
IMPLICIT-EXPLICIT METHODS FOR TIME-DEPENDENT PDE'S

URI M. ASCHER�, STEVEN J. RUUTHy , AND BRIAN T.R. WETTONz

Abstract. Implicit-explicit (IMEX) schemes have been widely used, especially in conjunction

with spectral methods, for the time integration of spatially discretized PDEs of di�usion-convection

type. Typically, an implicit scheme is used for the di�usion term and an explicit scheme is used for
the convection term. Reaction-di�usion problems can also be approximated in this manner. In this

work we systematically analyze the performance of such schemes, propose improved new schemes and

pay particular attention to their relative performance in the context of fast multigrid algorithms and
of aliasing reduction for spectral methods.

For the prototype linear advection-di�usion equation, a stability analysis for �rst, second, third

and fourth order multistep IMEX schemes is performed. Stable schemes permitting large time steps
for a wide variety of problems and yielding appropriate decay of high frequency error modes are

identi�ed.

Numerical experiments demonstrate that weak decay of high frequency modes can lead to extra
iterations on the �nest grid when using multigrid computations with �nite di�erence spatial discretiza-

tion, and to aliasing when using spectral collocation for spatial discretization. When this behaviour

occurs, use of weakly damping schemes such as the popular combination of Crank-Nicolson with

second order Adams-Bashforth is discouraged and better alternatives are proposed.

Our �ndings are demonstrated on several examples.

Key words. method of lines, �nite di�erences, spectral methods, aliasing, multigrid, stability
region.
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1. Introduction. Various methods have been proposed to integrate dynamical

systems arising from spatially discretized time-dependent partial di�erential equations.

For problems with terms of di�erent types, implicit-explicit (IMEX) schemes have been

often used, especially in conjunction with spectral methods [7, 16]. For convection-

di�usion problems, for example, one would use an explicit scheme for the convection

term and an implicit scheme for the di�usion term. Reaction-di�usion problems can

also be approximated in this manner. In this work we systematically analyze the

performance of such schemes, propose improved new schemes and pay particular at-

tention to their relative performance in the context of fast multigrid algorithms and

of aliasing reduction for spectral methods.

Consider a time-dependent PDE in which the spatial derivatives have been dis-

cretized by central �nite di�erences or by some spectral method. This gives rise to a

large system of ODEs in time which typically has the form

_u = f(u) + �g(u)(1)

where kgk is normalized and � is a nonnegative parameter. The term f(u) in (1)

is some possibly nonlinear term which we do not want to integrate implicitly. This

could be because the Jacobian of f(u) is non-symmetric and non-de�nite and an
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iterative solution of the implicit equations is desired, or the Jacobian could be dense,

as in spectral methods, requiring the inversion of a full matrix at each time step.

One may simply wish to integrate f(u) explicitly for ease of implementation. The

term �g(u), however, is a sti� term which should be integrated implicitly to avoid

excessively small time steps. Frequently �g(u) is a linear di�usion term, in which case

the implicit equations form a linear system which is positive de�nite, symmetric and

sparse. Such systems can be solved e�ciently by iterative techniques (e.g. [26, 11]).

Thus, for problems of the form (1) it often makes sense to integrate �g(u) implicitly

and f(u) explicitly, yielding an IMEX scheme.

The most popular IMEX scheme hitherto has been a combination of second order

Adams-Bashforth for the explicit (\convection") term and Crank-Nicolson for the

implicit (\di�usion") term [16, 7, 1]. Applied to (1) this gives

u
n+1 � u

n

k
=

3

2
f(un)�

1

2
f(un�1) +

�

2
[g(un+1) + g(un)](2)

where k is the constant discretization step size and un is the numerical approximation

to u(kn). Other implicit-explicit methods have also been considered, e.g. [18, 25, 15].

A wide variety of other applications for IMEX schemes are also possible. For

example, solutions to reaction-di�usion systems arising in chemistry and mathematical

biology can be computed using this technique. For these problems the nonlinear

reaction term can be treated explicitly while the di�usion term is treated implicitly.

Examples of reaction-di�usion systems from a biological standpoint can be found in

[19]. We report about these in a separate paper [21].

Several authors have analyzed speci�c IMEX schemes. For example, an experi-

mental analysis of several implicit-explicit schemes including (2) was carried out in [2].

Some stability properties for certain second order IMEX schemes were determined in

[25]. The schemes (17) and (24) below were considered in a Navier-Stokes context in

[15]. These studies do not address how to choose the best IMEX scheme for a given

system (1).

In this paper, we seek e�cient IMEX schemes for convection-di�usion type prob-

lems using a systematic approach. First we derive, in x2, classes of linear multistep
IMEX schemes. Classes of s-step schemes turn out to have optimal order s and to

depend on s parameters.

We then restrict our attention in x3 to a prototype advection-di�usion equation

in 1D

Ut = aUx + �Uxx(3)

where a and � are constants, � > 0, subject to periodic boundary conditions. A

von-Neumann analysis (see, e.g. [23]) can then be applied, yielding in e�ect a safe

diagonalization of (1) and allowing us to consider a scalar test equation

_x = (�+ i�)x(4)

as is customary for ODEs (see, e.g. [12]), for values of �, � on an ellipse. An analysis

of IMEX schemes for (4) is then performed, seeking methods which allow the largest

stable time steps. In particular, for � � 1 we seek methods possessing a mild time

step restriction since the system (1) is dominated by the implicitly handled \di�usion
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term". For other values of � � 0 we seek schemes which have reasonable time-stepping

restrictions, e.g. comparable to the CFL condition [23].

In x4 we perform a variety of numerical experiments using �nite di�erence and

pseudospectral methods on linear and nonlinear problems of convection-di�usion type

in one and two spatial dimensions. These experiments agree with the theory of x3.
Furthermore, we discuss and demonstrate the use of IMEX schemes which yield strong

decay of high frequency spatial modes. This property has important implications for

the e�ciency of time-dependent multigrid methods and of pseudospectral methods.

An appropriate IMEX scheme (but not the popular (2)!) can reduce aliasing in pseu-

dospectral methods. In the multigrid context, similar methods can reduce the number

of multigrid cycles needed per time step, in e�ect acting as smoothers (cf. [14, 10]).

Conclusions and recommendations are summarized in x5. Perhaps the most sur-

prising conclusion is that the most popular IMEX scheme (2) can essentially always

be outperformed by other IMEX schemes. Moreover, a modi�cation of (2) is almost

always at least as good as (2) and at times much better.

2. General linear multistep IMEX schemes. We now derive s-step IMEX

schemes for (1), s � 1. Letting k be the discretization step size and u
n denote the

approximate solution at tn = kn, these schemes may be written,

1

k
u
n+1 +

1

k

s�1X
j=0

aju
n�j =

s�1X
j=0

bjf(u
n�j) + �

s�1X
j=�1

cjg(u
n�j)(5)

where c
�1 6= 0. See [8] for some stability and convergence results. For a smooth

function u(t), expand (5) in a Taylor series about tn = n�t to obtain the truncation

error. This yields

1

k
[1 +

s�1X
j=0

aj ]u(tn) + [1�
s�1X
j=1

jaj ] _u(tn) + � � �+
k
p�1

p!
[1 +

s�1X
j=1

(�j)paj ]u
(p)(tn)(6)

�
s�1X
j=0

bjf(u(tn)) + k

s�1X
j=1

jbj
df

dt
j
t=tn

� � � � �
k
p�1

(p� 1)!

s�1X
j=1

(�j)p�1bj
dp�1f

dtp�1
j
t=tn

��
s�1X
j=�1

cjg(u(tn))� k�[c
�1 �

s�1X
j=�1

cj ]
dg

dt
j
t=tn

� � � �

�
k
p�1

(p� 1)!
�[c
�1 +

s�1X
j=1

cj(�j)
p�1]

dp�1g

dtp�1
j
t=tn

+O(kp):

Applying (1) to the truncation error (6), an order p scheme is obtained provided

1 +
s�1X
j=0

aj = 0

1�
s�1X
j=1

jaj =
s�1X
j=0

bj =
s�1X
j=�1

cj

1

2
+

s�1X
j=1

j
2

2
aj = �

s�1X
j=1

jbj = c
�1 �

s�1X
j=1

jcj
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...(7)

1

p!
+

s�1X
j=1

(�j)p

p!
aj =

s�1X
j=1

(�j)p�1bj
(p� 1)!

=
c
�1

(p� 1)!
+

s�1X
j=1

(�j)p�1cj
(p� 1)!

:

It is not di�cult to prove the following theorem [22].

Theorem 2.1. For the s-step IMEX scheme (5), the following hold.

(a) The 2p + 1 constraints of the system (7) are linearly independent, provided

p � s. Thus, there exist s-step IMEX schemes of order s.

(b) An s-step IMEX scheme cannot have order of accuracy greater than s.

(c) The family of s-step IMEX schemes of order s has s parameters

We thus restrict all further discussion to s-step IMEX schemes of order s.

3. Analysis for a test advection-di�usion problem. For the prototype prob-

lem (3), using the standard 2nd order centred approximations, D1 and D2, for the �rst

and second derivatives, respectively, we obtain the corresponding semi-discrete equa-

tions,

_Ui = aD1Ui + �D2Ui; 1 � i �M:

(Here, a uniform spatial grid with M points has been employed.) Applying a discrete

Fourier transform diagonalizes this system to

_xj = i�jxj + �jxj ; j = 1 : : :M

where �j and �j are given by

(�j ; �j) = (
2�

h2
[cos(2�jh)� 1];

a

h
sin(2�jh))(8)

For notational convenience, we write

_x = i�x+ �x(9)

We then consider values (�; �) which lie on the ellipse of Figure 1. Note that the

solution of (9) decays in time,

jx(tn+1)j = e
�kjx(tn)j:

Applying the general multistep IMEX scheme (5) to (9) yields

1

k
x
n+1 +

1

k

s�1X
j=0

ajx
n�j =

s�1X
j=0

bji�x
n�j +

s�1X
j=�1

cj�x
n�j(10)

which is a linear di�erence equation with constant coe�cients. (In comparing (10) to

(5) note that � is buried in �.) The solutions of the di�erence equation (10) are of

the form

x
n+1 = p1�

n

1 + p2�
n

2 + � � �+ ps�
n

s

where �j is the j
th root of the characteristic equation de�ned by

�(z) � (1� c
�1�k)z

s +
s�1X
j=0

(aj � bji�k � cj�k)z
s�j�1(11)
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Fig. 1. Half ellipse of possible (�; �)

a/h

−4ν/h2 0

β

α

and pj is constant for �j simple and a polynomial in n otherwise. Clearly, stability

holds for j�jj � 1; �j simple and j�j j < 1 where �j is a multiple root.

Remark. Below we will be interested in the entire range of � � 0. For the purely

hyperbolic case � = 0, our choice of the centred di�erence D1 then leaves out the

important characteristic-based methods. However, it is well-known that a one-sided

scheme can be interpreted as a centred scheme plus an arti�cial di�usion term (e.g.

[13]), so we do want to pay close attention to � = O(h). 2

3.1. First order IMEX schemes. The one-parameter family of 1st order IMEX

schemes for (1) can be written as

u
n+1 � u

n = kf(un) + �k[(1� 
)g(un) + 
g(un+1)](12)

and we restrict 0 � 
 � 1 to prevent large truncation error.

The choice 
 = 0 yields the Forward Euler scheme,

u
n+1 � u

n = kf(un) + �kg(un):

This scheme is fully explicit, and will not be considered further. The choice 
 = 1
2

yields the 2nd order Crank-Nicolson scheme when f = 0. Another possibility is to

apply Backward Euler to g and Forward Euler to f . This choice (
 = 1) yields,

u
n+1 � u

n = kf(un) + �kg(un+1):(13)

IMEX schemes such as (13) which apply a BDF discretization [9] to g and which

extrapolate f to time step (n + 1) will be referred to as semi-implicit BDF (SBDF)

schemes.

Applied to the test equation (4), the general IMEX scheme (5) gives

x
n+1 = �(�; �)xn

where �(�; �) =
1 + k�(1� 
) + ik�

1� k
�
:
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The stability region is thus f(�; �) : j�(�; �)j � 1g.
Note that these one-step schemes trivially accommodate variable time-stepping

and use relatively little storage. The choice 
 = 1 is particularly attractive because

strong decay occurs for � large and negative. However, �rst order IMEX schemes have

the shortcoming that they are unstable near the nonzero �-axis (i.e. for � su�ciently

small and a 6= 0 �xed but arbitrary) since

j�(0; �)j= j1 + ik�j =
q
1 + k2�2 > 1:

Furthermore, at least a second order time-stepping scheme is often desirable since a

second order spatial discretization is used. We thus consider higher order methods for

the remainder of this paper.

3.2. Second order IMEX schemes. Approximating (1) to second order using

IMEX schemes leaves two free parameters. If we centre our schemes in time about

time step (n+ 
) to second order, we obtain the following family,

1

k
[(
 +

1

2
)un+1 � 2
un + (
 �

1

2
)un�1] = (
 + 1)f(un)� 
f(un�1)+(14)

�[(
 +
c

2
)g(un+1) + (1� 
 � c)g(un) +

c

2
g(un�1)]:

Some of these methods are quite familiar. For example, selecting (
; c) = (12 ; 0) yields

the popular scheme (2),

1

k
[un+1 � u

n] =
3

2
f(un)�

1

2
f(un�1) +

�

2
[g(un+1) + g(un)]:

Because it applies Crank-Nicolson for the implicit part and second order Adams-

Bashforth for the explicit part, this scheme will be referred to as CNAB (Crank-

Nicolson, Adams-Bashforth). Below, we show that the best asymptotic decay proper-

ties for 
 = 1
2 occur when c = 1

8 . This choice gives

1

k
[un+1 � u

n] =
3

2
f(un)�

1

2
f(un�1) + �[

9

16
g(un+1) +

3

8
g(un) +

1

16
g(un�1)](15)

Because of the obvious similarity to CNAB, this scheme will be called modi�ed CNAB

(MCNAB). Note that in comparison to CNAB, MCNAB does require the additional

evaluation or storage of g(un�1).

By setting (
; c) = (0; 1) in (14) we obtain another method which has been applied

to spectral applications (e.g. [4]),

1

2k
[un+1 � u

n�1] = f(un) +
�

2
[g(un+1) + g(un�1)]:(16)

This scheme uses leap frog explicitly and something similar to Crank-Nicolson implic-

itly (cf. [17]). For this reason, this method shall be referred to as CNLF (Crank-

Nicolson, Leap Frog).

Finally, setting (
; c) = (1; 0) yields

1

2k
[3un+1 � 4un + u

n�1] = 2f(un)� f(un�1) + �g(un+1)(17)
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which shall be referred to as SBDF since this scheme is centred about time step (n+1).

Other authors, e.g. [25], call this scheme extrapolated Gear.

Having determined integration formulae, we direct our attention to obtaining sta-

bility properties for second order IMEX schemes. The second degree characteristic

polynomial resulting from (14) applied to _x = (�+ i�)x is given by

�(z) = [
 +
1

2
� �k(
 +

c

2
)]z2(18)

�[2
 + i�k(
 + 1) + �k(1� 
 � c)]z + 
 �
1

2
+ i�k
 � �k

c

2

It is easy to verify that at the origin, (�; �) = (0; 0), the roots of � are 1 and 2
�1
2
+1

.

Thus, all of these schemes are stable at the origin, provided � � 0.

Because the parameter c in (18) is always multiplied by � we choose c according

to stability properties for j�j � 1=k. For this case, the roots of the characteristic

equation (18) are given approximately by

(
 +
c

2
)�2 + (1� 
 � c)� +

c

2
= 0

which yields

�1;2 =

 + c� 1�

p
(1� 
)2 � 2c

2
 + c

For any (
; c), evaluating

D
;c � max(j�1j; j�2j)(19)

provides an estimate of the high frequency modal decay for large �. Minimization

over c determines the method with the strongest asymptotic high frequency decay for

a particular 
. This yields (see [22])

c =
(1� 
)2

2
for 
 > 0;(20)

c �
1

2
for 
 = 0:

The choice

c = 1� 
(21)

also proves useful (see [22]). The schemes SDBF, MCNAB and CNLF satisfy (20), the

schemes SDBF and CNLF satisfy (21), but CNAB satis�es neither. Also, minimization

of (19) over 
 and c determines that the SBDF scheme (17) possesses the strongest

asymptotic decay of second order methods.

Further information can be obtained from the stability contours in the ��� plane.

These plots are displayed in Figures 2 to 5. Figure 2 shows the contours for CNLF.

This method is stable for all � � 0, provided k <
h

a
. Such a time step restriction is

undesirable since it applies even for large � and small h. Furthermore, the decay of

high frequency modes can be weak, tending to 1 as �! �1. Comparison of CNLF to

other second order methods such that 
 = 0 suggests that CNLF produces the largest

stability region among such methods.
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β

α

1/k

-10/k 0

β

α

1/k

-10/k 0

β

α

1/k

-10/k 0

β

α

1/k

-10/k 0

Fig. 2. Stability contours for CNLF Fig. 3. Stability contours for CNAB

Fig. 4. Stability contours for MCNAB Fig. 5. Stability contours for SBDF

The contours for CNAB are plotted in Figure 3. This method has a reasonable

time step restriction for larger � and small h. It is unstable near the �-axis, however.

It also su�ers from poor decay of high frequency modes, since the decay tends to 1

as � ! �1. Using MCNAB, (
; c) = (1
2
;
1
8
), the decay tends to 1

3
, a signi�cant

improvement. See Figure 4 for these contours.

The contours for SBDF are displayed in Figure 5. This method has the mildest

time-stepping restriction when � is large and h is small. The decay of high frequency

modes is strong, tending to 0 as � tends to �1. This method, however, has the

strictest time step limitation for small j�j.
We can now develop a quantitative method for describing time step restrictions

for second order schemes. Such a method will help select which second order scheme

to use for a particular problem.

De�ning the mesh Reynolds number [20]

R �
ah

�
(22)

we plot in Figures 6 to 8 the theoretical time step restrictions for various 
 and c.

As can be seen from these �gures, increasing 
 allows larger stable time steps when

R < 2. The case c = 1� 
 also has the property that decreasing 
 allows larger time

steps for R > 2. Comparison of Figures 6 to 8 indicates that the largest time step

can be applied using SBDF for R < 2 and CNLF for R > 2. This result physically

corresponds to selecting SBDF when discrete di�usion dominates, and CNLF when
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Fig. 6. Time step restriction for various 
 where c = 1� 


=1/R

discrete convection dominates. From this perspective, the popular CNAB is only

competitive when R � 2.

Frequently, an important consideration when choosing a second order scheme is

what the constant of the truncation error is. For example, Crank-Nicolson is known

to have a much smaller truncation error than second order BDF (see, e.g. [12]),

so we expect CNAB to have a smaller truncation error than SBDF. The scheme

MCNAB is expected to have a truncation error similar to CNAB, however. (Numerical

experiments in x4 support this claim.) Because of its small truncation error and

because it produces stronger high frequency spatial decay than CNAB, MCNAB may

be preferred in certain problems over both CNAB and SBDF when R < 2.

One disadvantage that all second order IMEX schemes with 
 > 0 (i.e. essentially

all except CNLF) share, is that their stability regions do not contain a portion of the

�-axis other than the origin. Speci�cally, it was shown in [25] that when � = 0 one of

the roots, �i, of (18) satis�es

j�i(�k)j
2 = 1 + (
2+




2
)(�k)4 + � � � > 1

for �k su�ciently small and 
 > 0. Thus for all k, all second order schemes such

that 
 > 0 are unstable on the nonzero �-axis. The CNLF scheme is well-known to

be stable on the �-axis provided k <
h

a
, but it is only marginally stable (see, e.g.

[23]), providing no damping of high frequency error components anywhere. To obtain

IMEX schemes which are stable for � � 0 and have strong decay for j�j � 1=k we

must consider higher order schemes.

3.3. Third order IMEX schemes. Recall from x2 that we have a 3-parameter

family of 3-step IMEX schemes of order 3. One possible parameterization yields,

1

k
[(
1

2


2+ 
 +

1

3
+ �)un+1 + (�

3

2


2 � 2
 +

1

2
� �)un+(23)
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Fig. 7. Time step restriction for various 
 where c =
(1�
)2

2

=1/R

Fig. 8. Time step restriction for various 
 where c = 0

=1/R

(
3

2


2 + 
 � 1)un�1 + (�

1

2


2 +

1

6
)un�2] =

(


2+ 3


2
+ 1 +

23

12
�)f(un)� (
2 + 2
 +

4

3
�)f(un�1) + (



2 + 


2
+

5

12
�)f(un�2) +

�[(


2+ 


2
+ c)g(un+1) + (1� 


2 � 3c+
23

12
�)g(un) +
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(


2� 


2
+ 3c�

4

3
�)g(un�1) + (

5

12
� � c)g(un�2)]:

These schemes are centred about time step (n + 
) to third order, provided � = 0.

As for lower order schemes, the value of 
 should be between 0 and 1 to avoid large

truncation error. Also, the parameter c is multiplied by �, so this parameter should

be adjusted to modify large � properties of a scheme.

Setting (
; �; c) = (1; 0; 0) yields

1

k
(
11

6
u
n+1 � 3un +

3

2
u
n�1 �

1

3
u
n�2) = 3f(un)� 3f(un�1) + f(un�2) + �g(un+1)(24)

which is the third order BDF for the implicit part, and therefore is called third order

SBDF.

The third degree characteristic polynomial resulting from (23) applied to the test

equation _x = (�+ i�)x is given by

�(z) = [
1

2


2+ 
 +

1

3
+ � � (



2+ 


2
+ c)�k]z3(25)

� [
3

2


2 + 2
 �

1

2
+ � + (



2 + 3


2
+ 1+

23

12
�)i�k + (1� 


2 � 3c+
23

12
�)�k]z2

+ [
3

2


2 + 
 � 1 + (
2 + 2
 +

4

3
�)i�k + (


 � 

2

2
� 3c+

4

3
�)�k]z

� [
1

2


2 �

1

6
+ (



2+ 


2
+

5

12
�)i�k + (

5

12
� � c)�k]:

We now determine which methods produce the strongest asymptotic decay as � !
�1. For this case, the roots of the characteristic polynomial (25) are given approxi-

mately by

(


2+ 


2
+ c)z3 + (1� 


2 � 3c+
23

12
�)z2 � (


 � 

2

2
� 3c+

4

3
�)z +

5

12
� � c = 0:(26)

By determining the solutions, �1; �2 and �3, of (26) we may evaluate

D
;�;c � max(j�1j; j�2j; j�3j)

to obtain an estimate of the high frequency model decay for large �. Minimization over

(
; �; c) determines the method with the strongest asymptotic high frequency decay.

Certainly if

D
0;�0;c0 = 0(27)

then (
0; �0; c0) minimizes the ampli�cation as �! �1. From (26) we satisfy (27) i�

1� 

2
0 � 3c0 +

23
12�0



2
0+
0
2 + c0

= 0;



2
0�
0

2 + 3c0 �
4
3�0



2
0+
0
2 + c0

= 0;(28)

5
12�0 � c0



2
0+
0
2 + c0

= 0:



3. ANALYSIS FOR A TEST ADVECTION-DIFFUSION PROBLEM 12

Each term is divided by (


2
0+
0
2

+c0) to allow the possibility of satisfying (27) by letting

(


2
0+
0
2 + c0)! �1. Simpli�cation of the system (28) yields

(3
0 � 1)(
0 � 1)


2
0+
0
2 + c0

= 0;(29)

�0 � 6(
20 � 
0)


2
0+
0
2 + c0

= 0;(30)

5
12�0 � c0



2
0+
0
2 + c0

= 0:(31)

For (


2
0+
0
2

+c0) �nite there are two possibilities, (
0; �0; c0) = (1; 0; 0) and (
0; �0; c0) =

(13 ;�
4
3 ;�

5
9), both of which specify third order SBDF. For (



2
0+
0
2 + c0) in�nite, (29)

implies j
0j � jc0j. Using this in (30) implies j�0j � jc0j. Applying these results to

(31) results in a contradiction, so (


2
0+
0
2 + c0) must be �nite.

Because third order SBDF has the strongest asymptotic decay of third order IMEX

schemes, special attention is given to its properties throughout the remainder of this

section. All schemes considered here are stable on a segment of the �-axis including

the origin (�; �) = (0; 0), as can be veri�ed by an analysis of (25) [22].

Further information about stability in the �-� plane can be obtained by plotting

maxfjzj : �(z) = 0g, where �(z) is de�ned in (25). These stability contours are

displayed in Figures 9 to 14.

We begin by examining if it is possible to arrive at a stable scheme for any �xed


. For a �xed, but arbitrary 
 and for j�j; jcj ! 1 we obtain an approximate local

minimum of D
;�;c if
c

�
= 0:4661: Using these parameters, the scheme simpli�es to

1

k
(un+1 � u

n) =
23

12
f(un)�

4

3
f(un�1) +

5

12
f(un�2) + :4661�g(un+1)(32)

+:5184�g(un) + :0650�g(un�1)� :0494�g(un�2)

which applies third order Adams-Bashforth to the explicit term. (Note that 
 disap-

pears in (32) through the limiting process.) The stability contours of Figure 9 suggest

that this method is stable for all � � 0 provided k < 0:62h
a
. This restriction is more

severe than that for third order Adams-Bashforth applied to _x = i�x because of the

dip in the stability contours when � < 0. As mentioned previously, the �-axis is in-

cluded in the absolute stability region. This result demonstrates that for third order

methods, it is possible to �nd methods for any 
 which are stable for all � � 0 by

varying � and c.

In x3.2, the most interesting second order schemes were produced by selecting 


equal to 0, 1
2 or 1. We consider schemes for these values of 
 below. The parameters

� and c are chosen to produce schemes which allow large stable time steps as � !1.

For example, the method (
; �; c) = (0;�2:036;�:876) of Figure 10 is stable for all
� � 0 provided k � 0:67h

a
. Similarly (
; �; c) = (:5;�1:21;�:5) of Figure 12 is stable

for all � � 0 if k � 0:65h
a
. In both these cases substantially larger time steps can be

taken for large or moderate j�j than for the method (32). Furthermore, stronger high

frequency decay occurs for these methods than for method (32).

Recall that the strongest decay as � ! �1 occurs for third order SBDF. The

stability contours for this method are shown in Figure 13. This plot together with the
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Fig. 9. Stability contours for

(
; �; c) = lim
�!1

(
; �; :4661�)

Fig. 10. Stability contours for

(
; �; c) = (0;�2:036;�:876)

Fig. 11. Stability contours for

(
; �; c) = (12 ; 0; 0)

Fig. 12. Stability contours for

(
; �; c) = (12 ;�1:21;�:5)

Fig. 13. Stability contours for

3rd order SBDF, (
; �; c) = (1; 0; 0)

Fig. 14. Zoom-in around � = 0

for 3rd Order SBDF

zoom-in of Figure 14 suggest that third order SBDF is stable for all � � 0 provided

k < 0:62h
a
. The plot of Figure 13 also indicates that very large time steps can be taken

for large or moderate j�j. Although applying 
 = 1 and nonzero � and c may allow

somewhat larger stable time steps we focus on � = c = 0 since other choices degrade

the strong asymptotic decay.

For 
 6� 1, the choice � = c = 0 is not recommended. As seen in Figure 11,

(
; �; c) = (12 ; 0; 0) results in a small stability region. This plot indicates that very

small time steps are needed for moderate or large �

h2
, since the ellipse of Figure 1

must lie in the stable region.
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3.4. Fourth order IMEX schemes and a comparison. From x2, the general
4th order, 4-step IMEX scheme is a 4 parameter family of methods. From the previous

section we anticipate that the 4th order SBDF may have good stability properties. For

_u = f(u) + �g(u), this scheme is given by

1

k
(
25

12
u
n+1 � 4un + 3un�1 �

4

3
u
n�2 +

1

4
u
n�3) =(33)

4f(un)� 6f(un�1) + 4f(un�2)� f(un�3) + �g(un+1):

The characteristic polynomial obtained from applying (33) to _x = (�+ i�)x is

�(z) = (
25

12
� �k)z4 � (4 + 4i�k)z3 + (3 + 6i�k)z2 � (

4

3
+ 4i�k)z +

1

4
+ i�k:

Contour plots similar to those in Figures 13 and 14 were obtained for the 4th order

SBDF as well (see [22] for these plots). The scheme is stable for k � 0:52h
a
and larger

time steps are permitted as � increases. However, the stability region is smaller than

for the third order case, so smaller time steps may be required. Furthermore, the �-

axis is closer to the boundary of the stability region for fourth order SBDF, suggesting

that third order SBDF may dissipate error better for � � 0.

Third and fourth order SBDF methods are good choices for IMEX schemes for

some problems. For all � � 0, these methods are stable for a time step restriction

similar to the CFL condition. Greater accuracy and strong high frequency decay also

make these methods very attractive. Nonetheless, for many problems second order

methods are preferred. Higher order methods require more storage, and more work

per time step. This extra expense could be justi�ed if greater accuracy permitted

larger time steps. Third and fourth order schemes, however, have more severe time

step restrictions than second order schemes. In fact, Figure 15 shows that larger

stable time steps can be taken with second order SBDF when R < 9 for the linear

advection-di�usion problem using second order spatial discretizations. CNLF allows

larger stable time steps than either third or fourth order SBDF for R > 1.

Third order SBDF should be e�cient for problems which require strong decay for

j�j � 1=k and a moderate time step restriction for R > 10. It should also be e�ective

for problems where R� 1, since a portion of the �-axis is within the stability region.

Fourth order SBDF has a particularly severe time step restriction for the advection-

di�usion problem when R is moderate or small. For example, when R = :125, fourth

order SBDF can only apply one tenth the time step of second order SBDF, as can be

seen from Figure 15. This restriction on the step size would appear to limit fourth

order SBDF to problems where accuracy, and not stability, is the reason for limiting

the time step size.

4. Further considerations and numerical experiments. The previous sec-

tion has dealt with stability properties of IMEX schemes for the one-dimensional linear

constant coe�cient advection-di�usion equation. These results provide necessary, but

not su�cient conditions for stability for variable coe�cient and nonlinear convection-

di�usion problems.

In this section we summarize numerical experiments which verify that our analysis

for the simple, linear problem can be useful for determining which IMEX scheme to

apply to more complicated problems. In addition, strongly damping schemes are

shown to be more e�cient in certain spectral collocation and multigrid applications.
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Fig. 15. Time step restrictions for various IMEX schemes

=1/R

In order to calculate starting values for multistep IMEX schemes, we use one-step (low

order) IMEX schemes with a very small time step, unless otherwise noted.

4.1. Finite di�erence approximations in 1D.

Example 1. To examine nonzero viscosity behaviour, we consider the one-dimensional

variable coe�cient problem

ut + sin(2�x)ux = �uxx(34)

subject to periodic boundary conditions on the interval [0,1] and initial condition

u(x; 0) = sin(2�x):

We use centred second order di�erences for the spatial derivatives. Note that the

solution is smooth for all � � 0:

To test the theory's predictions for small mesh Reynolds numbers (22), the model

problem (34) was approximately solved using discretization step sizes h = 1
63 in space

and k = 1:8h in time. Use of such step sizes is appropriate only for strongly damped


ow. Utilizing several IMEX schemes, computations to time t = 2 are performed for

viscosities, �, in the range :01 � � � :1. These values correspond to mesh Reynolds

numbers, R, in the range 1:59 � R � 0:159.

From Figures 6, 7, 8 and 15 the theory predicts that for these step sizes SBDF

is stable for a larger viscosity interval than any other scheme. As � decreases, third

order SBDF followed by CNAB should become unstable. Stability for MCNAB should

be similar to, and somewhat better than, CNAB. Furthermore, fourth order SBDF

and CNLF should be unstable over the entire interval because the theoretical stability

restriction is violated.

By comparing results to those for h = 1
504 and k = :225h using SBDF, the max

norm relative errors for second order schemes are evaluated. Third and fourth order
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Fig. 16. Large viscosity behaviour for various IMEX methods

schemes are compared to computations with these same step sizes but using third and

fourth order SBDF. The resultant errors are plotted against � in Figure 16. Fourth

order SBDF and CNLF are not included because they are unstable over the entire

interval. The plots of the �gure clearly coincide with the results of the theory.

Figure 16 also indicates that SBDF is the only stable method for the above choice

of discretization parameters when 0:0015 < � < 0:0025. (The values of � where the

curves turn upwards correspond to the onset of instability for the given values of h and

k.) This agrees with the prediction that SBDF allows the largest stable time steps for

small mesh Reynolds numbers (see x3.2). Although third order SBDF has a smaller

stability interval, it may be useful in problems where high accuracy is needed since it

produces a smaller error than second order methods when stable.

To test the theory's predictions for large mesh Reynolds numbers, example (34)

was solved using discretization step sizes h = 1
81 in space and k = :9h in time. Using

several IMEX schemes, computations to time t = 2 are performed for viscosities, �, in

the range :001 � � � :01. These values correspond to mesh Reynolds numbers, R, in

the range 12:3 � R � 1:23.

From Figures 6, 7, 8 and 15 the theory predicts that for these step sizes only

CNLF is stable over the entire viscosity interval. As � decreases, third order SBDF

followed by SBDF and �nally CNAB should become unstable. Stability for MCNAB

should be similar to CNAB. Furthermore, fourth order SBDF should be unstable over

the entire interval because the theoretical stability restriction is violated when � < :05

for these step sizes.

By comparing results to those for h = 1
648 and k = :225h using SBDF, the max

norm relative errors for second order schemes are evaluated for these computations.

Third and fourth order schemes are compared to computations with these same step

sizes but using third and fourth order SBDF. The resultant errors are plotted against
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Fig. 17. Small viscosity example for various IMEX methods

� in Figure 17. Fourth order SBDF is not plotted because it is unstable over the entire

interval. The plots of the �gure support the results of the theory.

Figure 17 also indicates that CNLF is the only stable method for � < 0:002.

This agrees with the prediction that CNLF allows the largest stable time steps for

large mesh Reynolds numbers (see Section 3.2). CNLF is a particularly attractive

choice because it has the smallest error of second order methods. Use of SBDF is not

recommended because it has the smallest stable interval and the largest error among

any of the second order scheme considered.

For the same problem using k = :5h, dramatically di�erent results are predicted

because all the methods satisfy their theoretical stability restrictions. Indeed, com-

putations for CNLF, third and fourth order SBDF all produce errors which nearly

coincide, since spatial error dominates the solutions. Other second order methods

appear stable and produce only slightly less accurate results. 2

Example 2. To examine the limit � = 0, we consider the one-dimensional nonlinear

problem

ut +
1

2
cos(2�t)(1 + u)ux = 0(35)

having periodic boundary conditions on the interval [0,1] and initial conditions

u(x; 0) = sin(2�x):

As in the previous two sections, we use second order centred di�erences to ap-

proximate ux. For h = 1
80 and k = :5h, computations are performed to time t = 100.

The time step value k = :5h was used to ensure that fourth order SBDF satis�ed the
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Fig. 18. Burgers equation for various t for � = 0:01

stability restriction k � :52h. Using the fact that the exact solution to this problem

at integer t equals the initial data, i.e.

u(x; n) = sin(2�x); n = 0; 1; 2; : : :

we compute the error in the solution at time t = n; n = 1; 2; : : : ; 100.

The results again agreed with the predictions from x3: all second order schemes

tested, such that 
 > 0, were unstable, while CNLF, third order SBDF and fourth

order SBDF were all stable. The SBDF schemes are dissipative as well. For fuller

details, see [22]. 2

4.2. Spectral collocation.

Example 3. For our next application we consider the well-known Burgers equation,

ut + uux = �uxx(36)

subject to periodic boundary conditions on the interval [-1,1] and initial conditions

u(x; 0) = sin(�x):

A plot of the solution of the Burgers equation for � = :01 at several di�erent times is

provided in Figure 18. This computation was produced using Chebyshev collocation

with 40 basis functions and k = 1=160 using SBDF.

The next few subsections discuss Fourier and Chebyshev collocation implementa-

tions for the above model problem. See [7] or [3] for details on these methods.

4.2.1. Fourier spectral collocation. Since the problem of Example 3 is pe-

riodic, we expect that Fourier series makes a good basis of trial functions for this

problem. Indeed, since

ut = �
1

2

@u
2

@x
+ �

@
2
u

@x2
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we see that ut is antisymmetric for u antisymmetric. By selecting an initial condition

which is antisymmetric we guarantee that u remains antisymmetric for all t. Since

only these components of the series contribute to the solution we use a Fourier sine

series. We thus approximate u by the series

uN (x; t) =
NX
j=1

�j(t)sin(jx):

Using initial conditions �1(0) = 1 and �k(0) = 0; k 6= 1, the �j(t) are determined by

enforcing the di�erential equation at the collocation points, xj =
j

N
� 1

2N ; 1 � j � N ,

i.e. "
@uN

@t
+ uN

@uN

@x
= �

@
2
uN

@x2

#
x=xj

:

This scheme is also called a pseudospectral method since the nonlinear convection

term is evaluated in physical space.

By applying Fourier sine collocation with 40 basis functions and k = 1=40, we

solve the model problem at each time step to time t = 2. Because the system is

small, the implicit equations are solved in physical space using LU decomposition.

In larger systems where greater e�ciency is needed these would be solved in Fourier

space using transform methods (see [7]). For CNAB, MCNAB, SBDF and third order

SBDF the max norm relative error is plotted against viscosity (see Figure 19). The

\exact solution" is based on a computation using N = 80 modes and k = 1
3200 and

third order SBDF.

CNLF was not included because the theoretical stability restriction is violated.

This can be easily seen because the linear advection-di�usion equation has eigenvalues

(ian� � �n
2
�
2) for eigenfunctions e

in�x. From these eigenvalues we know that the

stability restriction is k < 1
a�n

, which is violated initially because ju(x; 0)j
1
= 1.

As expected, third order SBDF has the smallest error of any of the methods when

stable. The stable region, however, is smaller than that for CNAB or SBDF. CNAB

and MCNAB are once again very similar in behaviour with the modi�ed version being

marginally better. SBDF appears to allow the largest stable time step when � � 0:01.

Further re�nement of the time step to k = 1
160 leaves third order SBDF as the

method of choice over the entire interval. Such a re�nement may be unnecessary in

this example because the error is less than 1% for a step size which is 4 times larger.

4.2.2. Chebyshev spectral collocation. Because the solution to the problem

is periodic and anti-symmetric we know that u(�1; t) = 0 for all t. Using this fact,

we solve (36) subject to the homogeneous Dirichlet boundary conditions u(�1; t) = 0,

using a pseudospectral Chebyshev collocation scheme. The Gauss-Chebyshev grid,

xi = cos[(2i� 1)�=2N ]; i = 1; : : : ; N

is used for collocation points.

Similar to the Fourier case, the max norm relative errors are evaluated for several

IMEX schemes using k = 1=40 and N = 40. As can be seen from Figure 20, the results

are qualitatively similar to those of the Fourier case. SBDF performs particularly well

for smaller viscosities. From the theory, it has the widest stability region for large j�j
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Fig. 19. Fourier spectral collocation for Burgers equation

Fig. 20. Chebyshev spectral collocation for Burgers equation

and thus is best able to accommodate the rapidly growing eigenvalues associated with

Chebyshev collocation.

Both Chebyshev and Fourier collocation can be a�ected by aliasing [7]. We con-

sider aliasing for the Fourier case next.
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4.2.3. Aliasing in pseudospectral methods. Aliasing occurs when nonlinear

terms produce frequencies that cannot be represented in the basis, and thus contribute

erroneously to lower frequencies. For instance, in Example 3, the Fourier sine mode

sin(mx), when explicitly evaluated in the convection term produces the contribution

sin(mx)
@ sin(mx)

@x
=

m

2
sin(2mx):

If 2m is greater than the number of Fourier sine basis functions, N , this frequency

cannot be represented correctly and aliasing occurs. We now proceed to demonstrate

that this behaviour can plague poorly spatially resolved computations when applying

weakly damping IMEX schemes.

We compute solutions for the model Burgers equation (36) subject to periodic

boundary conditions and the initial conditions of Example 3 modi�ed to read

u(x; 0) = 0:98 sin(2�x) +HF (x)

where

HF (x) � 0:01 sin(61�x) + 0:01 sin(62�x):

We use Fourier sine collocation with N = 64 basis functions, and integrate to time

t = 2 with a viscosity � = 0:1.

The value of the approximate solution at time t = k is obtained using �rst order

SBDF with the same step size. To represent the type of high frequency information

that could be produced during a computation, we add HF (x) to the solution at t = k.

This ensures that high frequency information remains after the strongly damping �rst

order SBDF step. Subsequent steps are then computed using the relevant second order

scheme. For third order SBDF, the value at t = 2k is also needed. For the purpose of

demonstrating aliasing e�ects, this value is computed using CNAB since we wish to

retain most of the added high frequencies.

The max norm relative errors for several IMEX schemes are computed by com-

paring results to those for SBDF using N = 128 and k = 1
24N : In the third order case,

results are compared to those for third order SBDF using N = 128 and k = 1
24N :

These errors are summarized below.

k CNLF CNAB MCNAB SBDF 3rd order SBDF
1
64 .92 .575 .0056 .0072 .0045
1
192 .060 .022 .0013 .00079 .0010

For the case k = 1
64 we note that the error for CNAB is far greater than for

MCNAB, SBDF or third order SBDF. Using CNAB, a non-aliased computation using

the 2/3's rule [7] and k = 1
64 results in a relative error of less that 10�3. This non-

aliased result, along with its aliased counterpart, are plotted in Figure 21. The \error"

curve in this �gure is that of the aliased CNAB. From the �gure it is clear that the

main component of the error is proportional to sin(�x). This low frequency mode is

not part of the exact solution, and must be an aliasing artifact from high frequency

components. It is interesting to note that even after 128 time steps the numerical

solution is still plagued by high frequency components which have not yet decayed. A

similar study of CNLF reveals that it su�ers from aliasing as well.
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Fig. 21. Aliased and non-aliased computations for CNAB

Resorting to a smaller time step, k = 1
192, makes a substantial improvement in

the solution for CNAB and CNLF. Even so, the aliasing error for CNLF is su�ciently

large that further re�nement is likely required.

We conclude that use of a strongly damping scheme such as SBDF, MCNAB or

third order SBDF gives an inexpensive method to reduce aliasing in poorly resolved

computations. Application of weakly damping schemes like CNAB and especially

CNLF may necessitate undesirably small time steps to produce the high frequency

decay needed to prevent aliasing in an aliased computation. Alternatively, weakly

damping schemes may be used in conjunction with an anti-aliasing technique such

as the 3/2's rule or the 2/3's rule [7]. However, these anti-aliasing techniques either

increase the expense of the computation or produce a severe loss of high frequency

information at each time step. 2

Remark. It may be argued that our addition of the high frequency components to

the numerical solution is arti�cial. However, this allows us to study the propagation

of errors related to these e�ects in simple examples within a controlled environment.

In general, high frequency solution and error components are generated at each time

step by nonlinear terms, forcing terms and boundary e�ects (cf. [6]). 2

4.3. Time-dependent multigrid in two spatial dimensions.

Example 4. The next model that we consider is the 2D convection-di�usion problem,

ut + (u � r)u = ��u(37)

where u � (u; v). This model incorporates some of the major ingredients of the 2D

Navier-Stokes equations. Indeed, it is often being solved as part of projection schemes

for incompressible 
ows (see [13]). We carry out our computations on the square
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 �[0,1]�[0,1] and consider periodic boundary conditions and the initial conditions

u(x; y; 0) = sin[2�(x+ y)];

v(x; y; 0) = sin[2�(x+ y)]:

For spatial discretization we use standard second order centred di�erences, as

before. For IMEX schemes the convection term, (u � r)u, is handled explicitly and the

di�usion term, ��u, is handled implicitly. This treatment yields a positive de�nite,

symmetric, sparse linear system to solve at each time step. Such systems are solved

e�ciently using a multigrid algorithm, the components of which are outlined next.

To solve the implicit equations we apply a Full Multigrid (FMG), Full Approxi-

mation Scheme (FAS) algorithm [5]. Rather than applying the standard algorithm at

each time step, we use the ideas of [6]. Smoothing is accomplished using Red-Black

Gauss-Seidel. This relaxation technique is chosen because it has a very good smooth-

ing rate. Prolongation is accomplished using bilinear interpolation, and restriction by

full weighting. The standard FMG cycle is modi�ed so that the �rst coarse grid cor-

rection is performed before any �ne grid relaxation. Based on the assumption that the

increment between time steps is smooth, �ne grid relaxation is most e�ective after the

smoothness of the increment is accounted for (see [6]). Interpolation for the FMG step

is bilinear. In [6] it is argued that for time-dependent problems higher order interpola-

tion only decreases high frequency error, which tends to dissipate in parabolic systems

anyway. This suggestion is utilized here; indeed experiments with cubic interpolation

did not produce any reduction in the number of multigrid iterations to achieve a given

tolerance. Another recommendation of [6] is to avoid the �nal smoothing pass at each

time step, in order to reduce aliasing from Red-Black Gauss-Seidel relaxation. Alias-

ing is not a major source of error in Example 4, however, so this suggestion was not

utilized.

For this problem we use a residual test with a tolerance TOL to determine the

number of �ne grid iterations to perform at each time step. Next we show that the

choice of time-stepping scheme can a�ect the number of �ne grid iterations to achieve

a given residual tolerance.

The model problem (37) was approximated using step sizes h = 1
128 and k =

0:00625 and residual tolerance TOL=0.003. After the �rst time step, high frequency

information

HF (x; y) = 0:005 cos[2�(64x+ 63y)]

was added to each of u and v, to represent the type of high frequency information that

might be produced during a computation.

For several second order IMEX schemes, the average number of �ne grid iterations

at each time step was computed. The result using V-cycles is graphed in Figure 22.

Strongly damping schemes such as SBDF and MCNAB require roughly 1 iteration

per time step. Weakly damping schemes required far more e�ort to solve the implicit

equations accurately, because lingering high frequency components necessitate more

work on the �nest grid. This is evident since CNAB requires more than 2 iterations

per time step and CNLF required 3.

Using a W-cycle improves the relative e�ciencies of CNLF and CNAB. Even for

these cases, however, nearly twice the number of �ne grid iterations were required
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Fig. 22. Multigrid V-cycle iterations, � = 0:03; h = 1
128

than for more strongly damping schemes such as SBDF and MCNAB. See [22] for a

plot.

Even for a smaller viscosity, � = 0:02, and a much coarser mesh h = 1
32 , the

performance of CNLF su�ers. It uses about 30% more iterations than SBDF or MC-

NAB to achieve the desired tolerance. This result uses TOL=.009 and is plotted in

Figure 23.

Thus we conclude that use of a poorly damping IMEX scheme such as CNAB

or especially CNLF can necessitate extra iterations on the �nest grid in multigrid

solutions to the implicit equations for small mesh Reynolds numbers, R < 2. For

large mesh Reynolds numbers, R > 2, this e�ect was not observed. 2

5. Conclusions and recommendations. IMEX schemes are not a universal

cure for all problems. It is not di�cult to imagine situations where a fully implicit

or fully explicit scheme is preferable. However, these schemes can be very e�ective in

many situations, some of which are depicted in this paper.

It may be important to choose an IMEX scheme carefully. The usual CNAB

can be signi�cantly outperformed by other IMEX schemes. Based on observations in

this and previous sections we provide a few guidelines for selecting IMEX schemes for

convection-di�usion problems.

5.1. Finite di�erences. For the �nite di�erence (�nite element, �nite volume)

case, begin by determining an estimate for the mesh Reynolds number, R = ah

�
, where

� represents viscosity, a represents characteristic speed and h grid spacing.

For problems where R� 2 application of CNLF, or a third or fourth order scheme

is reasonable. Third and fourth order SBDF can be applied to these problems, since a

portion of the �-axis is included in the stability region even though these methods were

selected primarily for their large � properties. Of the methods we have considered in

detail, CNLF has the mildest time step restriction and is non-dissipative while third
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Fig. 23. Multigrid W-cycle iterations, � = 0:02; h = 1
32

order SBDF is the most dissipative. All other second order schemes should be avoided

in this case. Explicit schemes should also be considered for these problems.

For R > 2 use of CNLF or third order SBDF appears appropriate. CNLF has

the mildest time step restriction, but accuracy concerns could make third order SBDF

competitive. Avoid use of SBDF in this case. For problems of this type, a study to

determine when explicit schemes are competitive would be interesting.

For R � 2 the theory predicts that many second order IMEX schemes have similar

time step restrictions. A study to determine the method with the smallest truncation

error would be useful in this case. For greater accuracy, third order SBDF appears to

be more useful than fourth order SBDF, since its time step restriction is less severe. If

strong decay of high frequency spatial modes is a desirable characteristic then CNLF

should be avoided.

For R < 2, use of SBDF permits the largest stable time steps. The modi�ed

CNAB scheme, MCNAB, can also be applied to problems of this type, although its

time step restriction is somewhat stricter. Third order SBDF is recommended when

high accuracy is needed. Numerical experiments in Section 4.3 demonstrate that in

multigrid solutions to the implicit equations, application of a strongly damping method

is prudent. MCNAB or SBDF should be useful in such problems. Avoid use of CNLF

in this case.

5.2. Spectral methods. Because the eigenvalues for spectral methods are dif-

ferent than for �nite di�erences as is their meaning (see [24]), we cannot expect the

stability time step restrictions from x3 to hold quantitatively. For this reason, an

analysis of the linear advection-di�usion equation for Chebyshev and Fourier spectral

methods would be interesting. However, this is outside the scope of this paper.

Numerical experiments for the Burgers equation were made for small to moderate

mesh Reynolds numbers. For these problems, CNLF has a very severe time step
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restriction. These computations also suggest that SBDF has the mildest time step

restriction of the methods considered. This result is particularly pronounced in the

Chebyshev collocation case.

The large mesh Reynolds number case for spectral collocation was not considered.

In this case, a comparison of the relative e�ciencies of IMEX schemes and fully explicit

schemes would be interesting.

Third order SBDF appears to be an e�cient method for problems where high

accuracy is needed.

In problems where aliasing occurs, a strongly damping scheme, such as SBDF,

MCNAB or third order SBDF can be used to inexpensively reduce aliasing. Applica-

tion of a weakly damping scheme such as CNAB or CNLF in poorly spatially resolved,

aliased computations should be avoided.
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