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Abstract 

We introduce a formalism for the systematic construction of performance measures of robot 
manip ulators in a unifted framework based on differential geometry. We show how known 
measures arise naturally in our formalism and we construct several new ones, including a non­
linearity measure and a class of redundancy measures. The measures are applied to the analysis 
of two and three link planar arms for illustration. 

1 Introduction 

We introduce a unified approach to the construction of performance measures for robot manipu­
lators. A performance measure is a field defined on the configuration manifold, i.e. the space of 
all p ostur es of the manipulator, that measures some genera1 property of the manipulator. The 
a,vailability of such a measure is important for kinema.tically redundant manipulators, since the 
inverse kinematics problem generally has an infinite number of solutions. A performance measure 
allows us to choose the "best" solution. 

For example, consider a task that requires arbitrary movements of the end-effector of the ma­
nipulator within a region in the workspace. In this case we would like to maximize the "mobility" 
of the end-effector in this region. On the other hand, if tli e task would be to push a heavy object in 
a certain direction one would like to minimize the mobility in this particular direction, a.ilowing an 
easier application of a large force in that direction. In this case a nearly "singular" posture would 
be better. 

The measures we are interested in are local, i.e. they depend only on the momentary posture of 
the manipulator. Global measures can be obtained by integrating local measures over some region 
in confLguration space, see for example [GA91]. Furthermore, the "hardn,ess'1 of a compound t ask 
( corresponding to a trajectory in configuration space) can be measured by the int gration of a local 
measure over time. 

•supported in part by NSERC and The Institute for Robotics and Intelligent Systems. 
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Several locaJ measures hav-e been proposed in the past. Yoshikawa [Yos85] proposed the scalar 
✓det JJT, where J is the Jacobjan matrix of the marupulator. This measures how much the end­
effector moves for a given infinitesimal movement of joint angles,· averaged over all directions. It 
is the generalization to redundant manipulators of the determinant of the Jacobian. The related 
matrix (JJT)-1 , when sandwiched between the workspace direction vector and its transpose, 
measures the analogous manipulability in a particular diJ:ection. The inverse, J JT, then measures 
"pushability" in a given direction [Chi88]. 

From the singular value decomposition representation [KL80, Nak91] some closely related mea­
sures can be derived. Salisbury and Craig [SC82] proposed to use the condition number of J, which 
is the ratio of the largest and smallest singular values of J. Klein and Blaho [KB87] use the mini­
mum singular value an a measure. The distance of the joint angles from their central positions was 
used by Liegois [Lie77]. Asada [Asa83] computed the effective inertia matrix for a non-redundant 
manipulator and proposed to minimize the inhomogeneity of the moment of inertia. 

Angeles and Ma [MA90, MA93] introduced the dynamical conditioning index, which is a mea­
sure for the anisotropy of the moment of inertia of the· arm, which was used to design isotropic 
manipulators. The kinematic isotropy was investigated in [ALC92]. 

In this paper we introduce a unified approach to the construction of local performance measures, 
applicable to any kind of manipulating device. All the measures mentioned above arise naturally 
in our framework and we also introduce several new measures. Care has to be taken to ensure 
that a constructed measure corresponds to a physical property of the device and is not just a 
mathematical construct. In our method this is achieved by imposing invariance under general 
coordinate transformations in configuration space, i.e. we consider measures that do not depend 
on the actual coordinates (such as the joint angles for revolute joint arms for example) used to 
describe the posture of the manipulator. This criterion is sufficient, but not necessary in general, 
as the coordinates used usually have a direct physical meaning. 

Our approach is to define various metrics on the configuration space, i.e. to define a "distance" 
between configurations, by a metric tensor. From the forward kinematics of the system we then 
construct an "induced" metric tensor on the work space and, for redundant manipulators, on the 
self-motion manifolds ( the subspaces of configuration space that map to the same point in the work 
space). This allows us to use standard differential geometry (see, for example, [DP90]) to construct 
geometrical tensor fields which we interpret and use as performance measures. 

The physical interpretation of these measures will depend on the initial choice of the metric 
on configuration space. For example, the Euclidean metric leads to kinematic measures, while 
using the inertia matrix as the metric tensor leads to dynamic measures. Besides reconstructing 
well-known measures in a unifted framework, we also generate several new ones such as a measure 
of the non-linearity of the arm and a class of "redundancy" measures, that measure the ability of 
the arm to move to a different posture with the end-effector remaining fixed. 

This approach is applicable to general manipulators. For the purpose of illustration we apply the 
formalism to planar positioning manipulators with 2 links (non-redundant) and 3 links (redundant), 
with some specific choices for the configuration space metrics. 

The paper is organized as follows. Section 2 provides the notation and definitions used in the 
remainder of the paper. The construction of the measures is presented in Section 3. Section 4 deals 
with the interpretation of the measures for some specific choices of the configuration space metrics 
and we apply them to an analysis of the two and three link planar arms. We plot the values of the 
measures and compute optimal postures of a three link arm, using the measures. 
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2 Conventions and Notation 

The configuration space is denoted by C, and its dimension is n_. It is typically the set of all 
manipulator postures . The task is described in the work space W, which is typically the set of 
end-effector positions of the manipulator, £ = ~ ® S0(3). We denote its dimension by m. The 
relation between the configurations space C and the work space W is described by the mapping 

,,,,:Cf-+W 

which associates a point in W with every point in C. For typical robot arms with a manipulating 
device attached to the end of the arm, this mapping is the forward kinematics of the system. With 
C and W we associate 1 - to -1 mappings C f-+ Rn and W f-+ Rm, which define charts or coordinate 
systems on the manifolds. The coordinate system on a manifold is considered here as an arbitrary 
labeling of the points in the manifold. A point in C is denoted by the coordinates q = ( q1 , ••• , qn) 
and a point in W by x = (x 1 , ••• , xm). 

The preimage of a point x in W is the self-motion manifold Nx C C, which is the set of all 
postures that map to this point in W. The tangent space to Nat q is the null-space of the Jacobian 
of the mapping K,. Where it is clear what x is being referred to, we will drop the subscript x. 

Tensor indices in C are denoted by lowercase latin letters ranging from 1 to n, in W by greek 
letters ranging from 1 to m and in N by capital latin letters ranging from 1 to n - m. 1 

The components of tensors in C are w.r.t. the coordinate basis ei = a!, and the dual 1-form 

basis w1 = dqi. We use the Einstein summation convention for tensor indices throughout. That 
is, any repeated tensor index is implicitly summed over its appropriate range. See [DP90] ( or any 
book on differential geometry) for a detailed description of the tensor formalism. 

A metric tensor on C is written as h with components hij. The (length )2 of an infinitesimal 
vector dq1e1 is given by the "line-element" 

ds2 = hijdg'dqi. 

h13 is the covariant (lower indices) form of the metric tensor. The inverse of h has components 
h ij and satisfies 

where 6 is given by 

6~ _ { 1, if i = j, 
3 - 0, otherwise. 

On W we have a "task" metric tensor 1J with components 1]µ11 such that 

ds2 = 1]µ11dxµdxv 

is the square of the "task" length of the infinitesimal vector with components dxµ. For a typical 
robot arm, this will be some combination of the spatial distance between points and their difference 
in orientation in the work space. Note that this metric is non-trivial in general as W is generally 
non-Euclidean. For example if W is the set of positions and orientations of the end-effector of a 
three dimensional manipulator W = R3 ® S0(3), which is not Euclidean. 

Besides the task metric we construct an "induced" metric on W (induced by the metric h on 
C), written as g, with components 9µv• We shall call this the "performance" metric on W. 

Finally, the induced metric on N is written as n, with components nAB• 

1 Generically, i.e. if the mapping K. is non-singular. See also [PL92]. 
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3 General Formalism 

3.1 Outline 

The construction of the measures proceeds as follows. 

• Define an appropriate configuration space C and a metric tensor h on C. Typically, C is the 
joint space :1 of the arm, but it can be much more general. For example, if we consider 
measures on the self-motion manifold N'x associated with a point x in W, we define N'x as 
the configuration space manifold. 

• Define a task space W and a metric 'T/ on W. For a typical robot arm W = £ = ~ 3 18) SO ( 3) ii,nd 
rJ measures the difference in position and orientation of the end-effector of the manipulator. 

• Define a mapping K : C - W. H C is the joint space, W = £ and K is the forward kinematics 
of the system. An important case is W = C, i.e. we require a task in C, but with its own 
metric 'T/· 

• From K and h we construct an induced metric on W, the performance metric g. This is 
a tensor v~ued performance field. A directional performance field is obtained by double 
contraction with a vector in W. 

• From g and rJ we construct the following measures. Note that, in general, a measure is defined 
by the tuple {C, W, K, h, rJ}. 

- A measure R for the non-linearity of the motion of the manipulator. This is the double 
contraction of the Riemann tensor of the manifold. This measure depends on C and h 
only. 

- A relative directional performance field Uu, This field depends on a direction specified 
by the vector u in W. 

- A relative average performance field, which we call the generalized Yoshikawa measure 
Y. 

- A measure of the performance anisotropy of g, the anisotropy measure A. (This measure 
actually does ilot depend on the task metric 'T/·) 

Measures on the self-motion manifold N'x are constructed by defining a configuration space 
C2 = Nx and a taskspace W2 = C2 with a trivial mapping K2 (the identity map). We take the 
metric on C2 to be just h restricted on C2 • The metric on W2 = C2 is taken to be the restriction 
of some "secondary" metric h defined on C to C2, We can now apply the above construction on 
C2, W2 and associated metrics and generate a set of measures on Nx, By considering all possible 
points x we then arrive at a set of measures defined on the whole configuration manifold C. We 
call these measures the "redundancy" measures. 

3.2 The Performance Metric 

The map K : C i-+ W ( e.g., the forward kinematics) is defined by 

(1) 
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and the Jacobian J of the map is written as 

J !'( ) = OKP( q) 
1 q J::i • 

uq' 

The construction of an induced metric on W proceeds as follows. Let the manipulator be in posture 
q, with the end-effector at x. We define the induced distance dx(Y) from x to y as the length of 
the shortest path in C (with respect to the chosen metric h) that moves the end-effector from x to 
y. 

The metric tensor on W can now be derived by considering the shortest path in C, from q to 
q + dq, that moves the end-effector from x to x + dx. From eq. (1) we obtain 

dx = Jdq. 

The minimum norm solution of eq. (2) is given by 

dq = J+dx 

where the pseudoinverse J+ is given by 

So the induced norm of dx is given by 

ds2 = hiidqidqi = dxTJ+ThJ+dx 

and we define 
g = J+ThJ+ 

as the covariant metric tensor on W. The field g is a tensor valued performance field. 
g has a simpler contravariant form 

or, in matrix notation (as glJ." are the components of g-1 ), 

g-1 = Jh-lJT. 

The minimum norm solution to eq. (2) can now be written as 

dqi = J!dxµ 

(2) 

(3) 

where Jt are the components of J+ and are obtained from Jf by raising and lowering its indices 
with the appropriate metric: 

J i _ hiiJ" 
µ. - 9µ.v j • 

This provides an elegant tensor representation of the pseudoinverse of the Jacobian. 
Note that 9µ.v does not carry any C space indices and is therefore invariant under general 

coordinate transformations in C. It transforms as a tensor under general coordinate transformations 
in W. Scalar directional performance fields can be obtained from 9µ.v by contraction with an 
appropriate vector u in W, i.e. 9µvulJ.u". 

5 



3.3 Work Space Measures 

The scalar 

(4) 

with f/µv the task metric on W, measures task space length per C space length for movements in 
direction u. It is a directional performance field. 

From g and r, we derive a scalar measure that we call the generalized Yoshikawa measure. 
Consider an infinitesimal parallelepiped dx 1 ••• dxm located at the point x in W and suppose the 
arm is in configuration q. The m-volume of the smallest region in C that will cover the parallelepiped 
in W is given by 

J det(g)dx1 
.•. dxm. 

The task volume of this region is 

Jdet(r,)dx1 
••• dxm. 

We define the generalized Yoshikawa measure as the W space volume per C space volume of the 
parallelepiped, 

Y= 
det( r,) 
det(g) 

(5) 

It is a measure of the performance of the manipulator, averaged over all directions. Note that 
Y is invariant under general coordinate transformations in C as well as in W space and therefore 
measures a true physical property of the system, independent of the coordinate systems. 2 If h is 
the Euclidean metric in "joint-angle" coordinates and the task metric on W is Euclidean, it reduces 

to the original Yoshikawa measure Jdet(JJT) [Yos85]. 
A second scalar derived from the metric tensor g is the anisotropy, defined as 

(6) 

whereµ+ andµ _ are the largest and smallest eigenvalues of the metric in contravariant form, i.e. 
g - 1 . The contravariant form is chosen for the definition as the metric g has singularities. (If the 
manipulator is in a singular configuration such that it cannot move in some direction in W, the 
metric tensor g will become infinite in that direction.) The measure given in eq. (6) measures the 
anisotropy. If isotropy is desired for a task, this measure should be minimized. For positive definite 
metrics h we have O :S A :S 1 and isotropy is obtained if A = 0. The anisotropy is invariant under 
general coordinate transformations in C, but not invariant under general coordinate transformations 
in W. However it is invariant under orthogonal transformations (rotations and reflections) in W 

x---+Tx 

where T satisfies TTT = I, with I the identity matrix, and under homogeneous scaling transfor­
mations 

X---+SX 

2The field Jdet(g) itself is not invariant under general coordinate transformations in W. It is called a scalar 
density. 
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wheres is a non-zero number. 
Isotropy can be an important property for certain tasks. Manipulators have been designed for 

which isotropic points exist in the work space [MA93]. 
Other W space measures can be derived as needed from the above by covariant differentiation 

and contraction. For example the local variation of the generalized Yoshikawa measure could be 
defined by 

µvJi Ji 8
2
Y 

g µ II Q •a . q' qJ 

3.4 Non-linearity Measures 

The non-linearity of the manipulator with respect to the metric on C is measured by the Riemann 
tensor, which is a rank 4 tensor field on C, with components Rijk/· In a coordinate basis it is given 
by 

. ar1;1 ar·1,. . . 
R'jkl = -{) k - - f) I + f'mkrjl - f'mlrjk q q 

where the Christoffel symbols r are given by 

r-- _ ! ( 8h;J fJh;k _ fJh;,~ ) 
i3k - 2 fJqk + fJqi {}q i 

and the r\k are obtained by raising the first index, e.g. 

i ii r ik = h I'iJk• 

The Riemann tensor has the following interpretation. Suppose we have two nearby points in 
configuration space with separation vector u and these points move in the same direction (i.e. on 
parallel trajectories), described by a velocity vector v, on geodesic trajectories. If the space is 
non-Euclidean, the trajectories will either diverge or converge (at least for some choice of u and v) 
and the relative acceleration between the points is given by 

T herefore , this tensor measures non-linearity of the arm in a particular direction. The Riemann 
tensor has ~;(n2 - 1) independent components. 

The associated curvature scalar, 
R = hii R\ki (7) 

gives an overall measure of the non-linearity. The curvature scalar is a generalization of the Gaussian 
curvature of a surface. The curvature Risa scalar field, i.e. it is invariant under general coordinate 
transformations in C and therefore measures an intrinsic property of the system. Note that this 
measure does not depend on the forward kinematics. 

This measure ( or R2 ) could be used to estimate the goodness of linear approximations used 
in controlling the manipulator. If R = 0 at some point, configuration space is fl.at at this point. 
An interesting observation is that if there are points in C with R > 0 and with R < 0, there are 
(n - 1)-dimensional subspaces of C with vanishing curvature. If m < n these subspaces will map 
onto m-dimensional regions in W, so these are sections in W that can be reached with an optimal 
posture with respect to the curvature measure. 
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A curvature tensor and its contraction can also be defined on W, using the performance metric 
g. This would measure the non-linearity of the motion of the end-effector. Note that for a non­
redundant manipulator, i.e. m = n, we can view the the forward kinematics as given by eq. (1) as 
a change of coordinate system on C and the curvature scalar R will therefore be the same whether 
constructed from hij on C or from 9µ11 on W. 

3.5 Redundancy Measures 

Another class of measures is related to the ability of the manipulator to move in the self-motion 
manifold N associated with every point in W. 

Consider a redundant robot arm that performs some assembly task inside some enclosed region 
by reaching inside, through a small opening. It will be "easier" to reconfigure the arm ( change its 
posture without moving the end-effector) if the segment of the arm that enters through the opening 
does not move very much during the reconfiguration. A possible measure for the "goodness" of the 
posture for a task like this is the ratio of the C space distance and the displacement of the segment 
that reaches through the hole (as measured in the plane of the surface with the opening). 

The redundancy measures are obtained by taking a "secondary" set { C, W, "-, h, 17} with C2 = Nx 
of a generic point in W and taking W2 = C2 (so K-2 is the identity map). The metric on C2 is just 
h restT.icted to Nx, We denote it by n. The task metric 172 on W2 is obtained by restricting a task 
metric h to Nx. 

An infinitesimal displacement dq in Nx can be written as 

di= P)d-ipi 

for arbitrary d-ipi. The projection operator P is given by 

The Jacobian Jf defines n - m independent vectors WA, (A= 1, ... , n- m) that generate motions 
in Nx ( except at singular points). The w A satisfy 

Jµwi - 0 
i A - · 

An arbitrary vector in Nx can be written as 

Its h-length is 
hijVivj = hijW~w1vAvB 

and we obtain the components of the metric tensor n on C2 as 

Similarly, the task metric 172 is obtained by restricting h to Nx, i.e. 
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As the mapping K-2 is just the identity, the Jacobian as just the identity matrix and the induced 
performance metric g2 on W2 is just the metric n. We now can construct the measures for the 
secondary workspace W2, which we call the "redundancy" measures. 

The precise interpretation of the redundancy will depend on the secondary task metric h chosen, 
which is very task-specific in general. In examples below, we make some choices for h and interpret 
the secondary generalized Yoshikawa measures. Other redundancy measures, such as the anisotropy 
or non-linearity (i.e. the curvature scalar) can only be defined if the dimension of Nx is at least 2). 

Note that in constructing the redundancy measures for a robot arm we are effectively considering 
a linkage with a closed loop, constructed out of the original arm by fixing the end-effector. A more 
general set of redundancy measures (which are just the work space measures of the closed loop 
linkage) can be obtained by considering non-trivial mappings K-2 , to a workspace W2 of possibly 
lower dimension than Nx. 

4 Interpretation and Applications 

In this section we shall construct and interpret the measures for the two and three link planar 
manipulators. We shall consider two metrics on C, the Euclidean metric which measures (distance)2 

as the sum of the squares of the joint angle differences, and the inertia tensor, i.e. we take 

(9) 

where H is the inertia matrix of the arm. We shall refer to the Euclidean metric as the kinematic 
metric and to the metric defined by eq. (9) as the inertial metric. 

Another possible metric is the joint-compliance matrix, which measures the "stiffness" of the 
arm ( e.g., [PL91 ]). This can be considered as a generalization of the Euclidean metric with different 
weights for joint distances. We note that the kinematic measures are the same as the measures 
constructed from a compliance matrix with equal joint compliances. 

The two link arm consists of two links of length Ii and '2- We take all mass to be concentrated 
in the middle joint and in the tip of the second link, with masses m1 and m2 respectively. The 
configuration of the arm is described by the two joint angles q1 and q2 , with -71" < qi ~ 1r. 

The three link arm consists of three links of length li ( i = 1, 2, 3) which we take to be thin rods 
of uniform mass density mi. The configuration of the arm is described by the three joint angles qi, 
with -1r <qi:::; 1r. 

Note that the non-directional measures do not depend on the first joint angle q1 , hence it is 
not shown in plots of the values of the measures. 

Unless given explicitly in a formula, we take all lengths to he equal to one and all masses to be 
equal to 0.5 in our calculations. 

4.1 Kinematic Measures 

In this case the induced metric on W, g, leads to Yoshikawa's [Yos85) manipulating force ellipses, 
defined as the set of all forces f µ, satisfying 

9 



and the associated manipulability ellipses, defined as the set of all end-effector velocities vµ that 
satisfy 

g vµv 11 < 1 µv -

For a desired end-effector force /µ, the measure 

equals the Euclidean norm of the generalized joint torque needed to apply a prescribed force f with 
the end-effector. Denoting the joint torque by Ti, the condition of static equilibrium is 

and it follows that 
L r.2 = hijTiTj = /µJ,.,Jt J'jhij = /µ/119µ 11 

i 

In figs. 1-4 we show the best and worst postures of the three link arm for applying a vertical and 
horizontal force with the end-effector at a distance of 2.0 from the base of the arm. 

The generalized Yoshikawa measure, as defined in eq. (5), reduces to the Yoshikawa measure 
[Yos85] if the factor Jdet(77) is constant and equal to one as is the case for the planar positioning 
manipulators we are considering. For easy reference we reproduce here some of the results from 
[Yos85] for the planar manipulators. For the two link arm we have 

and for the three link arm we have 

y2 = 112 122 l 2 l 2 l 2 l 2 l l l 2 ( 2) '12 ll cos(2 q.e) 
- 2-+1 a +2 a +12a cosq -

2 
+ 

l? l2 l3 cos(q3
) - 12

2 Ii cos(2 q3
) - li2 la2 cos(2 ( q2 + q 3

)) -

11 2 12 la cos(2 q2 + q 3
)- l1 ½ Ii cos(q2 + 2 q3

) 

In fig. 5 we have plotted Y as a function of the joint angles q2 and q3 • Fig. 6 shows the optimal 
postures for reaching a point at a distance of d = {0.5, 1.0, 1.5, 2.0, 2.5} from the base of the arm 
and fig. 7 shows the values of Y at these optimal postures as a function of the reach d. 

The anisotropy measure A, as defined in eq. (6), measures the deviation from kinematic isotropy. 
It is zero if the manipulability and force ellipses become circles. In fig. 8 we plot A as a function 
of the second joint angle q2 for the two link arm. Figs. 9-11 show the graph of A for the three link 
arm, its optimal postures and the values of A for these postures. There is a completely isotropic 
posture (A= 0) at a reach of d = 1. 

Note that if the arm moves inward from a stretched position, there is a discontinuity in the 
optimal arm posture between d = 1.0 and d = 0.5. A more detailed investigation ( a more dense 
set of postures) shows that the critical distance de is located at de ~ 0.5. The discontinuity arises 
as follows. For a given position x of the end-effector, the possible postures form the self-motion 
manifold Nx, The optimal posture is found as the global minimum (or maximum) of the measure 
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on Nx. If for a certain x there are two global minima 3
, an infinitesimal displacement dx of x 

can resolve the degeneracy. It will depend on the direction of dx in general which of the two 
minima will become the new global minimum. It follows that a continuous motion that optimizes 
the measure through x is not possible is general. An interesting observation is that since N2 is 
not necessarily connected, a motion may be required from one connected component to the other, 
which is not possible. In that case there is no self-motion possible at all that optimizes the measure. 
For the three link arm, the connected components of Nx, which appear ford< 1, are related by the 
symmetry q1 --+ -q1. As the measures we consider all observe this symmetry, there will always be 
two symmetry-related global minima. By picking the appropriate one, the arm is thus never forced 
to move from one connected component to the other, so that self-motion optimizing the measure 
is guaranteed to be possible. This is true for the W space measures, but not for the redundancy 
measures in general, for the task space and therefore the task metric h need not have the same 
symmetries as the manipulator (though it is in all our examples). 

The Riemann tensor and therefore the curvature measure R, as defined in eq. (7), vanishes for 
the kinematic metric on C, as the h,j are constant. 

4.2 Inertial Measures 

The generalized inertia matrix H of the system is given by 

H .. _ 8Ek( q , q) 
IJ - 8ii'8qi 

where Ek is the kinetic energy of the arm. We take the C space metric as 

h·· -H·· IJ - IJ 

The line-element 
ds2 = hijdq1dqi 

measures the displaced mass over the distance dq in C. If the arm moves by dq in a time dt with 
constant velocity, the kinetic energy of this motion is given by 

ds2 

Ek= dt2 

The geodesics in C are now precisely the motions of the arm in the absence of torques, friction and 
gravity. 

The induced metric g can be interpreted as an effective inertia matrix on W. That is, if the 
end-effector moves with velocity x in such a way as to minimize the total kinetic energy of the arm, 
this kinetic energy is given by 

Ek = 9µ. 11 Xµ.X 11 

The tensor gµ. 11 can be measured, in principle, by applying forces to the end-effector, with the arm 
at rest, and recording the resulting accelerations of the end-effector. For if a force /µ. is applied to 
the end-effector, with the arm at rest, the W space acceleration xµ. satisfies 

••µ. _ Jµ. ••i + a1r •i •j _ Jµ. •ei 
X - iq 8~qq - iq. (10) 

3We refer here to "accidentally" degenerate minima that are not related to each other by a symmetry of the 
system. 
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The equations of motion give 

(11) 

Combining (10) and (11) gives 

or 
Jµ = 9µvXv, 

Contracting 9µv with a velocity vector vµ gives the required kinetic energy of the arm to move 
the end-effector with this velocity. In figs. 12-15 we show the best and worst postures for achieving 
a high vertical and horizontal velocity of the end-effector ("fly-swatting") at a distance d = 2.0 
from the base of the arm. 

The generalized Yoshikawa measure (5) is now the inverse of the square root of the determinant 
of the effective inertia matrix; it measures the "lightness" of the arm. For the two link arm it is 
given by 

jm2(m1 + m2sin2(q2 )) 

In fig. 16 we plot this measure for the three link arm. Due to the relatively flat ridges at q9 = ±1r /2, 
there is a large range of postures with good values of this measure as can be seen in figs. 17-18. 
There is a critical distance de ~ 1.5 where there is a discontinuity in posture as a function of the 
reach. 

In fig. 19 we show the inertial anisotropy, as defined in eq. (6) for the two link arm. Figs. 20-22 
show this measure for the three link arm. It also has two valleys at q9 = ±1r /2, indicating the 
existence of a range of "good" postures for inertial isotropy. As the shape of the valleys is different 
than that of the the ridges for Y, the optimal postures are quite different though. Note that there 
is no isotropic point in W. The critical distance is at de ~ 1. 7. 

The curvature scalar R as given in eq.(7) is now a measure of the geodesic deviation of orbits 
in C space and is a measure of the non-linearity of the motion of the arm. For the two link arm it 
is given by 

R = 2m1 cos( q
2

) 
2 

. 

l1l2(m1 + m2sin2(q2 )) 

The curvature scalar is plotted for the three link arm in fig. 23. In fig. 24 we show R2 which is 
the actual measure to minimize for maximal linearity of motion. As R is positive near the origin of 
the (q 2 , q9 ) plane and negative at the edges, R2 is zero on a two-dimensional surface in C, where 
R changes sign. So there is a two-dimensional region in W that can be reached with "linear" 
postures. R has local extrema at the singular points (0,0) (R = 38.1), (0,1r) (R = -21.5) and 
( 1r, 1r) ( R = -16.3), but not at ( 1r, 0). It is interesting to note that this gives a classification of the 
singular points according to their "non-linearity", as the values of the extrema are distinct. The 
optimal postures and values of R are shown in figs. 25-26. The critical distance is de ~ 1.5. 

4.3 Redundancy Measures 

Let us choose the inertial metric as the metric h on C, and the kinematic metric as the "secondary" 
task metric h. The redundant generalized Yoshikawa measure measures the Euclidean distance per 
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mass moved in C for self-motions. That is, if Y is small, a "large amount of matter" has to be 
moved to change the posture of the arm. Y should thus be maximized for optimal mob.ility in this 
sense. As the inverse D = l/Y behaves better that Y itself we have shown data for D instead of 
Y itself. 

The data for this mea,sure for the three link arm is given in figs. 27-29. The optimal values of 
D as a function of d (i.e. the distance of the end-eff ctor from the base of the arm) is relatively 
constant for d > l .0 but increases fast below that value. In fig. 30 we have plotted d as a function 
of (q2 , q3 ), from which. we see that at small d the arm will come near the large peaks in D, which 
explains this behav.ior. The critical distance is at de ~ l.l. 

We would like to interpret this measure as a measure of how much the arm "swings" when 
reconfiguring. A better measure for thls would be the a,rea. that th arm sweeps out per Euclidean 
distance in C. Unfortunately, the "swept-area" (or volume for tlrre -dimensional manipulators) 
metric cannot be described by a quadratic form, so thls type of measure falls outside our fra.mewor_k. 
For comparison we have computed this "swept-area11 version of the r dundancy measure D. It is 
given in figs. 31-33. We observe that this measure behaves qualitatively similar, which supports 
the interpretation of D given above. 

A different class of redundant generalized Yoshikawa measures can be obtained by choosing the 
"secondary" task metric on C as 

ii,(:> = { 1, if i = i = e, 
13 0, otherwise. 

This metric just measures the movement of one particular joint, e and the corresponding redundancy 
measure D = l/Y will measure the amount of mass moved per movement of joint e. This could 
be useful if we want to find an arm position that allows reconfiguration with minimal movement 
of a particular joint. We call these measures (there are n of them for an n link arm) the joint 
redundancy measures 

E(e) = y(e) 

E(e) measures how much joint e has to move to move a specified amount of mass. It should be 
minimized if we want to reconfigure the arm with as little movement as possible of this particular 
joint. 

Plots, optimal postures and optimal values of the joint redundancy measures are given in figs. 
34-42. The critical distances are de ~ 1.1 , de ~ 0.9 and de~ l.0 for E(l), E(2) and E(3) respectively. 

The last example of a secondary generalized Yoshikawa measures can be obtained by choosing 
the "secondary" metric on C according to 

ds 2 = Euclidean d.isplacement of a test point on a link. 

:E'or concreteness, we take the test point to be the mid~p int of link two. This metric measures the 
movement of the center of the midclle link and the corresponding redundancy measure D = l/Y 
will measure the amount of mass moved per movement of this link. This could be useful if we want 
to find an arm position that allows reconfiguration with minimal movement of this link. We call 
thls measure the link redundancy measure 
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L measures how much the middle link has to move in order to move a specified amount of mass. It 
should be minimized if we want to reconfigure the arm with as little movement as possible of this 
particular link. 

Plots, optimal postures and optimal values of the link redundancy measure are given in figs. 
43-45. The critical distance is de~ 1.5. 

5 Conclusions 

We have presented a unified formalism for the construction of performance measures for robot 
manipulators. The formalism is useful since it enables the systematic construction of invariant 
measures appropriate for a given application. Well known measures such as the Yoshikawa measure 
arise naturally in our framework. In addition, we have constructed new performance measures 
using this formalism, to measure non-linearity and redundancy ( or self-motion). Finally, we have 
computed these measures for two example manipulators, one redundant and one non-redundant, 
and we have interpreted the results. 

An interesting property of all measures except the Yoshikawa measure is that there is no smooth 
motion possible from a stretched position ( with the end-effector far from the base) to a position 
with the end-effecto close to the base, that optimizes the measure at each point on the trajectory. 
And for redundancy measures that break the symmetry relating the connected components of the 
self-motion manifold, it is possible to have end-effector trajectories for which no such motion is 
possible at all. 

The curvature scalar measure R that we introduced seems particularly interesting for redundant 
manipulators, as it identifies an m-dimensional region in work space where the measure vanishes 
and the arm behaves locally "linear". This measure also identifies singular points and classifies 
them according to their curvature. We note that a singular configuration with a large positive 
curvature is stable in the sense that geodesics in C attract each other ( as the manifold has positive 
curvature). Unstable configurations arise for negative R, where nearby orbits repel each other and 
diverge. 

The measures that we have constructed are by no means the only ones. For example, one 
could also choose the joint-compliance matTix [PL91] as the metric on C, with a set of associated 
measures. And the secondary metric on C foT the redundancy measure could be any task specific 
function. We believe this framework provides a good means for the analysis, design and contTOI of 
robot manipulators. 
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Figure 1: Good posture for applying vertical force 
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Figure 2: Bad posture for applying vertical force 
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Figure 3: Good posture for applying horizontal force 
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Figure 4: Bad posture for applying horizontal force 
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Figure 5: Yoshikawa measure for 3-joint redundant arm 
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Figure 6: Optimal postures for Yoshikawa measure for given end-effector position 
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Figure 7: Optimal values for Yoshikawa measure 
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Figure 8: Kinematic anisotropy measure for two link arm 
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Figure 9: Kinematic an.isotropy measure A for 3-joint redundant arm 
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Figure 10: Optimal postures for A 
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Figure 11: Optimal values for A 
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Figure 12: Good posture for vertical swatting 
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Figure 13: Bad posture for vertical swatting 
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Figure 14: Good posture for horizontal swatting 
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Figure 15: Bad posture for horizontal swatting 
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Figure 17: Optimal postures for Y 
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Figure 18: Optimal values for Y 
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Figure 19: Inertial anisotropy measure for 2-joint arm 
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Figure 21: Optimal postures for A 
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Figure 22: Optimal values for A 
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Figure 23: Curvature scalar R for 3-joint redundant arm 
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Figure 25: Optimal postures for R 
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Figure 26: Optimal values for R 
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Figure 27: Redundancy measure D for 3-joint redundant arm 
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Figure 28: Optimal postures for D 
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Figure 29: Optimal values for D 

44 

2.5 3 





1.5 
1.4 
1.3 
1.2 
1.1 

1 
0. 9 ,,, 
O.B 
0.7 
0.6 

-pi 

pi 

D 

q2 
pi 

Figure 31: Area redundancy measure D for 3-joint redundant arm 
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Figure 32: Optimal postures for D 
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Figure 33: Optimal values for D 
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Figure 35: Optimal postures for £(1) 
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Figure 36: Optimal values for £(1) 
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Figure 37: Joint redundancy measure E(2) for 3-joint redundant arm 
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Figure 38: Optimal postures for E(2) 
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Figure 39: Optimal values for E(2) 
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Figure 40: Joint redundancy measure E(3) for 3-joint redundant arm 
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Figure 41: Optimal postures for £(3) 
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Figure 42: Optimal values for E(3) 
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Figure 43: Link redundancy measure L for 3-joint redundant a.rm 
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Figure 44: Optimal postures for L 
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Figure 45: Optimal values for L 
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