
TESTG EN+ : An Environment for
Protocol Test Suite Generation,

Selection and Validation

Sangho Lee and Son T. Vuong
Technical Report 93-25

July 1993

Department of Computer Science
University of British Columbia

Vancouver, B.C.
Canada V6T 1Z2

TESTGEN+: An Environment for Protocol
Test Suite Generation, Selection and Validation

Sangho Lee*and Son T. Vuong

Dept. of Computer Science
University of British Columbia

Vancouver, BC Canada V6T 1Z2
Email : shlee@cs.ubc.ca, vuong@cs.ubc.ca

Abstract
Protocol testing is an important phase in the overall protocol development

process. In this paper, we present and discuss TESTGEN+, an integrated
environment for protocol test suite generation, selection, and validation, devel­
oped at the University of British Columbia. This environment is menu driven
and unique in that it is constraint oriented, and is thus general and flexible.
It is based on an intermediate extended transition system formalism and test
coverage metrics and directly supports ASN .1 and Estelle. The test genera­
tion component TESTGEN deals with both the control flow and the data flow
testing. Test selection, TESTSEL is based on coverage metric and is useful in
reducing the size of a large test suite generated. Test generation and selection
are integrated and guided by user-defined test suite generation constraints and
parameter variation constraints as well as test selection parameter constraints.
In addition, a test validation facility, TESTVAL, is integrated into TESTGEN +
to allow for the validation of test cases with respect to a given specification.
The environment will serve as a useful test-bed for experimenting with protocol
test generation, selection, and validation as well as being a productive system
for developing useful test suites for real-life protocols.

1 Introduction

To ensure i_nterworking among communication systems, protocol implementations

should be submitted to a test center for conformance testing [ISO-a] . An implementa­

tion under test (IUT) is said to conform to the respective standard if no discordance

•sangho Lee is a visiting research professor from Chungbuk National University of Korea.

1

between the external behavior of the IUT and the standard can be found. To detect

potential errors in an IUT the test system exchanges service primitives (SP) with the

IUT according to the test scenarios in a test suite. CCITT and ISO have developed a

standard notation to describe test suites for OSI conformance testing, known as the

tabular and tree combined notation (TTCN) [ISO-b].

The generation of TTCN test suites is a tedious and repetitive process. Test suites

must often be updated or rewritten because both the protocol specifications and the

TTCN standard are subject to periodic modifications. Also the test suite should

be reliable enough in terms of coverage to provide a confidence on the conformance

testing results [McA-92]. Thus an environment for test suite generation, selection and

validation will be essential for protocol conformance testing.

Most well known protocol test generation methods are based on the finite state

machine (FSM) model and are thus inherently limited to the testing of the control

flow part of the protocol [Sid-89, Fuj-91]. The data part of OSI protocols is often more

complex than the control part, specially in higher layer protocols. In order to ascertain

the correctness of a protocol implementation and its conformance to a standard, it

is essential to test on both the control part and the data part of the protocol. Some

techniques have been proposed to handle both the control flow and the data flow of

protocol, using basically static data flow analysis [Ura-88], and parameter variations.

In general, these techniques generate very large test suites, especially those dealing

with data flow testing. Test selection is thus essential to reduce large test suites to

manageable subsets, which retain the "most representative" test cases. Objective

coverage measures are needed to guide the test selection process (Vuo-91]. When test

suites are developed heuristically, their validations are necessary to ensure the test

suites developed are valid according to some formal specification. The problem of

test validation is basically equivalent to the one of trace analysis since a test case can

simply be viewed as a trace.

In this paper, an integrated environment for test suite generation, selection, and

validation, called TESTGEN + is discussed and the experiments performed using

2

TESTGEN+ are presented. TESTGEN+ consists of three major functions: test

suite generation, selection, and validation, which can be used separately or in combi­

nation. The remainder of this paper is organized as follows. Section 2 provides some

theoretical background material for TESTGEN + including the definition of the ex­

tended transition system (ETS), testing distance, and coverage metrics. An overview

of TESTGEN + is presented in Section 3 with the three components, TESTGEN,

TESTSEL and TESTVAL, which are explained in more details in the subsequent sec­

tions. Section 4 describes the test suite generation(TESTGEN) component, including

a brief overview of the data structure for the internal protocol representation, the

Estelle and ASN.l parser, the constraint editor and the test suite generation (TSG)

engine. In Section 5 we present the test case selection (TESTSEL) algorithm based

on coverage metrics. Test validation (TES TV AL) for protocols specified in Estelle is

discussed in Section 6. We explain briefly how to use TESTGEN+ in Section 7. In

Section 8 we present and discuss the overall results obtained from some well known In­

Res, TPO and LAPB protocols using TESTGEN+. Finally, some concluding remarks

and suggestions for further work are offered in Section 9.

2 Theoretical Background

In this section, we introduce some basic concepts and relevant definitions used in the

theories behind TESTGEN+. TESTGEN+ accepts a single-module Estelle specifica­

tion and ASN.l specification which are assumed to be error-free and to conform to the

standard. The accepted specifications will be transformed into an internal formalism

called extended transition system(ETS). The following basic definitions are used.

Definition 1 A finite state machine (FSM} Fis defined as a 4-tuple F=< S, L, :E, / 0 >.

• S is the set of states of F.

• L is a set of labels on the transitions of F and each label is represented in the

format "input symbol/ output symbol".

3

• E ~ S x L x S is a relation of the transitions.

• I 0 is the initial state. □

Definition 2 A single-module Estelle specification Eis defined as a 5-tuple E=<S,P,D..,I0 ,D>.

• S is the set of states of E.

• P is a set of program segments, each program segment associated with a transi­

tion of E.

• D.. ~ S x P x S is a relation of the transitions.

• I 0 is the initial state.

• D is declaration and/or initialization of variables and interaction service prim­

itive. □

The FSM F can be viewed as an abstraction of the corresponding Estelle specifi­

cation E. When the domain sizes of the parameters of the service primitives are small

and also the interaction service primitives and their parameters can be enumerated the

mapping from an Estelle specification E to a finite state machine F is straightforward

[Lu-91].

Definition 3 An extended transition system {ETS) is a quadruple ETS = (Q, E, ~, qinit)

• ''Q = States x Variables x Constants x Timers" is the set of states of the

ETS.

• "E = ISP U OSP U PDU" is the set of events of the ETS.

• "~~ Q x E x Q" is the transition relation for the ETS.

• "qinit E Q" is the initial state of the ETS. □

4

The ETS model we use is based on Keller's labelled transition systems [Kel-76].

Since we are parsing Estelle and ASN .1 specifications to generate an internal protocol

data structure (PDS) of the ETS, we borrow the Estelle terminology in naming some

of the ETS elements. A transition can be executed iff an ISP and/or PDU associated

with the transition(if any) is received and if the enabling predicate is true. As the

transition fires, the associated action function is executed atomically. Variables and

timers are set, OSP(s) and/or PDU(s) are assembled and sent. The semantics of

enabling predicates and action functions are similar to the semantics of the Estelle

enabling clauses and statements except for two important protocol aspects: the data

part of ISPs, OSPs, PDUs and the time handling.

Definition 4 Subtours(X,S1,S0 , CJ is the set of all executable paths(subtours) from

an initial state Si to a final state S 0 which is the initial state of an Estelle (or finite

state machine) specification X with Constraint C. □

Typically Si = S0 since most communication protocols begin and end at the same

initial state S0 • Test cases based on subtours have two advantages : First, the initial

state (usually "idle") is the most stable or trustworthy protocol state and can always

be reached (e.g. with "reset"). Second, a "user session" with the IUT will most

naturally start and finish at the initial state so that a subtour can be mapped to

a meaningful test case with a well defined test purpose. The constraint C bounds

the set of feasible paths and includes restrictions on the iteration number of while

loops and transition loops, and conditions limiting the domain space of variables and

interaction service primitive parameters for Estelle. Since finite state machines have

no program segments and do not deal with data and predicates, the constraints C1

of a finite state machine derived from an Estelle specification E using the mapping

procedure [Lu-91] is a subset of the constraints Ce of E.

Definition 5 The set of test cases TC generated from a specification X (E or F) with

constraints C, initial state S,, and final state S 0 , is TC= {tc I tc = T(p) such that

p E Subtours(X, Si, S 0 , C)} where T is a one-to-one function from a path to a test

5

case tc. □

The set TC consists of a set of test cases tc exhibiting external behaviors of specifi­

cation X. A test case tc (sometimes called test sequence or derivation interchangeably)

can be represented by a sequence of input and output service primitives.

Definition 6 A test case tc is valid with respect to specification X if it corresponds

to an element in Subtours(X1Si 1S 01 C) derived from the specification X. □

Definition 6 states that a test case tc of a specification X with constraints C is

valid with respect to the specification X if the external behaviors of the test case is a

subset of the allowable behaviors specified by X.

Definition 7 Let A= (a1 ,a1), ... ,(aK,aK) and B = (b1,/31), ... ,(h,fh) be an ab­

stract representation of two test cases. Every ai and bi consist of input and output

service primitives, Ii/Oi and lj/Oi respectively. And each O:i and /3i is number of

recursion of the ith and jth service primitive element ai and bj, respectively. The

measure of the difference between the levels of recursion of the respective kth elements

of two test cases A and B of length I(and L, respectively, is defined as follows:

{

0 if ak = bk and ak = f3k
8k = I o:k - /3k I if ak = bk and O:k i- f3k

oo if ak i- bk

fork= l, 2, ... , min{K, L}, and take Sk(A, B) = oo, formin{K, L} < k $ max{K, L}.

□

Definition 8 Let A and B be two derivations in a test suite TS. In abstract repre­

sentation, A = {(ak, o:k)}f=v and B = {(bk, .Bk)}f=v K,L E NU { oo}. The testing

distance dt between any two derivations A,B in TS is defined as follows:

6

where Pk represents the weight of the kth service primitive element reflecting the

weight of the computational pattern and r(8k(A, B)) represents the weight of the dif­

ference in the level of recursion of that element within the derivations. □

Definition 9 The coverage of a (sub)set of test cases TC with respect to a test suite

TS is defined as

where

and

COV(TC, TS)= l - m(TC, TS)

m(TC, TS) = sup{d(z ,T~ la;ETS\ TC}
Ek=l Pk

d(x,TC) = inf{dt(x,y) I y ETC}

where m(TC, TS) represents the normalized distance between TC and TS and

d(x, TC) represents the distance between element (test case) x and the set TC. □

More details on testing distance and coverage metrics can be found in [Vuo-91].

3 Overview of TESTGEN+

Well known hardware and software test methods have been applied to conformance

testing with various degrees of success. [Hsi-71] describes checking experiments for

fault detection in sequential machines in which a "machine under test" is checked

against a state table definition. Refinements of this method have led to the tra'nsition

tour method [Nai-81] and characterizing sequence based methods such as U [Sab-88],

D [Gon-70] and W-methods [Cho-78]. The papers by Sidhu [Sid-89] and Fujiwara

[Fuj-91] provide a nice survey and comparison of these methods. Even though these

methods have been widely improved and optimized [Cha-89] [Vuo-89] they still have

two major shortcomings. First, they are weak in discovering errors due to additional

states or transitions in the implementation. Second, they only address the control part

7

of protocols. TESTGEN + is a protocol TEST Generation, selection, and validation

ENvironment for conformance testing developed at the University of British Columbia

[Vuo-93]. The environment provides a menu-driven interface for generating, selecting

and validating protocol test suites. The test suite generation component incorporates

both the control flow testing and the data flow testing with parameter variation. Both

types of testings are controlled by a set of user-defined constraints which allows a user

to focus on the protocol as a whole or just on restricted areas of the protocol during

test suite generation. This constraint based test suite generation method is general

and flexible, and can produce test suites with a various levels of fault coverage and

complexity by using appropriate constraints. TESTGEN + has been used to gener­

ate, select, and validate test suites for practical protocols such as the lnRes, OSI

class O transport and LAPB protocols [Vuo-93]. The overall functional structure of

TESTGEN + is depicted in Figure 1. TESTGEN + consists of three major functions:

Test Cases

Selected Test Cases

Modified Estelle+ ASN.l

Protocol Specification

Protocol Data S lnlcture

TESTGEN

USER Test Cases

Constraints Editor

TSG Constraints

Validated Test cases

Figure 1: Overall Structure of TESTGEN +

TESTGEN, TESTSEL and TESTVAL for test generation, selection and validation,

8

respectively. The frontend modules of TESTGEN + include the parsers which accept

a protocol description in Estelle. Y (a slight variant of Estelle) and an ASN .1 descrip­

tion of the ISPs, OSPs, and PDUs. Via a constraint editor, the users can define the

control flow constraints by specifying the minimum and maximum usages of protocol

states, transitions, ISPs, OSPs, PDUs, internal variables or timers. Parameter vari­

ation constraints can also be defined for each field of the ISPs or PDUs where each

parameter field is varied independently of the other fields to generate more suitable

test suites. Once the PDS is produced and all the constraints are defined, the module

TESTGEN will identify the subtours within the specification which satisfy the given

usage constraints. Each subtour undergoes the parameter variation as defined by the

types of service primitives in the subtour and by the parameter variation constraints.

After all unique subtours have been detected, TESTGEN returns to its main menu

interface and allows the user to alter the previous constraints to (re)generate a mod­

ified test suite, or to select the other functions such as TESTSEL or TESTVAL.

The second module TESTSEL' is based on the concept of testing distance and cov­

erage metric and performs test selection from the subtours generated by TESTGEN.

The metric dt defined in Definition 8 captures the main sources of protocol spec­

ification complexity, namely recursion and· parallelism, and forms the basis of the

multipass selection algorithm [McA-92]. TESTSEL accepts as input the control se­

quence of an arbitrarily large test suite. The user can then define some constraints

to be used in the test selection algorithm: the minimum target distance (Emin), the

scale value for each pass, and the maximum cost (maxCost). The user can also define

the pattern and weight function, Pk and rk respectively according to some external

expert's knowledge. TESTSEL selects test cases which satisfy the given constraints

from the subtours generated by TESTGEN. Thus, this module can run concurrently

with TESTGEN or can be used independently of the other modules.

The last module TESTVAL checks whether a given test case is valid with respect

to a given specification. TESTVAL makes use of the PDS produced by the frontend

parsers to perform test case validation for a given stream of test cases. It also produces

9

some helpful information for diagnosing errors in invalid test cases.

4 TESTGEN

Depending on the constraints specified, TESTGEN can generate an arbitrary number

of subtours which satisfy an arbitrary number of specified conditions on the external

behavior of a protocol implementation. A separate test case is generated for each

subtour. TESTGEN consists of two major functional modules: the test generation

module and the output module. TESTGEN also makes use of the PDS generated by

the frontend parsers and the constraints produced by the constraint editor. The PDS

and these relevant modules are described in this section. The detail components of

TESTGEN are depicted in Figure 2. A formal Estelle.Y and ASN.1 protocol specifi­

cation are parsed to generate a PDS for the internal representation of the extended

transition system. The TSG and parameter variation constraints are set to default

values that can be interactively modified by the user with the constraints editor.

Based on the PDS and the TSG constraints the test suite generation engine identifies

all the subtours of the protocol graph that fulfill the TSG constraints and generates

three kinds of outputs : first is an abstract TTCN test case for each identified sub tour,

second is a local formal form for test case validation and the last is a graphical form

for the user.

4.1 Protocol Data Structure(PDS)

A protocol data structure representing a complete real-world communication proto­

col, e.g. X.25, OSI transport or session layer, is very complex. In order to keep the

data structure manageable we adopt a structure similar to the object descriptor access

concept [Lu-91). Each PDS element (e.g. a state or a constant) is allocated its own

data structure. The pointer to this specific data structure is stored in a two dimen­

sional central PDS structure. This pointer can be retrieved via the PDS element's

type (STATE, VAR, ISP, ...) and key (type specific array index). Each PDS element

is thus uniquely referenced by its type and its key.

10

.I
·i

Protocol Specification

Estelle. Y Specification

Tl!STGBN Paner

TSG Comtrainta

Teo! Suite Geceration (TSO) &gin6 Module

Subtnun

Output Module

Teo! Suibll I

ASN.1 Specification

ASN.J Parser

Constraints

Bditor

Figure 2: Structure of TESTGEN

User

The data types used to represent states E STATES, variables E VAR, timer E

TIMER and constants E C are mapped from the PDS definition.

The ISP, OSP and PDU data types are stored as the parameter structures in

ASN .1 enode trees [Sam-90].

The data type representing transitions E T contains the keys to the following

elements:

• the state from which the transition can be fired,

• the state to which the transition is leading,

11

• the priority of the transition (set to default if not defined),

• the ISP, OSP(s) and input and output PDU(s) associated with the transition,

• the expression representing the enabling predicate of the transition,

• the action function representing the action function.

Expressions and action functions are represented with a recursive data structure by

using the following additional data types: TEXPR for timer expressions, CSTMT for

compound statements, IFSTMT for if statements, ASTMT for assignment statements

and TSTMT for timer statements. The detailed definition of the PDS representation

can be found in (Lu-91).

Since memory use is not an issue for this static data structure the PDS represen­

tation is designed to be slightly redundant. The advantages of this redundancy are

twofold. First, this scheme guaranties easy access to most PDS elements (by reducing

the number of pointer indirect references). Second, some static consistency conditions

on PDS are defined and can be verified for each generated data structure.

4.2 Parser

The parser takes into account both the control and data flows of formal protocol

specifications. This module parses the Estelle.Y / ASN.l specifications and translate

them into the PDS of the ETS. The ASN.l parser [Sam-90) is used to parse the ASN.1

specification of PDUs and SPs into ASN.1 type trees. The generated ASN.l type trees

are linked to the PDS when the Estelle.Y specification is being parsed. As a result,

the PDS includes both Estelle.Y and ASN.1 protocol information generated from

an Estelle.Y / ASN.1 specification. Estelle.Y uses an ETS to model the observable

behaviors of a protocol, and ASN.l is used to model the data representations(PDUs

and SPs) of the protocol. The main differences between Estelle. Y and the normal

form specification(NFS) which is used in many test generation methods based on

Estelle , are that Estelle. Y uses ASN. I and supports more Pascal statements such as

12

the conditional and loop statements as well as some timer primitives in the ASN.1

(TTCN) style. The structure of ISPs, OSPs and PDUs in Estelle.Y are specified

in ASN.1. The ASN.l parser was developed using the UNIX Lex /Yacc tools, and

produces an ASN.1 type tree from an ASN.1 specification. The PDS is designed to

be a machine accessible form of the ETS/ ASN.1-based formal description. It holds

information of both the control and the data flows of a protocol specification. The

ISP, OSP and PDU data types are stored in the data structures of the ASN.l type

trees.

4.3 Constraints Editor

The constraints editor module provides the user with an interactive screen-oriented

interface for defining of constraints. The user can modify the values of the "min_"

and "max_" default constraints values as well as the parameter values of the SPs or

PDUs to be sent to the JUT. From one to ten parameter values can be assigned to

each parameter of a SP or PDU. It should be noted that the term "constraint" we use

here has a different meaning from the one used in TTCN. In TESTGEN, a constraint

is a boolean predicate that has to hold for each subtour. A subtour is generated for

each branch of the behavior generated by the test generation (TSG) engine which

will be described in Section 4.4, for which all the constraints are fulfilled. Constraints

have two types : one is the max and min usage conditions for all ETS elements,

states, transitions, ISP, OSP, PDU, constants, variables, and timers; the other is the

parameter variations which define a set of values for each parameter of each ISP or

PDU.

4.4 Test Suite Generation Engine

This is the main module of TESTGEN; it identifies and generates all the subtours

based on the PDS obtained from a given specification and a set of constraints. The

subtour identification algorithm performs an exhaustive depth first search over the

behavior tree representation of the protocol. A test-branch of this tree is said to

13

be valid if and only if the subtour associated with this branch fulfills all the defined

constraints. A global constant "MAXUSE' limits the value range of the max_reached

and max_used constraints. These constraints limit the length of each valid test-branch.

In each state only a finite number of transitions can be applied according to the

protocol specification. The parameter variation constraints on the parameter of the

service primitives exchanged in each transition limits the number of different instances

of the service primitive in that transition. Thus the length and the number of different

valid test-branches(subtours) are kept finite so that the backtracking algorithm is

guaranteed to terminate.

The test suite generation algorithm is initially called as :

Generate....subtours(ET s, Cmin, Cmax, qinit, Uo, qinit),

where Cmin is a vector of all the minimal constraints, Cmax is a vector of all the

maximal constraints, q denotes the current state, u denotes the vector representing

the current record of use of all elements so far for the current subtour, u0 means the

vector of zeros representing the initial use of all elements, and ST denotes subtour.

CV is a set of all parameter value combinations allowed by the parameter variation

constraints.

The test suite generation algorithm is succinctly given as follows:

Test Suite Generation Algorithm

Generate....subtours(ET S, Cmin, Cmax, q, u, ST) :=

Find transitions in the ETS that can possibly be fired at state q ;
For each such transition t do

if event of transition tis an ISP or IPDU
For each ISP or IPDU parameter value combination v E CV do

if Enabling_predicate (t,v) is true
{
q' +- Apply action function to state q and event (IPDU or ISP);
u' +- u + Use_oLelements(action function of transition t);
ST' +- ST + {(t v)};
if u' ~ Cmax

14

enddo

{
if Maj or _state(q') = Maj or _state(qinit)

if U 1 ~ Cmin
Output....subtour(ST');

Generate....subtours(ET S, Cmin, Cmax, q', u', ST');
}

}

else /* spontaneous transition with a PROVIDED clause and no WHEN clause * /

enddo

if Enabling_predicate (t) is true
{
q' +- Apply action function to state q;
u' +- u + Use_oLelements(action function of transition);
ST' +- ST + {(t, q')};
if U

1 ~ Cmax

}

if Major _state(q') = Major _state(qinit)
if u' ~ Cmin

Output....subtour(ST') ;
Generate....subtours(ET S, Cmin, Cmax, q', u', ST');

4.5 Output Module

The output module produces the result of the test generation. There are four subtour

output formats. The first is a graphic form for visuality. The second contains only

the control parts which can be fed into TESTSEL for test selection. The third form

is a local formalism which can also be used in TESTVAL for test validation. The

last form is TTCN .MP for convenient interface with a TTCN workbench or other

TTCN.MP support tools.

5 TESTSEL

TESTSEL has the function to select test cases from a test suite such that the test

cases form an approximation to the test suite within a specified degree of coverage

tolerance. It can also accept a test suite generated from TESTGEN or some other

test suite specified in the appropriate input format. TESTS EL consists of three major

15

functional modules. The detail structure of TESTSEL is shown in Figure 3. Test suite

1 and 2 in Figure 3 have same form and contents. A test suite to be selected is filtered

to generate uniqued test suite which have only control parts and are unique each other.

User can set and modify the parameter values for his selection purpose. Using the

uniqued test suite and parameter value list, selection module selects test suite and

calculates test coverage. If the test coverage is satisfied by user, he can run merge

module to recover all original test cases which have both the control part and data

part and are within the test coverage.

THI Suite 1

Filllling MOGlle

Uniqaod Tool Suite

l'tlr"""l<n Val"" U■t

Selection Madole

Seloc:lld Tat Sailo

Merge Modale

S..Clld Tai Snill I

Panmeten

Editor

Figure 3: Structure of TESTSEL

5.1 Filtering Module

U■er

TESTSEL performs test selection based only on the control flow information of proto­

cols. Thus, the test cases (which contain both the control and data fl.ow information)

16

produced by TESTGEN must be fed to a filtering module which strips off the data

part and produces only the control sequences. We use recursion depth a (or /3) for

the abstract representation of a control test case as shown in Definitions 7 and 8.

This module maps many data variant instances of a (control) test case into a single

control test case and produces an internal representation for each control test case to

be processed by the selection submodule.

5.2 Selection Module

The selection module selects test cases from an internal form of a given test suite

(produced by the filtering module) using some user defined constraints. These con­

straints include the testing distance definition parameters Pk and r1c, and the test

selection constraints: the maximum cost and the initial and minimum coverage tol­

erances f. and €.min (test selection radius), as well as the radius scale factor for each

pass. The multipass algorithm selects test cases to maximize coverage subject to the

cost constraint. Since it is proven that all Cauchy sequences converge in the metric

space and since successive passes of the algorithm with successively narrower test se­

lection radius will produce such sequences, the test selection algorithm is guaranteed

to yield a set of test cases which converge to the initial test suite as more test cases

are selected [McA-92]. This guarantees that no specific (subsets of) test cases are

missed out due to mere overlooking, a problem commonly encountered in a manual

test selection process.

The algorithm begins with an empty set of selected test cases TC. For each con­

trol sequence in the test suite, we compute its minimum distance to the sequences

already present in the set of selected test cases. The control sequence is added to

set TC if this minimum distance is greater than the test selection radius f. Once all

the sequence in the test suite have been examined we shrink the test selection radius

f. by a user-defined scale factor and reiterate the algorithm without emptying the

set TC. Thus, each pass of the algorithm guarantees that the nonselected test cases

are at most a distance f. from the selected ones. The reiteration continues until we

17

reach some minimum test selection radius Emin or the execution cost of TC exceeds

a user-defined maximum cost value. Some a-pruning techniques provide an efficiency

gain when the distance of a control sequence to a set TC is computed. In most cases

we are mainly concerned with whether or not this distance is above or below some

value E. Once the distance is below E, the search through the remaining test cases

can be avoided since the distance can only decrease from this point onward. The test

selection algorithm is succinctly given as follows:

Test selection algorithm

Test....select(T S, E, Emin, scale, maxCost, TC) :=

TC +- { };

curCost +- O;
overflow Jlag +- False;
while (f ~ Emin) and (overfl.owJlag = False) do

reset TS;
while (unprocessed test case remainded in TS) do

tc +- consider a test case in TS randomly;
dist +- MintcETC { dt (tc,TC) };

enddo

if (dist > t:)
if (Cost(tc) + curCost < maxCost)

{
TC +- TC U { tc } ;
curCost +- curCost + Cost(tc);
}

esle
overflow _flag +- True;

Mark tc as processed;

E +- E x scale;
enddo
Calculate test coverage according to Definition 9;

5.3 Merge Module

The merge module reproduces the selected test cases in the original form which has

both control flow and data flow information, i.e. all of their original instances as

18

generated by TESTGEN. This is possible since the (selected) control test cases have

pointers to all of their instances. Using pointer information, this module merges the

original test suite and the selected control test cases to produce all of the final selected

test cases which contain both the control and data fl.ow information.

6 TESTVAL

TESTVAL allows the checking whether a given test case is valid with respect to

a given Estelle specification. TESTVAL makes use of the PDS generated by the

frontend parsers from a protocol specification in Estelle. Y and ASN .1. TES TV AL

consists of three major functional modules: the preprocessor, the validation module

and the output module. The detail structure of TESTY AL is depicted in Figure 4.

The TESTGEN parser which accepts Estelle.Y and ASN.l specification is exactly

same as parser of TESTGEN. The preprocessor translates some transitions into more

suitable forms for the fast and efficient processing of test case validation. The main

module starts in the initial state for each input test case and can handle two types

of parameter values such as integer and boolean. There are data structure contains

information such as a number of transitions and next state of each transition with

respect to the same current state. Also the current poi;nter of test cases being processed

is kept in order to the right position in the input test case.

6.1 Preprocessor

The preprocessor consists of two submodules and converts certain types of transitions

in the specification into a more suitable form for the main processing. Its function is

to improve the performance and efficiency of the main module.

It produces a list containing ISP (or OSP) parameters and their types using an

ASN.l type tree generated by the ASN.l parser. The ISP (or OSP) parameters in the

list are assigned values according to the Estelle specification. It also translates the

EFSM form of an Estelle.Y specification into a simple FSM form [Kim-92]. Instead of

enumerating all possible combinations of service primitives and their parameters, some

19

Test
Cases

Protoool Specification

1ESTGEN Parser

Protocol Data Structure

Main Module

Internal Results

Output Module

Results

Figure 4: Structure of TESTY AL

Estelle.Y

TESTVAL

Preprocessor

parts of the enumeration are realized based on the cost-effectiveness consideration.

The "PROVIDED" clause of a transition corresponds to the input condition of the

transition. If the clause consists of ISP parameters with values and operators such as

"EQUAL" and "AND", it is considered to be a list of input symbols of a transition

of the FSM.

In order to make output symbols of a transition of the FSM correspond to the

ones of the EFSM, the assignment statements are checked to select those consisting

of OSP parameters with values.

20

6.2 Validation Module

The validation module validates given test cases, TS with respect to the PDS of the

protocol specification. To achieve this goal, it makes use of some data structures.

"Paths" contains information such as the number of transitions, "from..state" and

"to_state" for each transition in the path. "From..states" and "to_states" are imple­

mented by array and contain the state information of the system, via the values of

related variables and the information on all candidate transitions at these states. The

pointer "no_proc" keeps track of the processing position of the event in the test case.

For each candidate transition, the values of variables and service primitives from the

test case are substituted to the symbolic representation of the PDS. If the predicate

and the output primitives of a transition are satisfied in the test case, then the test

case is valid according to the formal specification. The algorithm in the validation

module is given as follows:

Test validation Algorithm

TesLvalidate(ET S, TS, Jrom...state, Paths, no_proc) :=

Point to first test case;
while (not Eof(TS)) do

Read one test case into buffer;
Initialize Paths with from..state as initial state;
Set variables using the PDS;
Find a set of executable transitions {tr} at initial state;
while (3 events in test case) do

Set no_proc to 1;
while (3 unprocessed path) do

enddo
enddo

while (3 unprocessed tr at from..state) do
Call FIRE(tr, from..state, to_state);
if (firable)

Increment no_proc;
enddo

new Paths t-- current Paths;
if (3 no tr in the new Paths)

21

if (no_proc < I test case I)
Print "test case is invalid";

else
Print "test case is valid";

Read next test case into buffer;
enddo

The initial value of the "from....state" is an initial state of given protocol specifica­

tion. The function FIRE assigns values of parameters to the transition, sets "to_state"

by target state, copies values of variables at the "from....state" to the "to_state", and

searches all firable transitions and saves it in "Paths". The FIRE returns "True" if it

finds firable transitions at the given "from....state".

6.3 Output Module

TESTVAL logs the traces of states and transitions which satisfy the given test cases

in a file. If a test case is valid according to the given formal specification, TESTVAL

generates a message "test case valid" displayed on the terminal and in the log file.

Otherwise, if a test case is not valid, the position of the event in error is logged. Using

the information logged in the file and messages on the terminal, possible errors in

the test case with respect to the formal specification may be located. Whether the

test case conforms to the formal specification or not, TESTVAL keeps on processing

until there is no test case left. The logged information shows which transitions have

been executed. In some cases, more than one path of the transitions may satisfy

the test case as a result of nondeterminism. In that case we can follow those paths

using "transition keys" given in the file. Every transition has a unique "transition

key" identifying its location in the source of the Estelle specification. Therefore these

logged information could be helpful in locating and diagnosing the errors occurred.

22

7 How to use TESTGEN+

In this section, we briefly explain how to use our TESTGEN+. Basically TESTGEN+

were developed based on the user friendly interface mechanisms. Therefore user only

choose the number or character from menu with respect to his running purposeand

input some proper values for certain constraints or parameters. There are three ma­

jor functions in TESTGEN + : test case generation, selection and validation. With

the assumption of using same input formats there are many practical ways to use

TESTGEN+. The followings are typical ways.

• Test case generation.

• Test case selection with already generated test cases.

• Test case validation.

• Test case generation/validation.

• Test case generation/selection.

• Test case selection/validation.

• Test case generation/selection/validation.

8 Experiments

In this section, we discuss the experiments performed on TESTGEN+ using the InRes

protocol [Hog-91], the OSI class 0 transport protocol (TP0) [Vuo-93] and the X.25

LAPB protocol [Zho-92]. The overall major attributes of the above protocol speci­

fications are summarized in Table 1 and the experiments were conducted on a SUN

4/690 workstation running under UNIX.

23

Kinds InRes TPO LAPB
No. of States 3 4 6
No. of Transitions 21 21 132
No. of ISPs 6 6 5
No. of OSPs 5 5 6
No. of PDUs 5 5 1
No. of Timers 0 1 2
No. of Variables 2 8 20
No. of Constants 0 5 6

Table 1. Summary of Protocols Attributes

The InRes protocol consists of two parts: the initiator and the responder. For

simplicity, we deal with only the responder in our experiments. There are ten frame

types in LAPB protocol and these are represented by one parameter (frametype) in

our specification.

8.1 InRes Protocol

Since the InRes protocol is simple, we use it as the first protocol example frorri which

to generate, select, and validate test suite. The major min and max constraints values

for the InRes protocol to generate test cases in our TESTGEN experimentation is as

follows:

1. State
Disconnected (0/1), Wait (0/6), Connected (0/8)

2. Transitions
For all transitions (0/99)

3. ISP
For all ISP (0/1)

4. OSP
For all QSP (0/1)

5. PDU
For all PDU (0/1)

24

The followings are the major parameter variation constraints for ISP or PDU:

1. DT PDU
seqNo (0,1)
info (any value)

2. AK PDU
seqNo (0,1)

For test selection experiment, we choose the parameter values of the initial and

minimum test selection radii E, Emin, scale factor and maxCost as 1.8, 0.1, 0.5 and 60,

respectively. A linear cost function is assumed.

8.2 TPO Protocol

We use the TP0 protocol as the second protocol example from which to generate,

select, and validate test suite. The major min and max constraints values for the TP0

protocol to generate test cases in our experimentation is as follows:

1. State
idle (0/2), wftr (0/2), wfcc (0/2), data (0/2)

2. Transitions
For all transitions (0/99)

3. ISP
For all ISP (0/2)

4. OSP
For all OSP (0/2)

5. PDU
For all PDU (0/2)

We also define the parameter variation constraints. The followings are the major

parameter variation constraints for ISP or PDU:

1. TCRES ISP

25

qtsReq (11,27)

2. CR PDU
option (-100)

For test selection experiment, we choose the parameter values of the initial and

miminum test selection radii E, Emin, scale factor and maxCost as 1.2, 0.05, 0.5 and

270, respectively. .

8.3 LAPB Protocol

We use the LAPB protocol as the last example. It is much more complex than the

InRes and TP0 protocols. The Estelle.Y LAPB protocol specification has 6 states, the

ABMONE state was added to handle the while loop of the original LAPB protocol

specification. The major min and max constraints values for the LAPB protocol to

generate test cases in our experimentation is as follows:

1. State
SEND..DM {0/3), SEND_SABM {0/3), ABM (0/5),
ABMONE (0/3), WAIT..SABM (0/4), SEND_DISC (0/2)

2. Transitions
For all transitions (0/99)

3. ISP
For all ISP (0/1) except Dataindicat (0/3)

4. OSP
For all OSP (0/1) except DataRequest (0/3)

5. PDU
For all PDU (0/1)

The followings are the major parameter variation constraints for ISP or PDU:

1. Datalndicat ISP
frametype (0, 1,2,3,4,5,6, 7,8,9)
address (0)

26

pf(0,1)
nr (0)
ns (0)

2. Datalndicat OSP
frametype (0,1,2,3,4,5,6,7,8,9)
address (0)
pf (0,1)
nr (0)
ns (0)

The LAPB specification can deal with addresses (0,1), the nr and ns (modulo 8

system), however we simplify the parameter variation constraints to focus on the

control flow. For test selection experiment, we choose the parameter vaJues of the

initial and minimum test selection radii f, €min, scale factor and maxCost as 1.2, 0.1,

0.5 and 600, respectively.

8.4 Summary

The whole experiments performed with TESTGEN + are summarized in Table 2. The

number of generated test cases are dependent on the min and max constraints values

specified by user. The coverage measures express how much the selected test cases

cover the initial set of control test cases, and the measures vary with the parameters

t, fmin, and maxCost. For the InRes protocol, the 27 selected test cases cover the

initial 92 generated test cases with a 0.890625 coverage. For the LAPB protocol,

101 (control) test cases selected out of 566 (control) test cases would correspond to

a coverage of 0.9375. After merging, this leads to 1001 final test cases chosen out of

19,546 original test cases. This clearly indicates that the metric guided test selection

is particularly important when applying to very large test suites. Using TESTVAL,

Table 2 shows that test cases for the three protocols generated by TESTGEN have

100 percent of validity with respect to their specification, and this means the validity

of TESTGEN and TESTVAL checks out against each other, as expected since both

TESTGEN and TESTVAL are based on the same specification (or PDS). In summary,

27

from our experiments we find TESTGEN + is a useful and practical tool for protocol

test generation, selection, and validation.

Kinds ,nRes TPO LAPB
No. of Generated Test Cases 137 375 19546
No. of Control Test Cases 92 252 566
No. of Selected Test Cases 27 77 101
Value of Test Coverage 0.890625 0.968750 0.937500
No. of Merged Test Cases 39 113 1001
No. of Valid Test Cases 137 375 19546

Table 2. Summary of experimental results

9 Conclusions

This paper presents and discusses TESTGEN+, an integrated environment for test
suite generation, selection, and validation. These functions are implemented in three
modules: TESTGEN, TESTSEL and TESTVAL respectively. TESTGEN adopts
the TSG-constraints based test suite generation method which integrates the genera­
tion and selection of abstract TTCN test suites for formally specified communication
protocols. The TSG constraints approach offers a flexible mechanism for generating
conformance as well as special purpose test suites for real life protocols. TESTGEN
thus serves as a useful test-bed for experimenting with test generation. TESTSEL
adopts a metric guided multipass test selection algorithm which guarantees the set of
selected test cases approaches the original set as more test cases are selected with no
particular cases being merely overlooked as typically happened in manual test selec­
tion process. The inclusion of TESTSEL allows the user to assess and select from the
generated test cases, as well as providing the information necessary to tune the TSG
constraints for better results. We already demonstrated the validity of TESTVAL by
applying real life test cases having both the control fl.ow and the data flow information,
taken from the LAPB standard test suite [Vuo-93b). TESTVAL provides a means to
ensure the test suites developed are valid with respect to the specification.
The current prototype of TESTGEN + has been applied to a number of protocols,
including the lnRes protocol, the OSI class O Transport protocol and the LAPB
protocol. We present and discuss the results of the test generation, selection, and val­
idation experiments on the above protocols. Automatic test selection as provided by
TESTSEL is particularly important when we have to select a manageably small set of
test cases with a sufficiently good coverage from a cost-prohibitively large test suite.
Using TESTVAL and TESTGEN, we have shown the validity and consistency of both
of these tools. In general, we find TESTGEN + performs well as a useful, general,
flexible, and semi-automated tool for test suite generation, selection, and validation
in conformance testing. Some aspects of TESTGEN + can be improved. A major

28

extension of TESTGEN + will be the handling of multi-module Estelle specifications.
Other possible extensions include enhancement on the TSG engine, TSG constraints,
user interface, and interface with TTCN tools, as well as further experimentations
with practical real-life protocols.

References

[Cha-89]

[Cho-78]

[Gon-70]

[Fuj-91]

[Hog-91)

[Hsi-71)

[ISO-a)

[ISO-b)

[Kel-76)

[Kim-92)

W. Y. L. Chan, S. T. Vuong, and M. R. Ito, An Improved Proto­
col Test Generation Procedure Based on UIOs, Proceedings of the
ACM SIGCOMM '89 Symposium on Communication Architectures
and Protocols, September 1989.

T. S. Chow, Testing Software Design Modeled by Finite State Ma­
chines, IEEE Transactions on Software Engineering, Vol. 4, No. 3,
pp. 178-187, March 1978.

G. Gonenc, A Method for the Design of Fault Detection Experiments,
IEEE Transactions on Computers, Vol. 19, No. 6, pp. 551-558, June
1970.

S. Fujiwara, G. v. Bochrnann, and et al, Test Selection Based on Finite
State Models, IEEE Transactions on Software Engineering, Vol. 17,
No. 6, pp. 591-603, June 1991.

D. Hogrefe, OSI Formal Specification Case Study: The InRes Protocol
and Service, Technical Report IAM-91-012, Universitaet Bern, lnsti­
tut fuer lnformatik und Angewandte Mathematik, Bern, Switzerland,
May 1991.

E. P. Hsieh, Checking Experiment for Sequential Machine, IEEE
Transactions on Computers, Vol. C-20, No.IO, October 1971.

Information Technology - OSI Conformance Testing Methodology and
Framework, Draft International Standard, ISO/IEC DIS 9646 (5
Parts).

Information Technology - OSI Conformance Testing Methodology and
Framework, Part 3: The Tree and Tabular Combined Notation,
ISO /IEC DIS 9646-3, 1990.

R. M. Keller, Formal Verification of Parallel programs, Communica­
tions of the ACM Vol. 19, No. 7, pp. 371-384, July 1976.

Myung Chul Kirn, Trace Analysis of Protocols based on Formal Con­
current Specifications, Ph.D Thesis, Dept. of Computer Science, Uin­
versity of British Columbia, 1992.

29

[Lu-91]

[McA-92]

[Nai-81]

[Sam-90]

[Sab-88]

[Sar-87]

[Sid-89]

[Ura-88]

[Vuo-89]

[Vuo-91]

[Vuo-93]

Y. Lu, On TESTGEN, An Environment for Protocol Test Sequence
Generation, And Its Application to the FDDI MAC Protocol, M.Sc.
Thesis, Dept. of Computer Science, University of British Columbia,
1991.

M. McAllister, S. T. Vuong and J. Curgus, Automated Test Case Se­
lection Based on Test Coverage Metrics, Proceeding of International
Workshop on Protocol Test Systems, Montreal, Canada, September
1992.

S. Naito and M. Tsunoyama, Fault Detection for Sequential Machines
by Transition Tours, Proceedings of the 11th IEEE Fault-Tolerant
Computing Symposium. pp. 138-243, June 1981.

M. Sample and G. Neufeld, Support for ASN.1 within a Protocol Test­
ing Environment, The Third International Conference on Formal De­
scription Techniques (FORTE '90), Madrid, Spain, November 1990.

K.K. Sabnani and. A. T. Dahbura, A Protocol Test Generation Pro­
cedure, Computer Networks and ISDN Systems, Vol. 15, No. 4, pp.
285-297, September 1988.

B. Sarikaya, G. v. Bochmann, and et al, A Test Design Methodology
for Protocol Testing, IEEE Transactions on Software Engineering, Vol.
13, No. 5, pp. 518-531, May 1987.

D. P. Sidhu and T. -K. Leung, Formal Methods for Protocol Testing:
A Detailed Study, IEEE Transactions on Software Engineering, Vol.
15, No. 4, pp. 413-426, April 1989.

H. Ural, B. Yang, and R. L. Probert, A Test Sequence Selection
Method for Protocols Specified in Estelle, Technical Report TR-88-18,
Department of Computer Science, University of Ottawa, June 1988.

S. T. Vuong, W. Y. L. Chan, and M. R. Ito, The U/Ov-Method for
Protocol Test Sequence Generation, Proceedings of the Second Inter­
national Workshop on Protocol Test Systems, Berlin, Germany, Oc­
tober 1989.

S. T. Vuong and J. Curgus, Test Coverage Metrics for Communication
Protocols, Invited paper, Proceedings of IWPTS IV - International
Workshop on Protocol Test Systems, Leischendam, Netherlands, 1991.

S. T. Vuong, Y. Lu, C. Mathieson, and B. Do, TESTGEN: An En­
vironment for Test Suite Generation and Selection, To appear in the
Computer Communications Journal, 1993.

30

[Vuo-93b]

[Zho-92]

S. T. Vuong, Sangho Lee, and Peter Zhou, Protocol Test Valida­
tion : Principles, Tools, and Examples , Invited paper, Proceeding
of CFIP'93 - Colloque Francophone sur L'lngenierie des Protocoles,
Montreal, Canada, September 1993.

P. Zhou, On TESTGEN+, An Environment for protocol Test Gen­
eration and Validation, Master Thesis, Dept. of Computer Science,
University of British Columbia, 1992.

31

