variational techniques. However, Saxberg [4 7] and Oliensis [37][38] have more 

recently re-examined the method of characteristics from a more theoretical viewpoint. 

Oliensis has shown that characteristics can be used to determine uniqueness in certain 

shape from shading problems. The existence of singular points, coupled with the flow of 

characteristic strips across the surface, uniquely specifies the solution in cases of overhead 

illumination when a smooth object is wholly contained in the field of view. Oliensis 

therefore concludes that in the case of overhead illumination, the shape from shading 

problem is generally well-posed and therefore does not necessarily require regularization. 

Oliensis also shows that in the case of oblique illumination, the shape from shading 

problem is partially well-constrained in that there will be some region in the image 

which gives rise to a unique solution. 

Given this resurgence of interest in characteristics, we begin our investigation with a 

look at the method of characteristic strips. 
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2.2 Methods 

2.2.1 The method of characteristic strips 

The solution of first order, non-linear. partial differential equations by the method of 

characteristic strips is well documented. see Carrier & Pearson (13]. For the problem at 

hand we consider the image irradiance equation 

E(x, y) = R(zx, zy) (2.1) 

as a first order, generally non-linear, partial differential equation in z( x, y), the surface 

height. We begin by writing 

E(x. y) = R(p, q) (2.2) 

where p = zx and q = zy are the surface slopes. Differentiating (2.2) with respect to a: 

and y we get: 

Ex = Rppx + Rqqx 

Ey = Rppy + Rqqy 

(2.3) 

(2.4) 

Now consider propagating the solution along a curve C known as a characteristic strip. 

Let 

be a parametrization of C for some parameter ~. Then we may write 

i(~) = px(O + qiJ(O 

where a dot denotes differentiation with respect to r Now, by choosing 

(2.5) 

(2.6) 

(2. 7) 

(2.8) 
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we specify the direction of C and substituting into (2.3) and (2.4) we get 

p([) = JJxX(() + qxiJ(() = Ex 

<i(O = py:i:(0 + qy'(;(O = Ey 
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(2.9) 

(2.10) 

Equations (2.6) to (2.10) provide us with a means of propagating the solution z(x. y) 

and its gradient along the curve C. Since the gradient as well as the solution is propagated 

along C, this curve is known as a characteristic strip as opposed to a characteristic curve. 

vVe start the integration by specifying the solution ( x, y, z, p, q) along an initial strip 

C0 . In order to propagate characteristics from this strip, the tangent vector to C0 at each 

point must not be parallel to the vector ( R/i' + Rq]) at that point. The solution of the ,5 

non-linear, ordinary differential equations (2.6) to (2.10) with suitable initial conditions 

as just described, constitutes the method of characteristic strips. 

Several problems with this method have been reported in the literature (20]. Many 

of these problems appear to be independent of the chosen numerical integration scheme 

used to solve the system. Horn reports that replacing a simple Euler method by a Runge­

I~ utta method does not yield significant improvement in accuracy. These methods appear 

to be particularly susceptible to noise: characteristics when propagated from some initial 

curve tended to cross yielding multiple solutions in certain regions. 

Since the path of characteristic strips is dependent on the particular surface under 

consideration, the density of characteristics will change as they propagate out from the 

initial curve. Thus. there may be regions where no information is computed while in 

other regions. the characteristics are densely packed. Horn proposed a method whereby 

characteristics were computed in parallel. When two characterisitics became too close, 

one was terminated and when the gap between neighbouring characteristics became too 

large. a new curve was initiated by interpolating the solution from neighbouring curves. 
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In an attempt to reduce the effect of noise, Horn "sharpened" his solution for p and 

q by imposing the conditions 

.:- - p± - qiJ = o 

E(x, y) - R(p. q) = 0 

(2.11) 

(2.12) 

along "rings" or curves consisting of points equidistant from the initial curve. The term 

"ring" is used since Horn typically took circles around singular points as initial curves. 

Local sphericity of the surface was assumed in order to specify initial data on this curve. 

Equations ( 2.11) and ( 2.12) were not imposed exactly, rather one Newton iteration was 

performed to "correct" the computed solution at each point on the "ring". 

2.2.2 Integration Schemes 

We begin by introducing some terminology which will be used later m the Chapter. 

Consider the first order initial value problem 

i; = f(y); y(O) = a (2.13) 

where a dot denotes differentiation with respect to the independent variable, x, and f 

is a generally non-linear function of y. Consider computing discrete approximations to 

the solution of (2.13) on a regular grid defined by the grid points x; = ih, i = 0, 1, 2, • • • 

where his the step-size. The forward Euler method discretizes (2.13) by: 

Yi+lf,- !Ii = f(y~), . O 2 • • -i = '1, , ... (2.14) 

with Yo = a so that 

(2.15) 

Notice that (2.1,5) gives an explicit formula for the discrete solution at each successive 

grid point. Such a scheme is referred to as eJ:plicit. 
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The backward Euler method discretizes (2.13) by: 

i = 0,1,2, ·· · (2.16) 

so that 

(2 .17) 

In the general case when f is a non-linear function of y, (2.17) defines Yi+l implicitly at 

each grid point. Such schemes are referred to as implicit. In such cases, we solve for Yi+l 

approximately using a non-linear solver such as Newton's method. 

Another implicit scheme which has the advantage of being second order accurate is 

the midpoint scheme: 

(2.18) 

so that 

Yi+l =Yi+ hf( (Yi+l + yi)/2). (2.19) 

In general, explicit schemes have the disadvantage that a stability restriction must 

be placed on the magnitude of the step-size. h. in order that a reasonable solution be 

obtained. In some cases this restriction can be quite severe leading to an expensive 

computation. However, backward Euler and the midpoint scheme, which are implicit 

schemes, are stable for all values of h and are therefore referred to as unconditionally 

stable. For further details see Hairer, Norsett & Wanner (19] or Ortega (41]. 

While Horn (20) reports no improvement in accuracy when replacing a simple forward 

Euler scheme with an explicit fourth order Runge-Kutta scheme (see (19) (41)), there is 

also a question of stability which must be considered especially in the presence of noise. 

Since backward Euler and the midpoint scheme are unconditionally stable we have 

decided to attempt a solution of equations (2.6) to (2.10) using these methods. In either 

case. the resulting non-linear system is solved approximately using Newton's method. 
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This requires that the Jacobian of the discrete system be computed. This Jacobian is 

given by: 

-1/~l 0 Exx Exy 0 

0 -1/ !il Eyx Eyy 0 

RPP Rpq -1/L\l 0 Rp + pRpp + qRqp 

Rqp Rqq 0 -1/ L\l Rq + pRpq + qRqq 

0 0 0 0 -1/ L\l 

Here 6( is the step size taken along the characteristic curve and all other terms are 

evaluated at the previous iterate. 

Notice that the second derivatives of the image brightness function E(x, y) appearing 

m this Jacobian yield a system which will be highly susceptible to noise. This is a 

drawback in using an implicit scheme such as backward Euler. If an explicit scheme were 

used we would have to contend only with first derivatives of E(x,y). 

In order to kick-off the integration scheme, we require an initial strip along which 

x, y, p, q and z are known. Rather than assuming local sphericity of the surface in the 

neighbourhood of singular points we assume that :: , p and q are known along the boundary 

of the image. The assumption of local sphericity requires an estimate of the radius of 

the sphere which Horn suggests can be obtained by estimating the size of the object 

under consideration. This procedure will clearly lead to errors in the data even before 

any integration is carried out. For simple surfaces which when illuminated yield only one 

singular point in the corresponding image, such an initial strip proves to be adequate. 

Second order estimates of the derivatives of the image brightness are used at all points 

of the domain including the boundary. It is important to resist the temptation of using 

only first order estimates of these derivatives at the boundary since any errors instilled in 

the solution at the beginning of each strip will propagate along the entire strip adversely 

affecting the solution. 



Chapter 2. The Method of Characteristic Strips 21 

We therefore traverse the border of the image and shoot characteristic strips out at 

regular intervals. If ( Rp, Rq) is such that the characteristic strip immediately leaves the 

domain, we simply integrate in the reverse direction. In the language of fluid mechanics, if 

the boundary happens to be an outflow boundary, we integrate in the upstream direction. 

This procedure is quite reasonable in cases where most characterisitics are expected to 

terminate at a singular point, i.e. when few or no characteristics intersect the boundary 

of the domain more than once. 

vVe choose the step-size in ( to be 

1 

2 IR2 + R2N V P q 

(2.20) 

where N is the number of pixels across the image. Notice that JR~+ R; represents 

the speed of the curve and so our step-size is chosen to be inversely proportional to this 

speed. With this particular choice, we expect the solution to be computed approximately 

every half pixel. A given characteristic is terminated when (R; + R~) becomes too small. 

Notice that this condition signals that we are close to a singular point or inside a non­

illuminated region. This is equivalent to a stagnation point or no-flow region in fluid 

mechanics. A tolerance of 1 x 10-10 is used for the Newton iteration. If convergence 

to within this tolerance is not obtained within 200 iterations, the characteristic strip is 

terminated. 

Although all characteristics are started at image grid points, successive solution points 

do not necessarily coincide with grid points. In such cases, bi-cubic interpolation is used 

to determine the image brightness and its first and second derivatives at these points. 

2.3 Results: Simple Integration Schemes 

Unless otherwise noted. all results reported in this chapter are for the midpoint rule. We 

choose the midpoint rule over simple backward Euler since the former is expected to yield 
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more accurate results. Our schemes are tested by computing and reporting errors in the 

computed surface height and the reconstructed image brightness. The error in surface 

height is a root mean square (r.m.s.) error given by: 

N 1/2 

L(zi - ze(xi, Yi))2 
..,, -
.:.,,err -

i==l 

N 
(2.21) 

where z;, ( 1 ~ i ~ N), are the computed surface heights at points ( x;, Yi) on the char­

acteristic strips and ze(xi, Yi) is the corresponding exact solution. The image brightness 

error is also an r .m.s. error given by: 

N 1/2 

L(R(Pi, qi) - Ei)2 
iberr = i=l 

N 
(2.22) 

where (Pi, qi), (1 ~ i ~ N), are the computed surface gradients at points (xi, y;) on the 

characteristic strips and Ei is the interpolation of the image data from regular grid points 

to the point (xi, yi). We use bi-cubic interpolation to achieve this. 

We consistently use a Lambertian reflectance map in all tests so that 

R( ) { O 1 + PoP + qoq } 
P, q = max , ✓1 +PB+ q5J1 + p2 + q2 

(2.23) 

The coordinate system used to display the images is consistent throughout the Chap-

ter and is given in Figure 2.1. 

2.3.1 Images with no noise 

Consider the simple surface z = x 2 +y2 on [-0.5, 0.5]2. An image of this surface will have 

at most one singular point. If the singular point lies in the field of view, characteristics 

will propagate from the boundary towards this point. 
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y 

X 

Figure 2.1: Coordinate system for displayed images 

First consider the case of overhead illumination which results in a singular point at 

the origin of the corresponding image. Since characteristic strips follow paths of steepest 

descent on the surface, (see Oliensis [37], [38]) the tracks of these strips, when projected 

onto the image plane, form straight lines from the boundary to the origin. The algorithm 

discussed in the previous section was applied to a 129 x 129 image. The tracks of the 

characteristics in the image plane are shown in Figure 2.2. The error in computed surface 

height was 1.489 x 10-5 with an image brightness error of 1.235 x 10-3 . The small error in 

the image brightness demonstrates that the image irradiance equation E(x, y) = R(p, q), 

which underlies the system of equations we are considering, has been solved well. 

The computed characteristics indeed appear to follow straight lines from the boundary 

to the singular point. With a maximum height of 0.5, the error in the computed surface 

height is around 0.2%. However, notice that the surface height is not computed uniformly 

throughout the domain despite the initial even distribution of characteristic strips. This 

problem is inherent in the solution technique. 

vVe now illuminate the paraboloid from the direction ( -0.5, -0.5, 1 ). This yields one 

singular point in the resulting image. The computed tracks are shown in Figure 2.3. The 



Chapter 2. The Method of Characteristic Strips 24 

Figure 2.2: Paraboloid, overhead illumination. 

error in the computed surface height was still excellent at 1.717 x 10-5 while the image 

brightness error was 1. 752 x 10-3
. Again, our algorithm has performed quite adequately. 

We next consider a more challenging example. Consider the surface z = - 2~ cos(21rr), 

r = Jx 2 + y2 on [-0.5, 0.5] 2 which somewhat resembles an inverted Mexican hat. We 

start by illuminating this surface from overhead. The resulting image has a singular point 

at the origin as well as a ring of singular points at r = 0.5. The computed tracks are 

shown in Figure 2.4. 

As expected, all the characteristics have terminated near the ring of singular points 

at r = 0.5 leaving a very large portion of the surface untouched. In order to compute 

the solution in the region r < 0.5, we would have to make some assumption about the 

shape of the surface either just inside the ring r = 0.5 or on a closed curve surrounding 

the singular point at the origin. This, of course, would be in addition to the information 

we have already used on the boundary of the image. A major drawback in using the 

method of characteristics is therefore revealed - there will be cases where knowledge of 

the solution around one closed curve in the image is not sufficient to compute the solution 
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Figure 2.3: Paraboloid, light source direction ( -0.5, -0.5, 1 ). 

Figure 2.4: Mexican hat, overhead illumination. 
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Radius z-Error IE-Error 
0.1.5 6.185 X 10-2 4.510 X 10-2 

0.20 1.256 X 10-2 1.673 X 10-2 

0.25 2.971 X 10-2 4.164 X 10-2 

0.50 ,5.240 X 10-2 7.405 X 10-2 

Table 2.1: Effect of radius of sphere on computed solution 

in all regions of the domain. 

If we assume knowledge of the exact surface height and gradient along a closed curve 

surrounding the singular point at the origin our algorithm then computes the solution 

over the region r < 0.5 with an error in surface height of 2.162 x 10-4 and an image 

brightness error of 2.585 x 10-3
_ Given that the range in surface heights is approximately 

0.3. we can be quite satisfied with such a small error. However, such initial data may 

not always be available. 'vVe next consider how the assumption of local sphericity near 

the singular point at the origin affects the computed solution. In order to compute the 

error in surface height we assume that the height of the sphere that we fit to the surface 

is coincident with the exact height of the surface at the origin. 

We must then estimate an appropriate value for the radius of the sphere. For the 

surface under consideration. there are few features in the image that give any clue as to 

an appropriate choice for this variable. The ring of singularities at r = 0.5 would indicate 

that the radius should have a maximum value of 0.5. We show in Table 2.1 the results 

of our algorithm with various choices for the radius of the sphere. The columns labelled 

z-Error and IE-Error are the errors in the computed surface height and image brightness, 

respectively. 

As can be seen, the results are at best nearly an order of magnitude worse than the 

case when the exact data is gi,·en. Cross-sections through the computed surfaces as well 
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Figure 2.5: Cross-sections through computed solutions for different estimates of radius 
of sphere 

as the exact solution are shown in Figure 2.5. The computed solutions are qualitatively 

reasonable in that they maintain the correct shape. However, given the input image, it 

is unlikely that a value of 0.2 (for which we obtained the best results out of those tested) 

would have been chosen and we conclude that quantitatively, these results may not be 

satisfactory. 

We now illuminate this surface from the direction (-1, 0, 1). The resulting image 

has only one singular point which is located at (0.25, 0). The path of characteristics 

across the image is now rather complicated. As pointed out by Oliensis [38), if we now 

align the .:--axis with the light source ( rather than the viewer) the characteristics will 
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Figure 2.6: Mexican hat, paths of characteristics computed from exact surface slopes. 

follow paths of steepest descent in this new co-ordinate system. The point on the surface 

corresponding to the singular point is neither a local maximum nor minimum but rather 

a saddle point. Therefore some characteristics will flow towards this point while others 

emanate from it. 

In order to get an idea of the paths that characteristics are expected to follow we 

solve the system 

X 
(2.24) 

where Pe and qe represent the exact surface slopes. We solved this system in a manner 

similar to that described for the system in Section 2.2.2, except that forward Euler was 

used to integrate the equations. The results are shown in Figure 2.6. 

Notice that characteristics shot from the top and bottom of the image do not prop­

agate far into the domain and could be omitted without any great loss. The result of 

propagating characteristics from only the left and right sides of the image is shown in 

Figure 2. 7. This result is much more easily interpreted. 
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Figure 2.7: Mexican hat, paths of reduced number of characteristics computed using 
exact surface slopes . 

In the remaining tests conducted on this surface, we will continue to propagate char­

acteristics from the left and right sides of the image only. The result obtained from 

our algorithm is shown in Figure 2.8. The error in the computed surface height was 

2.506 x 10-4 while the image brightness error was 3.187 x 10-3
_ 

· For the most part the characteristics have followed the expected path. However, in the 

top left and bottom left corners, the characteristics have strayed slightly off course and 

have even crossed in some places resulting in a non-unique solution. This suggests that 

the underlying image irradiance equation has not been solved as well. This phenomenon 

is known as "drift". Although on the continuous level, the system we are solving has a 

solution which is guaranteed to be a solution of the image irradiance equation, on the dis­

crete level this is not the case due to the accumulation of errors caused by discretization. 

Later in this chapter we will examine a technique for dealing with drift. 

At this point we also present the result of using backward Euler as opposed to the 

midpoint rule. Note that backward Euler is only a first order scheme. The error in surface 

height was much worse at 1.297 x 10-2 while the image brightness error was similar at 
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Figure 2.8: Mexican hat, computed paths of characteristics. 

7.177 x 10-3 _ The tracks of the computed characteristics are shown in Figure 2.9. Clearly, 

this first order scheme yields results which are not satisfactory in comparison to those of 

the midpoint scheme. This deterioration in the computed solution when using backward 

Euler was observed for all tests presented in this chapter. However, from now on we will 

only report the results of using the midpoint scheme. 

2.3.2 Effects of noise in the image 

We now consider the effects of noise in the image data. Since errors accumulate during 

integration along the characteristic strips, this method tends to be very susceptible to 

noise. We begin by considering the effects of digitization. Images are frequently stored 

in the format of one byte per pixel so that image brightness is represented as an integer 

between O and 255. However, in all the images presented so far, image brightness has 

been computed and stored as a double precision variable. In order to model the effects 

of digitization we perform the following operations on the image brightness during the 

image creation routine: 
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Figure 2.9: Mexican hat, computed using backward Euler. 

brightness 

temp 

E[il[j] 

R(p_exact(x,y), q_exact(x,y)); 

(unsigned char) (brightness * 255 + 0.5); 

(double) temp / 255; 

Here we assume that the reflectance map, R( ·, ·), returns a value between 0 and 1. 

31 

With this addition to the code we now perform some of the tests carried out in the 

previous section . First, consider the surface z = x2 + y 2 illuminated from overhead. 

The tracks are shown in Figure 2.10. The error in the computed surface height was 

1.537 x 10-1 while the image brightness error was 2.590 x 10-3 . The results clearly 

demonstrate the effects of this rather basic form of noise in the image. Characteristic 

strips have crossed at various points in the image yielding non-unique results. 

The errors in the surface height and image brightness have increased by two orders 

of magnitude over the case with no noise. This very large increase in the error is due to 

the fact that some of the characteristics, rather than terminating at the singular point, 

skirt around it and end up wandering out of the domain. Some of these characteristics 

are shown in Figure 2.11. If these strips are omitted from the computation, the resulting 
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Figure 2.10: Paraboloid with digitization error, overhead illumination. 

error in surface height is much lower at 1.013 x 10-3
_ This figure is not that much larger 

than the case when there is no noise in the image. 

This result indicates that the error in the computation could be controlled to some 

extent by shooting characteristics out in parallel and terminating certain characteristics 

when they become too close together, as suggested by Horn [20]. There is a danger in 

this procedure, since when two characteristics cross, it is not known which of them is 

in error and it is therefore possible that a "good" characteristic may be terminated in 

favour of a "bad" one. If both are in error, then one will survive to go on polluting the 

solution. 

\Ve also test the "Mexican hat" surface illuminated from (-1, 0, 1 ). The effects on this 

surface are not quite as serious as for the previous example although some deterioration 

is clearly noticeable. The tracks are shown in Figure 2.12. The errors in the surface 

height and image brightness were 1.614 x 10-2 and 3.776 x 10-3 , respectively. 

In this case, there were no characteristics that wandered seriously off course and so 

the very large deterioration in the solution that occured in the previous test was not 
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Figure 2.11: Paraboloid with digitization error, overhead illumination. Tracks of some 
of the characteristics which wander out of domain. 

Figure 2.12: Mexican hat with digitization error, light source direction (-1,0, 1). 
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observed. However, the effects of noise are clearly noticeable. 

2.4 The Method of Projected Invariants 

In Section 2.2.1 we saw how the image irradiance equation 

g(v) = E(x,y) - R(p,q) = 0, v = (x,y,z,p,q) (2.25) 

is equivalent to a system of 5 non-linear o:d.e.s which we will now write as 

(2.26) 

This non-linear system was solved using Newton's method which necessitated the com­

putation of the Jacobian of J( v) which in turn involved the second derivatives of the 

image brightness function. For this reason, any noise in the image is greatly magnified 

in this Jacobian which contributes to the errors observed in Section 2.3.2. 

However, system (2.26) has an invariant, namely equation (2.25). On the continuous 

level, any solution of system (2.26) is guaranteed to be a solution of equation (2.25). For 

the discrete system this is not necessarily so. As mentioned earlier, this phenomenon 

is known as "drift". We therefore consider projecting the discrete solution on to the 

manifold defined by (2.25). We achieve this by adding A times the gradient of (2.25) to 

the right hand side of system (2.26) and augmenting this system with equation (2.25). 

Here, A is an additional variable. somewhat like a Lagrange multipler, which is determined 

so that equation (2.25) is satisfied by the resulting solution. We thus end up with the 

following system: 

,iJ = f(v) + AVg(v) } 

0 = g(u) 
(2.27) 

'vVe now expect that errors in the image irradiance equation will be reduced. Notice, 

however. that this will not necessarily lead to an improvement in the estimate of the 
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surface height. This is because z does not figure directly in the image irradiance equation. 

\Nhile we may end up computing x, y, p and q such that the image irradiance equation 

is well satisfied, this will not necessarily be achieved in a manner in which p and q are 

integrable. Any deviation from integrability will result in errors in the surface height. 

There is, of course, also discretization error involved in computing z from p and q. 

Notice that this procedure is akin to Horn's method for "sharpening" his estimates of 

p and q. However, Horn's method consisted of a post-computation, correction technique 

while the method of projected invariants provides a more integrated approach. 

2.5 Results: The Method of Projected Invariants 

2.5.1 Images with no noise 

Again consider the paraboloid z = x 2 + y 2 as introduced earlier. In the case of overhead 

illumination, the errors in surface height and image brightness were 2.224 x 10-5 and 

1.157 x 10-14, respectively. We measure the image brightness error at the midpoint since 

this is the point where the image irradiance equation ( the invariant) is imposed. While 

there is only a very slight improvement in the computed surface height there is a very 

obvious improvement in the image brightness error which indicates that the method of 

projected invariants is indeed ensuring that the solution stays on the manifold defined 

by the image irradiance equation. Similar results are observed when the light source 

direction is (-0.5, -0.5, 1 ). In this case the error in surface height was 8.987 x 10-6 while 

the image brightness error was 1.742 x 10-13 , In both cases the tracks of characteristics 

in the image plane are not noticeably different from those depicted in Figures 2.2 and 2.3. 

For the ''Mexican hat" we again set the illumination direction at (-1,0,1). The 

computed surface height in this case was noticeably improved with an error of 9.871 x 10-5 

while the image brightness error was also very small a.t 1.719 x 10-12 . In this case there 
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Figure 2.13: Mexican hat, light source direction (-1,0,1). 

is a noticeable difference in tracks followed by the characteristics. These are shown 

in Figure 2.13. Notice that characteristics now appear not to cross as compared to 

Figure 2.8. 

2.5.2 Images with noise 

We now consider the effects of digitization error as in Section 2.3.2. For the paraboloid 

illuminated from overhead, the errors in the computed surface height and image bright­

ness were both increased. Convergence difficulties were experienced for some character­

sitics. Characteristics were terminated if the Newton iteration did not converge within 

a tolerance of 1 x 10-10 after 200 iterations. Portions of those characteristics for which 

convergence was obtained are shown in Figure 2.14. For these characteristics, the error 

in the computed surface height was 2.910 x 10-3 while the image brightness error was 

1.010 x 10-12
. It is clear that digitization error has still had a noticeable effect on the so­

lution. Characteristics still have a tendency to cross although the situation is not as bad 

as in Section 2.3.2 where some characteristics, rather than terminating at the singular 
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Figure 2.14: Paraboloid with digitization error, overhead illumination. 

point, wandered out of the domain causing large errors in the solution. 

For the "Mexican hat" illuminated from ( -:-1, 0, 1) we again observe an increase in 

the error in computed surface height and image brightness error ( as compared to the 

previous section where there was no noise in the image data) which were measured at 

5.214 x 10-3 and 1.982 x 10-12
. The result is shown in Figure 2.15. A slight difference 

in the tracks of some characteristics can be observed as compared to Figure 2.13 but 

on the whole the method of projected invariants appears to have reduced the effects of 

digitization error. 

2.6 Discussion 

Although the effects of digitization error have been reduced by the method of projected 

invariants, it is clear that there are still many problems. The test cases we have considered 

here are very simple and as will be seen shortly, can be handled very easily by variational 

techniques. The development of an automated system that will work on images with an 

arbitrary number of singular points would involve considerable effort which the results 
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Figure 2.15: Mexican hat with digitization error, light source direction (-1, 0, 1). 

of this chapter do not justify. We feel that our results demonstrate that the method 

of characteristic strips is not appropriate for the problem in hand, even for very simple 

images. 



Chapter 3 

Variational Techniques 

3.1 Methods 

We begin this chapter with a brief overview of the calculus of variations, introducing 

terminology that is required in order to understand later sections. We also give an 

introduction to multigrid methods which will be used as solvers for the discrete problem 

arising from the variational calculus. 

3.1.1 Variational Calculus 

The calculus of variations concerns itself with determining an extremum of a functional, 

J, of one or more dependent variables. Consider the problem of determining z( x, y) such 

that 

f = j j F(x, Y, z, Zx, zy)dA (3.1) 

is minimized on some domain n. Here a subscript denotes partial differentiation with 

respect to the indicated variable. A necessary condition for z to be an extremum of (3.1) 

is that the so called first variation f( x, y, i + f.T/) off about i be zero, that is 

(3.2) 

where 77 = 77(x, y) E HJ(O) is an essentially arbitrary, smooth function satisfying only 

the property that it is zero on an and c is arbitrarily small. It is shown in Courant & 

Hilbert [15] that this condition amounts to requiring that z be a solution of the partial 

39 
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differential equation: 

(3.3) 

under one of the following boundary conditions 

(a) z = z0 (x,y) on an where z0 (x,y) is specified. 

(b) F. dy - Fz dx = O on an wheres is arclength measured along an from some 
~:r ds Y ds 

fixed point. 

Here, Fz:r denotes the partial derivative of F with respect to oz/ 8x. Equation (3.3) is 

known as an Euler equation. Boundary conditions of type (a) are referred to as essential 

and those of type (b) are called natural. Boundary conditions which specify the solution 

on the boundary, as in type (a), are often referred to as Dirichlet while those which specify 

the normal derivative of the solution across the boundary are referred to as Neumann. 

The above ideas can be generalized to cases where the integrand in equation (3.1) 

involves a larger number of both dependent and independent variables. For more details 

see Courant & Hilbert [15]. 

The existence of natural boundary conditions for this type of problem is of importance 

in situations where known boundary data is not available. For the problem considered 

above, it could well be that no condition on z(x,y) is known on an in which case the 

natural boundary conditions supplied by the variational calculus can be employed. 

A simple illustration of these techniques can be found in the problem of determining 

the height of a surface z ( x, y), ( x, y) E n from known surface slopes p( x, y) and q( x, y). 

We may consider an acceptable solution to this problem as being that function z(x,y) 

which minimizes the functional 

f(:r,y,::) = j j [(:::x - p) 2 + (zy - q)2)dxdy. (3.4) 
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A necessary (and in this case, sufficient) condition that z(x, y) be a global minimum of 

f ( x, y, z) is that it satisfies the partial differential equation 

2 'V ::: = Px + Qy ( 3 . .5) 

under either of the following boundary conditions 

(a) essential : z is specified on an 

(b) natural: oz/an= n · (p,q) where n is the outward unit normal to an. 

Notice that (3.5) with (a) has a unique solution whereas with (b) z is determined only up 

to an additive constant. This observation is important from the computational viewpoint 

since this degree of freedom in the solution must be handled by the chosen numerical 

method. Such considerations turn out to be important in many shape from shading 

schemes. 

3.1.2 Multigrid Methods 

The multigrid method has proved to be a fast, efficient solver for elliptic partial differential 

equations. An excellent introduction may be found in Briggs [6] while more in-depth 

discussions may be found in Brandt [4] and Hackbusch [18]. Here we give a brief overview 

introducing terminology that is necessary for understanding later implementations of 

multigrid methods to the problem in hand. 

Consider the solution of 

Nu= o on n (3.6) 

where N is a non-linear, elliptic differential operator, and 

u = 0 on an. (3.7) 
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Define a grid nh on which a discrete approximation to u is to be computed. Then, uh, 

the exact solution of the discrete problem, satisfies: 

(3.8) 

and 

(3.9) 

where JVh is a discretization of the differential operator N. The discrete problem (3.8) 

may be regarded as a large, sparse system. The solution of such a system by direct meth­

ods tends to be very inefficient due to fill-in during the decomposition stage. Iterative 

methods such as Gauss-Seidel tend to be more efficient in terms of storage requirements 

but suffer from poor asymptotic convergence and therefore tend to be very slow. The 

multigrid method, however, is a fast, efficient solver for such a system. 

The multigrid method may be viewed as a defect-correction method. Given an ap­

proximation Uh to uh, we define a defect, dh, by: 

(3.10) 

and a correction, vh, satisfying: 

(3.11) 

or 

(3.12) 

(3.13) 

Having computed dh and solved e:rnctly for 'Wh, our corrected solution becomes: 

(3.14) 
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However, the solution of (3.12) is computationally no easier than the solution of the 

original problem. At this point we propose to construct a hierarchy of successively 

coarser grids on which the defect on the previous finer grid may be represented. Here, 

for simplicity, we confine ourselves to only two grids, a fine grid nh and a coarse one nH 

where, for example, H = 2h and nH C nh, ·with a coarser grid defined, we propose to 

solve (3.12) on this coarser grid rather than on the fine one as this will be computationally 

cheaper. However, the coarse grid cannot compensate for the high frequency components 

of the error in the solution which can only be seen on the fine grid. Hence, the coarse 

grid correction is complemented by relaxation iterations on the fine grid which serve to 

smooth high frequency components of the error. Simple iterative methods such as Gauss­

Seidel while having poor asymptotic convergence rates are very efficient smoothers and 

may be used in the relaxation component in the algorithm. 

The basic two-level method consists of the following four components: 

1. Relaxation : generally consists of v sweeps of a simple iterative method which 

serves to update the solution and smooth out high frequency components of the 

error in the solution. It is generally applied before and after the coarse grid correc­

tion. 

2. Restriction : computes the defect on the fine grid and transfers it to the coarse 

grid using an appropriate restriction operator, If!. 

3. Solve : an exact solver for the problem on the coarse grid. 

4. Prolongation : transfers the correction, VH, from the coarse grid to the fine grid 

using an appropriate interpolation operator, I'J,. 

Multigrid algorithms consisting of more than two grids are based on a recursive ap­

plication of the above two-level method. see Brandt [-l] and Hackbusch [18]. 
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In some classical multigrid methods, the iteration commences on the finest grid. If 

the two-grid method described above is called once recursively on each coarser level, the 

multigrid cycle is referred to as a V(v1 , v2 ) cycle. Here, v1 and v2 are the number of 

relaxation iterations used before and after each coarse grid correction, respectively. If 

the two-grid method is called twice recursively from each coarser level, the multigrid 

cycle is referred to as a W ( v1 , v2 ) cycle. 

One further variant, known as full multigrid or FMG, starts the iteration on the 

coarsest grid. Having solved the problem exactly on this grid, the solution is interpolated 

to the next finer grid using a high-order interpolation ( typically bi-cubic if the number of 

grid points is sufficiently high). On each successively finer level, a number of multigrid 

V or W cycles is performed before once again interpolating to the next finer level and so 

on. 

3.2 Application to Horn's Height and Gradient from Shading Scheme 

Recall that in [22], we seek to determine functions z, p and q such that the functional 

is minimized. The corresponding Euler equations are 

>.V2p + µ(zx - p) + (E - R)Rp 0 

,\ v2 q + P ( zy - q) + ( E - R) Rq - o 
'12 z - Px - qy = 0 

with natural boundary conditions given by: 

oz - = 11. (p,q) fl,.,, 
\.,Ill, 

(3.16) 

(3.17) 

(3,18) 
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Notice that the non-elliptic integrability terms are of a lower order than the elliptic 

smoothing terms allowing us to take>. small without losing ellipticity. However. for A = 0 

this system is non-elliptic. 

Horn discretized these equations on staggered grids, the grid for z being offset from 

the one for p and q by a half cell. His discretization is such that given a red-black checker­

board colouring of the grid for z, the computation on the red grid is entirely independent 

of that on the black grid, assuming natural boundary conditions as specified in [22]. 

There are therefore two degrees of freedom in the discrete system whereas the underlying 

continuous system has only one. The solution of Horn's scheme therefore requires that z 

is known at one point on each of the red and black grids. 

The approach we have chosen is to discretize the functional ( 3 .15) directly rather 

than the Euler equations (3.16). Our approach is a finite volume method which in fact 

leads quite naturally to a standard second order discretization of the Euler equations on 

non-staggered grids. Let nh be a discrete approximation of the domain and partition this 

domain using square cells D;1, ( 1 ::; i, j :s; N) each having side h and vertices as shown 

in Figure 3.1. 

The functional 

is approximated by 

2~2 [(Pi,j-1 - Pi-1,J-il
2 + (Pi,j - Pi-1,J

2 + (Pi-1,j - Pi-1,j-1 )2 + (Pi,j - Pi,j-d
2 

+ (qi,j-1 - q;-1,j-d
2 + (qi,j - q;-1,j)

2 + (q;-1,j - qi-1,1-d 2 + (qi,j - qi,j-1)2] 

+ !!_[(h-1("'· · 1 - .,.. 1 · 1) - (p· · 1 + p· 1 · )/')) 2 + (h- 1
("'· · - ~- ·) 2 ~1,J- ~1- ,J- t,J- 1- ,J-1 - "t,J -<-1-l,J 

(p . . + p· 1 ·)/'J)2 + (h-1( ~· . _ ~· . ) _ (q· . + q· _ )/•J)2 l,J 1- ,) - ~-i-1,J ~1-l,J-l 1-l,J 1-l,J-l -

+ (h- 1
( ~- · - ~. · ) - (o· · + l/· · )/'J) 2

] . ~t,J '"1,J-1 11,J 1,J-1 -
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(i - l,j) ( i, j) 

(i-l,j-1) (i,j-1) 

Figure 3.1: Discrete cell. 

+ }[(Ei-1,j-l -R(Pi-1,j-1,qi-l,j-1))2 + (Ei,j-1 - R(Pi,j-1,qi,j-i)) 2 

+ (Ei-1.j - R(Pi-1,j, qi-1,j))2 + (Ei,1 - R(Pi,j, qi,1))2] =: ~ 1 

We then consider minimizing 

F := LFi1 
i,j 

46 

(3.20) 

(3.21) 

A necessary condition for a local minimum of ( 3.21) is that the partial derivative of F 

with respect to each of the unknowns Zi,j, Pi,j, Qi,j (0 ::S i,j ::SN) be zero. 

As mentioned earlier, this leads in a natural way to a second order discretization of 

(3.16) on non-staggered grids. In cases where Dirichlet boundary data is available, such 

information can be incorporated into the above scheme by fixing the unknowns on the 

boundary. When boundary data is not available in any form ( as is often the case for the 

problem under consideration), the above process provides natural boundary conditions 

which are equivalent to (3.17) and (3.18). 

At this point, we note that the resulting discrete system is not h-elliptic, see Brandt & 

Dinar [5], in the limit as >. ---+ 0: Ii-ellipticity is a measure of the ellipticity of the discrete 

system. However. as we will see later. it is possible to obtain convergence for very small 
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values of ). although a noticeable slow-down in the convergence rate of the iteration is 

observed as ). is decreased. Horn's scheme on staggered grids also loses h-ellipticity as 

,\ --+ 0 but he also reports a succesful implementation of a pointwise relaxation scheme 

even for ). = 0, see [22]. 

Also worthy of note is that a very minor modification to our discrete scheme. namely, 

replacing 

( 
Zi+l.J - Zi-1,j - P i+ l, j + 2Pi,j + Pi-1,.J) 

2h 4 
(3.22) 

by 

c ::i+1 .j ~i Zi- l, j - Pi.j) (3.23) 

(and similarly for the discrete estimate of (zy - q)) results in a scheme which is h-elliptic 

in the limit as ). --+ 0. However, experiment has shown that in spite of this, the modified 

scheme does not perform any better. It therefore appears that the measure of discrete 

ellipticity is not particularly relevant to these schemes. 

Horn employed a continuation algorithm in ). as part of his iterative scheme. The 

initial value of ). was taken to be 1.0 and this was slowly reduced, even to zero in 

some cases. Here we employ an FMG continuation algorithm in ). as demonstrated in 

Figure 3.2. On the coarsest level we take a value of). which is large enough to ensure a 

good smoothing rate. A hierarchy of finer, square grids is set up with the usual coarse to 

fine grid ratio of 2. As we proceed to each new finer grid, ). is reduced by a factor of 4 so 

that ~ = >./ h} is constant where h 1 is the step-size on the currently finest grid . For each 

level we employ one FAS W(2,2) cycle with >. fixed (see [18], [4]). The nonlinear term 

(E - R(p,q)) 2 is handled by replacing R(p,q) with its Taylor expansion to first order 

about the previous iterate (pointwise). This is equivalent to performing one pointwise 

Gauss-Newton iteration. The usual full-weighting is used for the restriction operator 

with its adjoint for the prolongation operator. Bi-cubic interpolation is used to transfer 
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Figure 3.2: FMG continuation algorithm. 

the solution to a new finest level in the FMG algorithm. Once the finest level is reached, 

5 W(2,2) cycles are performed to end the process. 

Notice that within each lV(2, 2) cycle we keep ,\ fixed. Thus, for values of ,\ ~ 1 

for which the discrete scheme is safely elliptic, we expect to achieve good convergence. 

However, such values of ,\ cause unwanted smoothing of the solution. It is therefore 

necessary to consider much smaller values of >i, especially for a noise-free image which 

is illuminated everywhere (so that information is available at all points in the image). 

The FMG continuation algorithm in ,\ then turns out to be essential in order to obtain 

convergence on the finest level in a reasonable number of iterations (and in some cases, 

to obtain convergence at all). 

The parameter µ is not varied at all during the iteration. This is in contrast to Horn 

who reduces µ as the algorithm proceeds ( although µ cannot sensibly be taken to zero). 

For a small value of,\ we must be sure not to takeµ too large (in which case we come close 

to imposing integrability) nor too small (since the discrete operator becomes singular in 

the limit as >i, µ .- 0). Recall that schemes which have attempted to impose integrability 

exactly have been shown not to work well [24]. 
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3.3 Results: Single image as input 

vVe now present results of tests applied to various synthetic images. Throughout the 

Chapter we report errors in the computed surface height and gradient when the exact 

solutions are known. These errors are root mean square errors and are computed at each 

grid point in the computational domain unless otherwise noted. We also report residual 

errors. This is a measure of how well the discrete equations have been solved. Consider 

the equation 

(3.24) 

where }\Jh is a discrete differential operator, uh denotes the discrete solution and Jh is a 

known function at each grid point. We define the root mean square residual error to be 

1/2 

r= 
j=l i=l 

n2 
(3.25) 

In the case of systems of equations, we compute the r.m.s. error for each equation and 

then report the maximum of these errors. 

We consistently use a Lambertian reflectance map so that 

(3.26) 

3.3.1 Effect of regularization parameters on performance of algorithm 

In this section we attempt to determine the effects of the regularization parameters, ,\ 

and µ, on both the computed solution and the algorithm's convergence rate. 

For this purpose it is important to choose a fairly simple image as the test case so that 

defects in performance or in the computed solution can be blamed only on the algorithm 
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Figure 3.3: Exact Solution: "Mexican Hat". 

and not on the model or the complexity of the surface we are attempting to recover. To 

this end we use the surface 

cos(21rr) 
21r 

r = Jx2 + y2 (3.27) 

on the domain [-0.5, 0.5] 2 as in Chapter 2. We illuminate this surface using a single light 

source from the direction (0, -1, 1) so that the resulting image has only one singular 

point (at (0, -0.25)) and is illuminated everywhere except at the single point (0, 0.25). 

The exact surface, resembling a Mexican hat, is shown in Figure 3.3 and the input image 

is shown in Figure 3.4. 

The co-ordinate systems used to display results are consistent throughout the chapter 

and are demonstrated in Figure 3.5. It should be noted that these co-ordinate systems 

differ from those used in the computation. 

We begin by examining the effect of the integrability parameter µ. Since >. multiplies 
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Figure 3.4: Input Image. 

::: 
y 

X 

(a) (b) 

Figure 3.5: Co-ordinate systems : (a) Surfaces, (b) Images. 
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the elliptic terms and µ the non-elliptic terms in the system, we expect that the conver­

gence rate will depend on the ratio>../µ. Note, however, that this is true only to the point 

where the non-linear terms do not interfere with the convergence rate. For a fixed value 

of,\ we therefore expect the convergence rate to increase as µ decreases. However, as we 

decrease µ we also express less preference for integrability and so some deterioration in 

the solution may be expected. Our tests have been conducted on a 129 x 129 image with 

different boundary conditions for the variables p, q and z. We keep ,\ fixed at 0.4. Recall 

that ,\ = >.. / h} where h 1 is the step-size on the currently finest grid. The results are 

shown in Table 3.1. The column labelled "B.C.'s" gives the boundary conditions used 

for the gradient (p, q) and the height z, respectively (Dir = Dirichlet, Nat = Natural). 

The column labelled p is the average convergence rate observed on the finest level. The 

convergence rate at each iteration is the factor by which the residual error is reduced. 

The column labelled "Residual" is the final residual error after 5 W(2,2) cycles on the 

finest grid ( we report only the largest of the three residuals for the system). The columns 

labelled "IB Error", ''(p. q) Error" and '"z Error" are the image brightness error and errors 

in computed gradient and surface height. respectively. 

As can be seen, when Dirichlet boundary conditions are used for the gradient, our 

results bear out the theory. For large values ofµ the convergence rate is poorer, however, 

the computed solution is more accurate. As µ is decreased, the convergence rate improves 

but at the expense of accuracy in the computed solution. However, when natural bound­

ary conditions are used for the gradient, the performance of the algorithm is seriously 

affected. In many cases. convergence is not observed after 5W(2,2) multigrid cycles on 

the finest level. 

vVe next examine the effect of the regularization parameter, >.., that controls smooth­

ing. We now expect that as this parameter is reduced, the convergence rate will slow 

down with an increase in the accuracy of the computed solution. In light of the results 
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B.C.'s µ p Residual IB Error (p, q) Error :: Error 
Dir, Dir 1.0 2.49 7.850 X 10-4 2.791 X 10-3 9.355 X 10-3 2.116 X 10-3 

0.1 13.42 ,5.401 X 10-i 2.677 X 10-3 2.601 X 10-2 5.726 X 10-3 

0.01 32.00 3.135 X 10-s 2.963 X 10-3 1.236 X 10-1 2.730 X 10-2 

Dir, Nat 1.0 1.67 2.735 X 10-3 4.163 X 10-3 4.858 X 10-2 2.384 X 10-2 

0.1 5.85 2.224 X 10-5 4.119 X 10-3 1.110 X 10-1 5.491 X 10-2 

0.01 9.96 2.027 X 10-6 3.686 X 10-3 2.308 X 10-l 1.161 X 10-1 

Nat, Dir 1.0 2.51 9.901 X 10-4 4.136 X 10-3 2.164 X 10-:.i 2.671 X 10-3 

0.1 9.27 3.064 X 10-6 3.394 X 10-3 4.324 X 10-2 ,5.985 X 10-3 

0.01 - - - - -
Nat, Nat 1.0 1.53 4.912 X 10-3 6.880 X 10-3 1.595 X 10-l 6.178 X 10-2 

0.1 - - - - -
0.01 - - - - -

Table 3.1: Effect of µ on performance of algorithm. 

shown in Table 3.1 we choose to keep µ fixed at 0.1 so as to achieve a balance between 

accuracy and good convergence. 

The results may be found in Table 3.2. When Dirichlet boundary conditions are used 

for both the gradient and height, our results are as expected. The same can be said 

for the second set of results for which we have Dirichlet conditions on the gradient and 

natural boundary conditions for the height. A noticeable improvement in the accuracy 

of the computed solution is observed as >. is decreased but this is at the expense of a slow 

down in the convergence rate. 

Rather spurious results are again observed when natural boundary conditions are 

used for the gradient. In the first set of results ( where we have Dirichlet conditions for 

the surface height) we do not achieve convergence when >. = 4.0. This is contrary to 

the behaviour predicted by the theory which suggests that the convergence rate should 

improve with increasing values of>.. When >. is reduced to 0.4 and 0.04 we in fact observe 

the expected convergence behaviour. 
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B.C.'s ,\ p Residual IB Error (p, q) Error z Error 
Dir. Dir 4.0 33.23 3.117 X 10-8 1.900 X 10-2 1.513 X 10-1 3.632 X 10-2 

0.4 13.42 5.401 X 10-i 2.677 X 10-3 2.601 X 10-2 5.726 X 10-3 

0.04 3.04 2.562 X 10-4 2.919 X 10-4 3.303 X 10-3 6.615 X 10-4 

Dir. Nat 4.0 9.94 1.551 X 10-ti 1.86,5 X 10-2 2.610 X 10-1 1.370 X 10- 1 

0.4 5.85 2.224 X 10-5 4.119 X 10-3 1.110 X 10-1 5.491 X 10-2 

0.04 1.83 2.929 X 10-3 6.338 X 10-4 2.960 X 10-2 1.412 X 10-2 

Nat , Dir 4.0 - - - - -
0.4 9.27 3.064 X 10-6 3.394 X 10-3 4.324 X 10-2 5.985 X 10-3 

0.04 2.66 5.166 X 10-4 ,5.030 X 10-4 1:042 X 10-2 1.052 X 10-3 

Nat, Nat 4.0 - - - - -
0.4 - - - - -

0.04 1.68 7.248 X 10-3 1.202 X 10-3 1.155 X 10-1 2.738 X 10-2 

Table 3.2: Effect of~ on performance of algorithm. 

In the last set of results where natural boundary conditions are employed for all 

unknowns, we again fail to observe convergence for larger values of~- A plausible expla­

nation is that the curious results observed when natural boundary conditions are used for 

the gradient result from the fact that when ~/ µ is large, the natural boundary conditions 

(3.28) 

conflict with the image irradiance equation E ( x, y) = R(p, q) causing poor convergence. 

We present the computed surface for the most accurate test (i .e. Dirichlet conditions 

on gradient and height. ~ = 0.04 andµ= 0.1) in Figure 3.6. It is also of interest to use 

the computed gradient to produce an image. We illuminate the surface from both the 

original light source direction and from a direction orthogonal (in gradient space) to the 

original light source direction. These images can be found in Figure 3. 7. As can be seen 

the solution is in excellent agreement with the original surface. There is also excellent 

agreement between Figure 3.7a and the original input image (Figure 3.4) demonstrating 
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Figure 3.6: Computed Surface: Mexican Hat, ,\ = 0.01, µ = 0.1. 

that the image irradiance equation has been solved well. The importance of examin­

ing the computed surface illuminated from an independent light source direction, as in 

Figure 3. 76, will be seen later. 

3.3.2 Synthetic Hemisphere 

We next test our algorithm on an image of a synthetic hemisphere lying on a flat plane. 

This test is significant in that the entire range of possible gradients (i.e. ( -oo, oo )2 ) is 

covered on a hemisphere, providing a challenge to the algorithm. Also of note is the 

presence of a discontinuity in surface orientation at the boundary of the hemisphere. We 

assume that the flat side of the hemisphere is in contact with the plane which forms the 

background so that there is no discontinuity in surface height. One further difficulty is 

that we will illuminate the sphere obliquely so that there is a region in the image which 

is not illuminated and thus contains limited information as to surface orientation in that 

region. In fact. in such a region we can only deduce that the gradient (p, q) satisfies the 
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(a) (b) 

Figure 3.7: Images of computed surface: using original light source direction (left), using 
orthogonal light source direction (right). 

relation 

1 + PoP + QoQ < 0 (3.29) 

where (p0 , q0 ) specifies the light source direction. Hence, this test contains several diffi­

culties not encountered in tests conducted previously. 

The hemisphere is of radius 1/3 centred in the region (-0.5,0.5]2
• The resulting 

image is of size 129xl29 and is formed by illuminating the hemisphere from the direction 

(0, 1, 1 ). The exact solution and input image are given in Figures 3.8 and 3.9 respectively. 

In light of the results of the previous sections, we take µ = 0.l and ~ = 0.4 in the 

hope of obtaining a good convergence rate while still obtaining reasonable accuracy. The 

observed convergence rate was 10.5 resulting in a final residual error of 1.414 x 10-5 • The 

error in surface height was 8.505 x 10- 2
• Given that the maximum height in the exact 

surface is 0.33, this represents an error of approximately 25%. The computed surface is 

found in Figure 3.10. Images have been produced using the computed gradient illumi­

nated from both the same direction as the input image and from a direction orthogonal 

to the input image. These images are found in Figure 3.11. 

It is clear from Figure :3.ll(a) that the image irradiance equation has been solved 
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Figure 3.8: Exact solution: Hemisphere. 

Figure 3.9: Input image. 
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Figure 3.10: Computed surface: Hemisphere from single image. 

(a) (b) 

Figure 3.11: Images of computed surface: using original light source direction (left), using 
orthogonai light source direction (right). 
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reasonably well, there being little difference between the reconstructed image and the 

input image (except for some smoothing at the boundary of the hemisphere). However, 

Figure 3.11 (b) and Figure 3.10 show that the computed surface in fact contains serious 

flaws. The fact that the image irradiance equation can be solved so satisfactorily while 

serious errors in the computed surface are evident is indicative of the ill-posed nature 

of the problem. Recall also the limited success of projection onto the image irradiance 

equation reported in the previous chapter. However, we must not forget the problems 

inherent in this particular test, i.e. the presence of a discontinuity in surface orientation 

and regions in the image where there is little information due to non-illumination. 

3.3.3 Synthetic Vase 

We now consider a more interesting image which contains all the problems of the previous 

test but has the added difficulty that the curve in the image representing the boundary 

of the object is a little more irregular. We have created a synthetic vase by taking a 6th 

order polynomial and rotating it to produce a surface of revolution. The exact surface 

and a l 29xl 29 image of that surface illuminated from the direction ( 0, 1, 1) are found in 

Figures 3.12 and 3.13, respectively. 

We test our algorithm with parameters J = 0.4, µ = 0.1. The observed convergence 

rate of 7.05 was not quite as good as for the synthetic hemisphere but sufficient to 

reduce the final residual to 7.137 x 10-5
• The error in the computed surface height was 

7.106 x 10-2 which when compared to the maximum height of 0.2855 yields an error of 

approximately 25%, equivalent to that observed for the synthetic hemisphere. Again, our 

expectations for good results cannot be too high due to the presence of a discontinuity ( of 

fairly irregular shape) and regions where the surface is not illuminated. The computed 

surface is shown in Figure 3.1--! and reconstructed images using the computed gradient 

illuminated ·from the same direction as the input image and a direction orthogonal to it 
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Figure 3.12: Exact solution: Vase. 

Figure 3.13: Input image. 
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Figure 3.14: Computed surface: Vase from single image. 

are found in Figure 3.15. Similar comments to those presented in the previous section 

are in order; the image irradiance equation has been solved quite well as evidenced by 

Figure 3.15a, however, there are fairly serious errors in the computed surface. 

3.4 Comparison with Horn's scheme 

We now compare our algorithm against that proposed by Horn [22]. Since Horn suggests 

that several thousand iterations must be performed even for a 65 x 65 image, we now 

restrict ourselves to this smaller sized image for expediency. In keeping with our earlier 

tests we holdµ fixed at 0.1. even though in the one example presented by Horn [22], µ is 

reduced somewhat from its initial value. Since tests that we conducted earlier indicate 

that reducing µ leads to less accurate results, we suggest that holding µ fixed at 0.1 

will not adversely affect Horn's algorithm. Recall that Horn uses Dirichlet boundary 

conditions on (p, q) and natural conditions on z in most of his tests. We do the same 

here for both Horn ·s scheme and our multigrid scheme. 
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(a) (b) 

Figure 3.15: Images of computed surface: using original light source direction (left), using 
orthogonal light source direction (right). 

We begin with the ,:Mexican hat" surface z = cos(21rr ), r = Jx 2 + y 2 (Figure 3.3) as 

considered earlier. For Horn's scheme we started with ,\ = 1 and this was slowly reduced 

to 1 x 10-5
. The total number of iterations performed was 13,312. We followed a routine 

for reducing ,\ that closely followed the one presented by Horn. The final residual was 

1.301 x 10-3 while the error in the computed surface height was 3.276 x 10-2 . 

We then performed the test on our multigrid scheme. 'vVe took ,\ = 0.01 on the 

coarsest grid so that on the finest level we had ,\ '.:::'. 1 x 10-5 as for the test on Horn's 

scheme. After 5 W(2,2) cycles on the finest grid, the residual error was 2.277 x 10-3 

and the error in the computed surface height was 3.014 x 10-2 • These figures are quite 

comparable to those produced by Horn's algorithm. 

The major difference between these two computations is the time taken to perform 

them. The 13,312 iterations taken by Horn's scheme took in excess of 4.5 hours on a 

33MHz 80486DX machine. However, the 5 W(2,2) cycles performed by our multigrid 

scheme took approximately 5 minutes! On a finer grid our algorithm is expected to yield 

even larger savings as compared to [22] ( cf. [18]). 
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Figure 3.16: Computed Surface: Vase, Horn's scheme. 

We also compared the performance of the two algorithms on an image of the syn­

thetic vase with similar results. The same values of .\ and µ were used as for the test 

considered above. Again after 13,312 iterations, the residual error for Horn's scheme was 

4.907 x 10-5 and the error in surface height was 1.458 x 10-1
. It was necessary to perform 

10 W(2,2) cycles on the finest grid of our multigrid algorithm ( which took approximately 

8 minutes to compute) in order to reduce the residual error to 1.035 x 10-4 for which 

the error in surface height was 1.457 x 10-1
. The computed surfaces are shown in Fig­

ures 3.16 and 3.17. The results are again quite comparable, the only major difference 

being computation time. 

Close examination of Figures 3.16 and 3.1 i shows that the surface computed by Horn's 

scheme is not as smooth as that computed by our multigrid scheme. Shape from shading 

schemes are typically subject to a certain degree of shearing in the solution orthogonal 

to the light source direction. As the computation on Horn's red and black grids are 

independent, as discussed earlier, we believe that this shearing will occur to differing 
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Figure 3.17: Computed Surface: Vase, Multigrid scheme. 

degrees on the red and black grids causing the roughness that appears in Figure 3.16. 

Also worthy of note at this point is the choice of boundary conditions. Since Horn uses 

staggered grids, the imposition of Dirichlet boundary conditions on all variables requires 

that the gradient be known along the boundary of the image but that the surface height 

be known along a curve offset from the boundary of the image by half a pixel. Such 

information would not likely be readily available. However, since our multigrid algorithm 

uses non-staggered grids, knowledge of the gradient along the boundary of the image leads 

to knowledge of the surface height along that curve since we can simply integrate the 

tangential component of the gradient along the boundary in order to retrieve the height. 

This is import~nt since we have shown earlier that more accurate results are obtained 

when Dirichlet conditions are used for all variables. It can therefore be argued that given 

the same information (i.e. the gradient a.long the boundary of the image) our algorithm 

can potentially retrieve the solution more accurately. 
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3.5 Multiple Images 

In light of the difficulties experienced in obtaining a good solution from a single im­

age, especially in the presence of discontinuities, and when using natural ( or Neumann) 

boundary conditions, we now consider the case when two (or more) images are available. 

It is assumed that these images are taken from the same viewpoint so that only the light 

source direction is changed. We modify Horn's variational formulation accordingly so as 

to avail ourselves of this additional information. We therefore consider minimizing 

I 

j j {,\.(p; + p~ + q; + q;) + µ[(p - zx)2 + (q - zy)2] + "'I:,(Ei - R(p, q)) 2
} dD, (3.30) 

i=l 

where l is the number of images available. Note that it is not necessary to consider 

more than three images since it has been shown (Woodham, [55]) that for a Lambertian 

reflectance map, this number is sufficient to determine the solution uniquely provided 

the three illumination directions are not colinear and that there are no non-muminated 

regions in any of the three images. In fact Onn & Bruckstein [40] have shown that, except 

for certain degenerate cases, integrability disambiguates the solution arising from only 

two images. 

We begin by repeating some of the tests found in Tables 3.1 and 3.2. We repeat 

only those tests for which difficulties were experienced, that is, those for which natural 

boundary conditions are used for the gradient. We now take two images of size 129 x 129 

as input for the algorithm illuminated from the directions (1, 0, 1) and (0, 1, 1). The 

results are found in Tables 3.3 and 3.4. 

As can easily be seen, the convergence rate in these cases is greatly improved over 

the cases where only one image is given as input. This is likely due to the fact that the 

non-linear terms, which drive the iteration when ). is small, converge more quickly given 

the added ipformation contained in the second image. However, for large values of >., or 



Chapter .3. Variational Techniques 66 

B.C.'s fl p Residual IB Error (p, q) Error z Error 
Nat. Dir 1.0 4.259 1.447 X 10-4 1.575 X 10-3 4.313 X 10-3 8.282 X 10-4 

0.1 1.5.40 4.383 X 10-i 1.737 X 10-3 1.055 X 10-2 1.837 X 10-3 

0.01 1.16 1.290 X 10-2 2.763 X 10-3 4.062 X 10-2 6.046 X 10-3 

Nat. Nat 1.0 3.76 9.256 X 10-5 2.371 X 10-3 1.973 X 10-2 4.499 X 10-3 

0.1 7.98 4.986 X 10-6 2.569 X 10-3 2.645 X 10-2 8.486 X 10-3 

0.01 7.88 5.516 X 10-6 :3.246 X 10-3 6.191 X 10-2 2.191 X 10-2 

Table 3.3: As for Table 3.1 but with two images input 

B.C.'s ,\ p Residual IB Error (p., q) Error z Error 
Nat, Dir 4.0 14.62 6.096 X 10-7 1.470 X 10-2 7.199 X 10-2 8.62 X 10-;i 

0.4 15.40 4.383 X 10-7 1.737 X 10-3 1.055 X 10-2 1.837 X 10-3 

0.04 6.93 8.406 X 10-6 1.644 X 10-_4 1.133 X 10-3 2.202 X 10-4 

Nat. Nat 4.0 9.28 2.682 X 10-6 1.703 X 10-2 1.023 X 10-1 4.537 X 10-2 

0.4 7.98 4.986 X 10-6 2.569 X 10-3 2.645 X 10-2 8.486 X 10-3 

0.04 5.49 8.052 X 10-6 3.326 X 10-4 1.343 X 10-2 1.151 X 10-3 

Table 3.4: As for Table 3.2 but with two images input 
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Figure 3.18: Computed Surface: Hemisphere from two images. 

small values of µ, convergence is poor. Again this is likely due to the conflict between 

the natural boundary conditions and the image irradiance equation. 

3.5.1 Synthetic Hemisphere and Vase 

We now reproduce the results of Sections 3.3.2 and 3.3.3 that were carried out on the 

synthetic hemisphere and synthetic vase except that we allow two images as input. We 

illuminate the hemisphere from the directions (0, 1, 1) and (1, 0, 1), all other parameters 

are as in Section 3.3.2. The computed surface is found in Figure 3.18 while images 

generated from the computed gradient are found in Figure 3.19. Since we now have 

two images as input. we use an overhead light source as the independent light source 

direction. 

The convergence rate was found to be good at 12.51, however, there was not a signif­

icant improvement in the error in surface height which was 7.980 x 10-2• As can be seen 

from the computed surface and reconstructed images, the ridges which were present in 
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(a) (b) (c) 

Figure 3.19: Images of computed surface: using original light source directions (left & 
centre), using overhead light source direction (right). 

earlier results when only one image was used as input are no longer present. This leads 

to a result which is visually more pleasing. 

Similar results were found for the synthetic vase. The light source directions used for 

the input images were (0.5, 1, 1) and (-0.5, 1, 1). The convergence rate was 12.81 and 

the error in the computed surface height was 6.250 x 10-2 • The computed surface and 

reconstructed images are found in Figures 3.20 and 3.21, respectively. 

3.6 Discontinuities 

It is clear from the previous section that even with information from two images, any 

discontinuities present in the surface are severely smoothed in the computed solution. 

However, given the presence of the smoothing terms for non-zero,\ and indeed the manner 

in which z is computed from p and q (i.e. through the equation v'2z = Px + qy) we must 

expect a degree of smoothing across discontinuities. We therefore consider supplying 

information about the location of the latter. We assume knowledge of such information 

from preprocessing of the images by an edge detection scheme, see Marr [36] and Torre 

& Poggio [.52]. In cases considered here where we have an object against a background, 
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Figure 3.20: Computed Surface: Vase from two images. 

(a) (b) (c) 

Figure 3.21: Images of computed surface: using original light source directions (left & 
centre), using overhead light source direction (right). 
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Figure 3.22: Sample silhouette file: Vase. 

knowledge of discontinuities is equivalent to knowledge of where the object is located 

( assuming that the object itself is smooth). This information is provided to the algorithm 

by way of a silhouette file, an example of which is shown in Figure 3.22. 

Vll'e can then detect the presence of a discontinuity between neighbouring grid points 

by noting a change in the silhouette file between those points. In this manner, a continuity 

map can be built providing information as to the presence of discontinuities between a 

given grid point and each of its 8 neighbours. Such information can be conveniently and 

inexpensively stored using only one byte per grid point: each of the 8 bits is assigned 

to a neighbouring grid point and is set to 1 or O to indicate the presence or absence of 

a discontinuity. For the modified FMG continuation algorithm described earlier, such a 

continuity map is built for each level. 

The discrete approximation to (3.19) is then modified in such a way that derivatives 

across discontinuites are inhibited. For· example, in the situation shown in Figure 3.23 

the discrete approximation to (3.19) becomes: 

2~2 [(Pi,j-1 - Pi-l,j-1)
2 + (Pi,j - Pi,j-1)

2 + (qi,j-l - qi-l,j-1)
2 + (qi,j - qi,j-1)2] 

ll [ -1 2 + 2 (h. (=i,j-1 - Zi-1,.i-d - (Pi,j-1 + Pi-1,J-d/2) 

+ (1i-1 ( ~· . - - . . t) - (q· . + q· . )/'')2] "'t,J "'t,J- l,J l,J-1 ~ 
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Discontinuity 
(i-1,j) , / (i,j) 

I 
I 
I 
I 

____ _ _J 

(i-1,j-1) (i , j - 1) 

Figure 3.23: Discrete cell with discontinuites . 

+ }[(Ei-1,j-1 - R(Pi-1,j-1,qi-1.1-1)) 2 + (Ei,j-1 - R(pi,j-1,qi,1-i))
2 

+ (Ei-1,1 - R(Pi-1,j,qi-1,J)2 + (Ei,i - R(Pi,i,qi,i))2] 

Notice that this is entirely consistent with the natural boundary conditions 

op= oq = 0 
on on 

and 
oz 
on = n. (p, q) 

which are assumed to hold across discontinuities. 
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(3.31) 

(3.32) 

(3.33) 

When no discontinuities are present we use the usual full weighting operator for 

restriction. However, in the presence of discontinuities the restriction operator follows a 

simple integration scheme over that part of the coarse grid cell lying on the same side of 

the discontinuity as the centre grid point. So, given the situation depicted in Figure 3.24, 
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I 

Discontinuity 
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... : ....... I. .... . 
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@1 
('i j)I 

... : .. .. . . . , .. . . . . 
l 

• - fine grid point 

@ - grid point common to coarse and fine grid 

Figure 3.24: Coarse grid cell with discontinuity. 

for example, the residual d~2,j/2 is assigned to be 

72 

(3.34) 

For the prolongation operator, we use the usual bi-linear interpolation provided there 

is no discontinuity present. In latter cases, nearest neighbour interpolation is used. For 

example, in the situation depicted in Figure 3.25(a) the corrections vt, vtj+l and vtj-l 

are assigned to be 

while for Figure 3.25(b) we have 

(3.35) 

(3.36) 

(3.37) 

(3.38) 
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Discontinuity Discontinuity 
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(b) 

@ - grid point common to coarse and fine grid 

Figure· 3.25: Fine grid cells with discontinuity. 

In this manner we have a prolongation operator that is the adjoint of the restriction 

operator. 

3.6.1 Synthetic Hemisphere and Vase 

We now test the performance of the algorithm when given information about the location 

of discontinuities as discussed in the previous section. We again concentrate on the 

synthetically generated hemisphere and vase. Natural boundary conditions are employed 

at the interface of the object with the background while Dirichlet conditions are used 

at the boundary of the image (i.e. z = p = q = 0). We apply two extra relaxation 

sweeps per Gauss-Seidel iteration across points which border the interface. Experiment 

has shown that this improves the convergence rate without significantly increasing the 

cost of the computation. The number of \V cycles performed on coarser grids is also 

increased so that the residual error is reduced below 0.1 before proceeding to a finer 
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level. Typically, no more than two W cycles are required. 

We first test the algorithm on the hemisphere using the same parameters as used in 

Section 3.5.1. The algorithm in this case did not converge even after 10 W(2,2) cycles. 

It was hypothesized that poor convergence was due to the fact that there is some part of 

the sphere which is not illuminated in either image giving rise to a region where there is 

essentially no information. This hypothesis was tested by changing the reflectance map 

so that instead of taking 

R(p, q) = max { 0 (3.39) 

we simply take 

R(p,q)~ l+pop+qoq 

J1 + P6 + q5Jl + P2 + q 2 
(3.40) 

so that negative brightness values are allowed in regions that are normally not illuminated. 

Hence, information is supplied over all parts of the surface. The availability of such 

information is of course physically unreasonable, but allowing ourselves this luxury will 

enable us to determine the extent to which a lack of information in non-illuminated 

regions is affecting the algorithm. With this modified reflectance map, the algorithm in 

fact converged. After only 5 W(2,2) cycles, the residual error was 1.175 x 10-4 and the 

error in the computed surface height was 3. 7 42 x 10-2• This result suggests that our 

hypothesis is correct. It should be noted that the error in surface height and the residual 

error are now measured only over the object and not over the background. Since the 

background is a simple flat plane, measuring errors over the background leads to figures 

which are overly optimistic. 

Another, slightly more reasonable way of testing the hypothesis, is to attempt to 

reduce the area of the region on the sphere which is not illuminated by either image. 

One way of reducing this region to zero is to choose one of the light source directions 
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Figure 3.26: Computed Surface : Hemisphere from two images and silhouette. 

to be overhead. However, it is well known that an overhead light source direction leads 

to difficulties with non-uniqueness as well as poor convergence. We therefore decided to 

choose the light source directions to be (0.5, 0.5, 1) and (-0.5, 0.5, 1 ). After 10 W(2,2) 

cycles, the residual error had been reduced to 3.768 x 10-6 while the error in the computed 

surface height was 5.191 x 10-2
• We performed 10 W(2,2) cycles since the residual error 

after only 5 cycles was not considered to be small enough. The computed surface height 

can be found in Figure 3.26 while reconstructed images are in Figure 3.27. 

A rather obvious error is noticeable in the solution at the interface of the object 

and background for positive values of y. This feature lies between the two light source 

directions. vVe now demonstrate how such an error appears in the solution. 

Figure 3.28 depicts level curves of the reflectance maps R1 (p, q) and R2 (p, q) corre­

sponding to the light source directions used to illuminate the hemisphere in the above 

experiment. Due to the non-linearity of these reflectance maps, they are not sufficient 

to determine a solution for the gradient uniquely, however, at each point on the surface, 



Chapter .3. Variational Techniques 76 

( a) (b) (c) 

Figure :3.27: Images of computed surface: using original light source directions (left & 
centre), using overhead light source direction (right). 

there are at most two possible solutions. 

Now consider points on the surface lying in the plane x = 0. For the exact solution, 

such points have p = 0. Now, looking at the positive q-axis in Figure 3.28 we see that 

the two possible solutions that can arise from using two reflectance maps are very close 

together. It is therefore reasonable to suggest that the algorithm is simply choosing the 

wrong solution in this region. In this case, the preference for the wrong solution can be 

explained by the fact that the wrong solution is smoother than the correct solution since 

the first derivatives of p and q become infinite at the boundary of the hemisphere. 

For the vase we also took the same parameters as in Section 3.5.1. Notice that for 

the given light source directions there is in fact no region on the surface of the vase 

which is not illuminated by either image. After 5W(2,2) cycles on the finest level the 

residual error was 1.283 x 10-2 which was not considered small enough to have confidence 

in the computed solution. The error in the solution at this point was 3.277 x 10-2 • It 

was therefore decided that due to the poor convergence rate (p = 2.90) 10W(2,2) cycles 

should be performed on the finest level. After this number of iterations the residual 

error was reduced to 8.64 7 x 10-;; while the error in the computed surface height had not 
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q 

Figure 3.28: !so-brightness contours in gradient space for Lambertian reflectance maps 
corresponding to light source directions (0.5, 0.5, 1) and (-0.5, 0.5, 1 ). 
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Figure 3.29: Computed surface: Vase from two images and silhouette. 

changed much at 3.272 x 10-2 indicating that perhaps we could have had more confidence 

in the result computed after only 5W(2,2) cycles. The computed surface can be found 

in Figure 3.29 and reconstructed images are given in Figure 3.30. 

At this point it must be noted that the computed error in the solution is not much 

better than that reported for earlier tests although the result appears to be substantially 

improved. This may be indicative of the importance of boundary information in the 

human visual recognition system. We should also recall that the error in surface height 

is computed only over the vase, if the background had also been included the error would 

be lower. 

3.6.2 Three images as input 

Finally, we consider the performance of the algorithm when three images are provided 

as input. Recall that Woodham [,55] has shown that with three images and a silhouette 

file as input. and a known reflectance map (as we are assuming here) the method of 
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Figure 3.30: Images of computed surface: using original light source directions (left & 
centre), using overhead light source direction (right). 

photometric stereo does an excellent job of retrieving the surface which gave rise to the 

images. Here, we test the performance of our algorithm given the same information. 

For the hemisphere, we choose our parameters to be the same as for Section 3.5.1 

except for the light source directions which are taken to be (0.5,0.5,1), (-0.5,0.5,1) 

and (0, -0.5, 1). Again we avoid the temptation of choosing an overhead light source 

direction as this leads to poor convergence. After 5 W(2,2) cycles, the residual error 

was 8.165 x 10-5 and the error in computed surface height was 6.558 x 10-3 which in 

comparison to the maximum surface height of 1/3 indicates an error of less than 2%. The 

computed surface is shown in Figure 3.31. The difference between the computed surface 

and the exact solution (shown in Figure 3.8) is barely noticeable. 

For the vase we also choose our parameters to be as for Section 3.5.1. The additional 

light source direction is taken to be (0, -0.5, 1). After 5 W(2,2) cycles the residual error 

was 3.37 4 x 10-5 while the error in the computed surface height was 4. 738 x 10-3 . In 

comparison to the maximum surface height of 0.2855, this represents an error of less than 

2%. The computed surface is shown in Figure 3.32. 
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Figure 3.31: Computed surface: Hemisphere from three images and silhouette. 

Figure 3.32: Computed surface: Vase from three images and silhouette. 
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Figure 3.33: Exact surface: St. Mary Lake, British Columbia. 

3.6.3 Synthetic Data from a Digital Terrain Model 

We now present the results of applying our algorithm to rather more complicated data. 

vVe take a 129 x 129 grid of depth data from a digital terrain model of St. Mary Lake, 

British Columbia. 1 The surface is shown in Figure 3.33. The depth data in the model is 

sampled at a rate of 120 metres. We produce synthetic images from this depth data by 

estimating surface slopes numerically and using these as input-to a Lambertian reflectance 

map. On the interior of the domain, we use second order central differencing to estimate 

the slopes but on the boundary we use only first order one sided differencing. Three 

images of the terrain illuminated from the light source directions (0.5, 1, 1), (-0.5, 1, 1) 

and (0, -0.5, 1) are shown in Figure 3.34. 

Given that we no longer have a single object in the field of view, we do not input 

a silhouette file. We use natural boundary conditions on all three variables and tie the 

1The author would like to express his gratitude to Dr. Bob Woodham, Dept. of Computer Science. 
U. B. C. for making this data available. 
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(a) (b) (c) 

Figure 3.34: Synthetic images of St. Mary Lake digital terrain model. 

height down at the midpoint of the domain to the exact value. When only one image is 

provided as input, the algorithm converged only for very large values of .,\ (3; = 4000). 

Given the complexity of the data and the fact that we have encountered difficulties 

previously when natural boundary conditions are used, the outcome is not particularly 

supnsmg. 

The result of inputing the first two images shown in Figure 3.34 is shown in Fig­

ure 3.35. As for earlier tests, we took µ = O.l and >. = 0.4. The algorithm demon­

strated good convergence. The final residual error was 1.313 x 10-5 with an error of 

2.230 x 10-1 km in the computed surface height. Given that the maximum height in the 

exact data is approximately 2.5km, the error is just below 10%. 

Given all three images as input, the algorithm computed the surface with a much 

smaller error of 6.980 x 10-2km which is approximately 3% of the maximum height. The 

computed surface is shown in Figure 3.36. Notice that the computed surface is somewhat 

smoother than the original. This is to be expected given that the regularization parameter 

.,\ is non-zero on the finest level of the computational grid. 

\Ve can be very satisfied with these results given the complexity of the data. 
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Figure 3.35: Computed surface: St. Mary Lake from two images. 

Figure 3.36: Computed surface: St. Mary Lake from three images. 
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3.6.4 Images with noise 

We now investigate how our algorithm behaves in the presence of noise in the image 

data. We test this only for the case when three images are input since this case has so 

far proved to be the most robust . 

We begin with the synthetic vase. We choose all parameters to be the same as those 

given in Section 3.6.2. We add digitization error to each of the three input images in the 

same way as was done in Chapter 2. The iteration converged after 5 W(2,2) cycles with 

residual error 2.436 x 10-5 and an error in surface height of 4.339 x 10-3 _ The error in 

surface height is in fact smaller than the case when there is no noise present in the image 

data. 

We conducted the same test on the St. Mary Lake data with similar results. After 5 

W(2,2) cycles the iteration converged with residual error of 1.535 x 10-5 and an error in 

computed surface height of 7 .002 x 10-2
. The error in the surface height is only marginally 

worse than in the case when there is no noise in the image data. Notice that in both 

tests, the presence of noise in the image data does not cause a significant deterioration 

in the multigrid convergence. 

The variational algorithm clearly does not demonstrate the ill effects of digitization 

error as observed for the method of characteristics. This is not all that surprising since 

the accumulation of errors that occurs as we integrate along characteristics does not 

occur during pointwise relaxation in the Gauss-Seidel iteration. 

We now investigate the effects of more severe pollution of the image data. In addition 

to the digitization error we now blank out a region in one of the images. For the vase 

we blank out a square region in the image created by illuminating the surface from the 

direction (0, -0.5. 1) as shown in Figure 3.37. 

Notice that the blanked out region in this image suggests to the algorithm that the 
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Figure 3.37: Polluted image: Vase 

surface slopes in this region should satisfy the condition 

1 + PoP + qoq < 0, (3.41) 

that is, R(p, q) = 0. This conflicts with the information supplied by the other two images 

in this region. Blanking out a region in one of the three images is not therefore equivalent 

to supplying information from only two images in that region. The blanked out region, 

rather than supplying no information to the algorithm, supplies incorrect information. 

The iteration converged after 5 W(2,2) cycles with residual error of 3.590 x 10-5 

and an error in computed surface height of 4.235 x 10-2
• The error is now an order 

of magnitude larger than in the case of no noise. The computed surface is shown in 

Figure 3.38. 

Other tests, where the blanked out region crossed the edge of the vase or covered a 

particularly bright region of the image, resulted in non-convergence of the iteration. This 

is not particularly surprising since in the former case, the natural boundary conditions 

would be severely effected by inconsistent information from the images at the edge of the 

rnse. ·when the blanked out region covers a bright region, this results in a particularly 

severe form of noise since we are replacing large, positive values of E with zero. 

We repeated this test on the St. Mary Lake data. We blanked out a square region 

in the image illuminated from the direction ( 0.5, 1. 1). This polluted image is shown in 
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Figure 3.38: Computed surface: Vase from images with noise 

Figure 3.39. 

The iteration converged after 5 W(2,2) cycles with residual error 1.520 x 10-5 and 

error in the computed surface height of 4.916 x 10-1
. The computed surface is shown in 

Figure 3.40. The error in the surface height is an order of magnitude larger than in the 

case with no noise. This error, however, appears to be confined to the region where the 

image was blanked out. 

Given the severity of the pollution in the image data, we can be pleased with the 

Figure 3.39: Polluted image: St. Mary Lake data 
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Figure 3.40: Computed surface: St. Mary Lake from images with noise 

results generated by our algorithm. Note, however, that in cases where severe noise is 

known to exist in only one of the three images, it may be preferable to discard this image 

completely and use only the two consistent images. The errors reported in this section 

are slightly higher than for those arising when only two images of the surfaces are used. 

3. 7 Discussion 

It could now be argued that given three images and a silhouette as input, the regulariza­

tion applied through smoothing terms should no longer be required. However, it must be 

remembered that there will be some points on the surface which are illuminated by only 

one or two images. At such points, the regularizing terms fill in for the missing data. It 

must also be noted that despite the fact that we have some degree of global smoothing, 

the controlling parameter ~ is small enough so as not to affect the computed solution in 

any senous way. 

It is satisfying to see that given the same information as is required by photometric 
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stereo, our results are also excellent. Reasonable results can also be obtained in some 

cases when only two images are used. However, single image reconstructions have often 

( though not always) produced unsatisfactory results. 

Our algorithm has also proved to be robust in the presence of simple digitization 

errors in the image data. In cases where more severe errors occur in the image data, the 

algorithm has computed the surfaces with reasonable accuracy. 
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Chapter 4 

U pwinding Schemes 

4.1 Introduction 

We now turn our attention to another class of solution techniques which have so far not 

been considered in the shape from shading literature. 

Our starting point is again the image irradiance equation 

R(p,q) = E(x,y) 

which we differentiate with respect to x and y to obtain 

Rpp,r. + Rqqx = Ex } 

lippy + Rqqy = Ey 

( 4.1) 

(4.2) 

Here, we treat p and q as independent variables so that system (4.2) is singular, having 

no unique solution. However, making use of the integrability condition 

we obtain the quasilinear system 

RpPx + Rqpy 

Rpqx + Rqqy 

( 4.3) 

( 4.4) 

Before proceeding, we consider the conditions under which systems (4.2) and (4.4) are 

equivalent. Subtracting equations ( 4.4) from equations ( 4.2) pairwise we get 

Rq(q:r - Py) 

Rr(Py - qx) 

89 

(4.5) 
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We therefore see that on the continuous level, for which integrability is guaranteed, these 

equations are satisfied identically showing that a solution of ( 4.4) satisfies ( 4.2). However, 

on the discrete level, clue to discretization error, integrability is not maintained exactly. 

We see from equations ( 4.5) that the equivalence of the two systems can be maintained 

in the absence of integrability by creating singular points where RP = Rq = 0. We bear 

in mind this potential difficulty as we seek a numerical solution to this system. Note 

that applying a method of characteristics to ( 4.4) yields the method of characteristics 

discussed in Chapter 2. Here, however, we consider discretizations on a fixed, regular 

grid. 

vVe observe a similarity between system ( 4.4) and the equations governing flow of 

an incompressible, inviscid, two dimensional fluid. This connection is established bv 

considering a Lambertian surface illuminated from overhead so that 

1 
R(p,q)= Jl+ z+ 2 =E(x,y) 

.P q 
( 4.6) 

which after some rearrangement yields 

- 2 2 1 ~ 
R(p,q) = p + q = E 2 - I= E(;1:,y). ( 4.7) 

Notice that (4.7) is the Eikonal equation. We will therefore refer to R(p, q) as the Eikonal 

reflectance map. Now, replacing Rand E with Rand .E in (4.4) we get 

PPx + qpy 
Ex 

l -
2 

pqx + qqy 
Ey 

2 

(4.8) 

which is analogous to 

UUx + Vtly -p. } 

UVx + Ul'y -py 
( 4.9) 

where u and v are the components of velocity in a two dimensional incompressible, inviscid 

fluid flow and pis the pressure. A difference between system (4.8) and system (4.9) is 
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that the pressure p in ( 4.9) is unknown and an additional divergence-free condition must 

be satisfied: 

(4.10) 

This allows us to write ( 4.9) in conservation form as follows: 

(4.11) 

Unfortunately, there is no equivalent divergence free condition for the shape from shading 

problem. Hence, discretizations based on conservation laws are not viable. 

An alternative solution technique is to use upwinding schemes for advection equations, 

see Yavneh [58], Sidilkover & Ascher [48]. These methods employ one-sided, first and 

second order approximations to the derivatives of p and q appearing in system ( 4.4). 

4.2 Upwinding Discretization Schemes 

vVe begin by setting up a regular grid on the domain [O, 1] 2 at the points (xi,Yj), 

0:::; i,j:::; N where Xi = ih, Yi = jh and h = 1/N. We assume that image data El 
are specified at grid points and that Dirichlet boundary data are given on the surface 

slopes. 

We use forward or backward differencing to discretize the first derivatives found in 

(4.4) depending on the direction of the ''flow" at each grid point. For the shape from 

shading problem, this direction is equivalent to the direction of the characteristic strips 

discussed in Chapter 2. that is, RP z+ Rq J'. Hence, for the situation depicted in Figure 4.1 

we take a backward difference for x-derivatives and a forward difference for y-derivatives 

at the grid point ( i, j). 
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• 

Figure 4.1: Characteristic direction at grid point ( i, j). 

This discretization may be represented compactly in the following way: 

where 

and 

IR1J (Pij ~ Pew) + IR~jl (Pij ~ Pns) 

IR1J (qij ~ qew) + jR~JI (% ~ qns) 

R1_; = Rp(Xi, Yi) 

R~j = Rq( Xi, y j) 

E; = (Ei+l,j - Ei-1,J/2h 

E; = (Ei,i+1 - Ei,j-1 )/2h 

{ 

Pi-1,J if 
Pew= 

Pi+1.j if Rii < 0 p 

p., = { 
P. · 1'f Rii > 0 l,J-1 q 

Pi,j+l if R~j < 0 

Similarly for qew and qns. 
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(4.12) 

( 4.13) 

( 4.14) 

Notice that at points where Rp = R9 = 0. the system ( 4.12) is singular. Recall that 

such points are referred to as singular points. For the linear reflectance map, such points 

do not arise except in the degenerate case of overhead illumination when RP and Rq are 

zero everywhere. For the Eikonal and Lambertian reflectance maps, these points are 
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points on the surface where the surface normal is parallel to the light source direction. 

Hence. such points are points of maximal (minimal, for the Eikonal map) brightness in 

the image E(x, y). In the context of fluid flow, points of zero velocity are referred to as 

stagnation points. 

It is easily seen that system ( 4.12) is equivalent to 

IRij 1!: (Pi+l ,j - 2p;j + Pi- 1,j ) - IRij1!: (Pi,j+I - 2Pij + Pi,j-1) 
P 2 h2 q 2 h2 

+ Rij(Pi+t..i - Pi- t.J) + Rij (Pi.j+I - ]Ji,;-1) = Eh 
P ._h q 2h x 

( 4.15) 
IRij1!: (qi+ l ,i - :..q;j + <ti- t. j) - IRij1!: (qi,j+I - 2q;j + qi,j-1) 

P 2 h2 q 2 h2 

+ Rij (qi+ l. j - qi-1,j ) + Rij (qi, j+l - (Ji, ,i-d = Eh 
P ._h q 2h Y 

which can be interpreted as a second order central difference approximation to ( 4.4) with 

added artificial viscosity. Notice that the amount of artificial viscosity depends on the 

size of RP and Rq and is therefore not pointwise isotropic. 

Yavneh [58] has shown that this scheme can, for certain flows , converge to a solution 

which is 0( 1) away from the required solution. Specifically, flows for which the fluid 

recirculates yielding characteristics (streamlines) which form closed curves, may not be 

resolved using this simple upwinding scheme. As an alternative, Yavneh suggests a 

scheme which employs pointwise isotropic artificial viscosity. In experimental tests on 

recirculating flows, Yavneh shows that the isotropic artificial viscosity scheme does not 

yield the spurious results seen for the simple upwinding scheme. For the problem in 
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hand, this translates to the following discretization: 

(Pi+l,j + Pi-1 ,j + Pi,j+l + Pi ,j-1 - 4pi j ) 
e0 h2 

+ [fi (P·l+l ,J - Pi-] ,:i ) + R ij (Pi, j+l - Pi,j-1) = Eh 
p 2h I/ 2h X 

( 4.16) 
( qi+l,j + qi-1.j + qi ,j+l + qi,j-1 - 4qij) 

t;i h2 

+ Rij(f/i+l,J - C/i-1.J) + Rij((fi,j+J - qi,j- L) = Eh 
P 2h q 2h Y 

where 

(4.17) 

( An additional artificial diffusion term must be added near singularities.) 

We now consider cases for which the shape from shading problem will yield charac­

teristics which form closed curves and therefore correspond to a recirculating flow. For 

the linear reflectance map, recirculating flows are not possible since in this case the char­

acteristics are straight lines. For the Eikonal and Lambertian reflectance maps, Oliensis 

[37] [38] has shown that characteristics follow the path of steepest descent (ascent, in 

the case of the Eikonal map) on the surface relative to a coordinate system in which 

height is measured in the direction of the light source. Hence, for these reflectance maps 

also, characteristics cannot form closed curves. We therefore conclude that we need not 

be concerned about the phenomenon observed by Yavneh [58]_ when simple upwinding is 

used in the case of recirculating flows. We therefore employ the discretization given in 

equations ( 4.15). 

4.3 Regularization of Problem 

In general. images contain singular points and so we expect to encounter points in the 

domain where our system will become singular. At such points. the flow of characteristics 
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can be placed into one of three categories: (i) a sink, towards which all characteristics in 

the neighbourhood of the point flow; (ii) a source, from which characteristics emanate; 

(iii) a saddle, for which two characteristics flow towards and two flow away from the 

point, see Saxberg [47), Oliensis [37][38]. At sinks and saddle points, characteristics 

flowing from different parts of the domain meet at the singular point. On the continuous 

level. they propagate the same solution to the point. However, if the system is perturbed, 

each characteristic could propagate a different solution yielding a non-unique solution in 

the neighbourhood of the singular point. At sources, characteristics flow away from 

the singular point towards the boundary ( assuming there is no other singular point in 

the domain). If the system is perturbed, the solution propagated to the boundary may 

conflict with the boundary data. In general. we have an ill-posed problem when singular 

points are present in the domain. In such cases, we require some kind of regularization 

mechanism as is done in computational fluid dynamics. We bear in mind the possible 

ill-posed nature of the problem as we seek a numerical solution to our system. 

Consider adding an artificial viscosity term to each of the equations in ( 4.4) to get: 

-.\v'2p+ RpPx + Rqpy 

-,\ v'2q + Rpqx + Rqqy 

The corresponding discrete equations are: 

,\ (Pi+l,j + Pi-l,j + Pi.j+l + Pi,j-l - 4Pij) 
h2 

+ R (Pi+l,j - Pi-1) + R (Pi,j+l - Pi,j-d = Eh 
P 2h q 2h x 

A (qi+l,j + qi-l,j + qi,j+l + qi,j-l - 4qij) 
1i2 

+ R (qi+l,j - qi-1,J + R (q.i ,j+I - qi,j - i) = Eh 
P 2h q 2h Y 

( 4.18) 

( 4.19) 

where the parameter ,\ controls the amount of added artificial viscosity. The addition 

of these terms essentially changes the problem being solved. We hope that a solution of 
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this problem in the limit as ,\ -+ 0 corresponds to a solution of the original problem. 

It must be noted that the addition of these terms changes the character of the equa­

tions from first order hyperbolic to second order elliptic. The solution of the second 

order elliptic problem requires specification of boundary conditions on p and q on the 

entire boundary. The original first order hyperbolic problem however, requires Dirichlet 

boundary data only on that portion of the boundary where the characteristics flow into 

the domain, i.e. on the inflow boundary. 

Note that singularity at points where RP = Rq = 0 is now avoided. By adding the 

artificial viscosity in (4.18) we have added a sense of direction where there was none 

previously. Before, integration could be carried out equally well in either direction along 

a characterisitic. 

System (4.18) can now be compared to the equations governing the flow of an incom­

pressible, viscous fluid: 

-v'v
2

·u + UUx + VUy = -Px 

-v'v
2

v + UVx + VVy = -py 

(4.20) 

(4.21) 

Here, v is the viscous parameter. Note that finding a solution to ( 4.18) for small ,\ is 

analogous to solving (4.21) for small 11. Flows for which the advection terms dominate 

the viscous terms are referred to as high Reynolds number flows. 

4.4 Computation of Height from Gradient 

Having computed the surface slopes, we now seek to compute the surface height. Since we 

do not expect the computed surface slopes to be exactly integrable, we seek the surface 

::(x,y) whose first derivatives match p and q as close as possible in the least squares 
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sense. We therefore set out to minimize 

( 4.22) 

on the domain n which is the domain of the image under consideration. Following the 

variational techniques outlined in Chapter 3, a necessary ( and in this case sufficient) 

condition for such a minimum is that the following Euler equation be satisfied: 

V 2
::: = Px + qy ( 4.23) 

We assume knowledge of the surface height on the boundary of the domain so that 

Dirichlet boundary conditions are specified on z. Note that this is not at all unreasonable 

given that we are assuming Dirichlet boundary data for p and q. 

We solve ( 4.23) using a standard multigrid iteration with 5 W(2,2) cycles. This 

iteration has proved to be extremely robust , converging within the given number of 

iterations even when the data on the right hand side of ( 4.23) are not smooth. This will 

be verified for tests that will be conducted later in the chapter. 

4.5 Results: Upwinding discretizations 

At first, we choose to solve system ( 4.15) usmg a simple Gauss-Seidel iteration with 

lexicographic ordering on a 65 x 65 grid. Recall that system ( 4.15) is singular at points 

where RP = Rq = 0. \Ve therefore expect to have difficulty dealing with surfaces that 

give rise to such points. 

We again report r.m.s. errors in the computed surface height and gradient and r.m.s. 

residual errors as defined in Section 3.3. 

We begin by considering the simple case of a linear reflectance map. Pentland [43) 

has shown that in cases of oblique illumination, a linear reflectance map can be used to 

approximate the non-linear Lambertian reflectance map with reasonable accuracy. Linear 
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reflectance maps have the advantage that they do not, in general, give rise to singular 

points. 

4.5.1 Linear Reflectance Map 

We assume the linear reflectance map takes the form 

R(p, q) = 1 + PoP + qoq (4.24) 

where (p0 , q0 ) specifies the light source direction. 'vVe avoid the uninteresting case of 

overhead illumination which yields R(p,q) = 1 for which system (4.15) is singular every­

where. We also resist the temptation of choosing one of p0 and q0 to be zero in which 

case the characteristics would be aligned with the computational grid. In such cases, 

if during the Gauss-Seidel iteration we sweep along grid points in the direction of the 

characteristics, the iteration acts as a direct solver and so only one iteration would be 

needed to solve the system. Instead we choose (p0 , q0 ) = ( 1, 1) so that the characteristics 

are maximally non-aligned with the computational grid thereby considering a worst case 

scenario. 

\Ve begin by considering the surface 

z = sin(21rx) sin(21ry) 

on [0, 1]2. The exact solution is shown in Figure 4.2. 

( 4.25) 

We set >. = 0 in ( 4.18) and performed 100 Gauss-Seidel iterations using the algorithm 

described above which yielded a residual error of 1.929 x 10-14 . We then computed the 

surface height using the multigrid algorithm described earlier for ( 4.23) which yielded an 

error in the surface height of 7.311 x 10-2 or 3.6%, given that the maximum range in 

surface height is 2. The computed surface is shown in Figure 4.3. 

Given that we have only a first order differencing scheme, we can be quite pleased 

with the result. Howe,·er. we must stress the great simplification that is gained from 
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using a linear reflectance map. Had we used an Eikonal or Lambertian reflectance map 

with overhead illumination we would have had 5 singular points in the interior and 8 

singular points on the boundary of the domain. As we shall see, the existence of singular 

points in the domain yields problems which are less easily solved. 

4.5.2 Eikonal Reflectance Map 

Given the difficulties that we expect to encounter with the existence of singular points 

in the domain, we begin with a surface which gives rise to no singular points. For the 

Eikonal reflectance map, these are points where p = q = 0, that is, points where the 

surface has a horizontal tangent plane. We point out that just because the exact solution 

has no singular points , this does not guarantee that the iteration will not create singular 

points as it moves from the initial guess to the final converged solution. At such points 

we set 

Rp = Rq = E, 0 < t: ~ 1. ( 4.26) 

We suggest a value of E = 1.0 x 10-6
• The surface tested is given by 

z = ysin(7rx), x E [0.1.0.9], y E [-0.5, 0.5]. ( 4.27) 

Given the exact solution to the underlying continuous problem as an initial guess and 

taking>. = 0, the iteration converged after 50 iterations with residual error 3.975 x 10-12
• 

The surface height was computed from the resulting components of the gradient with 

an error of 2.091 x 10-3
_ It would therefore appear that given an initial guess which is 

very close to the solution of the discrete problem, the suggested modification at singular 

points does not pollute the solution. 

Next we try the initial guess p = q = 0 at all points on the interior of the domain 

which is reasonable in the absence of any other information about the surface to be 

reconstructed. In this case. initially, every interior point is a singular point. With ). = 0, 



Chapter 4. Upwinding Schemes 101 

the scheme showed no signs of converging after 1000 iterations. The residual error was 

still 0(10). 

Given that we seek a solution to (4.19) for small >. and that in general we cannot 

expect to have a very good initial guess, we suggest a continuation algorithm in >. just 

as was employed for the variational techniques in Chapter 3. \i\Tith the addition of the 

Laplacian terms we now use a Gauss-Seidel iteration with red-black ordering as this 

will yield more rapid convergence especially when >. is not small. We impose Dirichlet 

boundary conditions on p and q along the entire boundary of the domain. Again we 

considered the surface given in ( 4.27). The algorithm now converged successfully to a 

good approximation of the correct solution. The error in the computed surface height 

was 2.094 x 10-3
_ The solution can be found in Figure 4.4 along with a table describing 

the performance of the algorithm during the continuation process. 

Notice that the number of iterations required to reach convergence decreases with >.. 

We also see that the error in the components of the surface gradient is reduced with >. 

as expected, since smaller values of >. yield a problem which is closer to the one we are 

wanting to solve. The large number of iterations for >. = 0.1 can be drastically reduced 

using a multigrid method. However, here we concentrate on exploring the viability of the 

approach, not on tightening the efficiency of the algorithm. 

Having successfully computed the solution to a problem for which there are no singular 

points, we now move on to problems which contain only one singular point. Consider the 

surface 

:: = sin(7rx) sin(7ry), x,y E [0.1,0.9] (4.28) 

which gives nse to a singular point at (0.5, 0.5) - a local maximum on the surface. 

The computed surface and a table describing the continuation process can be found in 

Figure 4.5. 
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.X 0.1 1 X 10-3 1 X 10-5 

Iterations 1500 250 50 
Residual Error 1.803 X 10-3 4.695 X 10-15 8.242 X 10-14 

Gradient Error 1.139 X 10-t 1.081 X 10-2 9.310 X 10-3 

Figure 4.4: Computed surface: z = y sin( 1rx ), A = l x 10-5
, Eikonal map. 
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,\ 0.1 1 X 10-2 1 X 10-3 1 X 10-4 

Iterations 1500 500 100 100 
Residual Error 1.228 X 10-7 1.298 X 10-7 1.670 X 10-14 Diverged 
Gradient Error 1.026 X 10-l 9.291 X 10-2 8.798 X 10-2 -

Figure 4.5: Computed surface: :: = sin(1rx) sin(1ry), ,\ = 1 x 10-3
, Eikonal map. 
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For this surface it was necessary to reduce A more slowly and it was not possible 

to reduce ,\ as much as in the previous example. We suggest that this is linked to the 

presence of the singular point. The error in the computed surface height was 3.155 x 

10-2 . The computed surface is clearly flawed. It is rather disturbing that the iteration 

has converged so readily to the wrong solution. It appears that the surface has been 

inverted in a neighbourhood of the singular point. Note that in the absence of boundary 

conditions, the reduced problem has two solutions - one given by z as in ( 4.28) and the 

other by -z. It is almost as though the iteration is choosing the wrong solution near the 

singular point. 

'vVe next replace z in ( 4.28) by -z and recompute the solution. Note that this does 

not change the image, E. The results are shown in Figure 4.6. Curiously, the algorithm 

converges to a good approximation of the correct surface provided ,\ is not taken too 

small. Note in particular that the small inversion near the singular point is no longer 

present. 

It could be hypothesized that the presence of the inversion in the solution near the 

singular point is linked to the nature of the singular point. The inversion occurred 

when trying to compute a surface which has a local maximum at the singular point. 

At such a point characteristics flow towards the singular point ( a "sink"), whereas in 

the computation of a surface having a local minimum at the singular point, the flow of 

characteristics is away from the singular point towards the boundary, ( a "source"). The 

next set of results reinforces this hypothesis although it will be seen that when computing 

a surface having a local maximum, the error in the solution does not always manifest 

itself in the same way. 

Consider the surface 

:r. y E [-0.5, 0.5] ( 4.29) 
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.\ 0.1 1 X 10-2 1 X 10-3 1 X 10-4 

Iterations 1500 500 100 100 
Residual Error 1.296 X 10-12 2.465 X 10-14 2.342 X 10-14 Diverged 
Gradient Error 1.007 X 10- 1 2.483 X 10-2 1.599 X 10-2 -

Figure 4.6: Computed surface: z = -sin(7rx) sin(7ry), ,\ = 1 x 10-3 , Eikonal map. 
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which gives rise to one singular point at the origin at which the surface has a local 

maximum. The result of applying our algorithm to this problem is given in Figure 4.7. 

:\otice that for this surface it was possible to decrease A much further than for the 

previous tests while maintaining good, rapid convergence. However, the effort involved 

in reducing >i further than 1 x 10-4 did not seem to pay off in terms of a reduction in 

the error in the computed solution. It is expected that such a threshold will be reached 

in general, since there will be a point at which numerically, the effect of the Laplacian 

operator will not be felt for small, positive values of A. The computed surface does not 

display the inversion in the solution observed in Figure 4.5. However, the presence of 

spurious ridges in the surface is clearly noticeable. The error in the computed surface is 

6 .. 57.5 X 10-3 . 

Again we consider the problem of computing the inverted surface. The singular 

point at the origin now corresponds to a local minimum on the computed surface. The 

algorithm again correctly computes the surface with no noticeable deviation from the 

exact solution. The result is shown in Figure 4.8. The error in the computed surface is 

1.351 X 10-3. 

4.5.3 Lambertian Reflectance Map 

We now turn our attention to the Larnbertian reflectance map: 

R( ) { 0 1 + PoP + qoq } p,q = max , 
✓ (1 + P6 + q5) ( 1 + P2 + q2

) 

( 4.30) 

for which RP and Rq are not linear in p and q as for the Eikonal reflectance map. We 

expect that this may add a degree of difficulty to the problem. 

We repeat the tests on the surfaces considered in Section 4.5.2 which give rise to one 

singular point in the domain when illuminated from overhead. Given the connection 

between ( 4.30) when p0 = q0 = 0 (i.e. overhead illumination) and the Eikonal reflectance 



Chapter 4. Upwinding Schemes 107 

A 0.1 1 X 10-2 1 X 10-3 

Iterations 1500 500 100 
Residual Error 4.402 X 10-5 3.451 X 10-9 1.513 X 10-12 

Gradient Error 8.777 X 10-2 4.584 X 10-2 2.152 X 10-2 

A 1 X 10-4 1 X 10-5 1 X 10-6 

Iterations 100 100 100 
Residual Error 4.864 X 10-15 4.436 X 10-lB 4.017 X 10-16 

Gradient Error 1.797 X 10-2 1.759 X 10-2 1.755 X 10-2 

Figure 4.7: Computed surface: z = -(x4 + y4
), A= 1 x 10-6 , Eikonal map. 
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A 0.1 1 X 10-2 1 X 10-3 

Iterations 1500 500 100 
Residual Error 3.961 X 10-5 1.010 X 10-5 6.973 X 10-5 

Gradient Error 7.768 X 10-2 2.922 X 10-2 8.122 X 10-3 

A 1 X 10-4 1 X 10-5 1 X 10-6 

Iterations 100 100 100 
Residual Error 3.223 X 10-10 2.198 X 10-15 2.119 X 10-15 

Gradient Error 4.316 X 10-3 3.763 X 10-3 3.689 X 10-3 

Figure 4.8: Computed surface: z = x4 + y4, A = l x 10-6
, Eikonal map. 
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map ( 4. 7) we may expect that the results will not differ from those of the previous section. 

However. these tests will shed an important insight on the class of surfaces which give 

rise to the spurious results observed in the previous section. First we try the surface 

z = sin(1rx)sin(1ry), x,y E [0.1,0.9]. (4.31) 

Recall that in the previous section, the surface appeared to be inverted in the neighbour­

hood of the singular point. The computed surface in this case can be found in Figure 4.9. 

Notice that the inversion in the surface is no longer evident. The error in the computed 

surface is 1.636 x 10-2
• 

The result of replacing z by -z and recomputing the surface can be found in Fig­

ure 4.10. For the Eikonal map, the surface in this case was approximated correctly with 

no evident flaws, however, for the Lambertian reflectance map we notice an inversion 

in the surface close to the singular point. In spite of the obvious flaw in the computed 

surface, the error is in fact smaller than in the previous test at 8.208 x 10-3
• 

'vVe also tested the surface 

z = -(x4 + y4), x, y E [-0.5, 0.5] ( 4.32) 

with similar results. The algorithm computed the surface with no obvious flaws in con­

trast to what occurred for the Eikonal reflectance map. When the surface was inverted, 

the algorithm produced a surface with creases in it, similar to those found in Figure 4.7. 

It would therefore appear that the inversion and creasing of the surfaces is not linked 

to the nature of the surface at the singular point, that is, whether or not we have a local 

minimum or local maximum at the singular point, but rather to the nature of the flow 

of characteristics nearby the singular point. For both the Eikonal and the Lambertian 

reflectance maps we observed spurious solutions when the characteristics flow towards 

the singular point, i.e. when the singular point can be thought of as a sink in the flow. 



Chapter 4. Upwinding Schemes 

A 0.1 
Iterations 1500 
Residual Error 1.323 X 10-3 

Gradient Error 2.445 X 10-l 

Figure 4.9: Computed surface: ., 
overhead illumination. 

110 

1 X 10-2 1 X 10-::i 1.0 X 10-4 

500 100 500 
3.544 X 10-4 1.096 X 10-s Not converged 
1.622 X 10-1 4.487 X 10-2 -

sin( 1rx) sin( 1ry), A 1 x 10-3
, Lambertian map, 
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,\ 0.1 l X 10-2 1 X 10-3 1.0 X 10-4 

Iterations 1500 500 100 500 
Residual Error 1.332 X 10-4 1.477 X 10-6 4.490 X 10-9 Not converged 
Gradient Error 1.916 X 10-l 8.499 X 10-2 2.833 X 10-2 -

Figure 4.10: Computed surface: z = - sin(1rx) sin(1ry), ,\ = 1 x 10-3 , Lambertian map, 
overhead illumination. 
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We now hypothesize that our algorithm is prone to producing spurious results when the 

singular point is a sink in the flow of the characteristic strips. However. if the singular 

point is a source ( so that characteristics flow away from the point), then the algorithm 

appears to produce reasonably good approximations to the solution. 

We further test this hypothesis on surfaces that are not illuminated from overhead. 

In such cases, we define a new coordinate system having height measured in the direction 

of the light source. Oliensis [37] [38] has shown that singular points now correspond 

to critical points of the surface with respect to this new coordinate system. He also 

points out that for the Lambertian reflectance map, characteristic curves follow curves 

of steepest descent with respect to this new coordinate system. Our hypothesis therefore 

suggests that surfaces having a local minimum with respect to the new coordinate system 

may not be computed correctly by our algorithm. 

We begin by considering the surface (4.28) illuminated from the direction (0.25,0, 1). 

This gives rise to one singular point in the image at the point near (0.525; 0.5 ). This 

choice of light source direction also ensures that the surface is illuminated everywhere 

so that we do not face additional difficulties due to regions in the domain in which no 

information is given about the surface. This point corresponds to a local maximum on 

the surface in a coordinate system which measures height in the direction (0.25, 0, 1 ). 

This singular point can also be thought of as a source in the flow. The surface was 

computed with error 1.119 x 10-2 and can be found in Figure 4.11. As our hypothesis 

suggests, there are no serious errors. 

When the surface is inverted, there is now a surface minimum corresponding to the 

singular point which acts as a sink in the flow of characteristics. The surface was com­

puted with error 6.539 x 10-3 which is again smaller than in the previous test, however, an 

inversion has appeared in the surface at the location of the singular point. The computed 

surface is shown in Figure 4.12. This observation fits our hypothesis. 

f" 
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.\ 0.1 1 X 10-2 1 X 10-3 

Iterations 2000 500 100 
Residual Error 9.929 X 10-4 8.608 X 10-4 6.020 X 10-7 

Gradient Error 2.428 X 10-l 1.688 X 10-1 4.705 X 10-2 

.\ 1 X 10-4 1 X 10-5 

Iterations 200 100 
Residual Error 7.436 X 10-5 Diverged 
Gradient Error 3.185 X 10-2 -

Figure 4.11: Computed surface: z = sin(1rx)sin(1ry), ,\ = 1 x 10-4, Lambertian map, 
light source direction (0.25, 0, 1). 
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.\ 0.1 1 X 10-2 1 X 10-3 

Iterations 2000 500 100 
Residual Error 6.305 X 10-4 9.945 X 10-5 4.134 X 10-6 

Gradient Error 1.922 X 10-l 8.763 X 10-2 3.208 X 10-2 

.\ 1 X 10-4 .1 X 10- 5 

Iterations 200 500 
Residual Error 8.354 X 10-5 Not converged 
Gradient Error 2.352 X 10-2 -

Figure 4.12: Computed surface: :: = - sin(rrx) sin(rry), ,\ = 1 x 10-4
, Lambertian map, 

light source direction (-0.25, 0, 1 ). 
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In the previous test, the singular point was located fairly close to the point (0.5, 0.5) 

at which the surface has a local minimum ( with respect to the standard coordinate 

system). It could therefore be argued that it is the surface geometry at critical points of 

the standard coordinate system that is responsible for causing such errors in the solution. 

We address this issue by considering a slight modification to the surface just considered, 

namely 

z = -~ sin(1rx) sin(1ry), 
7r 

x,y E [0.1,0.9]. (4.33) 

The light source direction is given by ( -0.5, 0, 1) so that a singular point exists at the 

point ( 0.66, 0.5) and the surface is illuminated everywhere. This point corresponds to a 

surface minimum with respect to a coordinate system where height is measured in the 

direction (-0.5, 0, 1 ). The computed surface had a resulting error of 1.410 x 10-2 and is 

shown in Figure 4.13. The inversion in the surface is clearly evident and is located in the 

neighbourhood of the singular point (0.66, 0.5 ). 

Finally we consider the surface ( 4.29) in order to see how the creases in the surface 

are affected by oblique illumination. The creases occur only for the inverted surface, -z. 

The light source direction was given by (-1/16, 0, 1) so that there is only one singular 

point at (1/4, 0) and the surface is illuminated everywhere. The surface was computed 

with error 5.123 x 10-3 and is shown in Figure 4.14. The creases in the surface are again 

apparent but now they appear to be focussing at a point in the neighbourhood of the 

singular point ( 1 / 4, 0). 

4.5.4 Saddle Points 

We have also tested saddle singular points where two characteristics flow towards and 

two flow away from the point. In this sense. saddle points exhibit some of the behaviour 

of both sources and sinks. In tests conducted on surfaces having a. saddle point. creases 
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.\ 0.1 1 X 10-2 1 X 10-3 

Iterations 2000 1000 500 
Residual Error 6.626 X 10-4 2.471 X 10-5 4.173 X 10-4 

Gradient Error 6.4 72 X 10-2 3.150 X 10-2 5.352 X 10-2 

.\ 1 X 10-4 1 X 10-5 

Iterations 100 500 
Residual Error 2.542 X 10-12 Not converged 
Gradient Error ,5.039 X 10-2 -

Figure 4.13: Computed surface: :: = - sin(1rx) sin(1ry), ,\ = 1 x 10-4
, Lambertian map, 

light source direction ( -0.5, 0. 1 ). 
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). 0.1 1 X 10-2 1 X 10-3 

Iterations 2000 500 200 
Residual Error 2.951 X 10-4 2.686 X 10-5 1.259 X 10-6 

Gradient Error 8.862 X 10-2 6.084 X 10-2 2.395 X 10-2 

). 1 X 10-4 1 X 10-5 1 X 10-o 
Iterations 100 300 300 
Residual Error 7.133 X 10-6 1.235 X 10-8 2.94 7 X 10-14 

Gradient Error 1.706 X 10-2 1.589 X 10-2 1.579 X 10-2 

Figure 4.14: Computed surface: z = x 4 + y4, >. = 1 x 10-6
, Lambertian map, light source 

direction (-1/16 , 0,1). 
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tend to appear in the computed surface. 

4.5.5 Surfaces with more than one singular point 

vVe now consider the "Mexican hat" surface: 

cos ( :.:1rr) J 2 2 z= . ,r= x+y, 
2-,r 

x, y E [-0.5, 0.5] (4.34) 

considered in the previous two chapters. This surface, when illuminated using an Eikonal 

reflectance map, yields an isolated singular point at the origin and a "ring" of singularities 

at r = 0.5. The computed surface is shown in Figure 4.15. The error in the computed 

surface height was 4.326 x 10-2
. The singular point at the origin acts as a sink in the 

flow of characteristics while those at r = 0.5 act as sources. Notice that the solution is 

inverted in the neighbourhood of the sink. 

We then replace z by -z and recompute the surface. The result is shown in Fig­

ure 4.16. The error in the computed surface height was much larger than in the previous 

test at 2.296 x 10-1 . We now have a ring of sinks at r = 0.5. The inversion in the surface 

at r = 0.5 is clearly evident. This inversion results in the creation of another sink at 

the origin which yields yet another inversion in the surface near the origin. The com­

puted surface is clearly unacceptable even though the exact surface is not particularly 

complicated. 

4.5.6 Discussion 

Our experimental evidence has shown that in general, singular points give rise to problems 

for our computational algorithm. More specifically, when the singular point corresponds 

to a sink in the flow of characteristics then the computed surface appears either to be 

inverted in a neighbourhood of the singular point or to have creases on the surface which 

focus at the singular point. In the next section we seek to explain these phenomena. 
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,\ 0.1 1 X 10-2 1 X 10-3 1 X 10-4 

Iterations 1500 500 200 500 
Residual Error 4.685 X lQ- 5 9.830 X 10-4 6.868 X 10-5 Not converged 
Gradient Error 2.362 X 10-1 1.257 X 10-1 1.177 X 10-l -

Figure 4.15: Computed surface: z = 2\r cos{21l'r ), ,\ = 1 X 10-3
, Eikonal map . 
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,,\ 0.1 1 X 10-2 1 X 10-3 1 X 10-4 

Iterations 1500 1000 200 500 
Residual Error 5.358 X 10-6 7.179 X 10-5 5.957 X 10-5 Not converged 
Gradient Error 6.140 X 10-1 6.630 X 10-1 6.404 X 10-1 -

Figure 4.16: Computed surface: ;;; = - 2\ cos(21rr), ,,\ = 1 x 10-3
, Eikonal map. 
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4.6 The One Dimensional Problem 

4.6.1 Problem formulation 

We now seek an explanation for the curious results obtained in the previous section. We 

first consider a one dimensional analogue to our two dimensional regularized shape from 

shading problem, namely 

\ II R I E' - "P + PP = , x E [O, 1] ( 4.35) 

subject to the boundary conditions 

p(O) = a. p(l) = /3 ( 4.36) 

where p = p(x) and E = E(x). We look for solutions to (4.35) in the limit as,\-+ 0 

and are therefore dealing with what is known as a singular perturbation problem, see 

Chang & Howes [14]. More precisely, we face nonlinear singular perturbation problems 

with turning points. Notice that in the limit as ,\ -+ 0, equation ( 4.35) becomes 

( 4.37) 

which is known as the reduced problem. In our case, the reduced problem is the problem 

we actually wish to solve. We resist the temptation of seeking approximations to the 

conservation form R'(p) = E' since it has no parallel in the two dimensional case. A 

solution to this equation cannot, in general, be expected to satisfy both boundary con­

ditions specified in (4.36). Hence, boundary layer or interior layer phenomena can be 

observed in the solution of ( 4.35) subject to the boundary conditions ( 4.36). 

The behaviour of the solution for very small ,\ can be defined in terms of solutions to 

the left and right reduced problems. We say that Pt (Pr) is a solution of the left (right) 

reduced problem if it is a solution of ( 4.37) subject to the left (right) boundary condition 

p(O) = a (p(l) = ;3). 
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In order to tie-in with the concept of characteristics, equation ( 4.37) can be written 

p E' ( 4.38) 

(4.39) 

where a dot denotes differentiation with respect to a parameter ~- Here x(e) is a 

parametrization of the line segment 0 ::; x :::; 1. We can now see that the term Rp 

specifies the direction of flow of the "characteristic". If RP > 0 ( < 0), Vx E [O, 1] then 

the characteristic curve flows from left to right (right to left) on the interval [0, 1]. Of 

particular interest is the case where Rp changes sign at some point x 0 E (0, 1 ). In this 

case, the characteristics will flow away from or towards the point x 0 depending on the 

sign of RP on either side of x0 . 

For a linear reflectance map, RP 

becomes 

p0 , is a non-zero constant. Our problem now 

>.p" + PoP' = E' 

with boundary conditions 

p(O) = a, p(l) = /3. 

The reduced problem in this case is 

I E' PoP = 

( 4.40) 

(4.41) 

( 4.42) 

which has a fixed direction for the flow of characteristics determined by the sign of the 

constant p0 • 

Let 0 < 8 <t:: 1 then for Po > 0 

lim p(>., x) --t Pl ( x), 0 ::; x :::; 1 - 8 < 1 
.\ ..... o 

with a boundary layer at x = 1. However: for p0 < 0 

lim p(>.. x) --t Pr ( :r). 0 < 8 :::; X :::; 1 
,\ ..... o 

( 4.43) 

( 4.44) 
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with a boundary layer at x = 0. Hence, if the characteristic direction is from left to 

right then the solution of the left reduced problem dominates whereas, if the flow of 

characteristics is reversed, th·e solution of the right reduced problem dominates. 

In the case of a non-linear reflectance map, things are not as straightforward since 

now the flow of characteristics depends on the computed solution. Consider the Eikonal 

reflectance map for which Rp = 2p. Our problem now becomes 

\ II+') I - E' AP ~PP - ( 4.45) 

so the coefficient of p', which determines the direction of flow of the characteristics, now 

depends on p. When p > 0, flow is in the direction of increasing x, while for p < 0 

characteristics flow in the opposite direction. The case of p = 0 corresponds to a singular 

point or turning point in the language of singular perturbation phenomena. See Chang 

& Howes [14] for a discussion of the homogeneous form of (4.45). Note that we are not 

interested in linear turning point problems for which the flow of characteristics does not 

depend on the solution. 

The reduced problem in this case is given by 

2pp' = E' ( 4.46) 

which can be written 

(p2)' = E' ( 4.4 7) 

and hence integrated to yield 

p
2 = E + C. (4.48) 

Here C is an arbitrary constant which, in general, can be chosen so as to satisfy only 

one of the boundary conditions. For the shape from shading problem, we choose the 

boundary conditions so that for C = 0 both are satisfied. We therefore have 

P = ±JE. (4.49) 
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Assuming that there is only one singular point in the domain, the sign of p can be chosen 

so as to satisfy the boundary condition on each side of the singular point independently. 

So, for example if p( -1) = a > 0 and p( 1) = /3 < 0 we set p = vE on the interval 

[-1,s] and p = -,JE on the interval [s,1] wheres is such that p(s) = 0. that is, sis 

the location of the singular point. In short , no interior or boundary layers appear in the 

exact solution of this singular perturbation problem in the limit· as >. -+ 0. 

In the case of a Lambertian reflectance map, the above arguments can be generalized. 

The direction of the flow of characteristics is again governed by the sign of RP which is 

now given by 

Po - P 

RP= ✓(l + p5)(l + p2)3 
(4.50) 

where p0 specifies the light source direction. 

4.6.2 Results: One dimensional problem 

We now test the one dimensional version of our algorithm on the problem outlined above. 

We begin by considering the case of the Eikonal reflectance map. We will focus only on 

those problems for which spurious results were obtained in the previous section. First 

consider the curve 

z = sin(1rx), x E [O, 1] (4.51) 

which has a local maximum, and therefore a singular point, at x = 0.5. This singular 

point corresponds to a sink in the flow of characteristics, that is, characteristics flow 

towards x = 0 .5 from both sides. 

We solve equation (-L45) using Gauss-Seidel with red-black ordering on a uniform grid 

with step-size 1/64. We use a continuation algorithm in >. as for the two dimensional 

case. Initially we set p to zero on the interior of the domain. The result is shown in 

Figure 4.17. 
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4 

3 

2 

1 

C. 0 

-1 

-2 

-3 

-4 
0 0.4 

A 0.1 
Iterations 2000 
Residual error 2.862 X 10-4 

Error in p 5.976 X 10-l 

0.6 

1.0 X 10-2 

100 
6.594 X 10-14 

1.152 

Exact solution -
1 ambda = 0 . 1 ----· 

lambda=0. 01 ····· 
lambda=0. 001 ......... . 

0.8 

1.0 X 10-3 1.0 X 10-4 

100 2000 
7.908 X 10-n Diverged 

1.191 -

Figure 4.17: Computed solutions: :; = sin(1rx), Eikonal map. 
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Notice the inversion in the solution in the neighbourhood of the singular point at 

J: = 0.-5. The behaviour of the computed solution to the one dimensional problem 

therefore appears to be analogous to the two dimensional problem. 

We also tested the curve z = -.r 4 on [-0.5, 0.5] using the same algorithm. The results 

are shown in Figure 4.18. This time an internal transition layer appears in the solution at 

the location of the singular point ( x = 0). Such a transition layer causes a discontinuity 

in the first derivative of z and would therefore reveal itself as a "jump" in the slope of 

the computed curve. For the two dimensional problem, this would translate to a crease 

in the surface as was observed in the tests on the surface z = -(x4 + y 4
). 

Given that we are dealing-with a non-linear iteration we now address the question of 

the choice of initial guess. 

4.6.3 Choice of initial guess 

For the tests conducted above, we used a zero initial guess. This may be a particularly.bad 

choice since for the Eikonal map or Lambertian map with overhead illumination, every 

point in the interior of the domain is initially a singular point. We begin by starting with 

the exact solution as an initial guess and choose a very small value for >.. One may hope 

that under these circumstances, our algorithm will converge to a solution that is a good 

approximation to the exact solution. Note however, that the "exact" solution is exact 

for ( 4.37),( 4.36), not the corresponding difference equations. 

The result of applying this test to the curve z = sin(7rx) on (0, 1] with>.= l.0 x 10-6 

is shown in Figure 4.19. After 3000 iterations, the algorithm had not converged, the 

residual error was still 0( 10 ). We see that the computed solution, despite the very good 

initial guess. still demonstrates an inversion near the singular point. At least the iteration 

did not converµ;e this time. The choice of initial guess would therefore appear not to be 

the cause of the problem. 
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0.6 ~--...--------.--------.----------,------~----, 

0.4 

0.2 

Q, 0 

-0.2 

-0.4 

Exact solution -
lambda=O .1 ----· 

lambda=O. 01 · ··· · 
lambda=O. 001 -"••- · 

lambda=l.Oe-4 
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Figure 4.18: Computed solutions: z = -x4, Eikonal map. 
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Figure 4.20: Computed solution, exact solution as initial guess, z = -x4
, Eikonal map. 

We also tested the curve z = -x4
, x E [-0.5, 0.5] starting with the exact solution as 

initial guess and taking ,\ = 1.0 x 10-6
• Again the computed solution shows a transition 

layer at the singular point. The algorithm in fact converged with residual error 7.558 x 

10-16 after 100 iterations. The computed solution is shown in Figure 4.20. 

We must now explain why, when given such a good initial guess and such a small value 

of,\, our algorithm moves so far away from the exact solution and may even converge to 

a poor approximation to the solution. 
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4.6.4 Analysis 

vVe consider the equation 

- >-.p" + 2pp' = E' ( 4.52) 

which when discretized using a simple upwinding scheme yields 

( 4.53) 

Given that E = p2, we see that the ratio of the artificial viscosity term to the other terms 

IS 

).. 

hp 
(4.54) 

Hence, for the tests conducted in the previous section where p = 0(1), h = 1/64 and 

,\ = 1.0 x 10-6 this ratio is 6.4 x 10-5 . It is therefore fair to conclude that the artificial 

viscosity term can effectively be neglected in our analysis, except in the neighbourhood 

of singular points where p ~ 0. 

Given that we started with the exact solution as initial guess, during the first iteration 

we are essentially solving the equation 

( 4.55) 

where Pe is the exact solution. Assume without loss of generality that we wish to solve 

this equation on the domain [-1, 1] and that the singular point is located at x = 0. We 

also assume that 

Pe = { > 0 if X < 0 

< 0 if X > Q 

(4.56) 

since this characterizes the curves for which our algorithm has produced spurious solu­

tions. 

Consider the left half of the domain. On this interval Pe > 0 and so characteristics 

flow from left to right. Choose a grid point ;t; in this interval which is close to the singular 
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point. At this point we have 

where 

A similar relation holds for Pi- l and so 

Continuing in this fashion we have 

This can be interpreted as a discrete approximation to 

rx; E'(x) 
p(xi) = p(x0 ) + JT 2 ( ·) dx 

XO pf! • 

which is the solution to the continuous problem ( 4.55 ). Hence 

ht. E[ ~ {x' _E'( x) dx = 1x; p'(x) dx 
k=l ~p,, (:q,) Jxo ~p,,(.:) xo 

or. simply, on each interval 

E' 1x· 
h . / . ) ~ . ' p' ( x) dx. 

-Pe · , x,-1 
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( 4.57) 

( 4.58) 

(4.59) 

(4.60) 

(4.61) 

( 4.62) 

( 4.63) 

Now, when p" < 0, as is the case for the curve z = sin(7rx), on each interval we in fact 

have 

(4.64) 

and so we consistently compute discrete approximations which are larger in absolute 

value than they should be. As we approach the singular point, our estimate of p will 

therefore be smaller than the true value of zero. At the next iterate we have 

E l J;r 1 
I I 

h ~ ~ p ( x) dx 
.!.µ,- X1-I 

(4.65) 
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where p~1
) represents the discrete estimate of p(x;) from the first iterate. Now, 

E' E' 1x· 
h~ < h .) "' i . . < ' p'(x) dx 

lp; - P (.1. , ) Xi-I 

( 4.66) 

and so the error resulting from the next iterate is of the same sign and larger in magnitude 

than the previous error. The argument can be repeated for all subsequent iterates and so 

we conclude that the absolute value of the error increases monotonically with the number 

of iterates. 

This has a disastrous effect on the algorithm since the direction of flow of the char­

acteristics is artificially changed. In essence. a singular point is created in the wrong 

place. The same phenomenon occurs in the right half of the domain except that now 

the discrete approximations are positive and larger than they should be. These arti­

ficial singular points create a region in the middle of the domain in which the flow of 

characteristics is reversed. This causes the inversion layer in the computed solution. 

However, if p" > 0, as is the case for the curve z = -x4, on each interval we have 

E' 1x· 
0 > h,J t -) > ' p'(x) dx 

-7J X 1 Xi-1 

(4..67) 

and so we consistently compute discrete approximations which are too small in absolute 

value. As we approach the singular point. our estimate of p will therefore be larger than 

the true value of zero. For the next iterate, 

E' E! 1Xj 
h-'-

1 
> h. 1 > p'(x)dx 

2pl l 2pr. (Xi) Xj-J 

( 4.68) 

and so again we see that the next iterate produces an error of the same sign and greater 

in magnitude than the first iterate. This argument carries over to subsequent iterations 

and so the error again increases monotonically in absolute value. 

The same occurs on the right half of the domain. A transition layer thus occurs at 

the singular point to connect the two solutions. This is exactly what is observed for the 

curve :: = -x4
. 
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For the inverted curves (which correspond to surfaces in the two dimensional case 

where spurious results were not observed), the error does not increase monotonically as 

the iteration proceeds from the exact solution. A typical cancellation in errors resulting in 

a more random appearance, is therefore possible. This could explain why boundary layer 

effects are not as evident for these curves as interior layers are for the cases considered 

above. 

In Figure 4.21 we plot the error between the computed solution and the exact solution 

at the point x = -0.25 for the curve z = -x4
• The error is plotted against the number 

of iterations performed starting from the exact solution and with >. = 1 X 10-6 . Notice 

that the error increases monotonically as predicted. 

In Figure 4.22 we repeat the test but for the inverted curve z = x 4
. Notice that now 

the error does not increase monotonically and that upon convergence it is much smaller 

than in the previous test. 

These arguments carry over easily to the case of a Lambertian reflectance map and 

overhead illumination provided IPI is not too large. The main difference is that problems 

can now be expected to occur for curves satisfying 

{ 
< 0 if X < 0 

Pe= 
> 0 if X > 0 

assuming that the singular point is located at x = 0. In such cases 

{ 
> 0 if X < 0 

Rp(Pe) = 
< 0 if X > 0 

( 4.69) 

( 4.70) 

and so the singular point acts as a sink in the flow of characteristics. The requirement 

that IPI is not too large stems from the fact that RP decreases monotonically with p 

only for IPI :S 0.5, approximately. The argument that for sinks, the error in the solution 

increases monotonically from the exact solution, requires Rp to be monotonic in p. Note 

that this requirement is met for the curves z = ±x-t on [-0.5, 0.5]. 
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Figure 4.21: Error against number of iterations: z = -x4 , Eikonal map, exact solution 
as initial guess. 
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Figure 4.22: Error against number of iterations: z = x 4
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The case of a Lambertian reflectance map with oblique illumination is less easily 

analyzed for the curves considered so far. The reason for this is that these curves no 

longer possess any symmetry properties about the singular point. In particular, the sign 

of p" ( x) is no longer consistent either side of the singular point - this feature was crucial 

to the earlier analysis. However, by constructing curves with the desired properties, we 

demonstrate that the same phenomena can occur in practice. Consider, for example, the 

curve 

:: = -sin(rrx) + rrx (4.71) 

which when illuminated from the direction specified by setting p0 = 1r, yields a singular 

point at x = 0.5. For this curve on the interval [0, 1] we have p" > 0 to the left of 

the singular point and p" < 0 to the right of it. We may now expect to see artificial 

singular points created in the solution. These will show up as zeros of RP. Due to the 

large discrepancy in the magnitude of RP at either end of the interval [0, 1] we choose 

to solve the problem on the interval [0.3, 1 ]. We start from the exact solution and set 

,\ = 1.0 x 10-6
• After 3000 iterations the algorithm had not converged. A graph of Rp for 

the computed solution is shown in Figure 4.23 while the solution is found in Figure 4.24. 

An inversion in the sign of RP in the neighbourhood of the singular point at x = 0.5 

is clearly noticeable. This results in an anomaly in the solution at the same location. 

Similarly we construct a curve which is expected to give rise to a transition layer at 

the singular point. Consider the curve 

:: = x 4 + 0.5x ( 4. 72) 

on the interval [0, 1]. When illuminated from a direction specified by taking p0 = 0.5, we 

obtain a singular point at the origin. It is easily verified that p" is negative to the left of 

the singular point and positive to the right of it. Using the exact solution as an initial 

guess and taking ,\ = 1.0 x 10-6 the iteration converged after 100 iterations with residual 
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Figure 4.23: Rp for the computed solution, z - sin(1rx) + 1rx, Lambertian map, light 
source direction ( -,r, 1). 
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direction ( -0.5, 1 ). 

error 5.733 x 10-16 • A graph of Rp for the computed solution is shown in Figure 4.25. 

The transition layer, located at the singular point, is evident in both Rp and in p. The 

graph of p is shown in Figure 4.26. 

We have seen a strong similarity between the behaviour of the one dimensional prob­

lem and the two dimensional problem in the presence of singular points. We believe that 

the above explanation of the behaviour of the one dimensional algorithm also lies at the 

root of an explanation for the two dimensional case. For the latter case we also perform 

an integration of sorts along characteristics and we suggest that the propagation of errors 

along the characteristics is responsible for the inversions and creases observed in the two 
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dimensional case. 

4.6.5 Linearization 

Consider the case of an Eikonal reflectance map for which we wish to solve the equation 

- \ II + ·) I - E' , P -PP - · ( 4.73) 

It could be argued that the iteration would benefit from a linearization of the term 2pp' 

about the previous iterate (as was done for the reflectance map in Chapter 3). Let p and 

p' denote the value of p and p' about the previous iterate then we have 

pp'~ pp'+ p'(p - p) + p(p' - p'). 

Equation ( 4. 73) then becomes 

- >..p" + 2pp' + 2p'p = E' + 2pp'. 

When this equation is discretized, the coefficient of Pi at each grid point is 

4 ✓\ :.. lftd 1,1;+1 - Pi-1 -+ - -+ - - - -h2 h h 

( 4. 7 4) 

(4.75) 

(4.76) 

where we have used central differencing to estimate f/. Notice that the first two terms 

are positive, however, the last could be positive or negative. In cases when the last 

term is negative near the singular point where lft;I = O(h), the coefficient (4.76) could 

become zero or negative leading to singularity or nonconvergence of the iteration. The 

linearization therefore works against the regularizing term. In general, therefore, such 

linearization is best avoided. 

In particular, linearization would lead to difficulties for the curves z = sin(1rx) and 

:: = -x4
• Both of these curves have p' < 0 at the location of the singular point. Thus diffi­

culties with linearization arise exactly when the methods considered earlier encounter dif­

ficulties. One saving grace of linearization is that it is likely to result in non-convergence, 

rather than convergence to the wrong solution in these circumstances. 
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For the curve z = - sin( 1rx) using the exact solution as an initial guess and taking 

,\ = 1 x 10-6 • the iteration without linearization does not converge. However, when the 

above linearization is implemented the algorithm does converge. In this case. p' > 0 at 

the singular point and so the linearization in fact adds stability to the iteration in that 

the additional term contributes to the diagonal dominance of the iteration matrix. 

4.6.6 Alternative solution techniques 

Given the apparent failure of our simple upwinding scheme in the presence of singular 

points we now consider alternative solution techniques. 

Osher (42] presents a scheme for solving the time-dependent, two point boundary 

value problem 

(4.77) 

with boundary conditions 

u(a) = a, u(b) = (3. ( 4.78) 

Such a scheme can be integrated to steady state (for which Ut = 0) to yield a solution to 

the equation 

- AUxx + (f(u))x = Ex ( 4. 79) 

subject to the same boundary conditions. 

We can write our one dimensional problem ( 4.35) in the form 

( 4.80) 

for which Osher's scheme may now be implemented. This is a conservation form which 

we cannot extend to two dimensions . but we investigate whether casting the problem in 

this form would have alleviated the difficulty. 
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In the special case when f (p) is convex with only one stagnation point, p, such that 

.f'(p) = 0, Osher defines the functions 

f+(P) = f(max(pi,P)), f_(p) = f(min(pi,P)). (4.81) 

Notice that for the Eikonal map, f (p) = p2 which satisfies the latter criteria. The term 

(f(p))x appearing in equation (4.80) is then discretized by 

f-(Pi+1) - f_(pi) + f+(Pi) - f+(Pi-1) 
h 

( 4.82) 

This yields an upwinding discretization. 'vVe omit further details of the implementation 

which may be found in [42]. 

We applied Osher's scheme to our problem in the case of an Eikonal reflectance map. 

For the curve z = sin( 1l'X), the algorithm did not converge for ,\ = 1.0 x 10-3
. The 

non-converged solution demonstrated an inversion in the neighbourhood of the singular 

point just as was observed for our simple upwinding scheme. For the curve z = -x4
, the 

algorithm converged for ,\ = 1.0 x 10-5 and produced a spurious transition layer at the 

singular point just as for our algorithm. It appears that nothing is to be gained from 

this approach. 

4. 7 Alternative Discretizations for the Two Dimensional Problem 

More recently, Sidilkover & Ascher [48] have suggested a more complicated upwinding 

scheme for the two dimensional. incompressible Navier-Stokes equations. The scheme 

applies an upwinding discretization only when the advection terms are sufficiently large. 

vVhen the advection terms are small (in particular, across a turning point), artificial 

viscosity is added and central differencing is used to discretize the advection terms. 

For the equation 

L( , ) ·- 1n2 +•) +•J _ E p. q .- -AV JJ ~PPx ~qpy - x ( 4.83) 
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the discrete differential operator, Lh(P, q) becomes: 

(F,+½ -i - F,-1) + (G1 .. 1+ ½ - G\ .1-t l 
h 

+ 2pi,j(Pi+1,j - Pi-1.j) + 2qi,j( qi,j+1 - qi,j-d 
2h 

·where F and G are defined by 

G- ·+I = G~ ·+I + 1]· ·+l 'ca ·+1 t,J 2 1,J 2 i,J 2 1,J 2 
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( 4.84) 

(4.85) 

( 4.86) 

Here, a superscript a denotes aritificial viscous fluxes while b denotes a flux due to physical 

viscosity. The latter are given by 

b 7Ji,j +1 - Pi,.i 
G-+I =A---"---

t,J 2 h 

The parameters ~ and 77 are given by 

- { l2J1i+½) - '..>./ h} - { l2qi,j+½ I - 2,\/ h} 
~i+½,j - max 0. 12 . t I ' 17i,j+½ - max 0. l2q ·+•I 

P,+ 2 ,J 1,J :i 

Pi+l,j + Pi-1.j 
Pi+½,j = 2 

The artificial viscosity is added through the terms 

Ft+½,J = } i2Pi+½ ,) (Pi+i,i - Pi,i) 

Gti+½ = t12qi,j+½I (Pi,j+l - Pi,j) 

( 4.87) 

( 4.88) 

(4.89) 

( 4.90) 

(4.91) 

\Ve first tried this scheme on the surface z = - sin( 1rx) sin( 1ry) for which our simple 

upwinding scheme gives good results provided A is not taken too small. For this scheme, 

it was possible to take ,\ as small as 1.0 x 10-5 and still maintain good convergence. The 

error in the computed surface \Vas comparable to that produced by simple upwinding 

and there were no apparent flaws in the surface. 
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For the surface z = sin(7rx) sin(7ry), however, which yielded an inversion in the so­

lution for the simple upwinding scheme (Figure 4.5), the iteration did not converge for 

,\ = 1 x 10-2
• This behaviour is preferable to the earlier scheme because we can have 

more confidence in a scheme which does not converge when presented with a difficult 

problem than in one that converges to the wrong solution. Sidilkover & Ascher's scheme 

also diverged for the surface z = -(x4 + y4
) when >. = 1.0 x 10-3

_ For >. = 1.0 x 10-2, 

the iteration converged to a solution which yielded creases on the surface. 

It would appear that schemes which are apparently successful in computing solutions 

of the incompressible Navier-Stokes equations, may fail for a substantial class of shape 

from shading problems, that is, problems containing a singular point of sink or saddle 

type. In the next section we point out some important differences between solutions to 

the Na vier-Stokes equations and solutions to shape from shading problems. 

4.8 Navier-Stokes vs. Shape from Shading 

We now consider the conditions under which a solution ( u, v) to the incompressible 

Navier-Stokes equations (4.9) is equivalent to a solution (p,q) of the shape from shading 

problem ( 4.8) which contains a singular point. We have seen that when no singular points 

exist, our simple upwinding scheme performs well. The lack of singular points corresponds 

to a lack of stagnation points for the incompressible fluid flow. Of more interest is the 

case when singular points ( stagnation points) exist. Rotating or recirculating flows, 

which have closed streamlines ( characteristic curves) surrounding a stagnation point, do 

not have a corresponding analogy in the class of shape from shading problems since we 

have seen that the latter cannot yield closed characteristic curves. This leaves stagnation 

points that have characteristics flowing towards or away from them, that is, sources, sinks 

and saddle points. 
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Consider a source located at the origin towards which all streamlines (characteristics) 

flow. Let C be an imaginary circle of radius r > 0 centred at the origin bounding a 

domain D. By the Divergence Theorem we have 

j k v' · u dxdy = fc u · n ds ( 4.92) 

where u is the velocity field and n is the outward unit normal to the curve C. Now, an 

incompressible fluid is divergence-free and so equation ( 4.92) tells us that the net flux 

of fluid across C must be zero. This clearly is not the case given that all characteristics 

cross C in the direction towards the origin. There is therefore a net flux of fluid across 

C into D. Sinks can therefore not occur for an incompressible fluid flow. By the same 

reasoning, sources cannot occur either. It is possible, however, for saddle points to exist. 

Consider the flow whose velocity components are given by 

tt = 6xy, v = 3x2 
- 3y2

• (4.93) 

The corresponding shape from shading problem would be the surface whose height 1s 

given by 

( 4.94) 

Notice that the flow is in fact divergence free and that there is a stagnation point corre­

sponding to a saddle point at the origin. 

We applied our simple upwinding scheme to this surface. The exact surface is shown 

in Figure 4.27. The continuation algorithm proceeded to a value of ,\ = 1.0 x 10-6 and 

achieved solid convergence. The computed surface, found in Figure 4.28, had obvious 

flaws. 

We therefore appear to have constructed a problem which may give trouble for solvers 

of the incompressible :\'avier-Stokes equations. It is not clear to the author how large a 

class of problems is represented by this particular case. We point out that Sidilkover & 
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Ascher's scheme did not converge in this particular case for ). smaller than 1.0 x 10-2 

and that this behaviour is preferable to that of a scheme which solidly converges to the 

wrong solution. We also point out that the inviscid limit of a steady state incompressible 

Navier-Stokes flow may give an ill-posed problem, see Yavneh [58]. 

4.9 Discussion 

We have considered a solution technique based on upwinding which is commonly used for 

solving the incompressible Navier-Stokes equations. The latter system is similar to the 

two dimensional shape from shading problem although there are important differences -

we have seen that there are certain classes of problems that belong to only one or other 

of the systems. 

Our simple upwinding scheme appears to be successful in the absence of singular 

points. The class of surfaces having no singular points is somewhat uninteresting, espe­

cially in the case of overhead illumination. Such surfaces would have no local maxima, 

minima or saddle points. 

In the presence of singular points corresponding to sinks our scheme has often con­

verged. even for small values of >.. to a solution which is not close to the exact solution 

in the sense that it contains nonrandom, spurious features. In such cases, the computed 

solution would be considered feasible had the exact solution not been known. This is 

particularly bad since. in general. we can have no confidence in the computed solution. 

Other schemes based on simple upwinding have been tried and have also failed. 

Sidilkover's scheme has the advantage that it does not converge for values of ). which 

are reasonably large. This would indicate problems in the event that we did not know 

the exact solution and. as a result. we would be less likely to accept a spurious solution. 

However, the large class of problems containing singular points are still not handled 



Chapter 4. Upwinding Schemes 149 

satisfactorily by this scheme. 

We suggest that at the root of the problem is the fact that for the shape from shading 

problem, a singular point will have characteristics either flowing towards or away from 

the point. We have seen that the case when characteristics flow towards the point are 

particularly prone to difficulty. The requirement that solutions propagating from different 

parts of the domain converge at a singular point with the same solution is rather stiff. 

\,Vhen characteristics flow towards the singular point we have no way of avoiding this point 

at which our system becomes singular. For the case of a source, any perturbation near the 

source will be propagated into the rest of the domain. This behaviour is quite different 

from the case of a recirculating flow where characteristics flow around the stagnation 

point and not towards or away from it. 
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Conclusion 

This thesis has sought to explore computational methods for the shape from shading 

problem. Our hope was to better understand the mathematical nature of the problem 

and to obtain robust, efficient methods for its solution. Our investigation took us in three 

directions. 

In Chapter 2 we considered stable, implicit numerical schemes for the method of 

characteristic strips. This formulation of the shape from shading problem was one of the 

first to be considered historically. Earlier authors who had used less stable numerical 

schemes, reported a strong sensitivity of the solution to noise in the image data. We 

have shown that this sensitivity is also present for more stable numerical methods. The 

method of projected invariants, in which the solution at each step is projected onto the 

invariant manifold defined by the image irradiance equation, helped to reduce the effects 

of noise but not to the extent that we could be happy with the resulting computational 

procedure. Particular difficulties are associated with the existence of singular points 

where characteristics tend to converge. This can lead to characteristics crossing and 

therefore yielding multiple solutions. We considered images containing only one singular 

point and, based on the difficulties arising from this fairly simple case, concluded that the 

method would not be viable in the more realistic case of an arbitrary number of singular 

points. 

In Chapter 3 we considered Horn's variational technique [22] as a basis for producing 

a fast multigrid solver for the shape from shading problem. Of all the formulations of 
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the shape from shading problem, including those of Chapters 2 and 4 and a variety of 

regularization techniques in the literature. this variational formulation was found to be 

the most promising. However, the iterative solution method used by Horn was rather 

slow. In order to obtain a fast algorithm, we first changed the discretization scheme. • 

We used a finite volume discretization on a non-staggered grid. For this we developed a 

special variant of the nested multigrid method (FMG ), where continuation in the regular­

ization parameter >. is systematically applied within the multigrid nesting. In conducted 

tests, the resulting algorithm yields solutions which are both qualitatively and quantita­

tively similar to those produced by Horn ·s scheme, but in minutes rather than hours of 

computing time. 

Horn's formulation was extended to allow for multiple image data and the incor­

poration of explicit knowledge of the location of discontinuities in surface height and 

orientation. The performance of the algorithm was tested for different choices of bound­

ary conditions and differing numbers of input images. The algorithm's performance was 

least acceptable when discontinuities were present in the domain and natural boundary 

conditions were used for both the gradient and surface height. However, the performance 

under these circumstances was greatly improved when multiple images were used. We 

tested the algorithm on synthetic data ranging from a simple hemisphere to a complicated 

digital terrain model. When the data from three images was available to the algorithm, 

the results were excellent. We conclude that when given the same information as for 

photometric stereo, our algorithm produces comparable results. 

A class of solution techniques, namely upwinding schemes for a flow formulation, 

which is new to the shape from shading literature was examined in Chapter 4. We took 

our lead from solution methods for the incompressible Navier-Stokes equations. The 

latter were shown to be of a similar form to a certain "flow" formulation of the shape 

from shading problem. We showed that in the absence of singular points the algorithm 
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performs well given Dirichlet boundary data on the surface slopes and data from only 

one image. However, certain problems arose in the presence of singular points, especially 

such points which can be viewed as sinks for the flow of characteristics. We explain that 

under these conditions the problem is ill-posed. We sought a solution to the problem 

bearing in mind the potential difficulties that can arise due to the ill-posed nature of 

the problem. We demonstrated that when a singular point is present in the domain, the 

algorithm is prone to produce spurious solutions. The latter occurred only for singular 

points which act either as sinks or saddle points in the flow of characteristic curves. 

Through a study of the analogous one dimensional problem, we justified the form of 

anomalies that are present in the computed solution. The most disturbing observation is 

that the error, which in general is unavoidable, accumulates in a particular fashion which 

does not appear random and causes noticeable spurious effects. 

A comparison was made between the class of shape from shading problems and the 

class of problems arising from the flow of an incompressible fluid. We showed that singular 

points that act as sinks cannot occur in an incompressible fluid flow. The difficulties 

experienced for such shape from shading problems cannot therefore be encountered in 

the fluid mechanics setting. However, we showed that singular points which act as saddle 

points in the flow, may occur in both types of problems. 

vVe have shown that when singular points are present in the domain, our algorithm 

can readily converge to a wrong solution which could be considered feasible if the exact 

solution were not known. It was seen that other algorithms based on upwinding also 

produce spurious results. The poor performance of these algorithms was attributed 

to the ill-posed nature of the problem when singular points are present. We therefore 

concluded that we can have no confidence in such an algorithm given that singular points 

are typically present in a very large class of shape from shading problems. 

Of the three directions which we have pursued here, the two based on. or related 
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to, characteristic flow have yielded some very curious results. They did not yield hope 

for a robust algorithm for the shape from shading problem. The variational (and regu­

larization) approach has yielded the most promising results. Of the various variational 

formulations, Horn's [22] is particularly promising. vVe have proposed a very efficient 

algorithm for the numerical solution of this formulation. It could be used to further 

explore the viability of shape from shading as a component of a computer vision system. 
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