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Abstract

We develop wavelet methods for the multiresolution representation of parametric curves and

surfaces. To support the representation, we construct a new family of compactly supported

symmetric biorthogonal wavelets with interpolating scaling functions. The wavelets in these

biorthogonal pairs have properties better suited for curves and surfaces than many commonly

used �lters. We also give examples of the applications of the wavelet approach: these include the

derivation of compact hierarchical curve and surface representations using modi�ed wavelet com-

pression, identifying smooth sections of surfaces and a subdivision-like intersection algorithm

for discrete plane curves.

1 Introduction

Many applications require the representation of complex multiscale digitized curves and surfaces in

a geometric computing environment. Geographic information systems, medical imaging, computer

vision, and graphics for scienti�c visualization are examples of such applications. A hierarchical

data representation can be used to overcome the problems of dealing with the large amount of

data inherent in such applications: apart from allowing computations at selected accuracy levels, a

hierarchical representation has important applications such as rapid data classi�cation, fast display,

and surface design.

1.1 Our approach

In this work, we develop multiresolution wavelet methods for the representation of curves and

surfaces, and construct a family of wavelets well suited for this purpose. Using these methods, we

demonstrate some of the �rst applications of wavelets to curve and surface representation.

The wavelet coe�cients of the surface are found by computing the wavelet transform of each

coordinate function separately. The representation can then be compressed; in many cases, such
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modi�ed wavelet coe�cients are sparse. We also describe a di�erent variant of wavelet compression,

spatially coherent compression, which makes the results more easily re�nable for other operations,

such as display and interference detection. As a byproduct of this compression method, selected

scaling coe�cients of the surface yield a compact hierarchical surface representation using \natural"

surface building blocks.

A new family of wavelets, pseudocoi
ets, is constructed for use in these applications. Pseudo-

coi
ets are symmetric, compactly supported biorthogonal [8] wavelets with an interpolating scaling

function1. The scaling functions are functions of the type �rst described by Deslauriers{Dubuc

([13]). The interpolation property enables us to use curve or surface samples directly as initial

coe�cients in the wavelet representation. It also allows us to approximate curves well using the

linearly interpolated scaling coe�cients, which are simple and easily obtained from the wavelet

representation.

Some of the applications of a wavelet representation of curves and surfaces are illustrated with

examples of curve compression, �nding smooth sections of surfaces, and the outline of a curve-

curve intersection algorithm. The intersection algorithm is a variant of subdivision methods, but

it relies on curve approximation, rather than subdivision. Our applications are all related { they

are based on the modi�ed form of wavelet compression, which leads to a compact and natural

hierarchical representation of the object.

1.2 Why are wavelets useful in curve and surface representation?

Wavelets can be very useful in the analysis and preparation of the curve/surface for other operations.

In other application areas, wavelets have been used for compression, for edge and discontinuity

detection, and denoising [14], [22], [15]. We list below some of the main features of wavelets:

� Good approximation properties.

The multiresolution approximations given by the orthonormal wavelet decomposition are the

best possible L2 approximations from the given multiresolution spaces, and simple wavelet

thresholding gives L2-optimal compression. While the L2-optimality does not guarantee min-

imum distance approximations, it does give excellent curve and surface approximations, espe-

cially in the absence of sharp discontinuities. The good approximation properties of wavelets

are the basis for their success in applications. We note that wavelet approximation works in

spaces other than L2 as well [14].

� The wavelet coe�cients provide a precise measure of the approximation error.

The behavior of the approximation error is well understood. The approximation properties

of the wavelet representation are tied to the number of vanishing moments of the wavelet.

� Space-frequency localization.

Wavelets identify frequency changes in small domains: the size of the wavelet coe�cients

gives information about the local \smoothness" of the underlying data.

1Pseudocoi
ets derive their name from the observation that their construction can be obtained by building

biorthogonal wavelets with \coi
et-like" moment properties { coi
ets, in turn, are an orthonormal wavelet family

specially constructed by Daubechies [11] to provide good approximation of function samples by scaling coe�cients.
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� Good numerical properties.

Numerical calculations in the wavelet basis are fast and robust [3].

� E�ciency.

The parametric wavelet representation is simple to compute (O(n)) and, as discussed in

Section 3, it respects standard operations such as translation, rotation and scaling. The

representation leads to easily parallellizable, e�cient algorithms, and allows the use of di�erent

coe�cient transformation techniques.

� Hierarchical surface representation and analysis tools.

The wavelet representation we use is very closely related to hierarchical design schemes, such

as hierachical splines [18]. Hierarchical design is also possible using the wavelet representation,

although we concentrate more on the uses of the wavelet representation for curve and surface

analysis. A compact hierarchical representation for a curve or surface can be obtained from a

modi�ed wavelet compression algorithm (Section 5). The analysis of wavelet coe�cients can

also be used to partition the curve or surface into areas of varying complexity for use in other

operations or geometric algorithms.

1.3 Why are pseudocoi
ets useful?

Pseudocoi
ets, described in Section 4 are constructed to satisfy the following requirements:

� Smooth, symmetric, nonoscillating reconstructing scaling functions.

� Good space-frequency localization and regularity for both biorthogonal wavelets.

� Short �lters.

� Interpolating reconstructing scaling function.

The �rst three of these are generally desirable properties in curve and surface representation. The

interpolation requirement is more speci�c, but very useful. Interpolating scaling functions allow:

� Use of data samples as initial scaling coe�cients.

� Fast, local schemes for curve and surface interpolation.

� Interchanging control points and curve points.

� Use of scaling coe�cients in approximation.

Any wavelet application which uses the scaling coe�cients themselves to approximate data needs

an underlying wavelet, which produces scaling coe�cients close to the data. Pseudocoi
ets were

designed to give scaling coe�cients with these approximation properties.
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For example, curve and surface data are usually provided as samples. Using these samples directly

as starting coe�cients for wavelet algorithms normally means allowing an initial approximation

error. With interpolating scaling functions, the use of data samples is accurate.

Local, fastO(n) interpolation using the scaling functions is useful for instance in design applications,

where points on curves/surfaces are placed in desired locations. Interpolating scaling functions also

allow one to go easily from control points to the actual corresponding curve segments. For very

fast display using minimum storage, a curve or surface represented with an interpolating scaling

function can be progressively \�lled in" with re�ned data in simple �ltering steps.

With interpolating scaling functions, we can also use the scaling coe�cients directly as an easily

obtained piecewise linear approximation to the original curve or surface. Scaling coe�cients from

di�erent levels can be used in an adaptive approximation derived from wavelet compression. These

applications again require wavelets which produce \good" scaling coe�cients, such as pseudocoi
ets.

The examples in Section 5 illustrate these uses.

1.3.1 Comparison with other wavelets

A simple example in Figure 1 illustrates why the properties of the reconstructing scaling function

are important, and why the easiest wavelets to use, the orthonormal Daubechies wavelets, are

not ideal for curve and surface representation. The multiresolution approximation of simple data

given by the Daubechies wavelet D8 ([12]) oscillates much more than the same multiresolution

approximation using the pseudocoi
et P4.

scaling coefficients scaling coefficients

Figure 1: Original curve; approximations using Daubechies wavelets and pseudocoi
ets

B-splines are in some respects ideal as scaling functions in curve representation. However, biorthog-

onal B-spline wavelet pairs with short supports tend to have very uneven properties [8] (see Figure

4). Semiorthogonal spline wavelets [6] have dual wavelets with in�nite support. So to obtain

wavelets with even properties and short �lters, spline wavelets are not necessarily the best choice.

The following �gures give an example of multiresolution approximation with scaling coe�cients,

using the pseudocoi
ets constructed in this paper. The scaling coe�cients, with linear interpolation,

form good approximations of the original curve.
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Figure 2: Original curve and scaling coe�cient curves (1/8 and 1/32 of points)

1.4 Related work

In other application areas, such as image and signal processing, wavelets have been used for several

years to provide multiresolution data representation ([22], [10]). Similarly, wavelet techniques for

image and elevation surface compression have been studied in for instance [1], [14].

Methods of hierarchical curve and surface representation based on subdivision (e.g. strip trees,

quadtrees, spline subdivision) have been used extensively in geometric modeling [2], [9], [19]. Hi-

erarchical methods based on a scale space representation have been popular in computer vision

[21]. Other hierarchical representations can be constructed for instance from variable knot spline

approximation. The multiresolution representation of curves using the scaling coe�cients from the

wavelet representation is very closely related to hierarchical design schemes, such as hierachical

splines [18], with the important di�erence that wavelets allow better control of the error in the

approximation.

Many of the methods above use multiresolution smoothing, which convolves the data with an

appropriately scaled kernel { wavelets are descended from these methods. One advantage of wavelets

is that the approximation properties of wavelet multiresolution �lters yield hierarchical curves and

surfaces which lie close to the original data, which does not always happen with other �lters [21]

Interpolating functions corresponding to multiresolution have been studied by Deslauriers{Dubuc

([13]) and [17]. These were not associated with wavelet spaces. Donoho [16] has constructed

interpolating wavelets, where the interpolating function is used as a wavelet, not as a scaling

function, as here. The use of an interpolating function as a wavelet is unorthodox, since its integral

does not vanish, and this setup is used to prove theoretical approximation results, rather than in

building practical wavelet tools.

The wavelet-based intersection algorithm is a variant of the basic subdivision algorithm [9], and is

related to the methods described in [19]. However, the algorithm does not rely on curve subdivision,

like the above schemes, but rather on hierarchical curve approximation. In practice, this results in

smaller error boxes. In another departure from the standard method, the algorithm is designed to

be supplemented by other, potentially faster ones on suitable curve sections, which can be identi�ed

using the underlying wavelet representation.
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1.5 Organization of the paper

Section 2 contains selected preliminaries on wavelets. More details on general wavelet theory

can be found for instance in [12]. Section 3 presents de�nitions, notation and some basic results

on the parametric wavelet representation of curves/surfaces. Section 4 gives the construction of

pseudocoi
ets; it includes a brief comparison of pseudocoi
ets to popular wavelet families.

Examples of the use of wavelets/pseudocoi
ets in curve and surface representation are given in

Section 5. This section contains three examples: compression of curve and surface data using a

modi�ed thresholding technique, analyzing surfaces for smooth sections, and an application to the

intersection of plane curves. These examples are all related, and rely on the use of a compact,

hierarchical, wavelet-based representation of the geometric object developed in this paper.

Proofs of the results are given in the Appendix.

2 Wavelet preliminaries

Wavelets are collections of functions in L2 constructed from a basic wavelet  by dilations and

translations. Wavelets are used for representing the local frequency content of functions; for this,

the basic wavelet and its Fourier transform should both be reasonably well localized, and the wavelet

should have zero mean. We will only consider discrete families of wavelets formed using dilations

by powers of 2 and integer translations:

 i;j =
p
2�i (2�ix� j); i; j 2Z:

Multiresolution is an important general method for constructing orthonormal wavelet bases for L2

consisting of these discrete wavelets ([22]). In multiresolution schemes, wavelets have corresponding

scaling functions �, whose analogously de�ned dilations and translations �i;j span a nested sequence

of multiresolution spaces Vi; i 2 Z. Wavelets ( i;j)ij form orthonormal bases for the orthogonal

complements Wi = Vi�1 � Vi, and for all of L2.

2.0.1 Biorthogonal wavelets

We will primarily use the more general biorthogonal families of wavelets of Cohen, Daubechies, and

Feauveau ([8]). These wavelets ( i;j ; ~ i;j) do not form orthogonal bases, but they are dual bases

for L2: <  i;j; ~ i0;j0 > = �ii0�jj0 ; and the following \analyzing" and \reconstructing" relations hold:

f =
X
ij

< f;  i;j > ~ i;j =
X
ij

< f; ~ i;j >  i;j :

In this case we have two dual multiresolution spaces Vi, ~Vi, which may coincide, and the complement

wavelet spaces Wi, ~Wi. We do not necessarily have orthogonality between Wi and Vi, but have

instead Wi ? ~Vi and Vi ? ~Wi. The analyzing and reconstructing roles of the dual and primal

wavelets can be interchanged, but we will stick to the above convention.
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The wavelet transform or decomposition of a function f is the representation of f in the recon-

structing wavelet basis: f =
P

ij cij
~ i;j; the coe�cients cij = < f;  i;j > are called the wavelet

coe�cients of f . The scaling coe�cients of f at level i are de�ned similarly as inner products

< f; �i;j >, or, equivalently, as the coe�cients dij of the projection Pif =
P

j dij
~�i;j of f into the

ith multiresolution space ~Vi.

Biorthogonal bases have several advantages over orthonormal ones. First, it is much easier to

construct biorthogonal wavelet bases than orthonormal ones ([8]). In addition, the di�erent roles

of the wavelets allow a more 
exible construction of bases suited to the application.

2.0.2 Wavelet �lters

In practice, the function f is usually given as an approximation in a multiresolution space using

function samples. The scaling coe�cients of this initial multiresolution approximation form the

initial coe�cients s. The wavelet transform is then obtained by iterating Mallat's �ltering scheme:

H H H

s �! s1 �! s2 �! : : :

G G G

& & &
w1 w2 : : :

(1)

The �lters H = (hj) and G = (gj) are the analyzing scaling and wavelet �lters, respectively.

Reconstruction is performed using the dual �lters (~hj) and (~gj).

For compactly supported biorthogonal wavelets, only the scaling �lters need to be speci�ed. The

wavelet �lters are obtained from the scaling �lters using the exact reconstruction condition. The

(primal) wavelet �lter is constructed from the dual scaling �lter using the standard mirror �lter

construction, and similarly the dual wavelet from the primal scaling �lter.

2.0.3 Approximation properties of wavelets

The approximation properties of the wavelet decomposition are determined by the number N of

vanishing moments of the wavelet  . The number of vanishing moments is the largest number N

for which

Z
xl (x) dx = 0; l = 0; : : : ; N � 1: (2)

The number N determines the accuracy of approximating a function f by its projections in the

multiresolution spaces Vi. The error decreases as 2
iN as i tends towards �ner scales:

Approximation result (Strang and Fix [25]).

Suppose (Vi) is a multiresolution with a wavelet  . If  has N vanishing moments, the error of

approximating a function f with at least N derivatives from the multiresolution space Vi is:
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k f � Pif k� C2�iN k f kWN :

(The norm of the function is the Sobolev space norm obtained from the derivative norms k f k2
WN=P

n k f (n) k2.) The vanishing moment condition also means that polynomials of degree up to N�1
are spanned by the corresponding multiresolution spaces.

For biorthogonal wavelets, the vanishing moments of the analyzing (primal) wavelet determine the

degree of approximation from the reconstructing (dual) multiresolution spaces.

Using the fact that the L2-norm of a function f is
P

ij jwij j2, where wij are the wavelet coe�cients

of f , the above also implies that the wavelet coe�cients of a su�ciently smooth function decay at

least as a power of 2N , if  has N vanishing moments:

maxj jwijj � C2�iN :

So wavelets with a small number of vanishing moments, for example Haar wavelets, result in larger

coe�cients in smooth sections. As a consequence, these wavelets will not produce as marked a

contrast in coe�cient size between smooth and non-smooth sections of data as wavelets with more

vanishing moments, and they will not approximate functions as rapidly.

2.0.4 Compression using wavelet coe�cients

In wavelet compression, we approximate data from spaces �n consisting of those functions with n

nonzero wavelet coe�cients. Unlike the multiresolution spaces, these are not linear spaces, since

they are not closed under addition. In L2, this approximation is based on the following: if A

is the set of coe�cients (i; j) chosen to be in the approximating function, the L2 norm of the

approximation error is

k error k2 '
X

(i;j)6=A

jwijj2:

This means that the L2 error is smallest when the n largest wavelet coe�cients are chosen for the

approximation. This corresponds to simple threshold compression of the wavelet coe�cients. From

the above, it is clear that for smooth data, compression rates improve as the number of vanishing

moments of the wavelet increases.

3 Parametric wavelet decomposition: basic de�nitions and results

In this discussion, we will focus on the wavelet decomposition of curves; the extension of the

de�nitions to higher dimensions will be straightforward. We consider parametrically de�ned curves

C = fx 2 RN : x = f(t); t 2 Rg;
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where the component functions fk are in L2. Curves given on intervals are treated by using modi�ed

wavelets de�ned on intervals (e.g. [7]).

We also select a biorthogonal wavelet family determined by the analyzing scaling function � and

wavelet  , and the corresponding reconstructing functions ~� and ~ . At this point, we are not

limiting the wavelets to �nitely supported ones.

3.1 Parametric wavelet decomposition

The wavelet decomposition of the curve C is the collection of wavelet decompositions of each co-

ordinate function fk =
P

< fk;  i;j > ~ i;j. The wavelet coe�cients of the curve are given by

ckij = < fk;  i;j >. Similarly, the scaling coe�cients of the curve are given by the scaling coe�-

cients for each coordinate: dkij = < fk; �i;j >. The (normalized) coe�cient curve Coe�s(C; i) on

level i consists of the linearl interpolation of the points de�ned by the scaling coe�cients multiplied

by 2�i=2.

The (multiresolution) approximation curve Approx(C; i) at multiresolution level i is constructed

from the scaling coe�cients dkij componentwise by Pif
k(t) =

P
j dkij

~�ij(t). The error between

two approximation curves is given by reconstruction from the wavelet coe�cients using the wavelet

basis functions.

The wavelet coe�cients of a curve or surface can be modi�ed to obtain better approximations, to

compress surface data, and to eliminate noise. Methods for this include adaptive wavelet coe�cient

thresholding ([14]), quantization ([1]) and the shrinking of wavelet coe�cients ([15]). Wavelet coe�-

cients also provide a way to analyze the curve for discontinuities (see [12], [22]). The above wavelet

coe�cient transformation techniques will lead to modi�ed wavelet and scaling coe�cients and ap-

proximation curves. The modi�ed data is obtained by �rst performing the standard decomposition

of the original data s into scaling coe�cients si and wavelet coe�cients wi:

s �! s1 �! s2 �! : : :

& & & :

w1 w2 : : : :

The wavelet coe�cients are then transformed from wi to w0
i, as in for instance [14], [15], and

reconstruction is performed on the new wavelet coe�cients, leading to a new sequence of scaling

coe�cients w0
i:

s0  � s01  � s02  � : : :

- - -
w0

1 w0
2 : : :

Since the underlying wavelets have compact (or e�ectively compact) support, algorithms involving

wavelet decomposition and reconstruction of parametric curves are fast and parallellizable. We

should note that the wavelet transform is sensitive to the parametrization used, although the main

features of the decomposition (rate of decay of coe�cients, for example) will be invariant to changes

such as parameter shifts.
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The parametric wavelet decomposition of a curve behaves well with respect to the standard a�ne

transformations:

Proposition 3.1

� The normalized coe�cient curve of a translated, rotated or scaled curve is obtained by trans-

lation, rotation or scaling from the original normalized coe�cient curve, respectively.

� The approximation curve for a translated, rotated or scaled curve is also obtained by transla-

tion, rotation or scaling from the original approximation curve.

The proofs are given in the Appendix. For example, for coe�cient curves, these properties follow

immediately from the observation that, for a function f in L2(R), the operation Pi giving the

normalized scaling coe�cients of f on level i is linear.

4 Pseudocoi
ets: wavelets with interpolating scaling functions

In this section we construct a family of biorthogonal wavelets, pseudocoi
ets, well suited for the rep-

resentation of geometric objects. The pseudocoi
et construction was motivated by the requirements

of curve and surface representation outlined in the introduction.

More speci�cally, we will construct compactly supported symmetric biorthogonal wavelets, for

which one of the scaling functions is interpolating. The construction is based on the methods of

Cohen, Daubechies, and Feauveau [8], and the interpolating scaling functions are Deslauriers{Dubuc

functions ([13]). These wavelets are called pseudocoi
ets, after the coi
et family of orthonormal

wavelets constructed by Daubechies [11]. We observe that wavelets with interpolating scaling func-

tions automatically have coi
et-like moment properties and so can be used in the same applications

as coi
ets.

4.1 Coi
et-like wavelets and interpolation: de�nitions

Coi
ets are orthonormal wavelets whose scaling function � also has higher vanishing moments.

This approach has advantages for instance in the computation of scaling coe�cients from function

samples: the normalized scaling coe�cients of f can be used at �ner scales i to approximate the

values of the function f , and vice versa. More speci�cally, if f is CN and we have sampled f at

intervals of length h = 2i we have ([12])

f(2ik) = 2�i=2 < f; �i;k > + O(hN); (3)

provided that the moments l = 1; : : : ; N � 1 are zero for �.

A biorthogonal family is called coi
et-like if there is anN such that both wavelets have the vanishing

moment properties of (2) and one of the scaling functions satis�es (2) for l = 1; : : : ; N . A scaling

function � is interpolating when its scaling �lter coe�cients (hj)j satisfy
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h2j =
1p
2
�j;0:

In this case, we will also call the corresponding �lter and the �lter transfer function m0(�) =
1p
2

P
hje

�ij� interpolating.

Iterating the reconstruction using an interpolating scaling �lter (and zero wavelet coe�cients)

re�nes the values at each stage. We note that no compactly supported orthonormal wavelet basis

can have interpolating scaling functions.

4.2 Construction outline

4.2.1 Construction requirements

We will construct a family P2N of scaling functions (�; ~�) and corresponding wavelets satisfying

the exact reconstruction condition (see [8]) and with the following properties:

� The scaling functions � and ~� are symmetric.

� The �rst 2N moments for  and ~ vanish.

� ~� satis�es the scaling function vanishing moment condition for 2N.

� �,  , ~�, and ~ are compactly supported.

� ~� is interpolating.

We will outline the construction here; proofs are given in the Appendix. We follow the methods

of [8]: for a given N , we �nd the appropriate trigonometric polynomials m0(�) and ~m0(�) corre-

sponding to � and ~�. We assume �rst that both m0(�) and ~m0(�) correspond to �lters which are

symmetric and consist of an odd number of elements. The moment conditions on the wavelet and

the scaling function for such a �lter transfer function m0 can then be rewritten in the following

way:

m0(�) = (1 + cos �)NP1(cos �): (4)

m0(�) = 1 + (1� cos �)NP2(cos �) (5)

Here, both P1 and P2 are trigonometric polynomials of cos �, and 2N is the number of vanishing

moments required. (For details, see [8].) We will note that (4) is the only form the trigonometric

polynomial ~m0 can take if ~� is to be interpolating.
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4.2.2 The interpolation condition

We �rst observe that interpolating scaling functions can be obtained as a special case from the

construction of coi
et-like scaling functions. For these scaling functions, both moment conditions

(5) and (4) are satis�ed.

The requirement that the wavelet is coi
et-like can be expressed as

(1 + x)NP1(x)� (1� x)NP2(x) = 1; (6)

where x = cos �. This equation has the solution

P1(x) =
1

2N

N�1X
0

 
N � 1 + k

k

!
1

2k
(1� x)k + (1� x)NF (x); (7)

P2(x) = �P1(�x) (8)

where F is an arbitrary odd polynomial. (See [12] for a proof of this in a slightly di�erent form.)

For F = 0 these P1 correspond to functions studied by Deslauriers and Dubuc (see e.g. [13]).

In addition, interpolating scaling functions are also obtained this way by the following observation:

Proposition 4.1

� Assume that the trigonometric polynomial ~m0 is a solution of the coi
et equation (6) for 2N

vanishing moments, that is, ~m0 satis�es (5) and (4), where P1 and P2 are as in (7) and (8).

Then ~m0 is interpolating.

� Conversely, compactly supported symmetric interpolating scaling functions are coi
et-like,

have an even number of vanishing moments, and the corresponding �lter consists of an odd

number of elements.

4.2.3 The biorthogonality conditions

The interpolating trigonometric polynomials ~m0 obtained in the above way are then inserted into

the biorthogonality conditions of [8] to �nd the dual trigonometric polynomials m0. We observe

that the biorthogonality condition can always be satis�ed if ~m0 is a solution of the coi
et equation

(6). The necessary condition for biorthogonality for m0 and ~m0 is

m0(�) ~m0(�) +m0(� + �) ~m0(� + �) = 1: (9)

For m0 and ~m0 as in (5) and (4), with 2N and 2 ~N giving the numbers of vanishing moments, the

condition can be expressed as
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(1 + x)N+ ~N ~P (x)P (x) + (1� x)N+ ~N ~P (�x)P (�x) = 1: (10)

We have the following result:

Proposition 4.2 If ~P (x) is a solution (7) for P1 to the coi
et equation (6), then there is a poly-

nomial P such that P and ~P solve the biorthogonality equation (10) with N = ~N. The unique

minimum degree solution P corresponding to the minimum degree ~P has degree 3N � 2.

4.3 The pseudocoi
et family P2N

The family of pseudocoi
ets P2N , a wavelet family (�;  ); (~�; ~ ) satisfying the necessary biorthog-

onality condition (10), is now obtained by the following procedure.

Construction of pseudocoi
ets P2N

1. Let ~P and P be the trigonometric polynomials m0(�) = (1 + cos �)NP (cos �) and ~m0(�) =

(1 + cos �)N1 ~P (�).

2. Find the minimal degree solution (7) for ~P by letting ~P = P1.

3. Find the minimal degree solution P for the given ~P using the linear system in (10). This

solution exists by the above proposition.

4. Evaluate the �lter coe�cients from P and ~P .

The above construction implies that there is an exact reconstruction �ltering scheme correspond-

ing to the functions (�;  ); (~�; ~ ). It does not yet guarantee that the constructed functions

(�;  ); (~�; ~ ) are in L2, or that the wavelets derived from  ; ~ form a dual basis. A necessary

and su�cient condition for the functions (�;  ); (~�; ~ ) to de�ne a true biorthogonal L2-wavelet

family has been given by Cohen in [8]. This condition can be easily shown to hold for the �rst few

members of the family P2N , and so we have L
2-biorthogonal wavelet bases corresponding to at least

these N . However, the exact reconstruction property for biorthogonality holds in all cases without

further proof for the corresponding �lters. The remaining biorthogonality issues will be discussed

elsewhere. The properties of the interpolating scaling functions have been studied outside a wavelet

context by Deslauriers and Dubuc.

The following properties of the pseudocoi
ets  and ~ follow immediately from the construction:

Properties of pseudocoi
ets P2N

� The pseudocoi
ets  and ~ have 2N vanishing moments, as does the scaling function ~�.

� The reconstructing scaling function ~� is interpolating.

� The scaling functions are symmetric.
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� The degrees of ~m0 and m0 are N � 1 and 3N � 2, respectively.

� The lengths of the pseudocoi
et P2N reconstructing and analyzing �lters are 4N � 1 and

6N � 1, respectively.

4.3.1 Extensions

We note that it is possible to choose di�erent values of ~N and N in (10), leading to a construction

of a family P2 ~N;2N of pseudocoi
ets consisting of a family of analyzing functions, depending on

N, for each reconstructing scaling function with moment properties given by ~N . Longer �lters

correspond to underlying functions with less oscillation; this is important if the function � is used

as a reconstructing function. Other variations of the construction can also be obtained, for instance,

by considering longer than minimal length reconstructing �lters.

4.4 Examples

The �lter coe�cients for the pseudocoi
ets with N = 1 and N = 2 are listed below in Table 1.

Note that the coe�cients are exact. The pseudocoi
et for N = 1 has the hat function as the re-

constructing scaling function and the �lter pair equals the corresponding spline-based biorthogonal

�lter of [8]. The pseudocoi
et scaling functions for N = 2 are pictured in Figure 3.

Figure 3: Pseudocoi
et P2 scaling function, wavelet and the duals
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analyzing �lter reconstructing �lter analyzing �lter reconstructing �lter

N = 1 N = 1 N = 2 N = 2

multiply by 1p
2

multiply by
p
2 multiply by 1p

2
multiply by

p
2

-0.00390625

0

0.0703125

-0.0625 -0.03125

-0.25 -0.24609375 0

0.5 0.25 0.5625 0.28125

1.5 0.5 1.359375 0.5

0.5 0.25 0.5625 0.28125

-0.25 -0.24609375 0

-0.0625 -0.03125

0.0703125

0

-0.00390625

Table 1: Scaling �lter coe�cients for pseudocoi
ets with N = 1; 2.

The wavelet �lter coe�cients are obtained by the mirror �lter construction from the scaling �lters.

The analyzing wavelet is obtained from the reconstructing scaling function, and vice versa. The

wavelet coe�cients for N = 2 are, for the analyzing �lter,

(0:03125; 0; �0:28125; 0:5; �0:28125; 0; 0:03125)

multiplied by
p
2, and, for the reconstructing wavelet �lter,

(�0:00390625; 0; 0:0703125; 0:0625; �0:24609375; �0:5625; 1:359375;

�0:5625; �0:24609375; 0:0625; 0:0703125; 0; �0:00390625)

multiplied by 1p
2
. Note that the application of the analyzing wavelet �lter to data has to be shifted

by one step from the application of the scaling �lter to achieve exact reconstruction.
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4.5 Comparison with other wavelets

In this section we compare pseudocoi
ets P4 to other wavelets with similar numbers of vanishing

moments. We look at the Fourier transforms of the scaling functions and their duals (the wavelets

themselves have similar properties, since they are obtained directly from the scaling functions).

We compare the pseudocoi
ets to Daubechies wavelets D8, and biorthogonal spline wavelet pairs

S3;3 and S3;7 with 3 and 3, and 3 and 7 vanishing moments respectively [12]. Aside from the speci�c

uses of interpolation, pseudocoi
ets compare well with these wavelets if the requirements of the

introduction are considered:

� Smooth, symmetric, nonoscillating reconstructing scaling functions.

� Good space-frequency localization and reasonable regularity for both wavelets.

� Short �lters.

B-splines are in some respects ideal as scaling functions. However, biorthogonal B-spline wavelet

pairs with short supports tend to have very uneven properties and �lter lengths [8]. This is illus-

trated in Figure 4, where the dual wavelet can be seen to be very irregular. Semiorthogonal spline

wavelets [6] have dual wavelets with in�nite support. So if we wish to obtain wavelet pairs with

even properties and short �lters, we need to look at other wavelets.

To obtain more even spline-based wavelets, Daubechies has constructed modi�ed wavelets in [8].

These are the wavelets that were used with success in [1]. However, in this case, neither scaling

function is a cardinal B-spline, and some of the advantages of using spline-based wavelets are now

lost.

Figure 5 compares the Fourier transform magnitudes of the primal scaling function for the �lters

D8, P4, and S3;7. (In the spline case, this is a quadratic spline.) Figure 5 compares the Fourier

transform magnitudes of the duals for D8, P4, S3;3, and S3;7.

The plots of the Fourier transform of the Daubechies wavelets show subsidiary \lobes". This a�ects

the regularity of the wavelet and its frequency localization. The Fourier transform of the B-spline

is the \best possible" in the biorthogonal setup. However, the duals of the biorthogonal spline

wavelets are not as well behaved { in fact, the dual wavelets are very irregular. This is very

noticeable for the spline wavelets with 3 vanishing moments for both wavelets (the large \bumps"

in the Fourier transform in Figure 5) and can also be seen from the shape of the duals in Figure 4.

Pseudocoi
ets are almost as good as splines on the primal side, and on the dual side, they are much

better. Pseudocoi
ets have better regularity properties than the orthonormal Daubechies �lters

D8 (and the orthonormal coi
ets with 4 vanishing moments, which are very similar to Daubechies

wavelets).
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Figure 4: Spline wavelets S3;3 and S3;7: Biorthogonal pair corresponding to 3 vanishing moments

each; dual wavelet corresponding to 7 vanishing moments.
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P 4
spline 37

Daubechies 8

P 4
spline 37
spline 33

Daubechies 8

Figure 5: Fourier transform magnitude for spline-based scaling functions. Top: reconstructing

(primal) scaling functions. Bottom: analyzing (dual) scaling functions.
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5 Applications

In this section we develop some applications of wavelets to curve and surface manipulation. We

demonstrate wavelet-based compression of parametric curves and surfaces using a new variant of the

standard technique. This compression method is well suited for curves and surfaces which must be

sampled or approximated adaptively for other operations. It also allows us to obtain an adaptive

approximation of the curve or surface, using a smaller number of natural components. (If the

underlying wavelets are spline-based, the result is similar to the hierarchical B-spline representation

of [18].) We also illustrate a related application: the use of the wavelet representation to �nd smooth

sections of surfaces. We discuss error box estimation, and compare the wavelet multiresolution

approximations to a common hierarchical curve representation technique, the strip tree [2], [19].

Finally, we outline an intersection algorithm, which is applied to curves preprocessed by the above

techniques.

The primary wavelet used is the pseudocoi
et P4 with 4 vanishing moments. Pseudocoi
ets are use-

ful in these applications partly because they allow us to approximate well with scaling coe�cients.

Scaling coe�cients are easy to calculate and can be used in adaptive piecewise linear approxima-

tions to the original data; however, their use requires the underlying wavelet to produce coe�cients

close to the approximation curves, a property which pseudocoi
ets were designed to satisfy. The

interpolation property of pseudocoi
et scaling functions allows us to take given data samples as

initial coe�cients without penalty. Pseudocoi
ets also have good localization properties.

Using wavelets with higher vanishing moments gives better approximations { for scaling coe�cients,

this translates to coe�cients which lie closer to the original curve.

5.1 Example

The example in Figure 6 shows the �ner resolution wavelet coe�cients of the y-coordinate of a curve

with 1,536 points. The coe�cients are arranged with coarser resolution on top, �nest level at the

bottom, and shown dilated, so that they correspond to the spatial locations where they a�ect on

the curve. The curve parameter space consists of the indices given on the horizontal axis. Regions

near indices 400-600 and 1100-1300 are of particular interest, since the small wavelet coe�cients

there indicate that these curve sections are relatively smooth. (The �ner level coe�cients are not

zero although they appear so on the scale given.) In the next section we look at the compression

of this curve for display and other operations.

5.2 Spatially coherent compression

A key advantage of using a wavelet representation is the ease of compression of curves and surfaces

as preparation for other operations, such as display, interference detection, and so on. For these

operations, it is important that the approximation given by the compression is quickly re�nable

when more accurate results are needed. We develop a new variant of the standard Lp-optimal

compression method [14] to obtain fast re�nability. This procedure gives a compact hierarchical

representation of the surface in terms of its scaling coe�cients.

A di�erence between the compression performed here and the standard algorithm needs to be noted.
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Figure 6: Original curve and wavelet coe�cients

Lossy compression of curves and surfaces is usually performed in order to minimize storage { the

objective is to specify an approximation of the curve using the least amount of data. A standard

procedure is to set all wavelet coe�cients below a given threshold value to zero. This constitutes

an optimal L2 compression method, where optimality means a minimal number of nonzero wavelet

coe�cients for a given error. However, in this approach, wavelet coe�cients can be set to zero in

areas where large coe�cients are dense. Dropping these small wavelet coe�cients is not useful for

operations such as display, since, for accurate results, the area with the otherwise large coe�cients

has to be sampled at a high density, regardless. Further, when the dropped coarse level coe�cients

are added during re�nement, they a�ect a wide region in the data. This is why it is useful to

include these small coe�cients in the compressed data even when strict thresholding would require

them to be dropped.

In our variant Compress, wavelet coe�cients below a given threshold are set to zero only if they

occur in blocks with other small coe�cients on the same level. The minimum block length is

speci�ed separately2. Curve regions where all the higher level wavelet coe�cients are small can

then be represented with the corresponding coarse resolution scaling coe�cients. If the curve

has smooth sections, the number of these scaling coe�cients is much smaller than the number of

curve samples, and the curve is approximated, in this region, by the corresponding portion of the

multiresolution approximating curve. If the wavelet is well chosen, the piecewise linear scaling

coe�cient curve is also a suitable approximation.

The underlying data structure for this approximation is a truncated binary tree, the segment tree,

where the segments are associated with scaling coe�cients. The tree corresponds to an adaptive

subdivision of the parameter space. Each segment on a given level corresponds to a unique section

of the underlying curve or surface; these sections are nested across the scales.

2For surfaces, blocks are de�ned as the index sets corresponding to a square in the parameter space.
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Figure 7: Wavelet coe�cients with large coe�cients shaded; corresponding truncated scaling coef-

�cient tree

The leaves of the truncated scaling coe�cient tree represent the underlying compressed surface.

The surface can be recovered at the original sampling density by extending the tree to its full binary

form (for instance, by carrying out the complete reconstruction algorithm).

The input to the following procedures is a curve or surface wavelet decomposition W, wavelet

coe�cient threshold � 3, and minimum blocksizes B(L). The blocksize varies with the level L, since

typically, we require a larger block of zero coe�cients on coarser levels. Here, the coarsest level

considered is indexed with L = 0.

Compress (W, B, �)

for L = 0 to L = �nest level do:

� Set wavelet coe�cients wLj < � on level L to 0, if they occur in blocks of size at least

B(L). end do

Compression results in a modi�ed surface wavelet decomposition. This can now be selectively

reconstructed. The result of the following procedure is a hierarchical representation S of the curve

or surface using approximating segments de�ned by the scaling coe�cients. S also contains a list

of index regions R, each of which is marked final at a level LR.

3We could allow the thresholds � to be level-dependent. This is analogous to optimal compression in di�erent
norms ([14]).

21



SelectiveReconstruct(W, B, �)

for L = 0 to L = �nest level do:

� Mark a connected parameter space index region final at level L, if it has not previously

been marked final, and all wavelet coe�cients corresponding to that region have been

set to 0, at all levels l �ner than L.

� If an index region has not been marked final, compute the scaling coe�cients on level

L for that region. end do

The compression and the hierarchical representation can be re�ned by the following procedure,

which takes as input the previous wavelet coe�cients W and their selective reconstruction S for

the old threshold �1, and a new threshold, �2 < �1:

Re�neCompression(W, S, B, �2)

Compress W selectively:

for L = 0 to L = �nest level do:

� If wavelet coe�cients wLj belong to a region marked final at a level L1 �ner than L,

do not process them.

� Else set wavelet coe�cients wLj < �2 on level L to 0, if they occur in blocks of size at

least B(L).

Update reconstruction S selectively only in regions previously marked final:

for L = 0 to L = �nest level do:

� If a connected parameter space index region has not been marked final by level L for

previous �1, do not process it.

� Else:

Mark appropriate regions as final at level L as before, but for the new threshold.

If an index region has not been marked final, compute the scaling coe�cients

on level L for that region, as before.

end do

The advantage of this compression variant is the following: as the approximation is improved, there

will be minimal updating of coarser resolution data { and so any recalculation that has to be done

to add new wavelet coe�cients will involve fewer decomposition levels, and large curve regions will

remain �xed. (Note that all \dense" region coe�cients have been kept on every level. As re�nement

increases, formerly final regions can become dense, and dense regions will remain so.)

In the following example we threshold the curve of Figure 6 with a threshold corresponding to 300
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nonzero points in the optimal compression. The number of nonzero points is 366 in our variant,

or about 24 % compression. Blocksizes vary from 1 to 5. This is an example to illustrate the

procedure; note that when using small compression ratios, the large majority of curve regions will

in fact be truncated at decomposition levels well below the original curve sampling density.

Figure 8: Compressed curve. Compressed wavelet coe�cients

5.3 Adaptive approximation using scaling coe�cients

The above compression method e�ectively sections the curve or surface into regions of di�erent

complexity. This allows the curve to be approximated by piecewise linear scaling coe�cient curve

segments at di�erent levels of re�nement.

Instead of calculating the true compressed surface from the scaling coe�cients, the coe�cients can

be used by themselves in a piecewise linear approximation. This approximation consists of linear

pieces { at the boundaries between regions corresponding to di�erent levels, the end points can be

equated, since the error of doing this is within the error bound for the approximation).

Figures ??, 9 give an example of an adaptive, piecewise linear scaling coe�cient approximation to

a � 5000-point curve obtained from brain scan data4, using the pseudocoi
et P4.

Figure ?? is an illustration of the method. For clarity, the error allowed is large, and only two levels

of wavelet decomposition are used. To show the areas from di�erent levels better, the regions have

not been connected to one piecewise linear curve. Wavelet coe�cients for both coordinates are

used to determine the appropriate scaling coe�cient blocks. Most of the curve can be adequately

4Data courtesy of Peter Cahoon, UBC.
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approximated using the lower resolution level, but some sharper corners require the use of higher

resolution scaling coe�cients.

Figure 9 shows a scaling coe�cient approximation is superimposed on the original curve. The

number of points in the scaling coe�cient approximation is 245, representing compression to less

than 5 % of the original data.

Figure 9: Original curve and a simpli�ed, 2-level adaptive scaling coe�cient approximation. Some

sections of the curve are approximated with the sparser low resolution scaling coe�cients, sharper

corners need higher resolution coe�cients.

Approximating surfaces adaptively using wavelet compression di�ers from approximating from the

linear multiresolution spaces by the multiresolution surfaces. In the latter case the representation is

always stopped on a given level and no higher resolution wavelet coe�cients are included. Wavelet

compression allows faster approximation of the original surface. Using the above compression

variant, the recalculation needed for re�ning the approximation is minimized.
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Figure 10: The original curve superimposed on the adaptive scaling coe�cient representation for 5

% compression. Selected levels of the corresponding compressed wavelet coe�cients.
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5.4 Analyzing curves and surfaces for smooth sections

The size of the wavelet coe�cients can be used to analyze the curve or surface for relative \smooth-

ness". Smooth sections are the ones for which higher level wavelet coe�cients are small, that is,

the sections which are approximated well by coarser level scaling coe�cients. This fact is used in

[23] to hierarchically plan mobile robot paths through natural terrain.

Figure 10 shows an example of identifying the \smooth" sections of a surface. The sections are

found by determining where the �ner level coe�cients are small. The smooth sections are shown

by the marked squares on the original surface.
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Figure 11: Identifying smooth surface sections - original surface and smoother sections on coarse

level scaling coe�cients. Note that in the �gure the two axes are not drawn to the same scale.

5.5 Subdivision and wavelet approximation { comparison with strip trees

Subdivision methods are in general use in geometric operations such as curve and surface inter-

section. There are several choices for obtaining the hierarchical subdivision, for instance: basic

binary subdivision [9], strip tree subdivision (subdivision points are chosen to minimize maximum

distance) [2], arc length subdivision [19]. The latter methods attempt to subdivide so that the

resulting piecewise linear approximations are good.

By contrast, we do not subdivide at all. Instead, we choose a discrete set of points, not necessarily on

the curve, but guaranteed to approximate the curve well by a given measure. It must be possible to

26



naturally re�ne the approximation by using twice as many points, just as in subdivision. We choose

the approximating points as the scaling coe�cients of the wavelet multiresolution approximations

to the curve.

The example below compares wavelet approximations with strip tree subdivision. The wavelet

approximations are the linearly interpolated coe�cient curves obtained using the pseudocoi
ets

P4. The scaling coe�cient curves \average" the original data, rather than subdivide it, and this

results in more uniform errors than the strip tree method. Figure 12 depics a re�ned approximation,

Figure 11 a coarser one. Note also that the number of strip tree segments is 50 % larger than the

number of scaling coe�cient curve segments in each example.

original
strip tree

original
level 5

Figure 12: Strip tree subdivision (64 segments), P4 level 5 scaling coe�cients (48 segments).

original
strip tree

original
level 4

Figure 13: Strip tree subdivision (128 segments), P4 level 4 scaling coe�cients (96 segments).

5.6 Error estimation

In general wavelet multiresolution gives optimal L2 approximation from the underlying spaces.

However, L2 optimality does not necessarily mean optimal maximum norm (L1) approximation,

or the ideal, optimal approximation using distance. But in practice, it does provide excellent ap-

proximations. We can estimate an upper bound on the distance error from the wavelet coe�cients,
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or we can directly precompute a smaller error box aligned with the scaling coe�cients. We discuss

this brie
y below.

5.6.1 Error bounds from wavelet coe�cients

Conservative error bounds for a replacing a given curve segment s by an approximating curve on

level i can be obtained from the L1 errors of the coordinate functions, so we need only look at

the approximation errors for a function f of one variable. An upper bound for the L1 error of

approximating a function f by its multiresolution approximation is obtained very easily from the

wavelet coe�cients:

Suppose that the component function is f and its wavelet coe�cients corresponding to the region

s on level i are denoted by wi(s) = (wij : j 2 A(s; i)). These are the coe�cients entering into

calculations about s. This set is restricted to a set of indices A(s; i), which is determined by the

�lter length used.

The coe�cients of the error in terms of the next level scaling functions, are w�i (s) =
~Gwi(s), where

~G is the reconstructing wavelet �lter. The new coe�cients are similarly restricted to a subset of

all the coe�cients w�. Let fi(s) denote the approximation fi on the segment s, and let ~� be the

reconstructing scaling function. Then the error between a segment and its re�nement by one level

is given by

errori(s) = k fi�1(s)� fi(s) k1
= max

j
j
X

j2A(s;i)

wij
~�ij j

� (max
j
jw�ij(s)j)

X
j

j~�ij j:

The quantity U(~�) =
P

j j~�ij j can be estimated or calculated for general scaling functions and we

have

errori(s) � U(~�) max
j
j(w�ij(s))j:

The total error at level i is now bounded simply as

TotErrori(s) =
X
i0�i

errori0(s):

For positive scaling functions, such as B-splines,
P

j j~�ij j = 1, by the partition of unity property,

and errori � maxj j(w�ij(s))j, that is, the error is obtained by adding the maximum reconstructed

wavelet coe�cient norms on each level.

For pseudocoi
ets, the maximum real errors on each level are almost the same as the maximum

reconstructed coe�cient norms: as can be seen from an example in Figure 13, the wavelet coe�-

cients, with one step of the reconstruction algorithm performed, give a good approximation of the

real error.
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approximated error
real error

Figure 14: Real error compared to wavelet coe�cients with 1 step reconstruction

The maximum reconstructed coe�cient norm a = maxj

���w�ij(s)
��� can also be estimated from the

wavelet coe�cient maximum b = maxj jwij(s)j directly: in the worst case, a =
p
2 b. This worst

case is usually not attained. This procedure gives reasonable (but not minimal) error bounds,

especially for smoother sections of curves.

5.6.2 Linearization error

The previous error estimate was valid for approximation curves. For the piecewise linear scaling

coe�cient curves, the e�ect of linearizing the approximation curve has to be estimated as well.

This linearization error is usually not as large as the error from the wavelet coe�cients.

The linearization error can also be computed from the wavelet transform by looking at the dif-

ference functions between the real approximation curve and the piecewise linear scaling coe�cient

curve. The scaling coe�cient curve can be formally obtained by applying the hat function as a

reconstructing function to the scaling coe�cients.

So, the di�erence functions are obtained by looking at the di�erence \basis" function ~� � �hat,
where ~� is the reconstructing scaling function, and �hat the hat function. Estimating the max

norm of this \basis" function, and applying this to the scaling coe�cients, gives a bound for the

linearization error.

In cases where the above wavelet coe�cient estimates do not give su�ciently tight bounds, minimal

error regions for replacing a curve section with scaling coe�cients can be computed as follows. For

two consecutive scaling coe�cients on level L, �nd the 2L points on the original curve, corresponding

to these scaling coe�cients, and compute a minimal box aligned with the line segment between the

scaling coe�cients (the line in the �gure), and containing the points (\X"):
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5.7 Curve-curve intersection

In our �nal example, we use the wavelet representation in a subdivision-like curve-curve intersection

algorithm. This algorithm is a natural consequence of the hierarchical wavelet representation.

The quality of the approximation will determine the speed of a subdivision-like algorithm { since

wavelets are well known to have good approximation properties, they are a reasonable choice for a

hierarchical representation.

The algorithm does not rely on a subdivision of the curve, instead it approximates curves with the

re�nable piecewise linear ones determined by the scaling coe�cients.

The input to the algorithm is a segment tree, that is, a selectively reconstructed, compressed curve

obtained by the procedures of Section 5.2. The compression is performed to half the intersection

tolerance. Error boxes can be precomputed. The algorithm proceeds level by level exactly as a

subdivision algorithm, and identi�es potentially intersecting segment pairs. Segment pairs found

not to intersect are discarded. The re�nement of a segment is done by replacing each scaling

coe�cient by two scaling coe�cients on a �ner level (not by subdividing) in the truncated scaling

coe�cient tree of Figure 7.

The main part of intersection algorithm for a given level i is described below:

levelIntersection(i)

begin

for all potentially intersecting segment pairs (l1; l2) on level i

if (not lastLevel(i; l1; l2))

if (errorRegionsIntersect(Error(l1);Error(l2))

/* re�ne both segments . . . */

lC1
(0) = RefinedSegm(C1; l1; 0)

lC1
(1) = RefinedSegm(C1; l1; 1)

lC2
(0) = RefinedSegm(C2; l2; 0)

lC2
(1) = RefinedSegm(C2; l2; 1)

/* . . . add the new segment pairs to the list for the re�ned level: */

for (j = 0; 1 and k = 0; 1) addToPotentialIntersections(lC1
(j); lC2

(k))

/* if error regions do not intersect, discard the pair: */

else break

else if (lastLevel(i; l1; l2)) intersectSegments(l1; l2)

end

This is exactly like a subdivision algorithm, except for the re�nement of a segment, which is not

done using subdivision. This binary re�nement process is continued until a �nal re�nement level in

the segment tree hierarchy has been reached (the function lastlevel (i; l1; l2) returns true). When

this occurs, the potentially intersecting curve segments are used to �nd the �nal intersection points.

This can be done in two ways. The �rst is by continuing with binary re�nement until the original

point density is reached, as in subdivision. This is guaranteed to succeed, but in certain cases may

take longer than necessary (for instance, when intersecting two nearly tangential curves).
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The second intersection method relies on the use of the properties of the scaling coe�cients de�n-

ing the whole contiguous curve section. As this is the �nal re�nement level, the scaling coe�cients

describe the underlying curve in this whole region. The intersection of these longer sections can

be performed by another method, when this is more appropriate. As a simple example, the inter-

section of two long, nearly linear sections can be found as a simple line-line intersection. Other

fast methods for nonoscillating, long, smooth sections include Newton method variants or secant

methods adapted to parametric curves.

The error boxes for the algorithm are computed so that the underlying curve segment corresponding

to the scaling coe�cients on a given level of the segment tree is always contained in the error box.

(See section 5.6 for the computation of the error.)

The algorithm can be applied to the case of discrete plane curves de�ned by n line segments.

The worst case performance of this, and other subdivision-type algorithms, is n2. However, the

algorithm performs well if the number of intersections K is small relative to the length n of the

curves, a common occurrence in practice; in these situations the binary re�nement approach will

often be much faster than the commonly used output-sensitive n logn + K algorithms (e.g. [5]).

Since wavelet-based approximation produces small error boxes, the algorithm is fast.

6 Conclusions

The main contributions of this paper are the construction of a new family of wavelets, pseudocoi
ets,

well suited for curve and surface representation, and new applications to the hierarchical, adaptive

representation of curves and surfaces using a parametric wavelet decomposition.

The construction of pseudocoi
ets was motivated by curve representation requirements, but these

wavelets are also of general interest. The interpolation property of pseudocoi
ets is important in

many applications, as it allows the direct use of surface samples as control points, for instance. In

addition, pseudocoi
ets have good space-frequency localization properties for both wavelets, which

other biorthogonal wavelets often lack. Pseudocoi
ets are now in use in wavelet libraries ([20], [4]).

We illustrate some of the advantages of using a wavelet representation of curves and surfaces. We

give examples of adaptive approximation of curves using scaling coe�cients, an example of the

analysis of surfaces for smoothness, and an intersection algorithm. The wavelet-based intersection

algorithm is a form of the basic subdivision algorithm, but it is more 
exible and does not rely on

curve subdivision, but rather, on hierarhical curve approximation. All of these examples rely on a

new variant of wavelet compression, and use the pseudocoi
ets developed here.
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7 Appendix: Proofs

Proof of Proposition 3.1.

For coe�cient curves, these properties follow from the observation that, for a function f in L2(R),

the operation P giving the normalized scaling coe�cients of f on level i, d�ij , is linear. Slightly

more speci�cally, we show that

P (�f + �) = �P (f) + �: (11)

(Restrict all functions to compact sets when necessary.) This follows immediately for instance from

the inner product de�nition of scaling coe�cients and their normalization:

P (f)(j) = d�ij = 2�i=2 < f; �ij >;

where � is the analyzing scaling function. This implies

P (�f + �)(j) = 2�i=2 < �f + �; �ij > = �d�ij + �2�i=2
Z
�ij = �d�ij + �:

The analogous properties for the approximating curves also follow directly: a point p(t) on the

approximating curve Approx(C, i) has the coordinate component fi(t) =
P

j d(f)ij�ij(t), where

the d(f)ij are the (unnormalized) scaling coe�cients for the appropriate coordinate function f , and

� is the reconstructing scaling function. Again, we have the analogue of (11): this follows from the

fact that 2i=2
P

j �ij(t) =
P

j �(2
�it� j) = 1 and
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X
j

d(�f + �)ij�ij(t) =
X
j

(�d(f)ij + 2i=2�)�ij(t) = �
X
j

d(f)ij�ij(t) + 2i=2�
X
j

�ij(t):

Since translation, rotation and scaling are linear on the coordinate functions, the approximation

curve respects these operations.

2

Proof of Proposition 4.1. We note �rst that interpolating scaling functions with an even number

of vanishing moments and an odd number of �lter elements are a special case of coi
et-like scaling

functions: that is, if they satisfy the �rst moment condition (5) for 2N they also satisfy the second

moment condition (4) for 2N .

An equivalent condition for interpolation is requiring that the �lter transfer function

m0(�) =
1p
2

X
j

hje
�ij�

has the property

m0(�) +m0(� + �) = 1: (12)

The interpolation condition (12) for a �lter transfer function satisfying the moment condition (5)

can now be written as:

(1� x)NP1(�x) + (1 + x)NP1(x) = 1; (13)

where x = cos �.

On the other hand, the solutions P1 and P2 to the coi
et equation for 2N vanishing moments, (6),

satisfy

P2(x) = �P1(�x): (14)

This can be seen by substituting �x for x in the equation, and using the uniqueness of the minimum

degree solutions. The solutions (7) and (8) are obtained in this way. We then have the following

equation for such P1:

(1 + x)NP1(x) + (1� x)NP1(�x) = 1: (15)

This is a form of the \coi
et equation" and is exactly the interpolation condition (13) obtained

above. This means that the solutions to the coi
et equation obtained in the above way from (7)

are automatically interpolating.

For the converse, we note that symmetric interpolating ~m0 can only take the form
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m0(�) = (1 + cos �)N1P1(cos �); (16)

where 2N1 is the number of vanishing moments for the scaling function.

This follows immediately from the observation that the �lter corresponding to a symmetric in-

terpolating ~m0 must consist of an odd number of �lter elements by the interpolation condition

(12). Thus, ~m0(�) = j ~m0(�)j, the number of vanishing moments is even, and the function can be

expressed in the form (16). The fact that ~m0 is coi
et-like then follows from the equivalence of the

interpolation condition (13) and the coi
et-condition (15) as before. 2

Proof of Proposition 4.2.

If the polynomials ~P (x) and ~P (�x) have no common zeros, the biorthogonality condition (10) has

a unique minimum degree solution (P (x); P (�x)), with P of degree N+ ~N +degree( ~P )�1 (as well
as other solutions of higher degrees). This follows from a theorem by Bezout (see e.g. [12], Chapter

6). Therefore, to �nd the analyzing polynomial P corresponding to the reconstructing polynomial
~P constructed above, it only remains to show that if ~P (x) is a solution (7) to the coi
et equation

(6), then ~P (x) and ~P (�x) have no common zeros:

Lemma 7.1 If P1(x) is a solution of the coi
et equation (15), then P1(x) and P1(�x) have no

common zeros.

Proof. Since R(x) is a solution to the coi
et equation (15), R(x)� 1=2 is an odd polynomial, and

so divisible by x. Therefore, R(x) does not have a zero at x = 0.

Suppose R(x) and R(�x) have a common zero at x = a, a 6= 0. Then

R(x) = (x2 � a2)Q(x)

for some polynomial Q, and the coi
et equation becomes

(x2 � a2)[(1 + x)NQ(x) + (1� x)NQ(�x)] = 1:

But it is easy to see (for instance by a direct power series solution method) that there are no

polynomial solutions to this equation. So the polynomials R(x) and R(�x) have no common zeros.

2

The existence of a unique minimum degree solution P follows from Bezout's theorem and the

previous lemma. Since ~N = N and degree( ~P ) = N � 1 this degree is

degree(P ) = N + ~N + degree( ~P )� 1 = N +N + (N � 1)� 1 = 3N � 2:

2
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