
Fault Coverage Evaluation of

Protocol Test Sequences

by

Jinsong Zhu and Samuel T. Chanson

Technical Report 93-19

June 1993

Department of Computer Science

The University of British Columbia

Vancouver, B. C. V6T 1Z2

Canada

email: jzhu@cs.ubc.ca, chanson@cs.ubc.ca

c
1993 Jinsong Zhu and Samuel T. Chanson



Fault Coverage Evaluation of Protocol Test

Sequences�

Jinsong Zhuyand Samuel T. Chanson
Department of Computer Science
University of British Columbia

Vancouver, B.C., Canada V6T 1Z2
Email: (jzhu, chanson)@cs.ubc.ca

Abstract

In this paper, we investigate the quality of a given protocol test sequence in detecting faulty

implementations of the speci�cation. The underlying model is a deterministic �nite state machine

(FSM). The basic idea is to construct all FSMs having n + i states (where n is the number of

states in the speci�cation and i a small integer) that will accept the test sequence but do not

conform to the speci�cation. It di�ers from the conventional simulation method in that it is

not necessary to consider various forms of fault combinations and is guaranteed to identify any

faulty machines. Preprocessing and backjumping techniques are used to reduce the computational

complexity. We have constructed a tool based on the model and used it in assessing several

UIO-based optimization techniques. We observed that the use of multiple UIO sequences and

overlaps can sometimes weaken the fault coverage of the test sequence. The choice of the transfer

sequences and order of the test subsequences during optimization may also a�ect fault coverage.

Other observations and analysis on the properties of test sequences are also made.

1 Introduction

Test sequence generation for communication protocols has been an active research area. However,

the evaluation of the fault coverage for a given test sequence remains an open problem. Only a few

methods such as the W method [4] and DS method [8] have been proven to generate test sequences

that can uniquely identify a �nite state machine under test. The problem with the W method is

that it usually generates rather long test sequences, while the applicability of the DS method is

limited as few FSMs possess a distinguishing sequence [10]. Recently, a new method called the

UIO method [12] has become popular because of its more extensive applicability and generally short

sequence length produced. Some optimization techniques based on the UIO have been proposed

[1, 3, 11, 13] to further shorten the length of a test sequence. However, since the UIO method

itself does not guarantee to produce a checking experiment [17], the UIO-based optimizations could

further reduce the fault detection power. This is especially true when the e�ect of combined faults

in a faulty implementation is not well understood. An accurate evaluation of the fault coverage of

�This work was partially supported by a grant from the Canadian Institute for Telecommunications Research under

the NCE program of the government of Canada.

yOn leave from the Department of Computer Science, Tsinghua University, Beijing, China.

1



these methods, as well as the in
uence of optimization on fault coverage, is therefore important both

in practice and in theory.

In [5, 15], a simulation method was proposed to estimate the fault coverage of a given test

sequence. Based on a classi�cation of faults, it randomly generates faulty machines to see if they

can be defeated by the test sequence. The number of machines that cannot be defeated is used as

a measure for fault coverage. A severe limitation of the method is that because of the complicated

fault behaviors, it is di�cult if not impossible to come up with a complete fault classi�cation. The

sampling of a small fraction of all cases also means the results must be interpreted with some degree

of uncertainty.

An argument for this method is that since the number of distinguishable machines with n states,m

inputs, and p outputs is enormous (asymptotically approaching (np)mn [9]), it is apparently infeasible

to perform a brute force examination of all of them to decide the exact fault coverage. This is true;

however, we can attack the problem in another way: instead of randomly generating FSMs and then

checking for their conformance, we can construct only those FSMs that will accept the given test

sequence and generate the same outputs but do not conform to the speci�cation. Such FSMs will

be referred to as indistinguishable FSMs with respect to the speci�cation and a given test sequence.

They are the faulty FSMs that cannot be detected by the test sequence. For a good test sequence,

the number of indistinguishable FSMs, say k, should be much smaller than the number of all possible

machines, and thus it should be easier to generate and examine all of them. The fault coverage can

then be measured by k like this: The smaller the value of k, the better the fault coverage. If k = 0,

then the test sequence has full fault coverage. This technique will uncover all faults and eliminates

the need to explicitly consider various fault combinations.

The idea of generating machines satisfying a particular sequence was also proposed in [18] for test

sequence generation. Their method is to use the constraint satisfaction techniques in AI to generate

the machines. However, the method did not take full advantage of the properties of the deterministic

FSM, and was low in e�ciency. In comparison, although the generation procedure is in essence a

large combinatorial problem, by employing some techniques to reduce the computational complexity,

our method has exhibited impressive performance for machines with a reliable reset capability (see

Section 3). We have used our tool in assessing several test sequence generation methods including

some optimization techniques. A motivation for evaluating optimization techniques was that we were

suspicious of the fault coverage of some of the optimization methods. The observations obtained

with the tool con�rmed our suspicion. This should alert us of the possible coverage reduction when

applying optimization techniques to reduce test sequences.

In the following sections, we give a description of the underlying model used in our study in

Section 2, and then detail our coverage evaluation methodology in Section 3. Section 4 illustrates the

method with an example and gives some empirical performance data. In Section 5, four optimization

techniques to be assessed are brie
y summarized. Section 6 presents the results of the assessment,

and o�ers some observations on the properties of test sequences. Finally, in Section 7, we close the

paper by highlighting some future work.

2 Underlying Model

The underlying model in our study is a deterministic FSM. It is used in modeling the control part

of a protocol (other techniques have been proposed for testing the data part [16, 2]). A deterministic

FSM can be represented by a quintuple M =< Q;X; Y; �; � >, where Q;X; Y are the internal states,

input alphabet and output alphabet respectively. � (the next state function) is a mapping of Q�X

2



into Q, and � (the output function) is a mapping of Q � X into Y . The functions � and � can be

extended for an input sequence � = x1x2:::xk as usual: �(q1; �) is the �nal state after � is applied to

state q1, and �(q1; �) denotes the corresponding output sequence. That is, �(q1; �) = y1y2:::yk where

yi = �(qi; xi) and qi+1 = �(qi; xi) for i = 1; :::; k, and �(q1; �) = qk+1.

If a state of an FSM is designated as the initial state, denoted as q0, the FSM is said to be

initialized. We will use initialized FSMs as examples in this paper. The method also applies to

uninitialized FSMs as long as a test sequence for each possible initial state is available.

An FSM is deterministic if any input symbol fed to the FSM causes a unique transition, i.e.,

8qi; qj ; qk 2 Q 8x 2 X (�(qi; x) = qj ^ �(qi; x) = qk , qj = qk). (P1)

It can be derived from P1 that if two states produce di�erent outputs for the same input, then the

two states must be distinct, i.e.,

8qi; qj 2 Q 8x 2 X (�(qi; x) 6= �(qj; x)) qi 6= qj). (P2)

A simple extension of P2 is that if two states produce di�erent output sequences under the same

input sequence, then the two states must be di�erent. Let X� denote the set of �nite-length input

sequences, then

8qi; qj 2 Q 8� 2 X
� (�(qi; �) 6= �(qj; �)) qi 6= qj). (P3)

For a given input output sequence, if we do not limit the number of states and the input alpha-

bet, there can be an in�nite number of automata that \implement" the sequence and the number

of indistinguishable FSMs can be in�nite. We therefore assume the number of states in an indistin-

guishable FSM to be no more than the number of states in the speci�cation plus a small integer, say

i. We will study the cases i = 0 and i = 1 as examples. For i = 0, conformance checking can use

the usual machine equivalence algorithm [5, 15] (note that the V-equivalence [4] is presumed in this

study as the equivalence relation between two automata), because in this case, conformance means

equivalence, and vice versa. For i > 0, the generated FSM is �rst minimized, and then checked using

the same algorithm. Other faults considered in this study are the usual ones, i.e., output faults,

transfer faults, and their combinations.

To avoid equivalent states, the FSM is assumed to be minimal. This is justi�able because we

can reduce an FSM to its minimal form [7], and testing can only determine an implementation's

conformance up to the level of equivalence. The machine should also be strongly connected and fully

speci�ed. Strong connectivity ensures each state can be reached from any other state. For partially

speci�ed machines, we use the completeness assumption that the machine will remain in the present

state without producing any output (or null output) for any unspeci�ed input.

In the following sections, we shall also use the graph representation of an FSM. This is a directed

graph G = (V;E), where the vertex set V denotes the set of states, and the edge set E represents

the transitions, i.e., V = fq0; :::; qn�1g; E = f(qi; qj)ji; j � n � 1 and there is a transition from qi to

qjg. An edge from qi to qj , which receives input ak and produces output ol, is labeled by (qi; qj;L)

where L � ak=ol, the input part of L is denoted L
(i) � ak , and the output part of L is L(o) � ol.

This representation is useful when graph algorithms are used to derive test sequences.

3 Coverage Evaluation Methodology

Generating indistinguishable FSMs can be viewed as the reverse procedure of test sequence gener-

ation. In this procedure, a test sequence and a speci�cation FSM are used as inputs for constructing

3



indistinguishable FSMs. The test sequence can be thought of as an unfolding of the FSM. The idea

is to \collapse" the test sequence back to one or more FSMs which may or may not conform to the

original speci�cation. If only one FSM is obtained, then it must conform to the speci�cation and the

number of indistinguishable FSM is zero, or, the coverage is 100%.

An FSM is said to have a reset capability (or resettable) if a special input signal ri always correctly

sets the machine to its initial state q0 from any state. Otherwise it is called a resetless machine. In

the following procedure we will study resettable machines only. For resetless machines, the entire test

sequence can be considered as a single subsequence and thus is a special case of the �rst situation.

For a resettable machine, the test sequence consists of test subsequences which start from q0.

Based on the property of a deterministic FSM, we can construct a test tree with these subsequences.

The root of the tree is q0. Each node corresponds to a state in the speci�cation. The edges from a

node to its children represent outgoing transitions from the corresponding state for each input symbol.

Input symbols are arranged in a �xed order for every node to avoid isomorphic trees. The depth of

the tree is the length of the longest subsequence. For a resetless machine, the test tree degenerates

to a simple path. Figure 1 shows a sample FSM, its UIO test sequence, and the corresponding test

tree. Clearly, this tree can be constructed e�ciently (in polynomial time) from the test sequence.

The properties P1 and P2 guarantee a unique tree for a given test sequence.

a/0

a/0

b/1

b/1

2

0

a/1

1 b/1

UIO Test Sequence:

(UIO for each state:

v

v v

v

1

7 8

12

v
3

v
4

v
2

v
5

v
9

v
6

v
10 v

11

ri/- a/1 a/0 a/1

ri/- b/1 b/1 a/1

ri/- a/1 b/1 b/1 a/1

ri/- a/1 b/1 a/0 a/0 a/1

a/1 b/1

b/1

a/0 b/1 a/1

a/0
a/1

a/1

v  = q

a/0

a/1

b/1

0 0

  0: a/1; 1: a/0 a/1; 2: b/1 a/1)

Figure 1: Test tree corresponding to the UIO test sequence

Now we assign each node a variable vi, with i numbered according to the node's breadth-�rst

traversal order in the tree (see Figure 1). v0 is always assigned to the root q0. Where there is

no ambiguity, we shall use the term node and variable interchangeably. The number of variables l

(other than v0) can be determined by a breadth-�rst traversal of the tree. For example, in Figure 1,

l = 12. Initially, each variable can represent any state. Suppose the speci�cation FSM has n states:

Q = fq0; q1; :::; qn�1g, then the domain of each variable is Q. A consistent instantiation of all variables

constitutes a solution FSM, which is either the speci�cation FSM or an indistinguishable machine.

If we search all variables to generate the solutions as was done in [18], the computational complexity

would be O(nl). The following techniques are used to reduce the computational complexity.

(1) Preprocessing: Although the domain of each variable is Q, the deterministic property will

often restrict the values that a variable can assume. For example, according to P2, a variable cannot

take on the value (i.e., a state) of a previous variable which it is not equal to. In the extreme case,

each variable may only have one value, representing the given FSM. We reduce the domains of the

4



variables in the breadth-�rst order. For each variable vi, we can obtain a set of variables, called

unequal variables of vi, whose indices are smaller than i and whose values are di�erent from that of

vi. Variables that can only have one value constitute the unique set. Initially, the unique set contains

v0 only. The uniqueness of a variable vi can be determined by examining its set of unequal variables.

If this set contains the current unique set, then vi must itself be a uniquely determined variable and is

added to the unique set. To prevent isomorphic solutions, the unique state qj assigned to vi is chosen

such that j is the smallest index not yet assigned. For example, if vi is the �rst one that di�ers from

v0, then it is assigned q1. The �rst variable that is distinct from v0 and vi is then assigned the next

unassigned state, q2. A variable that is not in the unique set but contains some unique states in its

set of unequal variables can have these unique states removed from its domain. This is because it

is not possible for the variable to assume any of these values. This procedure is performed until all

variables have been processed. The results are a reduced domain and a set of unequal variables for

each variable. The preprocessing phase often prunes the search space greatly and saves considerable

time in the subsequent searches. Furthermore, for any variable vj which is not uniquely determined,

its set of unequal variables can help to reduce the search space dynamically, since it will not be

necessary to assign vj a value which has already been assigned to any of its unequal variables.

(2) Backjumping: During searching, when a variable cannot be assigned any value which is

consistent with the previous assignments (a dead-end situation), we can jump back to the variable

which causes the inconsistency rather than backtracking one step at a time as is usually done. This

idea is widely used in solving search problems [6]. The point is to go back to the source of failure as

far as possible. In our problem, when a variable is instantiated, it may be forced to take a value in

two ways. First, it may only take a single value if its domain size is one. Second, the assignment of

a previous variable which has the same input symbol may force it to assume the same value in order

to be consistent with the properties of a deterministic FSM. Such value-forced variables cannot be

the source of failures, so when a dead-end is encountered, they need not be reconsidered in selecting

candidates. When the test sequence contains many identical transitions, this situation will occur

very frequently.

The algorithms for preprocessing and backjumping search are given below.

Algorithm-PREP: Domain reduction of node variables

Input: Node variables vi; i = 1; ::; l

Output: Reduced domain Di for each vi and its unequal variables NEQi.

Step 1: Generate unequal variables: Initially, the set of unequal variables for each vi, NEQi = ;.

for every vi(1 � i � l) do

for every vj with j < i do

if (vi 6= vj) then

add vj to NEQi.

Step 2: Reduce domains of variables: Initially, the set of uniquely determined variables U = fv0g,

state set S = fq1; :::; qn�1g, and the domain for vi(i = 1; :::; l) is Di = S [ fq0g.

for every vi(1 � i � l) do

if U � NEQi then begin

add vi to U ;

Di  fqkg, k = the smallest subscript in S ;

S  S � fqkg;

5



for all vj 2NEQi do

Dj  Dj � fqkg;

end else

for all vj 2NEQi do

if vj 2 U then

Di  Di �Dj ;

In Step 1, the set of unequal variables for each variable is generated. The if statement is executed

l(l � 1)=2 times. The evaluation of the condition vi 6= vj is based on property P3. Since input

sequences starting from a node constitute a subtree rooted at that node, the evaluation can be

performed by comparing two subtrees rooted at vi and vj respectively. The comparison can be done

by means of a breadth-�rst search algorithm for the subtree. When comparing two nodes, property

P2 is used. When a pair of distinct nodes is found, the two subtrees are distinct (P3). However,

when subtrees are incomplete, the node with an absent edge is not considered distinct from its

corresponding node where the edge is present. For example, in Figure 1, although v2 has no edge

corresponding to a, we cannot conclude v2 must be di�erent from v0. Similarly, v5 may possibly be

equal to v2. The time complexity of tree comparison is at most O(l). Hence, the complexity of Step

1 is O(l3).

The domains are reduced in Step 2 using the NEQ sets. If NEQi contains the current uniquely

determined variables, vi itself becomes a member of U . For each member vj of U , the domains of vj 's

NEQ variables can be reduced by removing vj 's corresponding value. The idea is that if a variable is

not equal to a uniquely determined variable, it cannot assume the unique value of that variable. The

complexity of this step is O(l2). Thus, the overall complexity of Algorithm-PREP is O(l3). Note that

the test tree must have already been constructed from the test sequence before using this algorithm.

Algorithm-SEARCH: Backjumping search to �nd solutions

Input: Node variables with reduced domains and the original speci�cation

Output: The set of indistinguishable FSMs

Initially, the index of variables i = 1. A stack is used to store intermediate steps.

1. ci  get candidate(vi);

2. if ci = NONE then begin

3. /* dead-end encountered */

4. i popstack;

5. if stack is empty then

6. exit with no more solutions;

7. goto 1;

8. end

9. else begin

10. if ci is not a forced candidate then

11. pushstack(i);

12. i i+ 1;

13. if i = l+ 1 then begin

14. /* a solution is found */

15. record the solution;

6



16. check its conformance with the speci�cation;

17. i popstack;

18. end

19. goto 1; /* go on searching */

20. end

The procedure get candidate in line 1 selects a consistent value for vi from its domain (we will

say that vi is instantiated). The reduced domain and the set NEQi both help reduce the number

of candidates. During the instantiation process, it builds up a partial solution FSM with the values

of variables up to vi, one by one. A consistent value of vi adds a transition to the FSM when the

corresponding state qp of vi's parent vp has no outgoing transition with the label i=o from vp to vi;

otherwise vi is forced to �(qp; i) in the FSM. The partial FSM is constructed incrementally until all

variables are assigned values, at which time the FSM becomes a �nal solution. To avoid isomorphic

solutions, when instantiating vi, only one value out of a set of equivalent candidates is selected. The

candidates are equivalent in the sense that they represent equivalent states in the current partial FSM.

If one of the equivalent candidates fails, the others will fail too. This also reduces the domains to

be searched dynamically. Get candidate returns NONE when no consistent value of vi can be found.

This is the dead-end situation and backjumping takes place. Since a forced variable cannot be the

source of a failure as mentioned before, line 11 only pushes an unforced variable onto the stack for

subsequent backtracking. In line 13, i = l+1 means all variables have been successfully instantiated,

thus a solution is found. Line 16 checks the solution's conformance with the speci�cation using

Dahbura and Sabnani's algorithm [5]. A non-conforming solution represents an indistinguishable

FSM.

In the worst case when there is no reduction of domain for all variables and no forced variables,

the complexity of Algorithm-SEARCH would remain O(nl). However, the complexity is far less in

practice. The next section shows some examples.

4 Empirical Results

A tool based on the above model has been implemented in C and runs on a Sun 4/30 work-

station under Sun OS 4.1.1. It accepts as input a test sequence and a speci�cation FSM. The tool

�rst constructs the test tree, reduces the domains using Algorithm-PREP, and then searches for all

solutions using Algorithm-SEARCH. We will �rst illustrate the algorithms with an example, then

use the tool to study some existing test sequences. Empirical results on the performance of the tool

are also presented.

4.1 An Illustrative Example

We illustrate the algorithms with the example in Figure 1. Initially, D0 = fq0g, Di = fq0; q1; q2g

for i = 1; :::; 12. From the tree, it can be seen that v1 must be di�erent from v0 as their outputs

to a are di�erent. At this point, only v0 is in the unique set U , so v1 is also a uniquely determined

variable. v1 is then assigned q1, the next value in the state set. Next, v2 is found to be distinct from

v1 because of their di�erent outputs for ba. Therefore v1's value q1 is removed from v2's domain.

After all variables have been processed, their domains become:

D1 = fq1g; D2 = fq0; q2g; D3 = fq0g; D4 = fq2g;

D5 = fq0g; D6 = fq0; q1; q2g; D7 = fq1g; D8 = fq0g;

7



D9 = fq0; q1; q2g; D10 = fq0g; D11 = fq0; q1; q2g; D12 = fq0; q1; q2g:

Note that the domains for the leaf nodes cannot be reduced because they have no outgoing edges.

Now Algorithm-SEARCH is used to search for solutions. For the �rst �ve variables, only v2 has two

choices. We �rst choose q0, which is consistent with v1 = q1. The remaining variables are forced to

take the values q1, q1, q0, q1, q0, q1, and q1 respectively. Thus, we obtain our �rst solution:

v0 = q0; v1 = q1; v2 = q0; v3 = q0; v4 = q2; v5 = q0; v6 = q1;

v7 = q1; v8 = q0; v9 = q1; v10 = q0; v11 = q1; v12 = q1:

Since all variables after v2 were forced, the algorithm goes back directly to v2 to �nd the next solution.

The next candidate for v2 is q2, which is also consistent with v1 = q1. The other variables are again

forced to the same values, producing another solution:

v0 = q0; v1 = q1; v2 = q2; v3 = q0; v4 = q2; v5 = q0; v6 = q1;

v7 = q1; v8 = q0; v9 = q1; v10 = q0; v11 = q1; v12 = q1:

a/0

a/0

b/1

b/1

2

0

a/1

1 b/1

(b) Solution 2: conforming FSM

a/0

a/0

b/1

b/1

2

0

a/1

1

b/1

(a) Solution 1: indistinguishable FSM

Figure 2: The two solutions for the UIO test sequence given in Figure 1

It can be seen there are no more candidates for each variable, and the algorithm terminates with

two solutions. Figure 2 shows the two corresponding FSMs, with the �rst one an indistinguishable

FSM, and the second one conforming to the speci�cation. The two solutions are both obtained

backtrack-free, which means only O(l) time is needed to get a solution. This is the best result we

can hope for. We also observed that although domains for the leaf nodes cannot be reduced, they

are usually forced to some values. For example, v6, v9, v11, and v12 were all forced variables.

4.2 Evaluation of Some Test Sequences

In [5, 15], some examples were used for fault coverage evaluation using the simulation method. We

applied our tool to the examples, and derived the same conclusions. The W, DS and UIO methods

are evaluated in [15]. The conclusion was that they all had the same coverage for strong conformance

test. Nevertheless, since the number of all possible machines is 1510(� 5:7 � 1011) for the sample

machine M (Fig. 1 in [15]), and only 106 randomly generated machines were examined, we were

never completely sure about the conclusion. However, with our tool, it can be con�rmed that the

three test sequences given in the paper all have a unique conforming solution (see Table 1 for FSM 1).

The example in [5] (FSM 2) for UIO method also has a unique solution. An encouraging observation

is that all solutions were obtained backtrack-free.

To further evaluate our tool, we studied the W method with an extra state, using the same sample

FSM 1. The original example for the DS method in [8] (FSM 3) was also studied for both the DS

8



No. of No. of No. of

Example (n;m; p; L) Method Solutions Backtrackings Forced Cases Time (s)

(5,2,3,29) UIO 1 (0, 0) (9, 9) 0.04

FSM 1 (5,2,3,35) DS 1 (0, 0) (12, 12) 0.04

[15] (5,2,3,58) W 1 (0, 0) (18, 18) 0.05

(5,2,3,130) W+1 15 (0, 60) (48, 558) 0.15

FSM 2[5] (7,4,4,111) UIO 1 (0, 15) (38, 256) 0.13

FSM 3 (6,2,2,40) UIO 1 (8, 59) (35, 203) 0.09

[8] (6,2,2,62) DS 1 (0, 0) (25, 25) 0.07

ISDN BRI[1] (8,14,12,425) UIO 1 (0, 0) (105, 105) 0.82

NBS TP4[14] (15,27,26,4131) DS 1 (105, 488) (2874, 2909) 273.77

Table 1: Performance of our method on some examples

and UIO methods, assuming it is resettable. Furthermore, two real protocols, the ISDN BRI network

layer protocol [1] and a subset of the NBS Class 4 transport protocol (TP4) [14], were studied for

the UIO and DS methods respectively. The fault coverages for these examples were all found to be

100%.

Table 1 summarizes the results of our experiments. In the table, (n;m; p; L) is the number

of states, inputs and outputs for the example, and the length of the test sequence, respectively.

The solutions for all the examples are all unique and conforming to the original speci�cation (no

indistinguishable solutions). Two numbers are recorded in the column for \No. of Backtrackings"

and also the column for \No. of Forced Cases". The �rst one is the number when the �rst solution

is found, and the second when the algorithm stops. Forced cases occur when a variable is forced

to a value during instantiation. The larger the number of forced cases, the better the gains from

backjumping. The column \Time" is the number of seconds of CPU time consumed by the tool,

including input and output processing. The results showed that the strategy of preprocessing and

backjumping is very e�ective. Even a sizable real protocol like NBS TP4 can be handled e�ciently.

Considering the small number of backtrackings (many of which are backtrack-free) and the worst

case complexity of nL, the savings are substantial.

5 Test Sequence Optimization Techniques

A useful application of our tool is to evaluate some test generation methods whose fault coverage

is still uncertain. If the fault coverage is not 100%, the tool may be able to help explain why. We

chose to study the various optimization techniques in this paper. In this section, we give a cursory

introduction to the four major optimization techniques which are evaluated in the next section.

The basic method of testing an FSM is to test each transition and identify the �nal state after the

transition. A test subsequence, denoted as TEST (qi; qj ;L) [1] (also called segment in [3]), consists of

the input for the testing edge (qi; qj ;L) followed by a characterizing sequence (CS) for state qj , i.e.,

TEST (qi; qj ;L) = L
(i) � CS(qj).

Each test segment is concatenated by the use of a reset signal and a shortest path P (qi) from q0 to

qi to form the overall test sequence TS, i.e.,

TS =
X

(qi;qj)2E

ri � P (qi) � TEST (qi; qj ;L).

This method was used in our previous examples. The optimization techniques focus on how to connect

9



the test subsequences to minimize the length of the overall test sequence. The reset capability is not

required. Subsequences can be started one after another, or even overlapped, without having to go

back to the initial state. Since UIO sequences usually exist and multiple UIO sequences often provide

more room for optimization, UIO is chosen as the CS in all the four optimization techniques. But

where only single UIO is used, other characterizing sequences can also be used in principle.

5.1 Rural Chinese Postman Method

This method was proposed by Aho, Dahbura, Lee and Uyar [1]. It uses the Rural Chinese Postman

(RCP) problem in graph theory to minimize the transfer sequence between subsequences. It opened a

new direction for optimization research. Other optimization methods are basically extensions of this

method. In the paper, the authors formulate the optimization problem as follows. The speci�cation

FSM is represented as a graph G = (V;E). First, a new graph G0 = (V 0
; E

0) is constructed such that

V
0 � V and E

0 � E [EC , where

EC = f(qi; qk;Ll �UIOj)j(qi; qj ;Ll) 2 E and �(qj ; UIOj) = qkg:

Edges in EC are \pseudo-transitions" that represent all test subsequences. They have exactly the

same number as the transitions in G, and contain all the vertices of V . Thus, the edge-induced

subgraph G[EC ] = (V;EC) is a spanning subgraph of G0. The cost of edges in EC is de�ned as the

cost of TEST (qi; qj;Ll) which is usually taken to be the total number of edges. Clearly, the objective

becomes traversing each edge in EC at least once with a minimum cost tour of G0. Such a tour is a

Rural Chinese Postman tour. The RCP problem is NP-complete for the most general case, but when

G[EC] is weakly connected, it can be solved in polynomial time. In [1], it is pointed out that if an

FSM has the reset capability or has a self loop for each state, then G[EC] must be weakly connected.

We have observed that even for machines without reset or self loops, most of them are still weakly

connected. This convinces us that the technique has a wide applicability. When G[EC] is not weakly

connected, heuristics will have to be used to �nd a sub-optimal solution.

To solve the RCP problem, a rural symmetric augmentation graph Ĝ
� = (V̂ �

; Ê
�) of G0 is con-

structed such that V̂ � � V
0 and Ê

� contains all edges in EC , and possibly some edges in E. The

idea is to minimize the number of edges chosen from E, and at the same time make the augmented

graph symmetric, i.e., for every vertex in V̂
� the in-degree equals the out-degree. Algorithms for

minimum-cost and maximum-
ow in graph theory can be used to �nd such a minimal augmentation.

The edges in Ĝ� can be covered by an Euler tour which can be computed e�ciently. The tour is then

the overall test sequence.

In this method, only one UIO sequence is used for each state. The following method which is an

extension of this one, employs multiple UIOs for a state to achieve further reduction of test sequence

length.

5.2 Multiple UIO Method

Multiple UIO sequences are a set of minimal length UIOs for a state. It was found in [13]

that using di�erent UIOs for identifying a state in di�erent subsequences can reduce the length of

the overall test sequence. This is because by selecting the appropriate UIOs, the graph G[EC ] can

be made closer to symmetry, i.e., the di�erence of in-degrees and out-degrees for a vertex may be

smaller, thereby fewer edges from E are needed to augment it. The problem is also translated into a

minimum-cost maximum-
ow problem, and heuristics may be needed when the problem is intractable

in rare cases. Di�erent UIOs can then be selected for testing di�erent transitions with the same �nal

10



state.

It was shown in [13] that up to 30% reduction of test sequence length could be achieved, depending

on the properties of the FSM. This is a substantial saving over the single UIO RCP method.

5.3 Overlaps Method

Another factor, the overlapping between subsequences, is considered in [3] to further minimize

the test sequence. Single UIO sequence is used. The idea is that if two subsequences S1 and S2 are

overlapped, i.e., the last part of S1 coincides with the �rst part of S2, then they can be merged with

the overlapping part serving both S1 and S2. If S2 is completely contained in S1, then S2 disappears

after the merge. The problem is how to maximally exploit the overlapping. In [3], a technique is

presented to transform the problem into a minimum cost maximum cardinality matching problem in

a bipartite graph. In general, the solution to the problem can be a number of disconnected circuits

in the transformed graph. Some heuristics are then used to connect them. Empirical study in [3]

shows that this technique achieves a signi�cant reduction in the test sequence length.

5.4 Multiple UIO and Overlaps Method

This technique combines multiple UIO sequences and overlaps to fully exploit the properties of

the subsequences and yield the shortest test sequence. Two such methods were proposed in [3] and

[11] respectively. The method in [11] is used in our study as it produces shorter test sequences in

general.

In [11], a machine is called de�nitely diagnosable if it has no converging edges, i.e., no two edges

going into the same state with the same input output label. In this case, the test sequence is simply

an Euler tour of the FSM graph G (minimally augmented if G has no Euler tour) plus the UIO

sequence for the last state of the tour. The rationale is that for such machines, the test sequence

not only tests each transition but also serves as the characterizing sequence for each state visited. If

converging edges exist, a graph G
0 is constructed by removing the converging edges. Then a set of

disjoint paths in G0 that covers all edges (only one path if G0 contains Euler tours) is computed. The

problem becomes how to join these disjoint paths and the converging edges such that the total length

is minimal. UIO sequences are used both for joining the paths and also identifying the states along

the paths. It turns out that such a problem can be converted to a maximum cardinality minimum

cost matching problem for a bipartite graph. If the solution is an Euler tour (or path), then the

UIO of the last state is appended to the tour to form a test sequence. Otherwise some heuristics are

used to connect the disconnected parts. The overall test sequence is shown to be a combination of

multiple UIOs and overlaps.

The examples in [11] as well as our experiments indicate that this is another leap in the opti-

mization. The length of the test sequence given in [11] is surprisingly short, typically in the order of

the number of transitions in the FSM.

6 Coverage Evaluation Results

The tool presented in Section 3 was used to conduct an empirical study of the four optimization

methods. It is found that optimization can sometimes reduce the fault detection capability of a test

sequence compared to an unoptimized one. The tool was also employed to explain how this could

have happened.

11



6.1 An Example

Figure 6.1 is the FSM used in our study. It was generated quite arbitrarily. The minimal UIO

sequences for each state with di�erent tail states are also given. The �rst UIO is the one used when

single UIO is required.

a/x

c/z

b/x

a/y
c/z

b/y

b/y

c/x
a/y b/x

a/x

c/x

1

0 3

2

STATE UIO SEQUENCE TAIL

q0 c/z a/y q3

c/z c/z q1

q1 b/y a/y q0

a/y a/y q0

q2 a/y b/y q1

c/z b/y q3

a/y a/x q0

q3 a/y b/x q3

a/y c/z q2

Figure 3: A sample FSM and UIOs for each state

The test sequences for the above four optimization methods are listed below:

(T1) RCP with single UIO: Length = 45

c=z a=y a=y b=x a=y a=x b=x b=y b=y a=y a=x b=x b=y c=x b=y a=y b=x b=y a=x

c=z a=y a=y c=z a=y b=y b=y a=y a=x c=z a=y c=x b=y a=y c=z a=y a=y a=x c=z

b=x a=y a=x c=z c=z b=y a=y

(T2) RCP with multiple UIO: Length = 38

c=z c=z b=y a=y c=z c=z b=y a=y c=z a=y a=y c=z b=x a=y c=z c=z b=y a=y a=x

c=z a=y b=y b=y a=y c=z c=z a=x c=z c=z c=x b=y a=y b=x a=y b=x c=x b=y a=y

(T3) Overlaps with single UIO: Length = 34

c=z c=z b=y a=y a=x c=z b=x a=y a=x b=x a=y a=x b=x b=y c=x b=y a=y a=x c=z

a=y a=y a=x b=x b=y a=x c=z a=y b=y b=y a=y b=x c=x b=y a=y

(T4) Multiple UIO and overlaps: Length = 27

c=z a=y a=y c=z c=z b=y b=y b=y a=y b=x c=x b=y a=y c=z b=x a=y b=x a=y a=x

c=z c=z a=x c=z c=z c=x b=y a=y

It can be seen that T2 and T3 each gains about 16% and 24% reduction in length respectively,

with respect to T1, and this is consistent with that reported in [3, 13]. T4's reduction is 40%,

approximately the sum of the e�ects of multiple UIOs and overlaps.

To evaluate the coverage, each test sequence is fed to our tool. The number of solutions is the

number of indistinguishable FSMs and is used as the measure of fault coverage. Note that in our

study, no reset capability is assumed. The results are listed in Table 2 (See Appendix for all solution

FSMs).

This, together with some other experiments, led to the following observations.

Observation 1: Multiple UIOs, as well as overlaps, can sometimes cause loss of fault coverage.

The two optimization methods are comparable in length reduction as well as in coverage loss. The

12



T1 T2 T3 T4

Sequence Length 45 38 34 27

No. of indistin-

guishable FSMs 0 9 8 26

Table 2: Fault coverage results for T1-T4

use of both techniques causes a higher coverage loss than when either one is used alone. Let LTi
and

CTi
represent the sequence length and fault coverage for each method respectively, we have (based

on a �nite number of experiments):

LT1 � LT2 � LT3 > LT4, and CT1 � CT2 � CT3 > CT4.

There were some experiments where multiple UIO or overlaps did not reduce the original fault

coverage. This implies that the property of an FSM also plays a role in determining coverage. For

T4, however, all examples we used showed a coverage loss.

As can be seen, during test sequence generation, di�erent test sequences (with the same length)

can be produced because of the multiplicity of Euler tours in a graph. The maximum 
ow minimum

cost may also have di�erent edge sets. This led to our next observation.

Observation 2: The choice of di�erent solutions for the transformed graph problem could lead to

test sequences with di�erent fault coverage. In other words, the order of connecting subsequences in

forming the test sequence has an e�ect on fault coverage.

For example, the following test sequence (T2a), which was obtained using a di�erent Euler tour

for T2, has only 4 indistinguishable FSMs instead of 9. In other words, it has a better fault coverage

than T2.

(T2a)
c=z c=z b=y b=y b=y a=y a=x c=z a=y c=x b=y a=y b=x a=y b=x a=y c=z c=z a=x

c=z c=z b=y a=y c=z a=y a=y c=z b=x a=y c=z c=z b=y a=y c=z c=z c=x b=y a=y

In contrast, in the unoptimized method of constructing the test sequence when reset is available

(see Section 5), the order of the subsequences ri �P (qi) �TEST (qi; qj;L) is irrelevant with respect to

the fault coverage of the overall test sequence. This is because the test tree is uniquely determined

by the subsequences independent of their orders.

Observation 3: For FSMs with a reliable reset capability, the execution order of test subsequences

does not a�ect the fault coverage of the test sequence.

However, the choice of P (qi) does in
uence fault coverage. For example, in Figure 1, if we had

chosen b=1 as the preamble to state 2, the �nal test sequence would have no indistinguishable solution.

This behavior is consistent with Observation 2.

Observation 4: For FSMs with a reliable reset capability, the choice of preambles in the subse-

quences could a�ect the fault coverage of the test sequence.

6.2 Analysis

To understand why some faults successfully escaped detection by a test sequence, we examined

some of the indistinguishable FSMs. Figure 4 shows three such FSMs with respect to T2.

Note that in Figure 4(b), there are two transfer faults: (F1) (q1; q3; c=x), and (F2) (q3; q3; b=y).

Figure 4(c) has three faults: a transfer fault (F3) (q1; q2; a=x), and an output fault concurrent with a

transfer fault in one edge: (F4) (q1; q3; c=z). Figure 4(d) is a weird mutant with transitions radically

di�erent from the original FSM. It would be hard to construct this indistinguishable FSM without

the tool.

In Figure 4(b), when the original edge (q1; q1; c=x) is tested, the UIO sequence b=y a=y intended

13



a/x

c/z

0

1 2

3
b/x

a/y
c/z

b/y

b/y

c/x
a/y b/x

a/x

c/x

0

1 2

3

a/x

b/x

a/y
c/z

c/x
a/y b/x

b/y

b/y

c/z

c/z

a/x

(a) Specification

a/x

c/z

0

1 2

3
b/x

a/y
c/z

b/y c/x
a/y b/x

c/x

a/x

0

1 2

3
c/z

a/x

c/z

a/y

b/x

c/x

c/z

a/y b/x

b/y

b/ya/x

b/y

(b) Indistinguishable FSM1

(d) Indistinguishable FSM3(c) Indistinguishable FSM2

Figure 4: Three indistinguishable FSMs with respect to T2

to identify q1 is also acceptable by q3, the tail state of F1, due to F2. When F2 is tested by applying

b=y b=y a=y at q3, it again fools us by giving the same outputs. As the tail state for this UIO is

not changed by the faults, other subsequences are not able to exercise the faulty edge. T2, which

connects subsequences with two more edges that are not the faulty ones, thus fails to expose the faults.

Clearly, this type of faults may also escape detection by the single UIO RCP method. T1 happens to

be able to defeat this faulty machine because it has the right transfer sequences. Interestingly, if we

had chosen a di�erent transfer sequence by purposely evading faulty edges, T1 would also fail. This

indicates that although the use of multiple UIO sequences reduces the length of transfer sequences,

it also decreases the probability of capturing some faults. The same is true for overlaps.

Figure 4(c) shows another way we could be cheated by a faulty machine. When testing F3,

the subsequence a=x c=z c=z brings the machine to q3. T2 happens to use c=x b=y a=y, which is

acceptable by q3, to test the outgoing transition c=x from q1 right after a=x c=z c=z. Instead of

testing the transition c=x from q1, the transition c=x from q3 is tested. Other subsequences again

do not touch the faulty edges. We call this phenomenon the fault cancellation e�ect, where several

faults are combined to cancel each other. It can be seen that di�erent ordering of the subsequences

could lead to di�erent ways of fault cancellation, hence possible di�erent fault coverages. The FSM

shown in Figure 4(d) is di�cult to interpret as the transition pattern di�ers greatly from the original

speci�cation. The simple patterns of fault cancellation shown in Figure 4(b) and 4(c) as explained

above are unable to unravel how the faults escaped detection. It seems to suggest that no general

patterns of fault cancellation could be found to explain all undetected faults.

14



One may argue that the coverage loss may not be due to the optimization techniques but caused by

the UIO sequence itself. This is possible, but as we observed, optimization could make the situation

worse, especially when multiple UIO sequences and overlaps are used together. We attribute it to

the increased fault cancellation e�ect caused by complex combinations of the test segments when

optimization techniques are used. The arbitrary choice of preambles and transfer sequences as well

as the ordering of the subsequences, may also result in a test sequence with damaged fault coverage.

This is possible because all test sequence generation methods are based on a correct speci�cation

while the UIO sequence and an optimized sequence, unlike a DS or a W set, cannot guarantee an

equivalence mapping between the speci�cation and a machine that accepts the sequence.

7 Conclusions

We have examined the issue of fault coverage evaluation of a given test sequence for a deterministic

FSM. Our metric for fault coverage is the number of indistinguishable machines, and a tool has been

constructed based on this model. The computational complexity of �nding indistinguishable FSMs

has been substantially reduced by using pre-processing and backjumping techniques. The tool has

been used in evaluating the quality of some optimization techniques, and a number of interesting

observations were obtained. The most important ones are that the order of transfer subsequences

and choices for preambles could a�ect fault coverage of the sequence. By generating indistinguishable

machines, we were also able to examine them to see how they have out
anked a test sequence. Fault

cancellation is an interesting phenomenon that causes many faults to go undetected. Optimization

techniques, especially when both multiple UIO sequences and overlaps are used, increase the chance

of fault cancellation, and thus increase the possibility of losing coverage. However, a faulty machine

could exhibit various unexpected behaviors. A general pattern of fault cancellation that can explain

all faults seems unlikely.

Although the optimization techniques may weaken the fault detection power of the test sequence,

they are still useful in practice because they can still catch most faults. They would be particularly

useful in the initial testing phase where coverage is not the main concern. One problem might be

that such a testing is not incremental in the sense that it is hard for a subsequent test with a better

sequence to take advantage of the result of a previous test. It would be useful if an incremental

hierarchy of optimization techniques could be established.

Another interesting issue is to determine the conditions under which the UIO-method or an

optimization technique is guaranteed to generate a checking experiment. The conditions are related

to both the property of the FSM and the choice of preambles and transfer sequences. Before this is

done, the only way may be to run the tool presented in this paper to check the coverage of a test

sequence. A potential limitation of this method is the tool's computational complexity for very large

problems. Techniques such as learning while searching and parallel algorithms could be developed

to further improve the performance of the tool. It is fortunate, however, that checking needs to be

done only once for each test sequence, rather than once for each implementation under test.

References

[1] A.V. Aho, A.T. Dahbura, D. Lee, and M.U. Uyar. An optimization technique for protocol

conformance test generation based on UIO sequences and rural Chinese postman tours. IEEE

Transactions on Communications, 39(11), November 1991.

15



[2] S.T. Chanson and J. Zhu. A uni�ed approach to protocol test sequence generation. In Proc.

IEEE INFOCOM, San Francisco, March 1993.

[3] M.S. Chen, Y. Choi, and A. Kershenbaum. Approaches utilizing segment overlap to minimize

test sequences. In Proc. IFIP 10th Int. Symp. on Protocol Speci�cation, Testing, and Veri�cation,

1990.

[4] T.S. Chow. Testing software design modeled by �nite-state machines. IEEE Transactions on

Software Engineering, May 1978.

[5] A. Dahbura and K. Sabnani. An experience in estimating fault coverage of a protocol test. In

Proc. IEEE INFOCOM, 1988.

[6] R. Dechter. Enhancement schemes for constraint processing: backjumping, learning, and cutset

decomposition. Arti�cial Intelligence, 41(3):273{312, 1990.

[7] A. Gill. Introduction to the Theory of Finite State Machines. McGraw-Hill Book Company, Inc.,

1962.

[8] G. Gonenc. A method for the design of fault detection experiments. IEEE Transactions on

Computer, June 1970.

[9] M. A. Harrison. On asymptotic estimates in switching theory and automata theory. Journal of

ACM, 13:151{157, 1966.

[10] Z. Kohavi. Switching and Finite Automata Theory. New York: McGraw Hill, 1978.

[11] R.E. Miller and S. Paul. Generating minimal length test sequences for conformance testing of

communication protocols. In Proc. IEEE INFOCOM'91, 1991.

[12] K. Sabnani and A. Dahbura. A protocol test generation procedure. Computer Networks and

ISDN Systems, 15:285{297, 1988.

[13] Y.-N Shen, F. Lombardi, and A.T. Dahbura. Protocol conformance testing using multiple UIO

sequences. In Proc. IFIP 9th Int. Symp. on Protocol Speci�cation, Testing, and Veri�cation,

1989.

[14] D.P. Sidhu and T.-K. Leung. Formal methods for protocol testing: A detailed study. Technical

Report 86{23, Dept of Computer Science, Iowa State Univ., 1986.

[15] D.P. Sidhu and T.-K. Leung. Formal methods for protocol testing: A detailed study. IEEE

Transactions on Software Engineering, April 1989.

[16] H. Ural and B. Yang. A test sequence selection method for protocol testing. IEEE Transactions

on Communication, April 1991.

[17] S.T. Vuong and W.Y.L Chan. The UIOv-method for protocol test sequence generation. In Proc.

2nd Int. Workshop on Protocol Testing System, October 1989.

[18] S.T. Vuong and K.C. Ko. A novel approach to protocol test sequence generation. In Proc.

GLOBECOM'90, December 1990.

16



Appendix: All Indistinguishable FSMs for the Sample

Target Machine (same for all test sequences):

c a b

S0 : z/2, x/0, x/3,

S1 : x/1, x/0, y/3,

S2 : z/1, y/3, x/3,

S3 : x/1, y/0, y/1,

(1) T1:

===== SOLUTION 1 =====

c a b

S0 : z/2, x/0, x/3,

S1 : x/1, x/0, y/3,

S2 : z/1, y/3, x/3,

S3 : x/1, y/0, y/1,

Conforming solution!

total solutions = 1, non-conforming solutions = 0

(2) T2:

===== SOLUTION 1 ===== ===== SOLUTION 2 =====

c b a c b a

S0 : z/1, x/2, y/2, S0 : z/1, x/2, y/2,

S1 : z/2, y/2, x/0, S1 : z/2, y/2, x/0,

S2 : x/1, y/2, y/3, S2 : x/2, y/2, y/3,

S3 : z/0, x/2, x/3, S3 : z/0, x/2, x/3,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 3 ===== ===== SOLUTION 4 =====

c b a c b a

S0 : z/1, x/3, x/0, S0 : z/1, x/3, x/0,

S1 : z/2, x/3, y/3, S1 : z/2, x/3, y/3,

S2 : x/2, y/3, x/0, S2 : x/2, y/3, x/0,

S3 : x/2, y/2, y/0, S3 : x/2, y/3, y/0,

Conforming solution! Non-conforming solution!

17



===== SOLUTION 5 ===== ===== SOLUTION 6 =====

c b a c b a

S0 : z/1, x/3, x/0, S0 : z/1, x/3, x/0,

S1 : z/2, x/3, y/3, S1 : z/2, x/3, y/3,

S2 : x/2, y/3, x/0, S2 : x/3, y/3, x/0,

S3 : x/3, y/3, y/0, S3 : x/2, y/3, y/0,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 7 ===== ===== SOLUTION 8 =====

c b a c b a

S0 : z/1, x/3, x/0, S0 : z/3, x/2, x/0,

S1 : z/2, x/3, y/3, S1 : z/2, y/2, x/3,

S2 : x/3, y/3, x/0, S2 : x/1, y/1, y/0,

S3 : x/3, y/3, y/0, S3 : z/1, x/2, y/2,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 9 ===== ===== SOLUTION 10 =====

c b a c b a

S0 : z/3, x/2, x/0, S0 : z/3, x/2, x/0,

S1 : z/2, y/2, x/3, S1 : z/2, y/2, x/3,

S2 : x/1, y/2, y/0, S2 : x/2, y/2, y/0,

S3 : z/1, x/2, y/2, S3 : z/1, x/2, y/2,

Non-conforming solution! Non-conforming solution!

total solutions = 10, non-conforming solutions = 9

(3) T3:

===== SOLUTION 1 ===== ===== SOLUTION 2 =====

c b a c b a

S0 : z/0, y/0, y/1, S0 : z/0, y/0, y/1,

S1 : x/0, x/1, x/2, S1 : x/0, x/3, x/2,

S2 : z/2, x/3, y/0, S2 : z/2, x/3, y/0,

S3 : -/-, y/1, y/1, S3 : x/0, y/1, y/1,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 3 ===== ===== SOLUTION 4 =====

c b a c b a

S0 : z/0, y/2, y/3, S0 : z/0, y/2, y/3,

S1 : x/0, y/0, x/3, S1 : x/0, y/0, x/3,

S2 : x/0, y/1, y/1, S2 : x/1, y/1, y/1,

S3 : z/3, x/2, y/2, S3 : z/3, x/2, y/2,

Non-conforming solution! Non-conforming solution!

18



===== SOLUTION 5 ===== ===== SOLUTION 6 =====

c b a c b a

S0 : z/2, y/0, y/1, S0 : z/2, y/1, y/2,

S1 : x/0, x/1, x/3, S1 : x/1, y/0, x/3,

S2 : z/0, y/1, y/1, S2 : z/1, x/1, x/3,

S3 : z/3, x/2, y/0, S3 : z/3, x/0, y/0,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 7 ===== ===== SOLUTION 8 =====

c b a c b a

S0 : z/2, x/1, x/3, S0 : z/2, x/3, x/0,

S1 : x/1, y/2, x/3, S1 : x/1, y/3, x/0,

S2 : z/1, y/1, y/0, S2 : z/1, x/3, y/3,

S3 : z/3, x/2, y/2, S3 : x/1, y/1, y/0,

Non-conforming solution! Conforming solution!

===== SOLUTION 9 =====

c b a

S0 : z/2, y/1, y/1,

S1 : x/2, x/1, x/3,

S2 : z/2, y/2, y/1,

S3 : z/3, x/0, y/2,

Non-conforming solution!

total solutions = 9, non-conforming solutions = 8

(4) T4:

===== SOLUTION 1 ===== ===== SOLUTION 2 =====

c a b c a b

S0 : z/0, y/0, y/3, S0 : z/0, y/0, y/3,

S1 : x/0, x/3, x/2, S1 : x/0, x/3, x/2,

S2 : z/1, y/1, x/1, S2 : z/1, y/1, x/1,

S3 : z/2, y/2, y/0, S3 : z/2, y/2, y/3,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 3 ===== ===== SOLUTION 4 =====

c a b c a b

S0 : z/0, y/0, y/3, S0 : z/0, y/2, y/0,

S1 : x/3, x/3, x/2, S1 : x/0, x/3, x/3,

S2 : z/1, y/1, x/1, S2 : z/1, y/0, x/1,

S3 : z/2, y/2, y/3, S3 : z/2, y/1, */*,

Non-conforming solution! Non-conforming solution!

19



===== SOLUTION 5 ===== ===== SOLUTION 6 =====

c a b c a b

S0 : z/0, y/2, y/0, S0 : z/0, y/3, y/0,

S1 : x/3, x/3, x/3, S1 : x/0, x/3, x/2,

S2 : z/1, y/0, x/1, S2 : z/1, y/1, x/2,

S3 : z/2, y/1, y/0, S3 : z/2, y/0, x/1,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 7 ===== ===== SOLUTION 8 =====

c a b c a b

S0 : z/1, x/2, y/1, S0 : z/1, x/2, */*,

S1 : x/0, y/3, y/1, S1 : x/1, y/3, y/1,

S2 : z/0, x/3, x/3, S2 : z/0, x/3, x/3,

S3 : z/2, y/2, x/1, S3 : z/2, y/2, x/1,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 9 ===== ===== SOLUTION 10 =====

c a b c a b

S0 : z/2, x/0, x/1, S0 : z/2, x/0, x/1,

S1 : x/1, y/0, y/1, S1 : x/1, y/0, y/1,

S2 : z/3, y/1, x/1, S2 : z/3, y/1, x/1,

S3 : x/1, x/0, y/1, S3 : x/3, x/0, y/1,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 11 ===== ===== SOLUTION 12 =====

c a b c a b

S0 : z/2, x/0, x/1, S0 : z/2, x/0, x/1,

S1 : x/1, y/0, y/1, S1 : x/3, y/0, y/1,

S2 : z/3, y/1, x/1, S2 : z/3, y/1, x/1,

S3 : z/1, x/2, y/1, S3 : x/1, x/0, y/1,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 13 ===== ===== SOLUTION 14 =====

c a b c a b

S0 : z/2, x/0, x/1, S0 : z/2, x/0, x/1,

S1 : x/3, y/0, y/1, S1 : x/3, y/0, y/1,

S2 : z/3, y/1, x/1, S2 : z/3, y/1, x/1,

S3 : x/3, x/0, y/1, S3 : z/1, x/2, y/1,

Non-conforming solution! Non-conforming solution!

20



===== SOLUTION 15 ===== ===== SOLUTION 16 =====

c a b c a b

S0 : z/2, x/0, x/1, S0 : z/2, x/0, x/1,

S1 : x/3, y/0, y/3, S1 : x/3, y/0, y/3,

S2 : z/3, y/1, x/1, S2 : z/3, y/1, x/1,

S3 : x/3, x/0, y/1, S3 : z/1, x/2, y/1,

Conforming solution! Non-conforming solution!

===== SOLUTION 17 ===== ===== SOLUTION 18 =====

c a b c a b

S0 : z/2, x/0, x/1, S0 : z/2, x/0, x/1,

S1 : x/1, y/0, y/1, S1 : x/2, y/0, y/1,

S2 : z/3, y/2, x/1, S2 : z/3, y/2, y/2,

S3 : z/1, x/2, */*, S3 : z/1, x/2, x/1,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 19 ===== ===== SOLUTION 20 =====

c a b c a b

S0 : z/2, x/0, x/1, S0 : z/2, x/0, x/3,

S1 : x/3, y/0, y/1, S1 : x/1, x/0, y/2,

S2 : z/3, y/2, x/1, S2 : z/1, y/3, y/1,

S3 : z/1, x/2, y/1, S3 : z/0, y/0, x/1,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 21 ===== ===== SOLUTION 22 =====

c a b c a b

S0 : z/2, x/0, x/3, S0 : z/2, x/0, x/3,

S1 : x/1, x/0, y/2, S1 : x/2, x/0, y/2,

S2 : z/1, y/3, y/2, S2 : z/1, y/3, y/2,

S3 : z/0, y/0, x/1, S3 : z/0, y/0, x/1,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 23 ===== ===== SOLUTION 24 =====

c a b c a b

S0 : z/2, y/1, x/0, S0 : z/3, x/2, x/1,

S1 : x/2, x/0, x/0, S1 : x/1, y/0, y/1,

S2 : z/1, y/3, y/2, S2 : z/2, x/0, */*,

S3 : z/0, y/3, x/1, S3 : z/1, y/1, x/1,

Non-conforming solution! Non-conforming solution!

21



===== SOLUTION 25 ===== ===== SOLUTION 26 =====

c a b c a b

S0 : z/3, x/2, x/1, S0 : z/3, y/1, x/1,

S1 : x/2, y/0, y/1, S1 : x/2, x/3, x/0,

S2 : z/2, x/0, y/1, S2 : z/1, y/0, y/2,

S3 : z/1, y/1, x/1, S3 : z/2, y/2, x/0,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 27 =====

c a b

S0 : z/3, y/1, x/1,

S1 : x/3, x/3, x/0,

S2 : z/1, y/0, y/2,

S3 : z/2, y/2, y/3,

Non-conforming solution!

total solutions = 27, non-conforming solutions = 26

(5) T2a:

===== SOLUTION 1 ===== ===== SOLUTION 2 =====

c b a c b a

S0 : z/2, x/1, x/0, S0 : z/2, x/1, x/0,

S1 : x/1, y/1, y/0, S1 : x/1, y/1, y/0,

S2 : z/3, x/1, y/1, S2 : z/3, x/1, y/1,

S3 : x/1, y/1, x/0, S3 : x/3, y/1, x/0,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 3 ===== ===== SOLUTION 4 =====

c b a c b a

S0 : z/2, x/1, x/0, S0 : z/2, x/1, x/0,

S1 : x/3, y/1, y/0, S1 : x/3, y/1, y/0,

S2 : z/3, x/1, y/1, S2 : z/3, x/1, y/1,

S3 : x/1, y/1, x/0, S3 : x/3, y/1, x/0,

Non-conforming solution! Non-conforming solution!

===== SOLUTION 5 =====

c b a

S0 : z/2, x/1, x/0,

S1 : x/3, y/3, y/0,

S2 : z/3, x/1, y/1,

S3 : x/3, y/1, x/0,

Conforming solution!

total solutions = 5, non-conforming solutions = 4

22


