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Abstract 

The three rotational degrees of freedom between the coordinate system of a sensed 

object and that of a viewer define the attitude of the object. Orientation-based rep

resentations record 3-D surface properties as a function of position on the unit sphere. 

All orientation-based representations considered share a desirable property: the repre

sentation of a rotated object is equal to the rotated representation of the object before 

rotation. This makes the orientation-based representations well-suited to the task of 

attitude determination. 

The mathematical background for orientation-based representations of shape is pre

sented in a consistent framework. Among the orientation-based representations consid

ered, the support function is one-to-one for convex bodies, the curvature functions are 

one-to-one for convex bodies up to a translation and the radial function is one-to-one for 

starshaped sets. 

Using combinations of the support function and the curvature functions for convex 

bodies, the problem of attitude determination is transformed into an optimization prob

lem. Previous mathematical results on the radial function for convex objects are extended 

to starshaped objects and the problem of attitude determination by the radial function 

also is transformed into an optimization problem. Solutions to the optimization problems 

exist and can be effectively computed using standard numerical methods. 

A proof-of-concept system has been implemented and experiments conducted both on 

synthesized data and on real objects using surface data derived from photometric stereo. 

Experimental results verify the theoretical solutions. 

Novel contributions of the thesis include: the representation of smooth convex objects 

by the support function and curvature functions; the definition of a new orientation-based 

representation for starshaped sets using the 3-D radial function; and solutions to the 3-D 

attitude determination problem using the aforementioned representations. In particular, 

the scope of orientation-based representations has been extended, both in theory and in 

practice, from convexity to starshapedness. 
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Chapter 1 

Introduction 

Tasks that a robot vision system performs include recognition, localization and inspec

tion. These tasks are carried out based on data about objects collected by a robot 

vision system through various sensing devices. Recognition identifies the object. Local

ization determines the three translational and the three rotational degrees of freedom 

of a sensed object in space. Inspection verifies the suitability of the object for a par

ticular task. Attitude determination solves for the three rotational degrees of freedom 

between the coordinate system of a sensed object and that of a viewer. Thus, attitude 

determination is a sub-problem of localization. 

If the shape of an object is invariant with respect to a class of rotations then each 

rotation in the equivalence class thus determined is considered to define the same attitude. 

A :3-D object may have additional rotational invariances when viewed from a particular 

viewpoint. In this case, it is understood that attitude determination solves for the three 

rotational degrees of freedom up to an equivalence class of rotations that can not be 

further distinguished given the viewpoint provided. 

Attitude determination is required for many robot vision tasks including directing a 

robot arm to grasp an object, navigation and camera calibration. Suppose a robot 1s 

placed, in a factory, beside a bin of machine parts all of the same type. The robot 1s 

instructed to grasp a machine part in a specified way. Each part has a :3-D shape that 

is known to the robot, i.e., the robot has a model of the part in a standard coordinate 

J 



Chapter 1. Introduction 2 

system. The parts the robot sees in the bin are instances of the model subject to unknown 

rotation, scaling and translation. The attitude determination problem for the robot is to 

determine the unknown rotation so that the robot can be directed to grasp a machine 

part in the specified way. 

Shape representations are required to support object recognition, localization and 

inspection. An object is a connected compact set in R 3
• The shape of an object concerns 

the geometry of the surface of the object modulo translation, scaling and rotation. A 

representation of shape is a language for encoding a general class of shapes [75], together 

with rules that specify how it is applied to any particular shape (53]. 

Orientation-based representations of shape are shape representations with particu

lar properties. The term "orientation-based representation" was introduced by Wood

ham [76]. An orientation-based representation records 3-D surface properties as a func

tion of position on the unit sphere. These representations are termed orientation-based 

because one associate:, each point on the sphere with the unit vector from the center of 

the sphere to that point. 

This dissertation studies various orientation-based representations and solves the at

titude determination problem by making use of the dependence of the orientation-based 

representations of shape on rotations. 

In order for an orientation-based representatio'n to effectively represent the shape of 

an object, a correspondence between the surface point of an object and a point on the 

unit sphere is required. Two ways to establish such a correspondence are employed in this 

dissertation. They are called Gauss map and dilation map and are shown in Figure l. la 

and Figure 1.1 b respectively. 

The Gauss map takes each surface point to the point on the sphere corresponding to 

the unit normal to the tangent plane at that point. Figure I.la illustrates the Gauss map. 
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(a) Gauss map (b) dilation map 

Figure 1.1: Mappings between surface points and points on the sphere, illustrated in 2-D. 

Many representations based on the Gauss map have been defined. Representations of 

this type used in computer vision include: the Extended Gaussian Image (EGI), defined 

as the reciprocal of the Gaussian curvature (:35], and the support function, defined as 

the distance from the origin to the tangent plane [5 7]. For polyhedra, the EG I specifies 

the area of each face as a function of face orientation. The EG I has been used for both 

recognition and attitude determination of convex polyhedra [12, :37, 47]. The support 

function appears explicitly in one of the methods described [4 7]. 

Other representations of :3-D shape based on the Gauss map have been defined. For 

example, the first and second curvature functions are defined, respectively, as the sum of 

the principal radii of curvature and the product of the principal radii of curvature. Thus, 

for smooth objects, the EGI and the second curvature function are equivalent. These 

curvature functions possess desirable mathematical properties when combined with the 

support function. The first and second area functions also are defined (see Section 2.5.2). 

For polyhedra, the EGI is equivalent to the second area function. 

The Gauss map is one-to-one for smooth (i.e., C 2
), strictly convex objects. It has 

proven difficult to extend representations based on the Gauss map beyond the convex 
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case since, in general, the Gauss map is many-to-one. Approaches have been described to 

decompose non-convex surfaces into regions for which. the Gauss map is one-to-one and 

to augment the information recorded to handle the many-to-one nature of the mapping 

[401 46]. 

One can go beyond convexity by choosing a different way to establish the correspon

dence between surface point and point on the sphere. Let the origin be in the interior of 

the object. Without loss of generality, assume that th~ size of the object is large enough 

so that the unit sphere fits entirely within the object. A surface point p is mapped the 

point on the sphere that is the intersection of the sphere with the ray from the origin top. 

Call this map the dilation map. Figure 1.1 b illustrates the dilation map. U nfortunately1 

in general 1 the dilation map is not one-to-one either. However, for. a suitable choice of 

origin 1 it is one-to-one when the object is a starshaped set [10 1 72]. 

Representations of :3-D shape based on the dilation map can also be defined. The 

radial function records the distance from the origin to the boundary poiut. The distance 

function is the reciprocal of the radial function. 

The two aforementioned mappings between the surface point and point on the sphere 

both lead to a desirable property that all the orientation-based representations considered 

share: the representation of a rotated object is equal to the rotated representation of the 

object before rotation. This facilitates the construction of the representation of a rotated 

object from that of the original object. This property also makes orientation-based repre

sentations suitable for attitude determination. Using inequalities involving two objects 1 

one for the model and the other for the sensed surface data, one can define functions 

of rotation that achieve extrema when the rotation is such that the rotated model and 

the sensed object differ only by scaling and translation. Thus, attitude determination is 

transformed into the problem of determining the extremum of a known function. This 1 

in turn 1 can be expressed as an optimization problem for which standard solutions exist. 
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Chapter 2 establishes a consistent framework for orientation-based representations 

of shape. A mathematical definition of orientation-based representation and the math

ematical background for orientation-based representations are provided. Definitions of 

various orientation-based representations are given and their properties are studied. The 

emphasis of the study is on: 

1. The conditions under which the representation is one-to-one; 

2. The conditions under which a given function is a valid instantiation of an orientation

based representation; 

:3. The conditions under which an object can be reconstructed from its representation. 

Results concerning these aspects are summarized in Table 2.1 (page 62). The representa

tions introduced in Chapter 2 have been studied in the mathematics literature. However, 

the source material is diverse both in time and in language. The coherent presentation 

in Chapter 2 of the mathematical background for orientation-based representations is 

a contribution of this dissertation. In addition to being the theoretical foundation of 

this dissertation, these results are relevant to research in other areas. For example, the 

Minkowski sum (Section 2.4.1) is used both in geometric object modeling [17] and in 

robotics [48]. On first reading of the thesis Chapter 2 might well be skipped. Results 

are presented in general d-dimensional space Rd to preserve the original generality of 

the mathematics and to connect the special case d = ;3 to the generic meaning of the 

representations. 

As mentioned, a few orientation-based representations have already been proposed 

and utilized in computational vision. Overall, however, little of the material presented in 

Chapter 2 has been utilized. Objects represented typically are limited to polytopes and 

to some special non-convex objects [:35]. The state of the art is presented in Chapter :3 

and highlighted in Table :3.1 (page 72). 
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Chapter 4 provides theoretical solutions to the problem of attitude determination 

using orientation-based representations. The results in Chapter 2 on inequalities involv

ing orientation-based representations are utilized. By combining the representation of 

a model and that of an object in the inequalities, the attitude determination problem 

is transformed into optimization problems for which standard numerical methods can 

be applied. Indeed, optimization itself is not an intended contribution of the thesis 

research. Instead, existing optimization tools are employed throughout. The orientation

based representations used are the first curvature function, the second curvature function, 

the support function and the radial function. The use of the first curvature function is 

new. The use of the support function on smooth, strictly convex objects also is new. 

The curvature functions are directly related to the area functions which are well defined 

for any convex object. Thus, the use of the curvature functions can be regarded as an 

application of a theory of general convex objects to a specific type of convex objects 

(smooth, strictly convex objects) rather than as a simple substitute for Gaussian and 

mean curvatures. Since the support function is one-to-one only for convex bodies and 

the curvature functions are only defined for convex bodies, attitude determination using 

them is, in general, not necessarily valid for non-convex bodies. A major contribution of 

this dissertation is to demonstrate that the radial function is an effective representation 

for starshaped objects1 and that the attitude of starshaped objects can be determined 

using the radial function. Thus the class of objects handled is extended to starshaped 

objects (which strictly includes convex objects as a special case). 

A proof-of-concept system has been implemented and experiments conducted to test 

numerical solutions for three cases: 

1. Attitude determination when both the model and sensed surface are given in known 

analytic form; 

1 See Appendix B for definition of starshaped objects. 
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2. Attitude determination when the sensed surface, then the model and then both are 

discretized versions of a known analytic form; 

:3. Attitude determination with sensed data obtained, via photometric stereo, from 

real objects and model data given in known analytic form. 

Cases 1 and 2 represent simulation studies that were essential to software development, 

error analysis and tests of robustness. Case :3 tests the performance of the system on 

real objects machined from data derived from analytic forms. Experimental results show 

that attitude determination can be solved by the aforementioned orientation-based rep

resentations of shape. The system and the experiments are described in Chapter 5. 

Chapter 6 summarizes the contributions of this dissertation and points out future 

directions for research. 

Appendix A and Appendix B describe notational conventions and basic definitions 

used. Appendix C provides a brief introduction to spherical harmonics which are used 

in Chapter 5 to define the experimental shapes. 



Chapter 2 

Mathematical Background 

Orientation-based representations are functions defined on the unit sphere or set functions 

defined on sets of the unit sphere. The representations considered in this dissertation are 

based on the two mappings from an object to the unit sphere described in Figure 1.1 of 

Chapter 1. Some representations can be defined using the mappings and basic calculus. 

To build a theory of orientation-based representations and to solve the attitude deter

mination problem, deeper mathematical background is needed. The orientation-based 

representations considered in this dissertation are described in the mathematics litera

ture. However, the source material is diverse both in time and in language. This chapter 

gives a coherent presentation of the mathematical background for orientation-based rep

resentations. Results are presented in general d-dimensional space Rd to preserve the 

original generality of the mathematics and to connect the special case d = ;3 to the 

generic meaning of the representations. 

There are six sections in this chapter. The first five sections present definitions, 

properties and relationships among, respectively, five types of mathematical objects that 

establish the background for orientation-based representations of shape. Each of these 

sections is further divided into subsections where one mathematical object of the type of 

the section is presented. Figure 2.1 depicts the interdependence between the subsections 

of this chapter, where subsections directly related to attitude determination in this dis

sertation are emphasized. The last section of this chapter, Section 2.6, summarizes the 

8 
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properties of the orientation-based representations of shape. 

To further describe the first five sections, let Rd denote the d-dimensional real space, 

sd-] denote the unit sphere in Rd, Bd denote the unit ball in Rd and B(sd-l) the a-

algebra of Borel subsets of 5r1-i. The five types of mathematical objects considered 

are: 

1. Functions that are associated with one set and whose domains are Rd, 

sd-l or B(sd-l) (Section 2.1). 

Functions in this category are the support function, the normal representation, the 

curvature functions, the distance function, the radial function, the cross sectional 

measure and the breadth and the area functions. These functions define orientation

based representations of shape. Among them, the support function (Section 2.1.1 ), 

the curvature functions (Section 2.1.:3) and the radial function (Section 2.1.5) are 

the orientation-based representations used in attitude determination (Chapter 1 

and Chapter 5) in this dissertation. All the functions are defined on sd-l except 

the area function which is defined on B(S'd-l ). The introduction of the o--algebra 

of Borel subsets of sr1-1
, B(Srl-l ), provides a way of stating the properties of the 

area function since the area function is a set function. 

To give an example of orientation-based representations, consider the support func

tion of a 2-D polygon, P. For a point u on the unit circle, the value of the support 

function of P at u is the maximal signed distance between the origin and the 

support plane of P with outer normal u. Figure 2.2 shows the 2-D example of a 

convex polygon and its support function defined for vectors u E 81
• The value of 

the support function is the distance between the origin and the dashed arc along 

the direction determined by u. 

2. Mappings from one hypersurface to sets on s<l-l (Section 2.2). 
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I 
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Figure 2.2: The support function of a convex polygon. 
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The spherical image is in this category. Although it is not an orientation-based 

representation, it is included because of its close relation to Gauss map. 

:3. Mappings from one or more sets to scalar values (Section 2.3). 

Scalar values are volume, surface area, diameter and width. These numbers can be 

calculated from the orientation-based representations introduced in Section 2.1. 

4. Mappings from one or more sets to a new set (Section 2.4). 

These mappings are called transformations. The transformations are achieved 

by constructing the representation of a new set from the orientation-based rep

resentations of some given sets. The constructions make use of the properties of 

orientation-based representations defined in Section 2.1. Typically, the properties 

of the transformed set are of more interest than the transformation itself. Trans

formed sets are the (Minkowski) vector sum, the Blaschke sum, the polar mean, 

the polar reciprocal set, the Legendre transform, the projection body, the parallel 

body and the central body. 

5. Functions and mappings obtained via combinations of a set with the unit 

ball Bd or combinations of several sets (Section 2.5). 
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Their names are usually prefixed with "i-th" or "mixed" depending on whether 

the unit ball is involved in the combination. They are called mixed measurements. 

The mixed measurements included are the mixed volume, the i-th area function, the 

mixed area function, the i-th curvature function, the mixed curvature function, the 

mixed body and the dual mixed volume. Among them, the i-th curvature function 

and the mixed curvature function are orientation-based representations, the mixed 

volume and the dual mixed volume are scalar values, the i-th area function and 

the mixed area function are set functions, and the mixed body is a set. The 

theorems concerning the mixed volumes (Section 2.5.1) and the dual mixed volumes 

(Section 2.5.6) are directly used in the solutions to the attitude determination 

problem (Chapter 4). 

The mathematical constructions have been studied intensively in the context of convex 

bodies. Some of them are only meaningful when applied on convex bodies. Possibilities 

to extend functions and mappings to non-convex sets are discussed. Refereuces to the 

mathematical results are provided but the original proofs are not repeated. General 

references are Bonnesen and Fenchel [7), Busemann [15), Griinbaum [:32), Pogorelov [60] 

and Schneider [69]. Notation, definitions and facts used but not defined in this chapter 

are given in Appendix A and Appendix B. 

2.1 Representations 

Definition 2.1 An orientation-based re.presentation of shape is a map from connected 

compact sets in Rd to functions defined on the unit sphere sd-1 in Rd or set functions 

defirn~d on 8 ( sd- l). 

An example of an orientation-based representation of shape is the support function. 

The support function is defined for any set in Rd. Its value at point u on the unit 

, 
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sphere is the maximal signed distance (from an origin) to the tangent plane with outer 

normal u. This mapping from objects to functions defined on the unit sphere conforms 

to Definition 2.1 and thus is an orientation-based representation of shape. The name of 

the mapped function, the support function, also is used to name the representation. 

An orientation-based representation represents the shape of an object via a correspon

dence between points on the unit sphere and points on the object surface. Two ways of 

establishing such a correspondence, the Gauss map and the dilation map, are depicted 

in Figure 1.1. The Gauss map takes each surface point to the point on the sphen~ corre

sponding to the unit normal to the tangent plane at that point. The dilation map takes a 

surface point p to the point on the unit sphere that is the intersection of the sphere with 

the ray from the origin to p. Representations based on the Gauss map come with useful 

mathematical properties. However, many of these properties require the correspondence 

to be one-to-one. This restricts the representation to strictly convex objects since the 

one-to-one correspondence then is guaranteed, as by the following theorem: 

Theorem 2.1 (Bonnesen-Fenchel [7] page 15.) If a convex body has only regular bound

ary points, then its boundary can be mapped one-to-one and continuously onto sd-t by 

means of equally directed support planes. 

By the definition of starshaped set, correspondence via the dilation map is one-to-one 

for starshaped objects when the origin is inside the kernel of the object. The class of 

starshaped objects strictly includes the class of convex bodies. The mathematical study 

of starshaped objects is not as extensive as that of convex bodies. 

Representations studied in the following subsections are the support function, the 

normal representation, the curvature functions, the distance function, the radial function, 

the cross sectional measure, the breadth and the area functions. Definitions are given 

and the relations between the representations are described once sufficient background is 
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established. For each representation, the following aspects are of main concern : 

1. Conditions under which a representation is one-to-one; 

2. Necessary conditions for a function to be the representation of an object; 

:3. Sufficient conditions for a function to be the representation of an object; 

4. Methods by which an object can be reconstructed from its representation. 

2.1.1 The Support Function 

Definition 2.2 (Lay (42] 29.1 page 206.) Let C ~ Rd be a nonempty set. The support 

function H(C; v) of C: is the real-valued function defined by 

H(C};v) = sup {(x,v) Ix EC'}, 

for all v E Rd for which the supremum is finite. 

It is obvious that the support function of a set depends on the choice of the origin of 

the coordinate system. If a set (; is translated into C' by a vector a, the support function 

of C' is 

H(C'; v) = H(C; v) + (a, v). (2.1) 

If C is rotated by a rotation R, its support function is rotated by the same rotation, i.e., 

H(R(C); v) = H(C; R-1 (v)). (2.2) 

If C is a convex body, the support hyperplane of C with outer normal v E Rd\ { 0} 

is (x,v) = H(C;v). If v E sd-t, the value H(C;v) is the signed distance from the origin 

to the support plane of C with outer normal v. If C is non-convex, then (x, v) = H(C; v) 
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is the support plane of C with outer normal v that is of maximum signed distance from 

the origin. 

Examples of support functions are: 

1. The support function of a point is a linear function. The support function of a 

polytope is a piecewise linear function. 

2. The support function of the unit ball with center at the origin is I/vii-

:3. The support function of the d-dimensional cube that has edges parallel to the axes 

with edge length two and centered at the origin is I:,7==1 lvil• 

Theorem 2.2 (Bonnesen-Fenchel [7] page 26.) The support function H(C:;v) of a 

nonempty set C is positively homogeneous and convex. That is, it satisfies 

1. H(C;>.v)=>.H(C!;v) 

2. H(C; v + w) S H(C; v) + H(C; w) for all v, w E Rd. 

Positive homogeneity and convexity are also sufficient for a function to be the support 

function of a convex set. 

Theorem 2.3 (Bonnesen-Fenchel [7] page 29.) If H ( v) is any function defined on Rd 

such that 

1. H(Av) = >.H(v) for all >. 2: 0, v E R'1, 

2. H(v + w) S H(v) + H(w) for all v, w E Rrl, 

then there exists a nonempty closed convex set c: such that H ( v) is the support function 

H(C; v) of C. 
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Figure 2.3: Two polygons with the same support function . 

Support functions are defined for any nonempty set. However, only for convex sets is 

the support function one-to-one. 

Theorem 2.4 (Griinbaum [:32) page 14.) If C1, C2 are nonempty closed convex sets in 

Rd such that H(C1 ; v) = H(C2 ; v) for every v E Rd, then C1 = C!2 • 

In general, the support function is not one-to-one for non-convex bodies. For example, 

in Figure 2.3, the two polygons have the same support function. The left one is convex 

while the right one is i.10t. The support functions are the same because the convex hulls 

of the two polygons are the same. 

Theorem 2.5 (Lay [42) page 209.) Let C be a nonempty closed convex set and H(C;v) 

its support function with a nonempty domain D. Then C can be characterized by the 

condition 

C = { x I (x, v) S H( C; v) for all v E D} , 

or, equivalently 

C= n{x!(x,v):SH(C;v)} . 
11ED 
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Theorem 2.6 (Bonnesen-Fenchel [7] page 27.) Let C1 and C2 be two convex bodies. 

Then H(C1 ;v)::::; H(C2 ;v) holds for all v E Rd if and only if C\ ~ ()2 . 

The next theorem gives the coordinates of the boundary points of a convex body via 

the support function of the convex body. 

Theorem 2. 7 (Bonnesen-Fenchel [7] page 29.) If a convex body C has only regular 

support planes, then its support function H( C!; v) has continuous partial derivatives of 

the first order, and 
0 H ( C; U) c•d- l . l d 

Xi = ::i ' u E ,) ' z = ' ... ' ' 
UUi 

holds for the coordinates Xi of its boundary points whose outer normal is u. 

2.1.2 The Normal Representation 

Definition 2.3 (Firey [21) page 1.) Let C be a convex body having only regular support 

hyperplanes, u E sd-1 , and let x(C; u) be the point on the boundary of Cat which the 

unit outer normal is u. Function x is called the normal representation of the boundary 

of C. 

Because of the one-to-one correspondence between the sphere and the surface of a 

regular convex body via directions of support planes, as stated in Theorem 2.1, the 

normal representation of a convex body rotates with the convex body, i.e., 

X ( R( C); U) = X ( C; R- 1 
( U)) . (2.:3) 

The normal representation x(C; u) can be extended to be defined on Rrl\{O} by 

x(C;v) = x(C;v/llvJJ),v E Rd\{O}. The necessary and suffident conditions for a con

tinuously differentiable function to be the normal representation of the boundary of a 

convex body is given by Firey [21]. 
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Theorem 2.8 (Firey [21] page :3.) In order that x(v), assumed to be continuously 

differentiable, be the normal representation of the boundary of a non-degenerate convex 

body with regular support planes, it is necessary and sufficient that, when extended to 

be defined over Rd\ { O}, its .Jacobi matrix 

does not vanish identically and is sym~netric and non-i1egative definite on ,c;d-l. 

Let C be a convex body with regular support planes, then 

H(C;v) = (v,x(C;v)), (2.4) 

and by Theorem 2.7 

. ·(C"· ) _ oH(C;v ) x, ., ,v - ,!:') • 

rtVi 
(2.5) 

If x( C; v) is continuously differentiable, then H( C; v) is twice continuously differentiable, 

and 
cPH(C;v) 

OVjOVj 

oxi(C;v) 
OVj 

ox3(C;v) 
OVj 

Thus the Hessian matrix of the support function H ( C; v) 

is the .Jacobi matrix of the normal representation, x(C; v), 

The normal representation of a convex body helps to establish relations between the 

radii of principal curvature and the support function of a convex body. To show this, 

introduce parameters a 1 , a 2 , ... , O'd-l on the unit sphere sd-l such that the coordinates of 
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the points ·u of the unit sphere are analytic functions u( a 1 , ... , a,1_1 ), and the parametP.rs 

are such indexed that 

[ 
ou au ou ] 

det u -
0 
~ .. . 

0 
> 0 . 

0'.1 u0'.2 O'.d-1 

Let C be a convex body with regular support planes. Then x( C'; v) can be obtained as a 

function x( 0:1, ..• , a,1_ 1 ) of the parameters. If the origin is assumed to be in int C, then 

[ ox ox ox l det x -0 ~ .. . 
0 

> 0 . 
0'.1 U0'.2 O'.d- I 

Differentiating (2.5) gives 

OXi d tfoJ i. :.! H ~=I: Hij-D, where Hij = ') -~ 
UO'./ j=l (.'(. 1 ( 'ti 'I j 

If dx and v are parallel to the directions of principal curvature and r is the associated 

radius of principal curvature, then dx = rdv. Thus, 

d 

I: HijdVj = rdvi, i = 1, 2, ... , d. 
j=1 

Therefore the radii of principal curvature must satisfy the equation 

=0 

Hc11 Hdd - r 

which can be expanded into1 

(2.6) 

where Di(H) is the sum of all i-rowed principal minor determinants of the matrix (Hij), 

Since H(C;v) is homogeneous of degree 1 in v, and Hi(v) = •'11·~r•.,11
) is homogeneous of 

• l Ur 

1By Theorem 27.l in Browne [14] (page 68), for an-square matrix A with elements in a field :F , 

I A - >.J I= L~i=o(->.t-m<Tm , where <Tm is the sum of all them-rowed principal minor determinants 

of A, <To= l, /Tn =I A I . 
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degree O in v, then by Euler's Theorem, 

d 

LHijVj = 0, i = 1,2, .. ·.,d . 
j=l 

20 

(2.7) 

Thus the determinant Dd(H) of (Hij) vanishes. Then equation (2.6) results in a 

( d - 1 )-th degree equation for the radii of principal curvature r1 , ••• , 1'd-t: 

Therefore the radii of principal curvature ri(u),i = 1, ... ,d-1, at x(u), are the so

lutions to equation (2.8). Thus the radii of principal curvature together with zero are 

the eigenvalues of the Hessian matrix of H. From (2.8), Di( H) is also the i-th elemen

tary symmetric function { r1 • • • ri} of r1 , •.• , rd-I· In particular, the sum of the radii of 

principal curvature at x( u) is the trace of the Hessian ·matrix of H, i.e., 

(2.9) 

Furthermore 

(2.10) 

is the product of the radii of principal curvature and is therefore the reciprocal of the 

Gaussian curvature. 

2.1.3 The Curvature Functions 

Definition 2.4 (Bonnesen-Fenchel [7] page 121.) Let C be a convex body, H(C; v) be 

its support function. Let Di( H) be the sum of all i-rowed principal minor determinants 

of the matrix ( Hij), where Hij = ,,8~ !;! . Define 
ll 'tl t :-:11)) 

(2.11) 

as the i-th curvature function of the convex body C. 



. 1 

Chapter 2. Mathematical Background 21 

Since the normal representation and the support function rotate with the convex body 

(see (2.2) and (2.:3)), the curvature functions rotate with the convex body too, i.e., 

Of particular interest are the first and the ( d - l )-th curvature functions: 

F1 (C; u) 

Fr1-1(C; u) 

r1(C; u) + · · · + rr1-1 (C; u), 

r1 ( C; u)r2( C; u) · · · rr1-1 ( C; u) . 

(2.12) 

When d = :3, a convex body has two curvature functions, F1 and F2 , which are the sum of 

the radii of principal curvature and the reciprocal of the Gaussian curvature, respectively. 

Theorem 2.9 (Bonnesen-Fenchel [7] page 121.) 

1.d-i wFi(C;w)dw = 0. (2. 1:3) 

This theorem says that a necessary condition for a function defined on sr1- 1 to be the 

curvature function of a convex body is that the centroid of the surface on the unit sphere 

covered with mass density Fi is the center of the sphere. This also is a sufficient condition 

for a function defined on sr1- 1 to be the ( d - l )-th curvature function of a convex body. 

Theorem 2.10 (Bonnesen-Fenchel [7] pages 127-128.) Let F(u) be a positive continuous 

function on the unit sphere that satisfies the relation 

L.i-i wF(w)dw = 0 . 

Then there exists a convex body uniquely determined up to translation for which F is 

the curvature function Fr1_ 1 • 

Theorem 2.9 and Theorem 2.10 together give a necessary and sufficient condition for 

a positive continuous function Fr1_1 on sd-l to be the curvature function Fr1_ 1(C:;u) of 
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a convex body C. The existence problem of a closed convex surface C such that the 

sum of the radii of principal curvature at a point with unit outward normal vector u is a 

given function cp(u) defined on sd-l is called Christoffel's problem. The problem has been 

studied by quite a few mathematicians, including Christoffel himself. A recent solution to 

the existence problem is the constructive proof by Firey [21), which Firey claims corrects 

and complements the incomplete treatment to the problem by earlier researchers. 

Theorem 2.11 (Firey [21] page 9.) Let ¢ be a continuously differentiable function over 

sd-t. There exists a non-degenerate convex body C with regular support hyperplanes 

such that ¢( u) is the sum of the principal radii of curvature at that boundary point of 

C at which u is the outer normal if and only if</> satisfies the following conditions. Let 

[1 _ (u' u)2]½(t-d) 

1
arc cos(u',u) . 

E-)(u',u)= ' sind- 2tdt, 
Wd ,r 

then 

lsd-i u</>(u)dw(u) = 0, 

lsd-i (u,u")0(u',u)(V</>(u),u")dw(u);:: O, 

for all u' on sd-t and u" for which (u', u") = 0 with strict inequality for some such choices. 

The ( d - l )-th and the first curvature function are one-to-one for convex bodies up 

to a translation. 

Theorem 2.12 (Bonnesen-Fenchel [7] page 122.) Two convex bodies with interior points 

and continuous curvature function Fd-l can be carried into one another by a translation. 

Theorem 2.13 (Bonnesen-Fenchel [7] page 122.) A convex body is uniquely determined, 

up to a translation, by its first curvature function F1• 
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The definition and the theorems of this section assume that the support function of the 

convex body has second derivatives. This is only necessary when the curvature functions 

are defined via Di(H). The assumption can be dropped if the curvature functions are 

defined by mixed volumes as will be described in Section 2.5.1. 

2.1.4 The Distance Function 

Definition 2.5 (Bonnesen-Fenchel [7] page 2:3.) Let C be a convex body with interior 

points. Suppose the origin O is chosen in the interior of C!. For any x E Rd\ { O}, let -(x be the (unique) intersection point of the ray Ox with bd C. The distance function 

g(C; x), x E Rd, of C is defined as 

1. g(C; 0) = 0, and 

2. g(C;x) = /lxl//1/(xl/, x E Rd\ {O}. 

The distance function of a set depends on the choice of the origin of the coordinate 

system. If a set CJ is rotated by a rotation R, its distance function is also rotated by the 

same rotation, i.e., 

g(R(C);v) = g(C; R-1 (v)). (2.14) 

The general relation between the distance function of a set and that of its translation is 

unknown. 

Examples of distance functions are: 

1. The distance function of the unit ball with center at the origin is llxll; 

2. The distance function of the cube having edges parallel to the axes with edge length 

two and centered at the origin is max{ lx;I I 1 ::; i ::; d}; 
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Figure 2.4: The distance function of a starshaped set. 
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:3. The distance function of the d-dimensional analogue of the regular octahedron 1s 

I::1~1 lxil; 

4. The distance function of a starshaped polygon is shown in Figure 2.4. The analytic 

expressions between the dashed lines define the distance function for points on the 

unit circle, u2 + v2 = 1, in the corresponding region. 

The following observations regarding the distance function follow from its definition: 

1. The points that satisfy the inequality g(C; x) :S 1 are precisely the points of C; 

2. If two convex sets with O as their common interior point have the same distance 

function, the two must be the same; 

;3_ If the distance function of C is g(C; x), that of AC: is j_-g(C; x); 
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4. (Firey [19] page 444.) For convex sets C\ and C:2 , g(C:1 ;x) 2:'. g(('!2 ;x), Vx E Rd if 

and only if C1 ~ C2. 

Theorem 2.14 (Bonnesen-Fenchel [7] page 2:3.) The distance function, g(C;x), of a 

convex set C has the following properties : 

1. g(C;x)2:'.0 with equality if and only if ;r = 0, 

2. g(C; µx) = µg(C; x) for all µ > 0, x E Rd, 

:3. g(C; x + y):::; g(C:; x) + g(C; y) for all x, y E Rd. 

Theorem 2.15 (Bonnesen-Fenchel [7] page 24.) If g(x) is any function defined on Rd 

such that 

l.g(x)2:'.0 

2. g(µx)=µg(x) 

:3. g(x + y) :::; g(x) + g(y) 

with equality if and only if x = 0, 

for all µ > 0, x E Rd, 

for all x, y E Rd, 

then there exists a nonempty closed convex set C such that g(;r) is the distance function 

of C. 

Sometimes the distance function is called gauge. In topology d(x, y) ~ g( C; y - x) is 

a gauge. It is used in Minkowski geometry ([7] page 25). 

It is important to note that Definition 2.5 can be applied, without any change, to 
--+ 

compact starshaped sets with origin in the interior of the kernel, since any ray Ox in-

tersects a compact starshaped set only once. Properties 1 to 4 still hold for starshaped 

sets. Of particular interest is the one-to-one property. Recall that the support functiou 
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is one-to-one only for convex sets. The distance function is one-to-one for starshaped 

sets. This is significant because the class of starshaped objects strictly includes that of 

convex objects. 

A more general definition of the distance function has been used by Valentine [72], 

Lay [42] and Beer [4] for starshaped sets that are not necessarily compact. 

Definition 2.6 (Valentine [72] page ;3;3,) Let S be a set in a linear space £, starshaped 

with respect to the origin 0 . The generalized distance function of S is the function 

g : £ -t [0, oo] defined by 

g( x) = inf {,\ I ,\ > 0 , x E .\S} . (2.15) 

From this definition of the distance function, a result that 1s stronger than both 

Theorem 2.14 and Theorem 2.15 follows. 

Theorem 2.16 (Valentine [72] page 32.) Suppose S C C is starshaped with respect to 

0 and each line through O intersects S in a relatively closed set. Then S is convex if and 

only if the distance function g of S is subadditive and positively homogeneous, that is, 

l. g(S; :r + y) :S g(S; x) + g(S; y) 

2. g(S;.\x)=.\g(S;x) 

for all x, y E £. 

for all ,\ ~ 0, x E £, 

The distance function, g, of the polygon shown in Figure 2.4 is not subadditive, 

since g ( ( - 2, - ;3)) = 1. 5, g ( ( 1 , - 2)) = 1, g ( ( - 2, -3)) + g ( ( 1, - 2)) = 2. 5 < g ( ( - 2, - ;3) + 
(1, -2)) = g((-1, -5)) = 4. Thus, by Theorem 2.16, the polygon is not convex. 

Beer [4] established a selection theorem for starshaped sets by considering the dis

tance function of starshaped sets. He believed that the distance function is intrinsically 
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related to starshaped set. It is stated in his paper that if g is the distance function of 

a nontrivial closed set starshaped with respect to an origin, 0, then g is a nonnegative 

extended valued positively homogeneous lower-semicontinuous function and there exists 

x0 -/=- 0 satisfying g(x0 ) -/=- oo. Conversely, any function g with these properties is the 

distance function of such a set, namely, 5' = { x : g(x) ~ 1 }. If O E int ker S, then the 

distance function is continuous. Moreover, it is Lipschitz (see Appendix B). 

Beer studied the distance function of parallel bodies of starshaped sets. One of his 

theorems is as follows. 

Theorem 2.17 (Beer [4] page 24.) Let {Sc} be a sequence of compact starshaped sets 

each contained in {x E Rd: //xii~ M}. Tl;en {Sc} has a subsequence convergent in the 

Hausdorff metric to a compact starshaped set. 

In the study of classes of starshaped sets in R3
, Melzak [55] asserted that the class of 

starshaped sets is identifiable with the class of all real valued positive functions on the 

sphere 82 which satisfy a Lipschitz condition. Define H as follows: 5' E H if and only if 

S is a bounded closed set in H3 and O E int ker S. Let g(S; v) be the distance function of 

S. The following theorems were obtained where Theorem 2. 18 was mentioned similarly 

in Beer [4]. 

Theorem 2.18 (Melzak [55] pages 175-176.) If SE H then g(S;ui) > 0 and /g(S;u 1 )

g(5';u2)I < ,sl'u1u2l,O < ,s < oo, where u1,u2 E 5'2 and lu1 'u2I is the length of the line 

segment between u1 and u2. Conversely, any such function g defines a set in H. 

Theorem 2.19 (Melzak [55] pages 175-176.) Given any convex sd C: E H, any 

,\ > 0 such that C: C -\B:3, and any E > 0, there exists S E H such that 

1. ker S = C:; 



Chapter 2. Mathematical Background 28 

2. CC int S'; 

2.1.5 The Radial Function 

The definition of the radial function parallels Definition 2.6 of the distance function. 

Definition 2. 7 (Lutwak (49] page 5;31.) The radial function of a convex body C 1s 

defined as 

p(C; u) ~ sup{A > 0 I AUE C}' for u E sd-l . 

From 2.15 and 2.16 it can be seen that 

Thus, by (2.14), 

1 
p(C; u) = (C· ) g -', u 

p(R(C); u) = p(C; R- 1 (u)). 

(2.16) 

(2.17) 

For compact convex sets, the properties of the distance function that are derived from 

De"Q-nition 2.5 can be transformed into properties of the radial function: 

1. The points that satisfy the inequality p( C; x) ~ 1 are precisely the points of C; 

2. If two convex sets with O as their common interior point have the same radial 

function, the two must be the same; 

:3. If the radial function of C is p(C; x), that of AC is Ap(C; x), A> 0; 
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2.1.6 Cross Sectional Measure and Breadth 

Definition 2.8 (Bonnesen-Fenchel [7] page 49.) Let C: be a convex body and v au 

arbitrary direction. The (d - 1)-dimensional volume of the orthogonal proj ection of 

C onto a hyperplane with normal direction v is called the ( d - 1 )-dimensional cross 

sectional measure of C in the direction v, denoted as a( C!; v ). Ford= :3, a( C:; v) is called 

the brightness function of C:, i.e., the area of the orthogonal projection of C: onto a plane 

with normal direction v. (Firey [20] page 96.) 

Theorem 2.20 (Firey [20] page 96.) If two centrally symmetric convex bodies have the 

same brightness function, then they differ at most by a translation. 

Definition 2.9 (Bonnesen-Fenchel [7] page 56.) Let C be a convex body and v an 

arbitrary direction. The distance between the two support planes of a convex body C: 

with normal direction v is called the breadth of C in the direction v, and is denoted as 

B( C; v ), for all directions v. A convex body is called a body of constant breadth if it has 

the same breadth in all directions. 

For any convex body C, B(C; v) = H(C; v) + H(C; -v) . 

It follows that spheres are the only central bodies of constant brightness. 

2.1. 7 The Area Function 

Definition 2.10 (Firey [24] page 205.) Let c: be a convex body in Rd, !1 E B(sr1- 1 ). 

Denote, by S(C:; n), the (d-1)-content (area when d = :3) of the set of all those boundary 

points of C:, each of which has a support hyperplane witl~ outward normal in n. Set 

function S(C; n) is called the area function (or primary area function by Firey) of C. 
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Theorem 2.21 (Schneider [69] page 47.) For convex body C, 

f wdS(C'; w) = O. 
lsd-1 

:30 

Theorem 2.22 (Schneider [69] page 47.) Letµ be a.positive measure on B(Sd- 1
) not 

concentrated on a great circle, and suppose that 

hd-i wdµ(w) = 0. 

Then there exists a convex body C, unique up to translation, with S(C; !1) = µ(!1). 

Obviously, the area function of a polytope P is a discrete system of vectors A( P) = 
{ai I 1 ~ i ~ J(P)}, where f(P) is the number of facets of P. For each facet Fi of P, 

the direction of ai is that of the outward normal of Fi and the length of ai is equal to the 

( d - 1 )-content of Fi. 

Definition 2.11 (Griinbaum [32] page :3:32.) A system V = {vi 11 ~ i ~ n} of non-zero 

vectors in Rd is called equilibrated if Li~l Vi = 0 and no two of the vectors in V are 

positively proportional. V is called fully equilibrated in Rd when it is equilibrated and 

spans Rd. 

Theorem 2.23 (Minkowski's Fundamental Theorem, Griinbaum [:32] page :332.) 

(1) If P is a polytope in Rd, then A(P) is equilibrated. If p lS a 

k-polytope, then A( P) is fully equilibrated in the subspace Rk parallel to the affine 

space spanned by P. 

(2) If V is a fully equilibrated system in Rk, k ~ 2, there exists a polytope P, unique 

within a translation, such that V = A( P). 
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The brightness function (Section 2.1.6) O'( C'; v) of C can be expressed in terms of the 

area function S( C; !1) of C (Firey [20]): 

O'(C; v) = ! f I (v, u) I dS(C; u). 
2 }:,2 

2.2 Spherical Images 

(2.18) 

Definition 2.12 (Busemann [15] page 25.) Consider a convex hypersurface c:. The 

spherical image v'(p) of a point p E C consists of the points of Sd-l which, as vectors, are 

the outward normals of the support hyperplanes of C at p. The spherical image v'(M) 

of a set M ~ C is 

v'(M) = LJ v'(p) . 
pEM 

Note that spherical images are not defined for non-convex hypersurfaces, because the 

support hyperplanes at a concave point are not defined. 

Theorem 2.24 (Busemann [15] page 25.) For a convex hypersurface C, v'(C) is convex. 

Definition 2.13 (Busemann [15] page 26.) For any set M C C for which v'(M) 1s 

measurable, the integral curvature of M is defined as 

v(M) = measure of v'(M) . 

Theorem 2.25 (Alexandrov, Busemann [15] page 26.) Given a convex hypersurface C, 

v' ( M) is measurable for any M E B ( C) and the integral curvature v( M) is completely 

additive on B( C). 



Chapter 2. Mathematical Background 

Theorem 2.26 (Alexandrov, Busemann [15) page 29.) For a given completely additive 

non-negative set function o:(M') defined for all M' E B(Sd-l) there exists a closed convex 

hypersurface C: containing origin O in its interior such that o:(M') = v(M) for the 

projection M of M' from O on C:, if and only if 

2. o:(C) :S wr1 - (3 

(wr1 is the area of sd- 1 , see Appendix A.) 

for every convex set C: on sr1-1 , where (3 is the measure of the 

spherical image of the cone projecting C from O . 

Theorem 2.27 (Busemann [15] page :30.) Let C1 and C2 be two closed convex hyper

surfaces containing O in the interior. If v( M1 ) = v( M2 ) for any Mi E B( Ci), i = 1, 2, 

which are projections of each other from 0, then C2 is obtained from C\ by a dilation 

with center O . 

2.3 Numbers Associated with A Set 

The numbers associated with a set examined in this section are volume, surface area, 

diameter and width. The emphasis is on how they can be calculated from the represen

tations defined in Section 2.1 . 

Throughout this section, C: is a convex body, :r is the normal representation of the 

boundary of C, o:1 , o:2 , •.• , ad-l are the parameters introduced on sd-l in Section 2.1.2, 

u is a point on sr1-1
, and dw is the area element on sd-1 at u. We have (Bonnesen

Fenchel [7] page 64) 

dw = <let u -.. - · · · -. - - do:1 · · · dad-1 . [ 
au au ] 

00:1 00:d-1 
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2.3.1 The Volume 

Let V(C) denote the volume of C. Then V(C) = 0 if and only if C! is at most (d - 1)

dirnensional. It is known that V(C) depends continuously on C!. 

Consider a non-degenerate polytope P. Denote by pi, i = 1, ... , N, the facets of P, 

by A(pi) the area of pi, by ui the unit outer normal of the support plane of P containing 

pi. It can be proved (Busernann [15] page 44) that 

1 N . . 
V(P) = d ~ H(P; u1 )A(p1

). 

i=l 

(2.19) 

A limit process of (2.19) gives 

V(C) = -d
1

· f H(C;;w)dS(C;w). 
lsd-1 

When H ( C; v) has continuous second derivatives, 

dS(C; u) = F<L-i(C; u)dw. 

Thus 

V(C) = _dl f H(C;w)Fn_1(C;w)dw . 
/c;d-1 

Representing V( C) in terms of the chosen coordinate system gives 

V(C) = - det x -l j [ ax 
d Sd-1 ., 8a

1 
-. -- da1 · · · darl-1 ax ] 
Ban-1 

11 [ ox - det u -
d Sd-l , 00'.1 

ox l -!::!-- H(C; u)da1 · · · dad-1 
UC'lri-1 

1 [ ou -d f det u ~ 
Jc,d-1 UO'.J 

!:.i ou ] H(C;u)Dr1-1(H)(u)da1 .. ·dar1-1. 
UC'lci-1 
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2.3.2 The Surface Area 

Let S ( (;) denote the surface area of a convex body C and S ( C; 0) denote the area 

function of C. By Definition 2.10, 

S(C) = S(C; sd-1
) = f dS(C;w). 

}.<;d-1 

By the relation between the area function and the curvature function, 

Representing the surface area in terins of the chosen coordinate system gives 

Given the ( d - 1 )-dimensional cross sectional measure O'( C; v) of convex body C, the 

surface area S( C; sd-l) of C can be computed via Cauchy's formula (Bonnesen-Fenchel [7] 

page 5:3) 

S(C;sd-1)=-
1
- f O'(C;w)dw. 

11' d-1 J.<;d-1 

2.3.3 The Diameter and the Width 

Definition 2.14 The maximum of B( C; v) over all vis called the diameter of(;, denoted 

as D(C). The minimum of B(C;v) over vis called the width of C, and is denoted as 

~(C). 

Obviously, the diameter of a convex body of constant breadth is equal to its width . 
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2.4 Transformations 

There are two types of transformations described in this section. Transformations of 

the first type combine two sets into a new one. The new sets are determined by their 

orientation-based representations which are the sum of the orientation-based representa

tions of the two given sets, i.e., 

where R is an orientation-based representation of shape, T ( S'i , 8 2 ) is the transformed 

set. Minkowski vector addition, Blaschke addition and polar mean are of this type. 

Combinations naturally lead to questions of decomposition. 

Transformations of the second type transform a set into a new one such that 

where R 1 , R2 are two orientation-based representations of shape and T (S) is the trans

formed set. Projection body and polar reciprocal set are of this type. 

2.4.1 Minkowski Vector Addition 

Definition 2.15 (Gri.inbaum [:32] page :316.) For two sets Q and R in Rd, the vector 

sum Q + R of Q and R is defined as 

Q + R = { X + y I X E Q' y E R} . 

If P = Q + R, then Q and R are called summands of P. The process is called vector 

addition. Associated with the vector addition is a scalar multiplication >-.Q defined as 

>-.Q = {>-. :z: \ x E Q}. The set {a}+ >-.Q,a E Rd , is said to be homothe.tic to Q, and 

positive.ly homothe.tic to Q if ).. > 0. 
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Theorem 2.28 (Griinbaum [32] page :316.) 

(1) A set P is the vector sum of Q and R if and only if 

H(P; v) = H(Q; v) + H(R; v), for all v E Rd. 

(2) Let Q and R be two polytopes, % i = 1, ... , n and r 1, j = 1, ... , m, be the vertices 

of Q and R, respectively. A set P is the vector sum of Q and R if and only if P is the 

convex hull of the set 

{ qi + r 1 I i = 1, ... , n, j = 1, ... , m} . 

Assertions (1) and (2) can be regarded as equivalent ways to define vector sum. 

Assertion (1) says that H(Q + R; v) = H(Q; v) + H(R; v). Assertion (2) implies that the 

vector sum of two polytopes is again a polytope. 

In the same manner as the vector sum of two convex bodies is defiued, the linear 

combinations of convex bodies can be defined. Let Ai 2: 0, i = 1, ... , r, be arbitrary 

constants. The linear combination of convex bodies C;, i = 1, ... , r, is defined as 

and is denoted as 
r 

(; = At C"i + ... + Ar Cr = L ACi . 
i=l 

The position of C generally depends on the d1oice of origin 0. If O is replaced by another 

point O', C will be translated by o=i=l Ai - 1) 00', where 00' is the vector; from 0 

to O'. Hence, if Li=t Ai = 1, linear combinations will be independent of the coordinate 

system. Of particular interest is the linear combination 

of two convex bodies C1 and C2 • 
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Similar to the argument of Theorem 2.28, the support function H( C!; v) of the linear 

combination C of the convex bodies c:i, i = 1, ... , r, is the linear combination of the 

support functions H (Ci; v) of Ci, i.e., 

Recall the definitions and properties of the normal representation and the first curva

ture function. The normal representation and the first curvature function of the vector 

sum of convex bodies are the sum of the normal representations and the first curvature 

function of the convex bodies, respectively. There is, however, no study done about the 

distance function of the vector sum of convex bodies. The area function of the vector 

sum of convex bodies will be used to define the mixed area function of convex bodies. 

The volume of the vector sum will be used to define the mixed volumes. 

In the plane, every polygon is the vector sum of finitely many sm;unands of a simple 

type (segments and triangles), and every convex set is the limit of finite vector sums of 

triangles. Both assertions fail to have analogues in higher dimensions. 

Since B(C7;v) = H(C;v) + H(C;-v) for all direction v, for any convex body c:, 
it follows that the breadth, in any given direction, of a vector sum is the sum of the 

corresponding breadth of the summands. 

Let C' be the reflection of C about the origin. Then C + C' is called the vector domain 

of C. A convex body C is a body of constant breadth if and only if its vector domain is 

a sphere (Firey [20] page 97). 

Let Bd be the unit ball in Rd having origin as the center. If C is a convex body, then 

C + µBd (fl 2: 0) is called the parallel body of C at distance µ. 

The area functions of parallel bodies will be used to define the i-th area function of 

a convex body (Section 2.5.2). 
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2.4.2 Blaschke Addition 

Definition 2.16 (Firey [20] pages 94-95.) Let C'i and C2 be two convex bodies with 

area functions S( C\; f!) and S'( C2 ; 0), respectively. The Blaschke sum of C1 and C:2 is 

defined as the convex body C whose area function equals to S( C'i; f!) + S( C2 ; 0), and is 

represented as C = C\ #C2 . The process is called Blaschke addition. The notion of scalar 

multiplication associated with Blaschke addition is defined as the convex body with area 

function >-.S( CO:; 0), and is denoted as ).. x C!. 

The Blaschke sum is well defined, as is seen from Theorem 2.22 in Section 2.1. 7. Since 

the area functions S( C'i; 0) and S( C2 ; 0) satisfy the conditions of the theorem, so does 

their sum. Thus a convex body is uniquely determined, up to translation, as having the 

sum of the two area functions as its area function. By definition, 

Similar to the vector sum, the weighted Blaschke sum of a family of convex bodies 

can be defined. Let Ci, i = 1, ... , 7', be convex bodies, Ai~ 0, i = 1, ... , r·. Define 

to be the convex body having function S(C'; H) = >-.1S(C\; n) + · · · + >-.rS'(Cr; 0) as its 

area function. Similarly, (!0 = ( 1 - 0) x C:\ # 0 x C:2 , 0 :S 0 :S 1, is of particular interest 

under certain circumstances. 

By equation (2.18), the brightness of a Blaschke ~um, in any given direction, is the 

sum of the corresponding brightness of the summands. 

The decomposition of d-polytopes with respect to Blaschke addition is well behaved, 

as the following theorems show. 
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Theorem 2.29 (Firey-Griinbaum, Firey [26) page 94.) Every polytope P is expressible 

in the form 

where each Pi is a simplex. Further, if P is d-dimensional and the number of facets of P 

is f ( P) = n 2: d + l, then there is a representation with m s;; n - d. 

Theorem 2.30 (Firey-Griinbaum, Firey [26] page 96.) Every d-polytope P is repre

sentable in the form P = #?~1 Pi where each Pi is a d-polytope with the number of facets 

Let C' be the reflection of C, C#C' is defined as the areal domain of C!. Since (}#C' 

is central, and C, C' have the same brightness function, by Theorem 2.20, C has constant 

brightness function if and only if C#C' is a sphere. 

2.4.3 Polar Means 

Another combination of convex bodies can be defined by a combination of distance func

tions. The definition and the theorem ( of Brunn-Minkowski type, according to Firey) in 

this subsection are from Firey [19]. 

Definition 2.17 (Firey [19] page 444.) Let C\ and C2 be two convex bodies containing 

0 as a common interior point. Define function g~P) as follows: 

g~oo)(x) 6 

gfoo)(x) 6 

Function g~P) ( x) satisfies 
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By Theorem 2.15, there is a unique convex body c?) whose distance function is g:(x). 

Call this body the p-th dot-mean of C0 and C1 • The convex body with distance function 

q(g( C0 ; x) )P + (g( C1 ; x) )P is called the p-tb dot-sum of Co and C1 • 

Theorem 2.31 (Firey [19] page 453.) 

for 1 s; p < oo. There is equality on the left if and only if Co = C1 and on the right if 

and only i_f Co = AC\ with center of homothety at 0. Further 

with equality on the right if and only if C0 = C1 . 

2.4.4 The Projection Body 

Definition 2.18 (Petty [59] page 234.) Let C be a non-degenerate convex body and 

let a( C; v) be its cross sectional measure. The convex body with center at origin and 

support function a( C; v) is called the projection body of C, denoted as P( C). 

By definition, H(P(C);v) = a(C;v), for all v. That is to say the distance of the 

support hyperplane of P( C) with normal direction v from the origin is equal to the ( d-1 )

dimensional content ( area, if d = :3) of the projection of c: onto the same hyperplane. 
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2.4.5 Polar Set, Conjugate, and Legendre Transform 

Definition 2.19 (Lay [42] page 140.) Let S be any nonempty subset of Rd. The polar 

set S* of S is defined by 

S* ~ {y E Rd : (x, y) :s; 1 for all x E S} . 

Theorem 2.32 (Lay [42] page 142.) Let S be nonempty set. Then S* is a closed convex 

set containing 0. 

Theorem 2.33 (Minkowski, Lay [42] page 140.) Let C be a compact convex body in Rd 

with O E int C. Let C* be the polar set of C. Then the support function of C is equal 

to the distance function of C*, and the distance function of C is equal to the support 

function of C*. 

Definition 2.20 (Rockafellar [64] page 201.) Let f be a proper convex function on Rd, 

i.e., an everywhere-defined convex function with values in (-oo, +oo], not identically +oo. 

Suppose also that f is lower semi-continuous (1.s.c.), in other words that {x I f(x) :s; µ} 

is closed in Rd for every µ E R. The function J* on Rd defined by 

f*(x*) ~ sup { (x, x*) - J(x) Ix E Rd} 

is called the conjugate off. 

Fenchel [18] proved that J* is again a l.s.c. proper convex function on Rd and that 

the conjugate of .f* is in turn J. Fenchel also mentioned that the distance function and 

the support function of a convex body are conjugate functions of each other. 

Given a convex function J defined on A ~ Rd, let A+ be the point set 111 Rc1+ 1 

bounded by {(x,f(x)) E Rd+t Ix EA}. A+ is convex because f is convex. Let 
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f(x) 

f*(p) 
✓ 

f*(p) 

(p. -1) (p,-1) 

Figure 2.5: Conjugate functions. 

v E Rd, v+ = ( v, -1) E Rd+l, then 

This means that J* ( v) is the value of the support function of A+ in the orientation v+. 

Figure 2.5 demonstrates the relation between f and J*, and gives a visual explanation 

of the above statement. 

The Legendre transform is a very useful mathematical tool. It establishes a duality 

between objects. It is also used in the theory of partial differential equations to reduce 

the order of a partial differential equation. (By means of a Legendre transformation, a 

Lagrangian system of second-order differential equations is converted into a symmetrical 

system of first-order equations, called a Hamiltonian system. See Arnold (2].) 

Definition 2.21 (Rockafellar (64] page 200.) Let h be a differentiable real-valued func

tion given on a non-empty open set X in Rd. Let X* be the image of X under the 

gradient map Vh: x-+ Vh(x). If Vh is one-to-one, the function 

is well-defined on X*. The pair (X*, h*) is called the Legendre transform of (X, h). 
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Theorem 2.34 (Rockafellar [64] page 201.) Let (X, h) be a convex function of Legendre 

type on Rd. The Legendre transform (X*, h*) is then well-defined. It is another convex 

function of Legendre type on Rd, and Vh* = (Vh)-1 on X*. The Legendre transform of 

(X*, h*) is (X, h) again. 

Theorem 2.35 (Rockafellar [64] page 202.) Let h be a (real-valued) differentiable con

vex function defined on all of Rd. Then Vh is a continuous one-to-one mapping of Rd 

onto itself, if and only if h is strictly convex and 

Lim h(>.x)/>. = +oo for every x "f. 0. 
,\-+ 

The conjugate of h is the same as its Legendre transform. 

2.5 Mixed Measurements 

Let C1 , C2, ... , Cr be convex bodies. The vector sum C = I::;=1 )..J;i is defined (Sec

tion 2.1.1) and the support function of C is the corresponding linear sum of the support 

functions of C,i = 1,2, ... ,r. The volume of C is a polynomial in >.i,i = 1,2, ... ,1·, 

the coefficients of which define the mixed volumes (Section 2.5.1 ). Similarly, the area 

function of C + >.Bd is a polynomial in >., the coefficients of which define the i-th area 

function of C (Section 2.5.2). The area function and the curvature functions of C lead 

to the definition of the mixed area functions (Section 2.5.2) and the mixed curvature 

functions (Section 2.5.4). From mixed area functions, the mixed body is defined (Sec

tion 2.5.5). Finally, the dual mixed volume is defined using the radial function of convex 

bodies (Section 2.5.6). 
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2.5.1 The Mixed Volumes 

Definition 2.22 (Busemann [15] page 4:3.) The d-dimensional measure (or volume) of 

C is denoted by V(C). For variable Ai 2:: 0 the volume of C = Li=l AiCi is a form 

r r r 

V(C) = L L "' L Yi1 .. ,idAi1 "' Aid 
i1=1 i2=1 id=l 

of degreed in the Ai, where the coefficients ½1 ... id are uniquely determined by requiring 

that they are symmetric in their subscripts. Then ½1 ... id depends only on the bodies 

ci1 l • • , l Cid and not on the remaining bodies (;j, Write V ( ci1,, , , , Cid) for ½1 .. ,id, and 

call it the mixed volume of Ci1, ... , Cid• 

The most important mixed volumes are the ones that involve only two distinct convex 

bodies. The notation ½( C\, C2 ) was introduced as follows (Busemann [15) page 4:3): 

½(C1, C2) ~ V(~,p2,. ~-, C2) = Vi-i(C2, Ci). 
d-i I 

Then 

When d = :3, A1 = A2 = 1, 

The mixed volumes can be computed from the support functions and the area func

tions of the convex bodies involved. Recall equation (2.19) 

where pi, i = 1, ... , N, are the facets of a non-degenerate polytope P, A(pi) the areas of 

p1 and u ; the unit outer normals of the support planes of P containing pi. This can be 
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generalized to the mixed volumes of a polytope P and an arbitrary convex body C'i as 

(Busemann [15] page 44) 

½(P,C\) = }i=H(C1 ;ui)A(pi). 
t=1 

(2.20) 

A limit process of the above equation yields 

(2.21) 

where C is an arbitrary convex body. 

L ( .., C" C b b d" (l) (2) (d) tl . I . f et 11, 1 2 , ••• , ' d e convex o 1es, x , x , ... , x 1e1r norma representations o 

the boundary, a 1 , a 2 , ••• , ad-l the parameters introduced on sd-l in Section 2.1.2, then 

where the sum is taken over all permutations of (1, · · ·, d - 1). 

If Bd is substituted for(;* in equality (2.21), then 

} lsd-i H(Bd;w)dS(C;w) 

} lsd-1 dS(C;w) 

}s( C) (2.22) 

because H(Bd;w) = 1 on sd-1
. In fact, Bonnesen and Fenchel [7] define the surface area 

S( C') of an arbitrary convex body C as d • ½ ( C, Bd). 

Let u denote the segment of length 1 that joins origin and the point u E sr1- 1 • It is 

not hard to see that (Bonnesen-Fenchel [7] page 50) 

V(C + >. u) = V(C) + AO'(C; u). 

Thus, by the definition of the mixed volume, 

O'(C; u) = d · ½(C, u). 
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Theorem 2.36 (Petty [59] page 2:34.) The non-degenerate convex bodies C\ and C:2 

have the same projection body if and only if 

for any convex body L that has a center. 

Define 

Wi(C) ~ V(~ ,!311
, . ~-, Bd) = ¾(C, Bc1). 

d-i i 

Then the volume of the parallel body of C at distance µ can be expressed as 

'f c1 (d) (d) 'f c1 V(C + µB ) = W0(C) + l W1(C)µ + · · · + d Wd(C )µ . 

The quantity Wi( C') is called the i-th cross sfctional mfasurc integral: W0 ( C') is the 

volume of C, W1 (C') is the surface area of C, and Wc1(C) is always the volume of the unit 

ball. 

Some inequalities between the mixed volumes are of fundamental importance to the 

use of orientation-based representations to solve the attitude determination problem. 

They follow from the next theorem. 

Theorem 2.37 (Brunn-Minkowski Theorem, Busema11~1 [15] page 48.) If C1 and c:2 are 

convex bodies in Rd, then 

is a concave function of 0, which is linear if and only if C1 and C2 are homothetic or lie 

in parallel hyperplanes. 

Corollary 2.38 (Minkowski's Inequality, Busemann [15] page 48.) 

f-
1· 
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If C1 and C2 do not lie in parallel hypersurfaces the equality sign holds only when C\ 

and C2 are homothetic. 

Corollary 2.39 (Quadratic Inequality of Minkowski, Busemann [15] page 48.) 

These inequalities are used to solve many extremal and uniqueness problems. 

The above inequalities involve only two convex bodies. Extensions of those results to 

other mixed volumes were proven by Fenchel and Alexandrov independently. 

Theorem 2.40 (General Brunn-Minkowski Theorem, Busemann [15] page 49.) If C1 

and C:2 are convex bodies in Rd, C0 = (l - 0)C1 + 0C2 , then 

where C'{, ... , Cd-m are convex bodies, is for O :S 0 :S 1 a concave function of 0. 

Theorem 2.41 (Busernann [15] page 51.) If C\ and C2 are convex bodies in Rd of 

dimension at least m, and if C{, ... , Cd-mare regular convex bodies, C:0 = (l-0)C\ +0C2 , 

then 

is linear if and only if C1 and C2 are homothetic. 

With the aid of the above two theorems, in the same way as Minkowski 's inequality 

was obtained, the following more general inequalities involving the mixed volumes are 

obtained . 
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Theorem 2.42 (Busemann [15] page 50.) If C:\ and C2 are convex bodies in Rd of 

dimension at least m, and if C~, . .. , Cd-m are regular convex bodies, then for 2 :S m :S d, 

0 < i < m, 

Vm-i(C"' C"' C" C" ) Vi(C' C' C C" ) '1,···, 'd-m' '1,···, .,1 · '1,···, ' d-ni, '2,···, ., 2 , 

with equality if and only if C1 and c:2 are homothetic.' 

A special case of the above inequality occurs when m = 2, i = 1 yielding the following 

inequality: 

Corollary 2.43 (Busemann [15] page 49.) 

with equality if and only if C1 and C2 are homothetic. 

Alexandrov extended these inequalities further to the following more general inequal-

ity: 

Theorem 2.44 (Busemann [15] page 50.) If C1 , . . . , Cd are convex bodies, then for 

2:Sm:Sd 
m-1 

vm(c\, . .. ;Cd) ~ IT V(C1, ... ,cd-m,Cd-i,•··,Cd-d · 
i::O 

A special case of the above inequality occurs when m = d. 

Corollary 2.45 (Busemann [15] page 50.) 

(2.2:3) 
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2.5.2 The i-th Area Function 

Definition 2.23 Let c: be a convex body, Bd be the unit ball, n E B(sd-l ). Then for 

,,\ 2: 0, S(C + ,,\Bd; !1) is the polynomial in,,\ (Firey (24] page 205) 

This defines the measure .S\(C;D) over B(Sd- 1
) for i = 0, 1, ... ,d-1. Call S;(C;D) the 

i-th area function of C. 

Let ,,\ equal to zero in the definition, then Sd-I (C; D) is the (primary) area function 

of C defined in Section 2.1.7. 

If(; is a regular convex body and r 1, r 2, ... , rd-I are the radii of principal curvature 

of the surface of C, then (Firey [23] page :346) 

(2.24) 

where { r 1, ... , ri} is the i-th elementary symmetric function of r 1, r 2 , ••. , rr1_ 1. Thus, 

the i-th area function of a convex body is the integral of its i-th curvature function. In 

particular, 

.S'i(C; D) -
1
- f (r1 + · · · + 1'<1-1)dw 

d - 1 Jn 
- -

1 
- f ( H 11 + · · · + H dd) dw , n E B ( sd- l) , 

d- 1 Jn 
lo (r1 '· 0 1'd-1 )dw 1 n E B(sd-l) . 

(2.25) 

Because the support function of a vector sum is the sum of the support functions of the 

summands, by (2.25), 
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By the definition of the area function, 

Theorem 2.46 (Schneider [69] page 47.) For convex body C, i = 0, 1, ... , d - 1, 

f wd5\ ( C; w) = 0 . 
lsd-1 

50 

Theorem 2.47 (Alexandrov-Fenchel-.Jessen Theorem, Schneider [69] Theorem (9.1) page 

4:3.) If C\ and C2 are convex bodies in Rd, i E { 1, ... , d - 1}, dim (;1 , dim C2 2: i + 1, 

then 5\( C\; ·) = 5\( C2 ; ·) if and only if (;1 and C2 are translations of each other. 

Theorem 2.48 (Alexandrov 1961, Schneider [69] Theorem (9.6) page 44.) Suppose C'i 

and C2 are convex bodies in Rd for which 5\(C1;f!)::; .S\(C2;f!) for all f! E B(sd- 1
) and 

5\+1(C1;sd-1) 2: 5\+1(C2;sd-1), for some i E {1, ... ,d-1} (where for i = d- 1 the 

second condition has to be replaced by V(C\) 2: V(C2 )). Then C1 , C2 are translations of 

each other. 

The above theorems are about the umqueness of convex bodies with respect to 

i-th area functions. Results about the existence of a convex body, for which i-th area 

function is given, are stated in terms of the necessary and sufficient conditions for a 

measure defined over B(Sd-I) to be i-th area function of a convex body. The problem is 

called Minkowski-Christo-ffel problem (Firey (25]). For i = d-1, the solution is presented 

in Section 2.1. 7. Firey [22] solved this problem for the case of i = I. 

Theorem 2.49 (Firey (22] page 21.) A completely additive set function <I> over B(Sd-t) 

is the first area function of a convex body if and only if it satisfies 

£d-i u<I>( du) = 0 , 
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where g1 is the fundamental singularity 

and 

where 

2~ln arc cos((u',u)/llullllu'II) if d = :3, 

hd-i A(u',v',u)<I>(du) 2: 0, 

A(u', v', u) = f(u', u) + r(v', u) - f(u' + v', u), 

f(u',u) = (d-2)(u',u)G(u',u)- (u', VG(u',u)), 

G(u',u) = 1(.c;(u',u)), 

1 18 

d-2 (1t . d-2 1 ') 1(.c;) = -- cosec t sm t dt dt, 
Wd n:/2 n: 

.c;(u',u) = arc cos ((u',u)/llul/llu'II), 

'( , ) 1 [ ( u', 11.) l .c d . 
G u 'u = 41r ln 1 - ll u' ll ll ·ull ior = .3 . 
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Thus ford= :3, the Minkowski-Christoffel problems are solved, although the problems 

are still open for d > :3. The quantity 80 ( C; !1) is the area of n. For S'i ( C'; !1), the 

problem can be thought of as a generalization of Christoffel's problem, which is discussed 

in Section 2.1.:3. For S'2 (C; !1), the problem can be thought of as a generalization of 

Minkowski 's problem which is also discussed in Section 2.1.:3. 

If P is a polytope, the i-th area function is ( Coodey and Schneider [:31] and Firey [2:3]) 

S\(P; !1) = 
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where Fi(P) is the set of i-dimensional faces of P, voli(f) is the i-dirnensional volume 

of the i-face f, <7(P, J) denotes the spherical image of J, that is, the set of all outer unit 

normal vectors to Pat the points off and Ad-t-i is the (d- I - i)-dimensional spherical 

Lebesgue measure on the (d - I - i)-dimensional great sphere of sd-t. 

The converse of the above also is true. 

Theorem 2.50 (Coodey and Schneider [:31] page 187.) Let C be a convex body in Rd 

with dim c: 2: i + 1, 1 :S i :S d - l. Suppose that the support of the area function 

S'i(C; n) can be covered by finitely many (d - 1 - i)-dimensional great spheres. Then c: 
is a polytope. 

A necessary and sufficient condition for a Borel measure on sd-t to be the area func

tion Sd-t (P; D) of a polytope Pis given by Theorem 2.2:3 in Section 2.1.7. Schneider [68] 

determined necessary and sufficient conditions for a Borel measure ¢ on sd-t to be the 

first area function of a convex polytope. The notion of spherical complex is used in the 

conditions. 

Definition 2.24 (McMullen and Shephard [54) page 15:3.) A spherical polytope in sd-t is 

the intersection of a finite number of closed hemispheres which is not empty and contains 

no pair of antipodal points of 5<1-t. A spherical complex C is a finite set C = { c1 , ... , Cr} of 

distinct spherical polytopes (cells) Ci on sd-t which satisfies the following two conditions: 

2. For each i,j, the intersection ci n Cj is a face (proper or improper) of both Ci and 

Note 1 Spherical images of all non-empty faces of a polytope determine a spherical 

1 c•d- 1 comp ex on ,:, . 
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Note 2 Each d-polytope P corresponds to a spherical complex by the mappmg, 
----t 

<I> : bdP - sd-l, which maps x to the intersection of the ray, Ox, from 0 

passing x with the sphere sd-l. The mapping <I> maps proper faces to spherical 

polytopes. It has been shown that the reverse is not necessarily correct, i.e., there 

are spherical complexes that are not radial projections of any polytopes. 

The first area function 81 (P, !1) of a polytope P can be represented as (Firey [2:3] 

page :351) 

.S'i(P,!1) = d~ 
1 

L,\(e)µd_ 2 (!1nv(e)), 
e 

for any n E B(S'd- 1 ), where the summation goes over all edges e of P, ,\(e) is the length 

of edge e, v(e) is the spherical image of e, and µd_ 2 (f! n v(e)) is the (d - 2)-dimensional 

content of !1 n v(e) on 5'd-l_ 

Theorem 2.51 (Schneider [68] page 81.) For a Borel measure 1> on sd-l there exists a 

d-polytope P such that </>(!1) = .S'i (P, f!) if and only if</> satisfies the following conditions: 

1. The support of </> is the union of the ( d - 2)-dimensional elements of a spherical 

complex S. 

2. For each (d-2)-element ( of S, there exists a positive number,\(() such that ef>(n) = 

,\( ()µd-2 (n) for each !1 ~ (. 

:3. For each (d-:3)-element 17 ES, 

L,\(()u(11,0 = o, 
( 

where the summation goes over all (d-2)-elements ( ES for which 17 is a side, an.cl 

u(17, () = vdllvd such that vc is the orthogonal projection of ( on the 2-dimensional 

linear subspace orthogonal to 77. 
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Let ~1 , ••. , ~k be the ( d-1 )-elements of S. For any j, 1 :::; j :::; k, an ordered sequence 

( ~i,, ... , ~im) of ( d-1 )-elements of S can be constructed such that ~ir n (ir+i is a ( d-2)

element, r = l, ... , m - 1, i1 = 1, im = j. Define x; as 

m-1 

Xj = L A( eir n eir+l )v( ir, ir+l) ' 
r=1 

where v( ir, ir+1 ) is the unit vector which is orthogonal to the linear hull of ~ir n {ir+i and 

pointing into the interior of the halfspace containing ~ir+i. The convex hull of the points 

;z; 1 , ... , Xk is the polytope whose first area function is the given measure. 

2.5.3 The Mixed Area Functions 

Definition 2.25 (Schneider [69] page :31.) The area function of C = ~i=l A;Ci is a form 

r r r r 

s(I: A;C';; n) = I: I: . . . I: A; 1 ••• Ajd-l s( c\, ... , C;d-l; n) (2.26) 
•=1 i1=l i2=l id-1=1 

of degree d - l in the Ai, where the coefficients S( (7;1 , ••• , C;d; 0) are uniquely deter

mined by requiring that they are symmetric in their subscripts. Then S( C\, ... , C;d; n) 

depends only on the bodies C; 1 , ••• , Cid-t and not on the remaining bodies (7;. Call 

S( C;1 , ••• , C;d; H) the mixed area function of (;; 1 , ••• , C;d-i. 

By definition, 

S\ ( C; n) = s ( (' . . . C, B"' . . . Bil. n) . 
'--v-' '--v-' 

rl-1-i 

(2.27) 

The mixed area function was originally defined by Alexandrov and Fenchel-.Jessen via 

mixed volume. It can be proven that, for given convex bodies C1 , ... , Ca-l, there exists 

a unique measure S(C1 , ... ,Ca_1 ;·) on B(sa- 1
) such that 

(2.28) 
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for any convex body C. This measure was defined as the mixed area function of 

C1 , ••• , Cd-t · Using this definition, equality (2.26) was then proven. 

Since 

_dl f H(C1 +L1 ;w)d8(C2,••·,Cd-t,C;w) 
lsd-1 

_dl j H(C1;w)d8(C2, ... ,c:d-1,C;w) 
:,d-1 

+~ hd-i H(L1;w)d8(C2, ... , Cr1_1 , C;w) 

_dl f H(C ;w)dS(Ci,C:2, . .. ,Cd-1;w) 
J.<;d-1 

+-d
1 f H(C;w)dS(L1,C2, ... ,(;d-1iW), J..,,H 

then 

Recall (2.22) that d · V(Brl, C, ... , C) is the surface area of CJ, the quantity 

d· V ( Bd, C1 , ... , Cd-t) is defined as the mixed surface area of convex bodies C\, (72 , ... , Cr1-t • 

Of particular interest is the mixed area function of two convex bodies. By definition, 

(2.:30) 

One fact about the mixed area function is that the measure is not concentrated on 

any great sphere of sd-t and has the origin as the centroid (when viewed as mass loading 

0d-l) · on.:, , 1.e., 

(2.:31) 
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2.5.4 The Mixed Curvature Function 

Recall from Section 2.1.:3 that the curvature functions of a convex body is defined by the 

elementary symmetric functions of the radii of principal curvature, which must assume 

the continuity of the second derivatives of the support function of the convex body. A 

more general definition of the curvature functions employs the mixed volumes and does 

not make smoothness assumptions. 

Definition 2.26 (Bonnesen-Fenchel [7) page 121.) Let C be a convex body. If a function 

Fi( C; u) is continuous and non-negative on sd-l, and if for an arbitrary convex body L 

with support function H(L; u), 

( )

-1 

d d 1 d-1 . 
(L O . . . ( , Ba, ... ,Ba) = -d f H(L;w)Fi(C;w)dw, 

'---.,-----' ~ · J.<;d-1 
i d-1-i i 

(2.:32) 

it is called the i-th curvature function of C. 

The i-th curvature function Fi( C; u) of a convex body C has the following properties: 

1. A convex body can have at most one continuous i-th curvature function Fi; 

:3. When H(C; u) has continuous second derivatives, Fi(C; u) = {r1 ... ri} = Di(H(C)) . 

Definition 2.27 The i-th curvature function of A1 C1 + ,\2C2 is a homogeneous polyno

mial of degree i in A1 and A2 . Its coefficients are called the mixed curvature functions of 

C'i and C:2. 
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2.5.5 The Mixed Bodies 

Firey [20] initiated the study of the mixed bodies with d = ;3, The area function of 

C0 = (I - 0)C\ + 0C2 , where C:\ and C2 are convex bodies, is given by the general-ized 

Steiner formula (Firey [20] page 95) as 

There is a unique convex body which has 5\ 2 as its area function. Firey called this convex 

body the mixed convex body resulting from C\ and (;2 , and denoted it as C'( C\, C2). Then 

In general, the mixed body of d - I convex bodies in gi can be defined. 

Definition 2.28 Let C\, ... , C!d-t be convex bodies. By Theorem 2.22 and equality (2.26), 

there is a convex body, unique up to translation, whose area function is 

8( C1 , ..• , Cd-t; D). This convex body is called the mixed body of C\, ... , Cr1-t, denoted 

as [C1, ... , (;d-1], 

By definition, 

From the properties of area function it follows that [ C1 , •.• , C,1_1] is synundric in its 

arguments, and that if the Ci are replaced by homothetic copies, the resulting mixed 

body will be homothetic to the original. It also follows that [C, ... , C] = C:, when~ 

equality is assumed to mean up to translation. By (2.29), 

The following notation is introduced: 

[C1,C2]i ~ [C1, .. ,,C1 ,p2, •~•,C2J , [C]i ~ [C\,Bd]i. 
d-1-i 
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Then by definition, 

When d = 3, 

Also by definition, 

When d = :3, 

S'([C, Bd]; !1) = 5\ ( C; !1) . 

Lutwak [50] studied the volume of mixed bodies. The following two theorems are of 

special interest to us. 

Theorem 2.52 (Lutwak [50] page 492.) If C\, ... , Ca-J are convex bodies in Rd, then 

with equality if and only if Ci are homothetic. 

with equality, in either of these inequalities, if and only if C1 and C2 are homothetic. 

2.5.6 The Dual Mixed Volumes 

Definition 2.29 (Lutwak [49] page 5:32.) Let C1 , .. . , Ca be convex bodies. The dual 

mixed volume of C\, ... , Cd is defined as 
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The dual mixed volume has the following properties (Lutwak [49] page 5:32): 

I. Vis continuous, V(C1 , ••• ,Cd) > O; 

:3. If Ai~ Bi for all i then V(A 1, ... , Ad) S V(B1, ... , Ed) with equality if and only 

if A = Bi for all i ; 

4. V(C, ... ,C) = V(C). 

The notation ½(C1 , C2 ) is introduced: 

½(C1, C2) ~ V(~,p2,. ~-, C2) . 
d-i 

Theorem 2.54 (Lutwak [49] page 5:3:3.) 

m-1 

V 11\C1,,, .,Cd) SIT V(C1,,,.,C:d-m,Cd-i,···,Cci-i) , 1 < m S d, 
i=O m 

with equality if and only if cd-m+t, cd-m+2, ... , Cd are all dilations of each other (with 

the origin as the center of dilation). 

A special case of Theorem 2.54 occurs when m = d. 

Corollary 2.55 (Lutwak [49] page 5:34.) 

with equality if and only if C/1 , C2., .•• , C!c1 are all dilations of each other ( with the origin 

as the center of dilation). 

Combining this corollary with the Alexandrov irn~quality (2.2:3) yields: 



Chapter 2. Mathematical Background 60 

Corollary 2.56 (Lutwak [49] page 5:34.) 

V(C'i, ... , c:d) ~ V(C1, ... , cd), 

with equality if and only if C:\, C2 , .: ., C)d are all dilations of each other ( with the origin 

as the center of dilation). 

A special case occurs when only two convex bodies are involved. 

Corollary 2.57 (Lutwak [49] page 5:34.) 

with equality if and only if C1 is a dilation of C2 (with the origin as the center of dilation). 

2.6 Summary 

Various orientation-based representations of shape have been defined. Foundation for 

studying the orientation-based representations have been surveyed and presented coher

ently. The characteristic properties of the orientation-based representations of shape 

include: 

1. One-to-one property; 

2. Necessary and sufficient conditions for a function to be a valid orientation-based 

representation; 

:3. Reconstructability. 

The common property of all the orientation-based representations is that they rotate in 

the same way as the object rotates . 
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The support function plays a very important role in the analysis. It links the n~sults 

together. Most other representations can be computed from the support function. The 

support function also is related to the Legendre transformation used in applied mathe

matics. 

The distance function and the radial function deserve special attention because Ill 

addition to convex bodies they are well defined for compact starshaped sets. 

When d = ;3 there are two curvature functions and two area functions. The first 

curvature function is the sum of the radii of principal curvature and the second curvature 

function is the reciprocal of the Gaussian Curvature. The area functions may seem 

inappropriate for any practical use because their domains are B(Sd-t) instead of sd-t _ 

But, when the objects an~ polytopes, the support of their area functions can be covered 

by finitely many points (for the ( d - l )-th area function) or line segments (for the first 

area function) on 5r1.- t. 

Table 2.1 summarizes the properties of the representations, where S is an arbitrary 

set in R3 and Q is an arbitrary polyhedron in R1 . Results about the one-to-one property 

of the representation, necessary conditions for a function to be the representation of a 

shape and sufficient conditions for a function to be the representation of a shape are 

known for all the representations listed. Except for the second curvature function and 

the second area function, all representations can be inverted to reconstruct the object. 

The rest of this dissertation is concerned with attitude determination. Previous re

search is surveyed in Chapter ;3 and new results are presented in Chapter 4. The theorems 

of this chapter provide the necessary and sufficient conditions for two bodies to be homo

thetic. In particular, conditions on the extrema of inequalities involving orientation-based 

representations are used. 
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Defined One-to-one Necessary Sufficient Reconstructable 

Extent Extent Conditions Conditions 

H(S; u) arbitrary convex known known yes 

Theorem 2.2 Theorem 2.3 Theorem 2.5 

x(S;u) convex convex known known yes 

Theorem 2.8 Theorem 2.8 trivial 

g(S;u) arbitrary starshaped known known yes 

Theorem 2.14 Theorem 2.15 Page 24 

p(S;u) arbitrary starshaped known known yes 

viag(S;u) via g(S; u) via g(S; u) 

F1 (S; u) convex convex, up to known known yes 

a translation Theorem 2.9 Theorem 2.11 Theorem 2.11 

F:1.(S; u) convex convex, up to known known unknown 

a translation Theorem 2.9 Theorem 2.10 

S'i (S; 0) convex convex, up to known known yes 

a translation Theorem 2.46 Theorem 2.49 Theorem 2.49 

81.(S; 0) convex convex, up to known known unknown 

a translation Theorem 2.21 Theorem 2.22 

S'i(Q;n) convex convex, up to known known yes 

a translation Theorem 2.51 Theorem 2.51 Theorem 2.51 

81.(Q;H) convex convex, up to known known yes 

a translation Theorem 2.23 Theorem 2.2:3 Little [4 7) 

Table 2.1: Properties of orientation-based representations. 
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Previous Research 

In machine vision, previously used orientation-based representations of shape, as defined 

by Definition 2.1, include the Extended Gaussian Image (EG I) and generalizations de

fined by Liang and Todhunter [45] and by Kang and Ikeuchi (40]. Representations not 

previously described as orientation-based but which easily fit the framework defined in 

Section 2.1 are the Gaussian and mean curvatures, as used, for example, by Bes) [5]. 

The Extended Gaussian Image and its discrete version are the second curvature func

tion and the second area function respectively. It is known from Chapter 2 that these 

orientation-based representations are one-to-one only for convex bodies. There has been 

some effort to apply the Extended Gaussian Image to non-convex shapes [:35, 47] . 

A different point of view is taken here. Instead of extending the definitions of existing 

orientation-based representations, new orientation-based representations are sought that 

are well defined and well behaved when applied to non-convex sets. In particular, the 

distance function and the radial function are of interest since they are well defined and 

one-to-one for compact starshaped sets. The radial function for two dimensional sets 

has been used to represent the 2-D contours of objects [28, 29]. Schudy and Ballard [70] 

used the radial function to model the :3-D shape of hearts. As far as is known, the radial 

function has not previously been used in :3-D attitude determination. 

Nalwa [57] argued that differential geometric representations are, in general, inade-
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quate and suggested that global geometric information be incorporated. He proposed to 

use the support function because of its locality, unambiguity and additiveness. However, 

no suggestion was made about how the representation could be used in surface matching. 

In fact, Little [4 7] had already used the support function in object reconstruction and 

attitude determination. The use of the support function by Little [47], however, is for 

polytopes only. One novel contribution of this thesis is to use the support function in 

attitude determination for smooth, strictly convex objects, as described in Section 4.1. 

The remainder of this chapter is organized as follows. Section :3.1 reviews the devel

opment of the EGI and its use in recognition and attitude determination. Section 3.2 

looks at efforts to extend the EGI to handle more complicated objects and to solve other 

related problems. Section ;3.:3 surveys the use of these representations in computational 

vision. Finally, Section ;3.4 summarizes the current state of the art by enumerating what 

has been done and what has not been done using these orientation-based representations. 

Throughout this chapter, only three dimensional space, R3, is considered (i.e., d = :3). 

3.1 The Extended Gaussian Image 

The idea of the Extended Gaussian Image originated with Smith [71). Smith called 

the representation the Enhanced Spherical Image (ESI) because of its connection to 

tlw spherical image (Section 2.2). "An ESI model for a convex object consists of a 

set of vectors. An individual vector's direction component represents the direction of a 

surface normal of the object, and the vector's magnitude signifies the object's surface 

area corresponding to the particular normal direction." This is equivalent to the EGI 

for a polytope as discussed later in this section. The ESI model could not represent 

smooth objects since the spherical image of a smooth object includes finite area patches 

on the sphere. A theorem of adjacency proposed by Smith [71), which claimed that 

t. 
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adjacent points in an ESI were the mappmgs of adjacent faces in the corresponding 

convex polyhedron, was later shown to be false by a counter example due to Moni [56]. 

The formal definition of the EGI was given by Horn [:35]. 

Definition 3.1 (Horn [:35] page 1675.) The Extended Gaussian Image is defined, for 

a surface C, as a map, Ge : sa-1 
f---t R1, which associates the inverse of Gaussian 

curvature at a boundary point of a surface to the orientation u E sa-l of the surface at 

the point: 

Gc(u) = I e(~(u))' 

where x(u) is the point on Cf with unit outward normal u, and I<c(x(u)) is the Gauss 

curvature of Cat point x(u). Such a map Ge is called the EGI of C. 

Clearly, the EGI is exactly the second curvature function of a surface. Thus, Theo

rem 2.10 guarantees the existence of a unique, up to a translation, closed convex surface 

whose second curvature function is a given function satisfying the necessary condition. 

This definition of the EGI requires that the surface is smooth. A definition of the EGI 

that captures the geometric description of a surface without requiring differentiability is 

needed when polytopes are encountered. A discretized version of EGI also is needed 

when the EGI is represented numerically. Since the Gaussian curvature at the faces of 

a polytope vanishes, Definition ;3. 1 can no longer be used directly. In this situation, 

the area function of a polytope (Section 2.1.7) is used, i.e., a discrete system of vectors 

A(P) = {a; I 1 :Si :S J(P)}, where J(P) is the number of facets of P, the direction of 

a; is the same as that of the outward normal of face Fi and the length of a; is equal to 

the ( d - l )-content of Fi, 

The justification for using the area function for polytopes is twofold: 



Chapter 3. Previous Research 66 

I. The curvature function and the area function are associated by equality (2.24), 

where 1·1 , r 2 , .•• , rr1-t are the radii of principal curvature; 

2. The Gaussian curvature can be defined as 

, . !G(E)I 
h.(p) = hm !El ' IEl-o 

where E is a compact portion of the surface containing p, G( E) is the spherical 

image of E, and I· I is the surface area measure. 

The EGI has the following properties: 

1. It is insensitive to the translational position of an object; 

2. It is one-tu-oue for convex bodies ( cf. Theorems 2.22, 2.2:1); 

:3. It can be computed easily from needle diagrams obtained using photometric stereo, 

or depth maps obtained using laser range finders or binocular stereo ( cf. [:36]). 

The EGI has been used in recognition and attitude determination. Brau [12, 1:3] 

defines matching error, M(,) = J-,2 I K 0 (,(w))-Ki(w) I dw, as a function of the rotation, 

,, where K0 and Ki are the Gaussian curvatures of the model and the object, respectively. 

The solution lies in the minimum of the error function and is found by enumerating the 

discrete rotation space. In Horn and Ikeuchi [:37], the EGI of a prototype is rotated to 

match the EGI of a sensed object until the sum of the square of the differences between 

the two EGI's is a minimum. The prototype that achieves the minimum difference among 

all prototype identifies the sensed object. lkeuchi [:38] viewed the problem of matching as 

the determination of the line of sight and the rotation angle with respect to an internal 
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model. The EGI mass center constrains the line of sight, and the EGI inertia direction 

constrains the rotation around the line of sight. 

Little [47] made use of Brunn-Minkowski's Theorem (Theorem 2.:37) to reconstruct 

a polytope from its EGI and to determine the attitude of a polytope with respect to a 

model. Let P and Q be two convex bodies, R = .-\P + (1- ,\)Q. By the Brunn-Minkowski 

Theorem, 

If the left hand side is replaced by its representation in terms of mixed volumes., one 

obtains 

The Brunn-Minkowski Theorem states that the polytope P, having unit volume, that 

minimizes Vi ( Q, P) is homothetic to Q. Now suppose Q has area function 

A(Q) = {A(qi) I 1 :S i :S N}, where Qi are faces of Q with outward unit normal Wi, 

Recall, from equality (2.20), that 

3 1 ~ ;3 ½ (Q,P) = (3 t;H(P;wi)A(qi)) . 

Using this relation, Little developed an iterative method which combines the tech

niques of constructing a polytope from its support vector (values of support function 

at the facet orientations of the polytope) and minimization techniques to construct the 

support function of P such that A(P) = A(Q). This is to say that given a sensed EGI 

A(Q), its corresponding polytope can be reconstructed. 

In attitude determination, a sensed EGI, A( Q), is given and the task is to find the 

attitude which rotates the sensed EGI into correspondence with the prototype EGL 

Consider the P in the above inequalities as the prototype. Then to determine object 

attitude, Little minimized 
N 

L H(P; R(w;))A(qi) 
i=l 
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over all rotations R. When only the portion of a surface corresponding to a single visible 

hemisphere is sensed, the EGI of the object is not complete. Little used 

L H(P; R(wi))A(qi) , 
w;E.S'2 (v) 

where the 8 2( v) is the hemisphere visible from viewing' direction v. Good performance of 

the method using the mixed volume with both complete and partial EGI was reported. 

3.2 Generalization of the EGI 

There have been several attempts to generalize the EGI so that a larger class of ob

jects can be represented and more problems can be solved. The generalizations still are 

orientation-based representations. Among the representations are the surface shape rep

resentation by Liang and Todhunter [45] and the complex EGI by Kang and lkeuchi [40]. 

The surface shape representation defined by Liang and Todhunter [45] is an extension 

to the EGI in that smooth surfaces are considered and principal curvatures/directions 

are recorded rather than Gaussian curvature alone. A vector function on the unit sphere 

is defined for each surface patch. The function value is the vector composed of the 

maximum principal curvature, the minimum principal curvature and the two components 

of the unit maximum principal curvature direction. An algorithm was proposed for 

matching surface shapes with strictly positive and strictly negative Gaussian curvatures. 

For general surface shapes, it was suggested that the surface shapes be partitioned into 

regions with positive, negative and zero Gaussian curvature. Matching algorithms are 

intended. Problems arise, however, when surfaces contain holes even if the Gaussian 

curvature is strictly positive. For example, in Figure 3.1, the representation of Liang and 

Todhunter is not well defined for the surface patch in the figure because there are points on 

the surface patch whose normal directions are the same. The one-to-one correspondence 
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Figure :3.1: An open surface patch with positive Gaussian curvature. 

between the sphere and the surface via normal vector is only guaranteed for regular closed 

convex surfaces. 

The Complex Extended Gaussian Image (CEGI) defined by Kang and Ikeuchi [40] 

associates a complex number to each normal vector. The magnitude of the complex 

number is the area of the face corresponding to the normal, and the phase of the complex 

number is the normal distance of that face to the origin. Thus, the CEG I is equivalent 

to the EGI augmented with the value of the support function at each normal. The idea 

came from the observation that the EGI is translation invariant. The CEGI was used to 

determine the translation parameters using a least-square technique. Suppose the object 

is translated by (8x, 8y, 8z). The method requires that 

This requirement can be eliminated by making use of the properties of the support 

function. Recall equality (2.1 ). If a set C is translated into C' by a vector a, the support 

function of C/' is 

H(C';v) = H(C;v) + (a,v). 

Let v1 , v2 , and v3 be three normal directions, di and d: be the corresponding support 
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function values before and after the translation. Then 

Thus a is the solution of the equation 

3.3 Related Representations 

d~ - d1 

d; - d2 

d; - d3 

70 

Examples of related representations are Gaussian curvature and mean curvature repre

sented as functions defined on the image plane. The distinction between these functions 

and the curvature functions studied in this dissertation is a technical one. Properties of 

these representations follow from differential geometry. 

Besl [5] proposed using Gaussian and mean curvature as "visible-invariant surface 

characteristics" and used the signs of Gaussian curvature and mean curvature to define 

eight visible-invariant HK-sign surface types. From this, a theory of image segmentation 

was built. A wide variety of range images and intensity images were tested. This "sign

of-curvature" paradigm has been very influential in computational vision, particularly in 

the area of viewpoint invariant surface segmentation (see, for example, Li [4:3]). 

There are many other representations that involve the use of surface curvature prop

erties. For a more thorough survey, see Besl [5, 6]. 

, 
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3.4 Summary 

Among the orientation-based representations, only the second area function for polytopes 

has been utilized in computational vision [37, 47]. At the same time, a comprehensive 

collection of mathematical results exists about all the representations described. 

Table 3.1 summarizes the current state of the art . 

Chapter 4 extends the state of art by solving the attitude determination problem in 

new ways using combinations of the support function, with the first curvature function 

and the second curvature function and the radial function. 
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Orientation-Based Used Reconstruction Attitude 

Rep res en tat ions Before Determination 

H(P;e) yes trivial done 

Little [47] Theorem 2.5 Little [4 7] 

H(C;O no trivial done in Section 4.1 

Theorem 2.5 

g(C;O no trivial 

Page 24 

p(C; 0 yes trivial done in Section 4.2 

Schudy et al [70] via g(C;e) 

F1(C ; e) no possible done in Section 4.1 

Theorem 2.11 

F2(C;e) no unknown done in Section 4.1 

S1(P;w) no possible 

Theorem 2.51 

S2(P; w) yes done done 

Little [47] Little [47] Little [47] 

81 (C; w) no possible 

Theorem 2.49 

S2(C; w) no unknown 

Table :3.1: Use of orientation-based representations . 
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Solutions to the Attitude Determination Problem 

In this chapter, the problem of attitude determination is defined and theoretical solutions 

to attitude determination using orientation-based representations are provided. The 

following orientation-based representations are used: 

1. The support function; 

2. The first curvature function; 

;3. The second curvature function; 

4. The radial function. 

For attitude determination, only objects in R:3 are considered. 

Definition 4.1 Attitude determination is the problem of finding a rotation, R, such that 

R( C\) and C}2 are homothetic, where C\ is a known 3-D model and (;2 is an instance of 

C\ under an unknown rotation, translation and scaling. 

Section 4.1 uses the support function and the curvature functions to solve the attitude 

determination problem. Section 4.2 uses the radial function in attitude determination. 
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4.1 Attitude Determination by the Support Function and Cur

vature Functions 

Throughout, assume that C1 is a given object model defined in a standard coordinate 

system and that C2 is a measured instance of C1 subject to unknown rotation, translation 

and scaling. Let R denote an arbitrary rotation. By Corollary 2.4:3, 

( 4.1) 

with equality if and only if R( C\) and C2 are homothetic. Further, it is known that 

V ( C, C, H 3) is equal to 1 /:3 the surface area of a convex body C. Surface area is in

variant under rotation. Therefore, V(R(C\), R(C1 ), B3
) = V(C1 , C1 , B-1 ) and the min

imum value of ( 4.1) is jV(C\, (;1 , B 3 ) V( (}2 , C2 , B 3 ), independent of R. Accordingly, 

V(R(C1 ), C2 , Ba) achieves this minimum if and only if R(C1 ) and C2 are homothetic. 

Similarly, by Corollary 2.:38, 

( 4.2) 

with equality if and only if R( C1 ) and C2 are homothetic. Volume is invariant under rota

tion. Therefore, V(R(C\)) = V(C\) and the minimum. value of (4.2) is f/V(C1 ) V2(C2 ), 

independent of R. The left-hand side of inequality (4.2), V(R(C\), C2 , C2 ), achieves this 

minimum if and only if R(C1 ) and C:2 are homothetic. Now, define functions of Ras 

follows: 

( 4.:3) 

( 4.4) 

Functions c.p(R) and 1/;(R) depend on C:,\ and C2 • They attain their known minima at Ro if 

and only if R0(c:1 ) and c:2 are homothetic. Therefore, by Definition 4.1, the :3-D attitude 

determination problem can be solved if the minima of c.p( R) or 1/;( R) can be found. Either 
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of these minima is an equivalent solution to the :3-D attitude determination problem. The 

global minimum of cp(R) is½ S(C\)S(C2 ) and that of 1/;(R) is y/V(C:1 ) V2 (C2 ), both of 

which are known independent of R. By the conditions of Corollary 2.4:3 and 2.:38, these 

global minima are unique, modulo any rotational symmetries that C'i possesses. 

Thus the attitude determination problem can be expressed as one of the following 

optimization problems: 

nmmmze: cp(R) 
( 4.5) 

subject to: R is a rotation , 

mmnrnze: 1/J(R) 
( 4.6) 

subject to: R is a rotation . 

A rotation, R, can be represented as a triple ( </>, 0, !1) interpreted to mean a counter

clockwise rotation by angle n around unit vector (sin</>cos0, sin¢sin0, cos1>). When R is 

represented in this way, cp(R) and 1/;(R) are functions of the three variables </>, 0, n E 

H3 and are written as cp( </>, 0, !1) and 1/;( </>, 0, n). Thus, the problem of :3-D attitude 

determination is transformed into two equivalent optimization problems: 

nrnmrnze: cp( </>, 0, n) ' ( 1>, 0, n) E H3 
' 

( 4.7) 
subject to: 0 ::; </> ::; 7f , 0 ::; 0 ::; 211' , 0 ::; n ::; 7f • 

llllll1Ill1Ze: 1/J( </>, 0, n) ' ( </>, 0, n) E R3 
' 

subject to: 0::; </>::; 7r ,0::; 0::; 211' ,0::; n::; 1r, 
( 4.8) 

Since the feasible regions of the above optimization problems are closed and bounded, 

solutions to the optimization problems necessarily exist. Thus solutions to the attitude 

determination problem formulated in this way necessarily exist. 

Since any triple ( 1>, 0, fl) in H3 corresponds to a rotation, it is not necessary to set the 

bounds on ( </>, 0, !1) to [0, 1r) x [0, 27r) x [0, 1r), which only ensures that the representation 
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is unique within the bounds. Thus, the problem of attitude determination can again be 

transformed into the following equivalent optimization problems: 

lllllllllllZe: 

lllllllllllZe: 

({)( ¢, 0JJ) , ( ¢, 0, 0) E R3 
, 

1/J(<f;,0,0), (¢,0,0) E H3
• 

(4.9) 

(4.10) 

Since the objective functions are periodic and bounded, solutions to both of these opti

mization problems also necessarily exist. 

It is important to note that the required mixed volumes are well defined as long as 

C:1 and C:2 are 3-D convex bodies. Thus, optimization problems (4.9) and (4.10), derived 

from Corollary 2.43 and 2.:38, apply to polyhedra too. If C1 and C2 are smooth and 

strictly convex, then the objective functions ({)(R) and 1/J(R) can be written explicitly, 

according to Equation (2.:32), as 

({)( R) ( 4.11) 

( 4.12) 

When the support function of C2 has continuous second derivatives, F1 ( C:2 ; w) and 

F2 ( (72 ; w) are the sum of the radii of principal curvature and the reciprocal of the Gaussian 

curvature of the surface of C2 , respectively. 

The interpreted roles of C:1 , C:2 as the model and the sensed object can be exchanged 

depending on what measurement can be made about the object. Suppose the support 

function of an object can be measured instead of the curvature functions. Then the roles 

of C'i and C:2 in the derivations of this section can be exchanged. Then the curvature 

functions, instead of the support function, of the model are needed in order to minimize 

({)( R) and 1/,( R). 

Because of the symmetry between R and R-1 and between C:1 and C:2 , the attitude 

determination problem may also be expressed as an optimization involving one of tlw 

• I 
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following functions: 

cp1 ( R) 
L:::. 

V(R- 1 (C2),C1,B3
), 

1/;1 ( R) L:::. V(R-1(C2), C1, C1), 

cpz(R) 
L:::. 

V(C2, R(C1), B3
), 

1P2 ( R) 
L:::. 

V(C2, R(C1), R(C1)). -

Again, using Equation (2.32), these functions can be calculated as follows when (;2 is 

smooth and strictly convex: 

cp1 ( R) ! 1 H(R-1(C2);w)F1(C1;w)dw, 
6 s2 

( 4.1:3) 

1/;1 ( R) ~ 1 H(R-1(C2);w)F2(C!i;w)dw, 
.3 s2 

(4.14) 

cp2( R) ! 1 H(C2;w)F1(R(C1);w)dw, 
6 s2 

(4.15) 

1P2(R) ! j H(C2;w)F2(R(C1);w)dw. 
3 s2 

(4.16) 

In practice, sensed surface data typically is obtained from a single viewpoint. Thus, 

the points at which the curvature functions of C2 are known span only a hemisphere. 

Therefore, the objective functions can not be computed over the whole unit sphere as in 

Equation (4.11) and (4.12). To proceed, it is necessary to "complete" the visible surface, 

to convert it into a convex body. 

Suppose the viewpoint is in the positive z direction. Further, suppose that the oc

cluding boundaries of C2 and R( C1 ) each lie in a plane1
. Assume coordinate systems are 

assigned so that the plane for C2 is z = 0. Let R( C\ )' be the convex body bounded by 

points of R( C\) that are visible in the positive z direction and by the plane containing 

the occluding boundary. Let C2' be the convex body bounded by points of (;2 that are 

visible in the positive z direction and by the plane z = 0. Figure 4.1 provides a 2-D 

1 Marr [52] provides if and only if conditions for an occluding contour to be planar, independent of 

viewpoint. Here, this is equivalent to assuming the surface is quadratic . 
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Figure 4.1: Using the data on a hemisphere in optimization when the object is viewed 

from a single viewpoint. 

example where (71 and C2 are ellipses and where R( C1 )' and C2' are the shaded regions 

shown. Of course, Corollary 2.4:3 and 2.38 still apply to R( C1 )' and C2'. Therefore, 

V(R(C1)',C2',B3) ~ jV(C2',C2',B3)' 
jV(R(C1)', R(Ct)', B3) 

( 4.17) 

and 

V(R(C1 )', C/, C/) ~ ~V2 (C/) , 
~V(R(C1)') 

(4.18) 

with equality if and only if R(C1 )' and C/ are homothetic. The minimum values of 

( 4.17) and ( 4.18) still are known independent of R. Thus functions of rotation, R, can 

be defined as follows: 

rp(R) 6 

JV(R(C1 )', R(C1 )', B3 ) ' 

V(R(C1)', C/, C2') 

?}V(R(C1)') 

(4.19) 

( 4.20) 
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However, neither R(C1 )' nor C/ is smooth and strictly convex so that the mixed 

volumes involved in (p(R) and 1i(R) can not be computed using Equation (2.:32). Instead, 

they can be computed using Equation (2.28). 

Let Uz denote the vector (0, 0, 1), UR denote the normal of the plane that contains 

the occluding boundary of R(C1 ), s2
- and s2+ denote the hemispheres corresponding to 

z < 0 and z > 0, respectively. The mixed volumes in functions (p(R) and ·,fa(R) an~ 

Thus 

! j H(R(C1); w)Fi(C!2; w)dw 
6 :,2-

+ ! { H(R(C1)1;w)dS1(C2';w), 
6 J..:;2+ 

t £
2

_ H(R( C1); w )F1 (R( C1 ); w )dw 

+ -
6

1 
{ H(R(C1)';w)dS'i(R(C\)';w), Js2+ 

~j H(R(C1);w)F2(C2;w)dw 
3 s2 -

+ H(R(C1)'; uz) · S2(C/; Uz), 

1 £
2

_ H(R(C1);w)F2(R(C1);w)dw 

+ H(R(C1)';uR) · Sl(R(C1)';uR). 

[¼ J.,2- H(R(C1);w)F1(R(C1);w)dw + ¼ J.,2+ H(R(C1)';w)d5'i(R(C1)';w)]½ ' 

5 J.,2- H(R( C1 ); w )F2( C2; w )dw + H(R( C\ ); uz) · 82( C~; uz) 

[½ J.,2- H(R( C1 ); w )F2(R( C1 ); w)dw + H(R( Cl)'; uR) · 82(R( C1 )'; uR)]½ 

The value of S2 (C/; uz) does not depend on R. In fact, by Equation (2.24) and Theo

rem 2.46, 

82( C/; Uz) = - fs
2

_ WzF2( C!2; W )dw , 

where Wz denotes the z component of w. The value of H(R(CJ1)';uz) is non-negative. 

When R(C1)' and C/ are homothetic, H(R(C1)'; uz) is zero and 
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are equal to a constant times the area of the region of C/ on the occluding plane. 

The planar regions of R( C\ )' and C/ introduce new area and mixed area terms into 

the mixed volumes that, while slowly varying, do depend on R. Ignoring these terms 

affects Lhe accuracy of the mixed volumes V(R(C1 )', C/, B3
), V(R(C\)', R(C1 )' , B3

) and 

V(R(C't)', C2', C/). When these terms are ignored, the objective functions (p(R) and 

1/i( R) become the following functions: 

cp(R) -
[¾ J-,2- H(R(C"\);w) F1(R(C1 );w) dw] ½ 

½ J-,2- H(R( C1 ); w) Fi( C2 ; w) dw 

(4.21) 

( 4.22) 

Minimizing cp( R) and 1/J( R) only approximates the minimizing solutions to optimization 

problems (4.9) and (4.10). Even if perfect, minimizing"<p(R) and 'tjJ(R) does not solve the 

attitude determination problem, as defined in Definition 4.1, since part of the object is 

never seen and therefore may not be matched correctly. It does solve the attitude deter

mination problem correctly to the extent possible, given the data available. Figure 4.2 

depicts two 2-D convex objects that match when viewed in the positive z direction but 

that do not match over the whole unit circle. 

4.2 Attitude Determination by the Radial Function 

The motivation to propose the use of the radial function in attitude determination is 

that the radial function can be defined for starshaped sets. The radial function and 

the distance function are one-to-one for compact starshaped sets, not just convex sets. 

Thus a class of shapes larger than the class of convex shapes considered in Section 4.1 

can be dealt with. Starshapedness is a natural step from convexity to non-convexity. 

, 
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z z 

) 
Figure 4.2: Two 2-D convex objects that do match when viewed in the positive z direction 

but that do not match over the whole unit circle. 

Some existing mathematical results, see Breen [8, 9, 11] for example, can be exploited. 

This section provides solutions to the attitude determination problem using the radial 

function. 

Theorem 2.16 says that a compact starshaped set that has the origin in its kernel 

IS convex if and only if its distance function is convex. This means that the distance 

function captures the starshapedness property. From Definition 2.6 and Definition 2. 7, 

the radial function, p( C; 0, for a convex set C is the inverse of the distance function of 

C. To make the radial function a good representation for starshaped sets, it must first 

be defined for starshaped sets. It is noted that Definition 2. 7 of the radial function in 

Section 2.1.5 can be directly applied on any compact starshaped set without any change. 

The domain of the radial function can be extended to R'1 from 8'2 • 

Definition 4.2 The radial function of a starshaped set S' in R 3 is defined as 

p(S;x) ~sup{,\> OI ,\x ES}, for :c E R:3 
\ {O}. ( 4.2:3) 
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Figure 4.:3: A 2-D starshaped set and its radial function, defined for points, ( u, v), on the 

unit circle. 

The radial function of a starshaped set depends on the choice of origin in the coor

dinate system. If the origin is not interior to the set, S', then the radial function is not 

defined for every point x E R3
• Suppose S' is a compact starshaped set in R3 with origin, 

0, in the interior of its kernel, the radial function is 

p(S; X) = lllxll/llxll , for x E R3, X -:/= 0 ( 4.24) 

-where ~xis the (unique) point of intersection of the ray Ox with the boundary of S'. 

The radial function is positively homogeneous of degree minus one with respect to x. 

That is, p(S'; >.x) = {p(S'; x), .,\ > 0. Thus, representing the radial function over the unit 

sphere is sufficient to determine the function over the whole space, R3
. Figure 4.:3 shows 

a 2-D starshaped set and its radial function defined for points, ( u, v ), on the unit circle. 

The analytic expressions between the dashed lines define the radial function for points 

on the unit circle, ·u2 + v 2 = 1, in the corresponding region. 

The properties of the radial function listed on page 28 also hold for starshaped sets. 
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(a) non-starshaped (b) starshaped 

Figure 4.4: Two 2-D sets with the same radial function. 

In particular, the radial function is one-to-one for starshaped sets. The one-to-one prop

erty is no longer guaranteed for non-starshaped sets. Figure 4.4( a) shows a 2-D non

starshaped set that has the same radial function as the 2-D starshaped set shown in 

Figure 4.4(b). 

The dual mixed volume was defined in Section 2.5.6 using the radial function (Defi

nition 2.29) for convex bodies. Since the definition of the radial function is extended to 

starshaped sets, Definition 2.29 of the dual mixed volume can be directly applied to any 

compact starshaped set whose kernel contains the origin. 

Definition 4.3 Let .S\, 8 2 , 83 be compact starshaped sets in Ra with the origin in the 

interior of their kernels. Let p(S\; x) denote the radial function of Si, i = 1, 2, ;3. The dual 

mixed volume of 81, 8 2 , 8;3 is defined as 

( 4.25) 

The condition of Theorem 2.54 and hence Corollary 2.55 in Section 2.5.6 is that the 
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objects involved in the dual mixed volumes be convex. Lutwak's proof of the theorem 

uses Holder's inequality for integrals (see Hardy [:33) page 140). The essential requirement 

is that p(5'i; x ), p(82 ; x ), p(83 ; x) be non-negative, measurable on 82 and not identically 

zero. The radial function p(8; x) of a compact starshaped set 8 with the origin in the 

interior of its kernel satisfies these conditions. Thus Lutwak's result extends to starshaped 

sets: 

Theorem 4.1 

m-1 

vm(5\,82,83) s; II l/(5\, ... ,S:3-m,~5'3-i,···,83-i)' 1 <ms; :3' 
i=O V 

m 

with equality if and only if 8:3-m+l,. ~., 8:3 are all dilations of each other ( with the origin 

as the center of dilation). 

Corollary 4.2 

with equality if and only if 81 , 82 , S.1 are all dilations of each other ( with the origin as 

the center of dilation). 

Let 5\ and 82 be two starshaped sets with ongm m the interior of their kernels. 

Suppose 5\ is the model defined in a standard coordinate system, 82 the sensed instance 

of 5\ subject to unknown rotation, translation and scaling. Let R denote a rotation. By 

Corollary 4.2, 

( 4.26) 

with equality if and only if R(81 ), 82 are dilations of each other ( with the origin as the 

center of dilation). Note that the dual mixed volume V(R(5'i), R(5\), R(81 )) is equal 

to V ( 5\, 5\, 5\) due to the rotation property (2.17) of the radial function. Therefore 
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the maximum value of ( 4.26) is known independent of R. Accordingly, V(R(S'i), 82 , 82 ) 

achieves this maximum if and only if R(S'i) and 82 are homothetic. Now define x(R), a 

function of rotation R, by 

( 4.27) 

Function x(R) depends on S'i and 82 . It reaches tlw known maximum if and only if R(S'i) 

and 82 are homothetic. By Definition 4.1, the attitude determination problem can be 

solved if the global maximal point of x(R) can be found. The global maximal points are 

solutions to the attitude determination problem. In fact, the global maximum of x(R) 

is known to be 3 V(S\, 81 , 5\ )\/2 (82 , 82 , 82 ). By the conditions of Corollary 4.2, the 

global maximum of x( R) is unique, modulo any rotational symmetries that 5\ possesses. 

Thus the attitude determination problem can be expressed as the following optimization 

problem: 

maxn111ze: x(R) 
( 4.28) 

subject to: R is a rotation . 

Representing a rotation by a triple ( ¢, 0, !1) where this is taken to mean a counter

clockwise rotation by angle n around unit vector (sin¢cos0, sin¢sin0, cos¢), the function 

x(R) becomes x( ¢, 0, n), a function of three variables that has domain H 3. The problem 

of attitude determination is then equivalent to the following constrained optimization 

problem: 

maxu111ze: x( ¢, 0, !1) , ( ¢, 0, !1) E H3 
, 

subject to: 0 S ¢ S 1r , 0 s 0 S 21r , 0 Sn S 1r . 

(4.29) 

Since any triple ( ¢, 0, n) in R 3 corresponds to a rotation, it is not necessary to set the 

bounds on ( ¢, 0, !1) to [O, 1r] x [O, 21r] x [O, 1r], which only ensures that the representation 

is unique within the bounds. Thus, the problem of attitude determination agam 1s 

transformed into the following equivalent optimization problem: 

maximize: x( </J, 0, fl) , ( </J, 0J!) E R:3 
• (4.:30) 
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Since the objective function is periodic and bounded, solutions to the optimization prob

lem necessarily exist. 

Because of the one-to-one onto correspondence between R and R-1 , and because 

of the symmetry between .S\ and 5'2 , the attitude determination problem may also be 

expressed as maximizing the following two functions: 

x1(R) 
!::,,. ~ j p(R-1(S2);w)p2(5',;w)dw, (4.:31) 

.3 .,2 
x2(R) 

!::,,. ~ j p(S2; w)p2(R(S'i); w)dw. ( 4.:32) 
.3 .,2 

The approach described ~o far assumes that the radial functions of both the object 

and the model are known over the whole unit sphere. When p(.5'2 ; x) is known only at 

points clustered in one region of the unit sphere, the objective function, x(R), defined in 

Equation ( 4.27), may not be appropriate. For example, when p(S2 ; x) is obtained from 

sensed data from a single viewpoint, the points at which the radial function is known 

will never cover the whole unit sphere. An altered objective function is needed to solve 

the attitude determination problem when the radial function is known only on a portion 

of the sphere. 

Let V denote the smallest union of spherical polytopes ( see Definition 2.24) in 8 2 that 

contains all the points x on 8 2 where p(S2 ; x) is available. Again, by Holder's inequality, 

I 2 

iv p(R(5',);w)p2(S2;w)dw :S [Iv p3(R(S'i);w)dw]3 [Iv p3(S2;w)dw]3 , ( 4.:3:3) 

with equality if and only if p(R(S1); x) and p(.5'2 ; x) are proportional to each other over 

V. Simply substituting V for 5'2 in Equation (4.27), however, is not sufficient since the 

right side of ( 4.:3:3) depends on R when V is not equal to 8 2
• Define a new objective 

function as 

x(R) = ~. fv p(R(S,);w)p2(S2;w{dw 
,3 Uv p:3(R(5'i);w)dw]3 

(4.:34) 
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z z 

Figure 4.5: Two 2-D starshaped sets that match when viewed in the positive z direction 

but that do not match over the whole unit circle. 

Holder's inequality implies that x_( R) achieves a maximum if and only if R(.S'i) and 5'2 are 
2 

dilations of each other over V. The maximal value is ½ Uv p3(5':2; w )dw]3. Thus, the part 

of the object where the radial function is sensed is matched to the model by maximizing 

x(R). 

Strictly speaking, this does not solve the attitude determination problem, as defined 

m Definition 4.1, since part of the object is not seen and therefore may not be matched 

correctly. It does solve the attitude determination problem correctly to the extent possi

ble, given the data available. Figure 4.5 depicts two 2-D starshaped figures that match 

when viewed in the positive z direction but that do not match over the whole unit circle. 

4.3 Summary 

The attitude determination problem is solved using the support function and the curva

ture functions for convex objects. It has been shown to be equivalent to the optimization 

problem: 

mnmmze: J(R) 

subject to: R is a rotation , 
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where .f ( R) is one of the following functions: 

cp(R) 

1/;(R) 

'Pl ( R) 

"Pl ( R) 

'P2(R) 

'l/;2(R) 

! / H(R(Ci);w)F1 (C2 ;w)dw, 
6 ls2 

} fs
2 

H(R(C1);w)F2(C2;w)dw, 

! / H(R-1( C2); w )F1 ( C1; w )dw , 
6 ls2 

~ f H(R- 1 (C2 );w)F2(C1;w)dw, 
,3 }.-;2 

! / H(C2;w)F1(R(C1);w)dw, 
6 ls2 

~ { H(C2;w)F2(R(C1);w)dw. ,3 J..,2 
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When the curvature functions are available only over a hemisphere, for example, when 

computed with sensed data from a single viewpoint, only approximate solutions to the 

attitude determination problem have been obtained. The objective functions considered 

are: 

[¾ J.,2- H(R( C1 ); w) F1 (R( C\); w) dw]½ ' 

½ J.,2- H(R( C1 ); w) F2( C2; w) dw 

The attitude determination problem also has been solved using the radial function 

for starshaped sets. It is shown to be equivalent to the following optimization problem: 

maxmuze: J ( R) 

subject to: R is a rotation , 

where .f ( R) is one of the following functions: 

x(R) l lvi p(R(S'i);w)p2(S2 ;w)dw, 

} fs
2 

p ( R_ 1 ( 82); w) p2 ( .S'i ; w) dw , 

- ~ { p(S2;w)p2(R(S1);w)dw . 
.3 J,2 
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When the radial function of the sensed object is available only over a region, V, on the 

unit sphere, the objective function is 

x(R) = ~. fv p(R(S'1);w)p2(S2;w{dw 
3 Uvi3(R(S'i);w)dwp-

Maximizing x(R) solves the attitude determination problem correctly to the extent pos

sible, given the data available. 



Chapter 5 

Experiments 

Experiments have been carried out on test shapes to solve the attitude determination 

problem using combinations of the support function, the first curvature function and the 

second curvature function for convex bodies and the radial function for starshaped sets. 

The convex body is an ellipsoid, and the starshaped surfaces are two surfaces constructed 

using spherical harmonics as base functions. 

Experiments have been conducted using synthesized data, where the orientation

based representations involved are given either analytically or by data sampled from an 

analytical representation. Let the model be a shape in a standard attitude, either a 

convex body or a starshaped surface. Rotate the model by a fixed but unknown rotation, 

Ro, and let the rotated shape be the object that is sensed. The goal is to find R 0 • 

Experimental results described here show that the rotation, Ro, can be found when the 

orientation-based representation is given either analytically or by sampled data. The 

rotation, R0 , also can be found from discrete data sampled at different scales. 

Experiments also have been conducted with sensed data obtained, via photometric 

stereo, from real objects. The orientation-based representations of the model still are 

in known analytical form, while the orientation-based representations of the object are 

computed from the output of photometric stereo. Experimental results described here 

show that the unknown rotation, Ro, really can be determined based on the theory of 

Chapter 4. 

90 
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This chapter is organized as follows. Section 5.1 introduces the test shapes and 

their orientation-based representations used in the experiments. Section 5.2 discusses 

the software issues that arose during the experiments. Section 5.:3 describes experiments 

on synthesized data and the results. Section 5.4 describes experiments on real data and 

the results. 

5.1 Experimental Shapes 

The shapes used in the experiments are an ellipsoid and two starshaped surfaces con

structed using spherical harmonics. These shapes are used both in the experiments un 

synthesized data (Section 5.3) and in the experiments on real data (Section 5.4). In this 

section, the support function and the curvature functions of the ellipsoid are derived. 

The radial functions of the starshaped surfaces are readily obtained from the spherical 

harmonics from which they are constructed. Spherical harmonics have been used before 

in computational vision [::~]. In particular, Schucly and Ballard [70] used spherical har

monics tu model the :3-D shape of hearts. Appendix C provides a brief introduction to 

spherical harmonics. 

Let Ea,b,c denote the ellipsoid determined by 

x2 y2 z'2 

a2 + b2 + c2 = 1 

Lemma 5.1 (O'Neill [58] page 148.) If M: g = c is a surface in R 3
, then the gradient 

vector field 'V g = L( og / axi)Ui ( considered only at points of M) is a non vanishing normal 

vector field on the entire surface M, where U; is the i-th unit vector in the coordinafr 

system. 

Theorem 5.2 The support function of the ellipsoid Eri,b,c is 

( 5.1) 
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Proof 

let 

The gradient vector of Eo.,b,c is Vg = 2(J,p, ;,;). Given v = (v1,v2,v3) E R3, 

1 2 2 2 ) w = J ( a v 1 , b V2, c V3 . 
a2vf + b2vj + c2v5 

Substituting w into V g gives 

2 
V g lw= --;::=======( V1, V2' V3) . 

j a2vf + b2v~ + c2v5 

By Lemma 5.1, the normal direction of Eo.,b,c at w is V g lw, which is the same direction 

as determined by ( v1, V2, v3). Obviously w is on Eo.,b,c• 

By Definition 2.3, w is the normal representation, x(Ea,b,c;v), of the ellipsoid Eo.,b,c

Since the support function H( C; v) of a convex body C can be obtained from its normal 

representation x(C;v) by (2.4) as (v,x(C;v)), the support function of the ellipsoid Eo.,b,c 

1S 

Q.E.D. 

Recall (2.11) that when the support function H ( C; v) of a d-dimensional convex body 

C: has continuous second derivatives, the curvature function Fi(C; v) of C: is 

where Di(H) is the sum of all i-rowed principal minors of the Hessian matrix (Hij) of H. 

Thus the curvature functions of Eo.,b,c are obtained. 

Corollary 5.3 

a2b2vj + a2c2vJ + a2b2vf + b2c2vJ + a2c2vf + b2c2vJ 
( a2vf + b2vj + c2vD3/2 

a 2b2 c2
( vf + vj + vD 

( 2 2 + b2 2 + 2 2)2 · a Vt V2 C V3 
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, !, 

' I ,~ ~' 
(a) front view (b) top view ( c) side view 

Figure 5.1: Experimental shape: the ellipsoid. 

The convex surface for the experiments is the ellipsoid Ea,5,9 . Three side views of the 

ellipsoid are drawn in Figure 5.1. Its support function and curvature functions are 

/9 2 2r: 2 8· 1 2 
V1 + ,JV2 + V:3 , 

gr::4 2 22r:o 2 2· 7r:4 2 
,J V1 + ' ' .J 2 + ' ,) V;3 

(9v; + 25vJ + 81 v5Y3! 2 

18225(vf + vJ + vJ) 
( 2 2r: 2 8 2)2 . 9V1 + ' ,JV2 + 1 V:3 

The spherical coordinate system drawn in Figure 5.2 is used to construct starshapecl 

surfaces. The transformations between Cartesian coordinates and spherical coordinates 

are 

x = p sinef>cos0 , 

y = p sinef>sin0 , 

z=pcosq>, 

p = (x2 + y2 + z2)1f2 , 

0 = tan-1 
(~) 

¢> = cos-1 
(;) 

The base spherical harmonics used here are Um,n ( q>, 0) and ~n,n ( q>, 0) for integers m 

and n, 0 :S n :S m. They are defined in Appendix C and are the same as used in [:3]. 

Two starshaped surfaces, SH1 and SH2 , are constructed for experiments. Tlw surfaces 
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z 

X 0 ~ 0 ~ 271' 

O~</J~7r 

y 

Figure 5.2: The spherical coordinate system. 

are nicknamed "peanut" and "pillow". Their radial functions are: 

peanut 

pillow 

p(SH1; </>, 0) = I 2Uo,o( <P, 0) + 2U2,o( </>, 0) I = 1 + :kos2( <P) , 

p(SH2; <P, 0) = j 4lfo,o( <P, 0) + 2Vi,2( </>, 0) I = 4 + :3sin(20)sin2( <P) . 

94 

The parametric equations of the object surface, given in terms of the radial function, 

p( S Hi; <P, 0), and parameters <P and 0 are 

x p(S'Hi; <P, 0)sinef>cos0 , 

y - p(SHi; <P, 0)sin</Jsin0 , 

z p(SHi; </>, 0)cos</J, i = 1, 2. 

The peanut is a solid of revolution. A side view sketch is shown in Figure 5.:3. Three 

side views of the pillow are shown in Figure 5.4. The pillow is not a solid of revolution. 
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Figure 5.:3: Experimental shape: the peanut. It is a solid of revolution. 

(a) top view (b) front view ( c) side view 

Figure 5.4: Experimental shape: the pillow. 

5.2 Software Issues 

Recall from Chapter 4 that the problem of attitude determination is equivalent to the 

optimization problems (4.9), (4.10), and (4.:30). Also recall (4.11), (4.12) and (4.27). The 

objective functions c.p(R), 1/J(R) and x(R) are integrals over the unit sphere. Further recall 

(4.21), (4.22) and (4.:34). The objective functions c.p(R), 1/J(R) and x.(R) are integrals over 

a region on the unit sphere. Thus an optimization routine and an integration routine . . 

are needed. Depending on the optimization scheme, a differentiation routine also may be 
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needed. A tessellation of the sphere is needed when discretized data are to be represented 

at points on the sphere. An interpolation routine is needed to determine function values 

at points other than sample points. Thus the following types of routines are needed for 

the experiments: 

1. Optimization; 

2. Integration; 

:3. Differentiation; 

4. Tessellation of the sphere; 

5. Interpolation. 

5.2.1 Optimization 

The subroutine NLPQL (67] was chosen because of its recommended good performance. 

It is an implementation of a sequential quadratic programming method for solving non

linearly constrained optimization problems with differentiable objective and constraint 

functions (65, 66]. It handles bounds separately from constraints. It can be used to solve 

optimization problems with constraints, optimization problems with simple bounds, or 

unconstrained optimization problems. It requires the gradients of the objective functions 

or an estimate thereof. An accuracy can be specified to the routine. Convergence is con

sidered to have been achieved if the Kuhn-Tucker conditions (Fletcher (27] page 51) are 

satisfied to within the specified accuracy or if the objective function can not be improved 

significantly when the constraints are satisfied to within the specified accuracy. 
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5.2.2 Integration and Differentiation 

The ideal integration routine would calculate surface integrals directly on the sphere. 

Here the integration routines used are QB0lAD from Harwell [l] and DBLINT taken 

from Gerald [:30] (pages 238-239), both of which calculate 2D integrals. The surface 

integrals that define the objective functions are transformed into volume integrals as 

follows: 

{ J(w )dw = [11 f
2

1r J(sin¢cos0, sin¢,sin0, cos¢,)sin¢,d0d</> , J.:;2 lo lo 
{ f(w )dw = [11 f

2

1r J(sin</>cos0, sin</>sin0, coscp)sin</>d0dcp . ls2- J1 k 

The differentiation routine does simple forward differencing. 

5.2.3 Sphere Tessellation 

There are various ways to tessellate a sphere. Geodesic domes are the most often used in 

computational vision [3, 36]. The sphere tessellations implemented are based on geodesic 

domes built from the icosahedron. The following implementation of geodesic domes is 

from [16]. A more theoretical study is found in [41] and the references therein. 

Let 
1+05 yr 1 

T = 2 ,a= .51/4 ,b = {fi51/4). 

The icosahedron is oriented in a three dimensional rectangular coordinate system so that 

the vertices of the icosahedron are 

( 0, ±a, ±b ) ' 
( ±b, 0, ±a ) ' 
( ±a, ±b, 0 ) . 

For any triangular facet of the icosahedron, let its vertices be (X1 , Yi, Z1 ), (X2 , Y2 , Z2 ), 

and (X3, Y3, Z3). Divide the triangle into equilateral triangles whose vertices are 
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Figure 5.5: An 8-frequency geodesic dome. 

(X + ]Xz-X1 + JX3-X2 Y, + ]Yz-Y1 + JYa-Y2 z + ]Zz-Z1 + JZ3-Z2) 1 N N' 1 N N' 1 N N' 

where N is the desired frequency of the geodesic dome and J and .J are integers such 

that 0 ~ .J ~ I ~ N. Each of these vertices is then projected onto the unit sphere along 

the direction from the origin to the vertex. 

The frequency of the geodesic dome can be chosen based on the need for accuracy. 

The number of vertices, arcs and facets of a N-frequency geodesic dome are as follows: 

vertices(N) - 10N2 + 2 , 

arcs( N) :3QN2 
, 

facets( N) - 20N2 
• 

Figure 5.5 shows the 8-frequency geodesic dome. It has 642 vertices, 1920 arcs, and 1280 

facets. 
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5.2.4 Interpolation 

An interpolation routine is used to interpolate function values when the function is given 

only on a fixed set of sample points. The interpolation package TOMS ALGORITHM 

62:3 (62, 6:3] by R . .J. Renka is chosen because it is designed to interpolate points on the 

unit sphere. It constructs a C1 function defined on the unit sphere that interpolates the 

data values associated with arbitrarily distributed nodes on the sphere. 

The interpolation process consists of three steps (Renka [6:3]): 

1. Constructing a spherical triangulation of the nodes1
; 

2. Estimating a gradient vector using either a local method or a global method; 

:3. Computing the interpolated value at the desired point P using the data values and 

gradient estimates at each of the points of the triangle that contains P. 

The accuracy of the gradient estimation is tested on the support function and the 

curvature functions of the ellipsoid Ea,5 ,9 . The sets of nodes are the sets of vertices of 

the geodesic domes generated in Section 5.2.3. For a point P on the sphere, the gradient 

G(P) is assumed to be an element in Ra that is orthogonal to P. Given a function .f, 

the true gradient was obtained by projecting v' f onto the tangent plane at P, i.e., 

G(P) = v'f- (v'J,P)P. 

Let Ei be the difference between the true and the estimated gradient vector at node i. 

Table 5.1 displays 

(i.e., the root-mean square of the Euclidean norms of gradient estimation errors) for both 

the local method and the global method. 

1The geodesic dome in Figure 5.5 is drawn based on the triangulation generated by the routine. 
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method H ( E:3,5,9; u) F1 ( E3,5,9i u) F2(E:3 ,5 ,9; u) 

on 20sfrequency dome, N=4002 

global 0.0029066 0.0382040 0.2251672 

local 0.0112057 0.4:3:34782 4.2150756 

on 40-frequency dome, N=16002 

global 0.0010251 0.01:3287:3 0.0756826 

local 0.0028079 0.1096620 1.0701663 

Table 5.1: Root-mean square gradient estimation errors. 

The accuracy of the interpolation is tested on all the functions involved in the exper

iments. The set of interpolation points is 

{(sin¢>cos0, sin¢>sin0, cos</>) : q> = i :~, 0 = j!~, i 1 j = 01 11 •• • 1 :30} . 

Table 5.2 and Table 5.:3 display the root-mean square and maximum interpolation errors 

over the interpolation point set for the 20-frequency and 40-frequency geodesic domes 

respectively. The interpolations use the true gradient 1 the locally estimated gradient and 

the globally estimated gradient for H(E3,5,9; u), F1(E3,5,9; u) and F2(E3,5,9i u). Since the 

true gradients of p(SHi;u),i = 1,2, can not be calculated easily, interpolations of the 

two functions use only the estimated gradients. 

5.3 Experiments on Synthesized Data 

When the orientation-based representations appearing in the objective function are given 

either by analytical expressions or by the values of analytical expressions on a fixed set 

of sample points, the experiments are said to be based on synthesized data. 
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method H(E3,s,9; u) F1(E3,s,9; u) Fz(E:1,s,9; u) p(SH1;u) p(SH2; u) 

root-mean-square error 

true 0.0000044 0.000128:3 0.00117:30 

global 0.0000116 0.0001500 0.0012980 0.000:3007 0.0004:388 

local 0.0000355 0.0009455 0.0094281 0.00001:37 0.0000189 

I maximum error 

true 0.0000224 0.0009821 0.0078:369 

global 0.0000855 0.0009900 0.0077944 0.00111:37 0.0018455 

local 0.000202:3 0.0054026 0.06782:33 0.0000:362 0.0000726 

Table 5.2: Interpolation error for the 20-frequency geodesic dome. 

method H(E.1,s,9; u) F1 ( E3,s,9; u) F2(E3, s,g; u) p(SH1;u) p(SH2; u) 

root-mean-square error 

true 0.0000006 0.0000217 0.0002:347 

global 0.0000021 0.0000277 0.0002711 0.0001472 0.000209;3 

local 0.000004:3 0.0001226 0.0012059 0.0000017 0.0000024 

I maximum error 

true 0.0000034 0.0001:350 0.0015285 

global 0.000014:3 0.0001496 0.0015457 0.0004824 0.0008584 

local 0.000026:3 0.0008814 0.0082720 0.0000052 0.0000074 

Table 5.:3: Interpolation error for the 40-frequency geodesic dome. 
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5.3.1 Experimental Settings 

Let the model be a shape in a standard attitude, either a convex body or a starshaped 

surface. Rotate the model by a fixed rotation, Ro, and let the rotated shape be the 

object. The goal is to find Ro using the orientation-based representations of the model 

and the object. By the theory in Chapter 4, the rotation, R0 , can be found by optimizing 

functions r.p(R), 1/;(R), r.p 1 (R), 1/;1(R), r.p2(R), 1/J2(R), x(R), x1(R) and x2(R) as defined 

in (4.11), (4.12), (4.13), (4.14), (4.15), (4.16), (4.27), (4.31) and (4.:32). The orientation

based representation of the object can be obtained from that of the model and the rotation 

Ro . 

Experiments are divided into three sets, set-1, set-2 and set-:3, according to how the 

representations are given. For set-1 experiments, the orientation-based representations 

of both the. model and the object are given analytically. Thus, function evaluations in 

optimization are done by directly evaluating the corresponding analytical expressions. 

For set-2 experiments, the orientation-based representation of one of the model or object 

is given in analytical form and that of the other is given by discrete samples. Function 

evaluations are done by interpolating the corresponding discrete functions. For set-3 

experiments, representations of both the model and the object are given by discrete 

samples. 

Each set of experiments is divided into three groups, group-0, group-1 and group-2, 

according to which forms of the objective functions are used. Group-0 experiments use 

functions r.p(R), 1/J(R) and x(R) as objective functions. Group-1 experiments use r.p 1 (R), 

1/J1 (R) and Xi (R), and group-2 experiments use r.p2(R), 1/J2(R) and x2(R). For the special 

cases of E:3,5,9 , S'H1 and S'H2 and rotation Ro, these functions are listed in Table 5.4. 

Recall the properties of the orientation-based representations, (2.2), (2.12) and (2.17), 
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'P(R) 

group-0 1/;( R) 

x(R) 

({)1 ( R) 

group-I 'ljJ 1 ( R) 

x1(R) 

({)2 ( R) 

group-2 1p2(R) 

x2(R) 

t J52 H(R(E3,s,9);w)F1(Ro(E:3,s,9);w)dw, 

½ J-,2 H(R(E.1,s ,9);w)Fi(Ro(E:3,s,9);w)dw, 

½ fs2 p(R(SHi);w)p2 (Ro(SHi);w)dw, £ = 1,2, 

t fs2 H(R-1(Ro(E3,s,9));w)F1(E3,s,9;w)dw, 

½ J52 H ( R-1 
( Ro( E:3,s,9) ); w )F2( E:3,s,9; w )dw , 

1 J52 p(R-1(Ro(SHi));w)p 2(SHi;w)dw ,i = 1,2, 

1 J52 H(Ro(E.1,s,9);w)F1(R(E3,s,9);w)dw, 

1 fs2 H(Ro(E3,s,9);w)A(R(E3,s,9);w)dw, 

½ J52 p(R0(SHi);w)p2(R(SHi);w)dw, i = 1,2. 

Table 5.4: The objective functions for group-1, group-2 and group-:3 experiments. 

10:3 

Thus the functions listed in Table 5.4 can be computed from the support function and 

the curvature functions of E3,s,9 and Ro(E3 ,s,9), and from the radial functions of SH1 , 

8H2 , R0 (SH1 ), and R0 (SH2 ). The objective functions for set-1 experiments are listed in 

Table 5.5. 

For set-2 experiments, one orientation-based representation involved in ·1/J(R), 'P(R), 

and x(R) is given by discrete samples. Suppose H(E3 ,5 ,9 ;u) is given by a set of discrete 

samples, i.e., the function value of H(E3 ,5,9 ; 0 is given only at a finite set of points in 

8 2
• Using interpolation, an estimate of H(E3 ,5 ,9 ;u) at any point u E 8 2 is obtained. 

Denote the interpolated function by H 8 (E3 ,5 ,9 ; u). Similarly, denote the interpolated 

Fi(E:3,s ,9;u) and p(SH;;u) by F/(E3,5,9;u) and p5 (SJ-/i;u), respectively, i = 1,2. Each 

group of experiments in set-2 is divided into two subgroups, group-a and group-b, with 
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(f>( R) ½ J.,2 H(E:3,s ,9; R-1 (w))F1(Ro(E3,s,g);w)dw, 

group-0 1/J(R) ½ J.,2 H(E:3,s,9; R-1(w))F-i(Ro(E3 ,s,9);w)dw, 

x(R) ½ J.,2 p(S'Hi; R-1 (w) )p2(Ro(S'Hi); w )dw , i = l, 2, 

({>1 ( R) ½ J.,2 H(Ro(E.1,s,9); R(w))F1(E3,s,9;w)dw, 

set-1 group-1 1/J1 ( R) ½ J52 H(Ro(E3,s,g); R(w))F2(E3,s,9; w)dw, 

x1(R) ½ J.,2 p(Ro(S'Hi); R(w ))p2(S'Hi; w)dw , i = l, 2, 

7/J-i(R) - ½ J.,2 H(Ro(E3,s,9);w)F2(E3,s,9; R-1(w))dw, 

group-2 (f>z( R) ¾ J.,2 H(Ro(E3 ,s,9);w)F1(E3,s,9; R-1(w))dw, 

xz(R) ½ J52 p(Ro(S'Hi);w)p2(S'Hi; R-1(w))dw, i = 1, 2. 

Table 5.5: The objective functions for set-1 experiments. 

experiments iu each subgroup optimizing the corresponding objective functions when 

the representations of either the object or the model are given by discrete samples. 

The objective functions for set-2 experiments are listed in Table 5.6. Using the same 

notation, the objective functions for set-:3 experiments are listed in Table 5. 7, where the 

representations of both the object and the model are given by discrete samples . 

Then-~ are three clusters of optimization problems defined in Chapter 4. The first 

cluster, ( 4.5), ( 4.G) and ( 4.28), are, in general, constrained optimization problems. If the 

rotation is represented by quaternions, the number of constraints is one, i.e., the length 

of the quaternion is equal to one. Representing the rotation by the axis-angle triple 

(¢,0,n) gives the second cluster of optimization problems, (4.7), (4.8) and (4.29), which 

an~ optimization problems with bounds. The third cluster, ( 4.9), ( 4.10) and ( 4.:30), 

are unconstrained optimization problems. Since optimization routine NLPQL handles 

bounds separatdy from constraints, the axis-angle triple ( ¢, 0, H) is chosen to represent 
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tp(R) i f.52 Hs(E3,s,9; R-1(w))F1(Ro(E:3,s,g);w)dw, 

group-Oa 1/;(R) - ½ f.52 Hs(E3,s,9; R-1(w))F2(Ro(E3,s,g);w)dw, 

x(R) - ½ fs2 p5(SHi; R-1(w))p2(Ro(SHi);w)dw, i = 1,2, 

tp(R) = ¼ fs2 H(E3,s,9; R-1 (w))F{(Ro(E3,s,9);w)dw, 

group-Ob 1/;(R) - ½ fs2 H(E3,s,9; R-1 (w))FJ(Ro(E3,s,9);w)dw, 

x(R) ½ fs2 p(SHi; R-1(w))(ps(Ro(SHi);w)) 2dw, i = 1,2, 

tp1 ( R) ¼ fs2 Hs(Ro(Ea,s,g); R(w))F1(E:3,s,9;w)dw, 

group-la 1/;1 ( R) ½ f.52 H8(Ro(E3,s,9); R(w))F2(E:3,s,9;w)dw, 

x1(R) - ½ f.52 p8(Ro(SHi); R(w))p2(SHi;w)dw ,i = 1,2, 

set-2 

tp1 ( R) ¼ fs2 H(Ro(Ea,s,9); R(w))Fj(E3,s,9i w)dw, 

group-lb 1/J1 ( R) - ½ f.52 H(Ro(E3,s,9); R(w))Ff(E:3,s,g;w)dw, 

x1(R) = ½f.52p(Ro(8Hi);R(w))(p8 (S'Hi;w))2dw ,i = 1,2, 

tp2 ( R) - ¼ f.52 H8(Ro(E:3,s,9);w)F1(E:3,s,9; R-1(w))dw, 

group-2a 1/J2 ( R) ½ J.,2 Hs(Ro(E3,s,9);w)F2(E3,s,9; R-1(w))dw, 

x2(R) ½ fs2 P8(Ro(SHi);w)p2(S'Hi; R-1(w))dw, i = 1,2, 

tp2 ( R) ¼ J52 H(Ro(E3,s,9);w)F{(E:3,s,9; R-1(w))dw, 

group-2b 1/;2 ( R) - ½ f52 H(Ro(E:3,s,g);w)Ff(E:3,s,9; R-1(w))dw, 

x'l(R) - ½ fs2 p(Ro(S'Hi);w)(p5(S'Hi; R-1(w)))2dw, i = 1,2. 

Table 5.6: The objective functions for set-2 experiments. 
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group-0 

set-:3 grou p-1 1/J1 ( R) 

x1(R) 

1/J2(R) 

group-2 cp2 (R) 

x2(R) 

¼ J.,2 Hs(E:3,s,9j R-1 (w))F/(Ro(E:3,s,9);w)dw, 

½ J-,2 Hs(E:3,S,9i R-1 (w))Ff(Ro(E.,,s,9);w)dw, 

- ½ J.,2 ps(SHi; R-1 (w ))(ps(Ro(SHi); w ))2dw , i = 1, 2, 

½ J.,2 Hs(Ro(E3,s,9); R(w))FJ(E3,s,9;w)dw, 

½ J.,2 p8 (Ro(SHi); R(w))(ps(SHi;w)) 2dw, i = 1, 2, 

½ J.,2 Hs(Ro(E3,s,9);w)FJ(E3,S,9i R-1 (w))dw, 

½ J.,-i Hs(Ro(E3,s,9); w)F/(E3,s,9i R-1 (w))dw, 

½ J.,2 p8(Ro(SH;);w)(ps(SHi); R-1 (w)))2dw, i = 1, 2. 

Table 5. 7: The objective functions for set-3 experiments. 

rotations in the experiments. 

106 

The representation of a rotation by a triple ( </>, fJ, n) is unique within bound [0, 1r] x 

[0, 21r] x [0, 1r]. If the bound is extended, the objective functions become periodic but 

are still well defined. Thus for each experiment, the following three different bounds are 

given to routine NLPQL: 

Boundl 

Bound2 

Bound3 

[0, 1r] x [0, 21r] x [0, 1r] , 

[-401r,801r] X [-4071", 1601r] X [-401r,801r], 

[-B, B] X [-B, B] X [-B, B] 'B = :3.5 X 1014 
. 

Boundl and Bound:3 correspond to the second and third clusters of the optimization 

problems. Bound:3 effectively indicates to NLPQL that the variables are unbounded. 

Bound2 is used to investigate the convergence pattern of the rotation space. 
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When R is represented by a triple ( </;, 0, D), the rotation matrix corresponding to 

R( <p, 0, D) can be obtained by the following theorem. Thus the values of R(w) and 

R- 1 (w) in the objective functions can be computed via the rotation matrix of R. 

Theorem 5.4 (Kanatani [:39) page 20:3.) The matrix representing a :3-D rotation by 

angle n around unit vector n = (n 1 , n 2 , n3 ) is 

cosn -1- n?(l - osD) n1n-i(l - . sD) - n;3S.inD. 711tl.:3( l - cosn) + 71.zSilJ!t 

n2 n1 (1 - cosD) + n.3s.inD sn + n~(l - cosD) 11,2n:3(l - cosD) - n1 siuf! 

11.3n1 (1 - osn) - n2sinn n,'3 n2(1 - osD) + n•,sinn C sn + ni( J - c.osf! ) 

5.3.2 Experimental Results 

For each experiment, three different bounds, Bound.I, Bound2 and Bound:3, are given 

to routine NLPQL, where Bouml:3 effectively indicates to NLPQL that the variables 

are unbounded. For each given bound, each optimization process was tried with 4096 

different initial guesses as starting point. These input points are 

(ix 0.1,j x 0.2,k x 0.1), i,j,k = 1,:3,5, ... ,:31. 

The rotation, R0 , for the experiments is 

(</>o,0o,f1o) = (1r-/6,1r/9,1r/4) = (0.52:35987758,0.:3490658504,0.785:39816:35). 

Figure 5.6 shows the rotated surfaces for E3 ,5,9 , S'H1 , and S'H2 • In the figure, the shapes 

in thick gray are the models in standard attitude and the shapes in solid black are the 

models rotated by R0 • 

One way to evaluate the optimization results is tu check the number of the initial 

guesses from which the global optimal point, R0 , is found by the optimization process, 

under a given bound. Table 5.8, Table 5.9 and Table 5.10 list these numbers for set-1, 

set-2 and set-:3 experiments, respectively, under the three bounds. 
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(a) the ellipsoid (b) the peanut ( c.) the pillow 

Figure 5.6: Experimental shapes and their rotated images under rotation ( 1r /6, 1r /9, 1r / 4 ), 

projected onto a plane with normal direction (1, 1, 1). 

The results of the optimization fall into three categories: 

1. The rotation Ro is found; 

2. A boundary point of the feasible region is reached before the rotation Ro is found; 

:3. The number of line searches in NLPQL exceeds the specified limit. 

The distribution of the first two categories over the initial guesses suggests connected 

regions within the feasible region, which may assist selecting favorable initial guesses to 

obtain R0 • The second category does not apply to optimization under Bound:3. When 

the third category happens to an initial guess, the result is often very close to the optimal 

point. This category can be reduced by adjusting the parameters given to NLPQL. 

Another way to evaluate the optimization results is to measure how close the rotation 

found by optimization is to the rotation R0 . However, there are three difficulties: 

I. No metric in rotation space is commonly agreed upon in computational vision to 
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measure how close two rotations are to each other; 

2. Two very different triples may represent the same rotation due to periodicity; 

:3. Two triples that represent different rotations may correspond to the same attitude 

for an object that possesses symmetries. 

To evaluate how close a rotation R = ( cp, 0, !1) is to another rotation Ro = ( cp0 , 00 , H0 ), 

the difference, 

between the two triples representing the two rotations can be considered as a measurt~

ment. The rotation angle, !1*, of R0 R-1 can also be used to measure the closeness be

tween Rand R0 • Tables 5.11-5.16 list the differences between (cp0 ,00 ,!1o) and the triples, 

( cp, 0, !1), found by optimizations with initial guess (0.1, 0.2, 0.9). The corresponding val

ues of !1* are also listed. The choice of (0.1, 0.2, 0.9) is based on no particular consideration 

except that the optimization results then all are within the bound, [0, 1r] x [0, 21r] x [0, 1r], 

thus avoiding the issue of periodicity. The results listed under the heading of x(R), 

x1 (R) and x2 (R) are from the experiments on the pillow. The results on the peanut are 

not listed because the peanut has rotational symmetries with infinitely many rotations 

representing the same attitude. 

A way to visualize the optimization result is to superimpose the rotated model onto 

the object. As examples of the results of set-1 experiments, the results of minimizing 

c.p(R) and 1/;(R) on Ea,5 ,9 with initial guess (0.1, 1.4, 1.:3) under Boundl are shown in 

Figure 5.7 and Figure 5.8, respectively. The results of maximizing x(R) on the peanut 

and the pillow with the same initial guess, (0.1, 1.4, 1.:3), under the same bound, Bound 1, 

are shown in Figure 5.9 and Figure 5.10, respectively. As examples of the results of 

set-:3 experiments, the results of minimizing c.p(R) and 1/;(R) on E:3,5 ,9 with initial guess 

(0.1,4.2, 1.7) under Bound:3 are shown in Figure 5.11 and Figure 5.12, respectively. The 
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E 3,s ,9 SH1 SH2 

set-1 cp(R) 1/J (R) x(R) x (R) 

group-0 1178 860 1814 1485 

Boundl group-1 11 80 1070 1814 1588 

group-2 116:3 982 1814 1589 

group-0 3910 3052 :3882 3756 

Bound2 group-1 :3909 ;32;34 :3879 ;3795 

group-2 3905 3069 :3884 ;3777 

group-0 4096 3918 4096 4087 

Bournl.:3 group-I 4096 4065 4096 4064 

group-2 4095 4070 4096 4064 

Table 5.8: Results of set-1 experiments: the number of initial guesses out of the 4096 

initial guesses converging to the optimal point. 

results of maximizing x(R) on SH1 and SH2 with the same initial guess under the same 

bound are shown in Figure 5. 1:3 and Figure 5.14, respectively. In the figures, the shapes 

in thick gray are the models and the shapes in solid black are the shapes obtained at 

different iterations . 
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E:3,5,9 SH1 SH2 

set-2 r.p(R) 1/J ( R) x(R) x(R) 

group-Oa 1181 86:3 1818 1482 

group-Ob 1178 860 1814 1487 

group-la 1175 1070 1816 1590 

Boundl group-I b 1179 1071 181:3 1588 

group-2a 116:3 981 1814 1588 

group-2b 1162 95;3 1821 1589 

group-Oa :3897 ;3092 :3879 ;3775 

group-Ob :3894 :3074 ;3475 :3751 

group-la :3881 ;32:36 :3878 ;3794 

Bound2 group-1 b :3908 :3226 :3886 :3805 

group-2a :3904 :3069 :3875 ;3795 

group-2b :3901 :3058 :3887 :3786 

group-Oa 4091 4041 4095 4095 

group-Ob 4096 4078 4096 4094 

group-la 4075 4067 4096 4095 

Bound:3 group-1 b 4095 40:34 4096 4069 

group-2a 4095 4046 4096 4095 

group-2b 4094 ;3925 4095 4096 

Table 5.9: Results of set-2 experiments: the number of initial guesses out of the 4096 

initial guesses converging to the optimal point. 
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E3,s,9 SH1 SH2 

set-3 'P(R) 1/J( R) x(R) x(R) 

group-0 1184 863 1819 1481 

Boundl group-1 1177 1068 1815 1591 

group-2 1162 971. 1821 1590 

group-0 3889 3096 3874 ;3775 

Bound2 group-I :3905 :3229 3876 ;3799 

group-2 :3901 3058 3890 3792 

group-0 4092 4096 4095 4096 

Bound:3 group-I 4096 4028 4096 4094 

group-2 4096 4094 4095 4096 

Table 5.10: Results of set-:3 experiments: the number of initial guesses out of the 4096 

initial guesses converging to the optimal point. 
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set group bound function I </Jo-¢ I 100 - 01 I no -n I H* 

cp(R) 0.001292 0.000:331 0.000496 0.001114 

Boundl tj;( R) 0.002772 0.000969 0.00278:3 0.00:3521 

x(R) 0.000006 0.000120 0.00000:3 0.000045 

cp(R) 0.001041 0.000697 0.000804 0.00116:3 

set-I group-0 Bound2 1p(R) 0.00279:3 0.000987 0.002765 0.00:3518 

x(R) 0.000032 0.000019 0.000007 0 

cp(R) 0.001041 0.000697 0.000804 0.00115;3 

Bound3 1/J(R) 0.00279:3 0.000987 0.002765 o.oo:3518 

x(R) 0.0000:32 0.000019 0.000007 0 

Table 5.11: The comparisons between Ro and the estimated rotations from initial guess 

(0.1,0.2,0.9) by set-1/group-0 experiments. 

set group bound function I </Jo - ¢ I 100 - 01 I no - n I H* 

'Pl (R) 0.000035 0.00000:3 0.0000:34 0.000045 

Boundl 1/;1 ( R) 0.000000 0.000001 0.000002 0 

x1(R) 0.000004 0.000041 0.000022 0 

'Pl ( R) 0.00014 7 0.000:305 0.000264 0.000:no 

set-1 group-1 Bound2 1P1 ( R) 0.000002 0.000008 0.000005 0 

x1(R) 0.000057 0.000095 0.000028 0.00006:3 

cp1 (R) 0.000147 0.000:305 0.000264 0.000:310 

Bound:3 1/;1 (R) 0.000002 0.000008 0.000005 0 

x1(R) 0.000057 0.000095 0.000028 0.00006:3 

Table 5.12: The comparisons between Ro and the estimated rotations from initial guess 

(0.1, 0.2, 0.9) by set-1/group-l experiments . 
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set group bound function I <Po - <I> I 100 - 01 I Do-n I D* 

c.p2( R) o.oo:389:3 0.00120:3 0.0016:35 0.00:3427 

Boundl 1/J2(R) 0.018105 0.0016:30 0.009638 0.016824 

X2(R) 0.000042 0.000082 0.000005 0.000045 

c.pz ( R) 0.003915 0.001185 0.001622 0.0034:35 

set-1 group-2 Bound2 1/J2 ( R) 0.018106 0.001641 0.009647 0.0168:30 

X2(R) 0.000019 0.000054 0.000011 0 

c.p2(R) 0.003915 0.001185 0.001622 0.00:34:35 

Bound3 1/J2( R) 0.018106 0.001641 0.009647 0.0168:30 

x2(R) 0.000019 0.000054 0.000011 0 

Table 5.1:3: The comparisons between Ro and the estimated rotations from initial guess 

(0.1,0.2,0.9) by set-1/group-2 experiments. 

set group bound function I </>o - <I> I I Bo - 0 I I no-n I n* I 
c.p( R) 0.0010:34 0.000657 0.000998 0.001298 

Boundl 1/;(R) 0.002665 0.001086 0.00297;3 0.0036:32 

x(R) 0.000084 0.000468 0.000107 0.000219 

c.p( R) 0.000718 0.000997 0.001:358 0.001514 

set-:3 group-0 Bound2 1j;(R) 0.002678 0.001104 0.002956 0.00:3624 

x(R) 0.000051 0.000384 0.000109 0.000190 

c.p( R) 0.000718 0.000997 0.001:358 0.001514 

Bound3 1/;(R) 0.002678 0.001104 0.002956 0.00:3624 

x(R) 0.000051 0.000384 0.000109 0.000190 

Table 5.14: The comparisons between Ro and the estimated rotations from initial guess 

(0.1, 0.2, 0.9) by set-:3/ group-0 experiments. 
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set group bound function I </>o - </> I 100 - 01 I no-n I !1* 

'P1 ( R) 0.000258 0.00021;3 0.000227 0.000:31;3 

Boundl VJ1 (R) 0.000155 0.0001:38 0.000098 0.000161 

x1(R) 0.000106 0.00058:3 0.000081 0.000249 

'Pl ( R) 0.00027:3 0.000192 0.0002:31 0.000:319 

set-:3 group-I Bound2 1/JJ (R) 0.000149 0.000125 0.000087 0.000155 

x1(R) 0.0001;39 0.000581 0.000085 0.000261 

'Pl (R) 0.00027;3 0.000192 0.0002:31 0.000:319 

Bound:3 1/JJ (R) 0.000149 0.000125 0.000087 0.000155 

x1(R) 0.0001;39 0.000581 0.785:31:3 0.000261 

Table 5.15: The comparisons between Ro and the estimated rotations from initial guess 

(0.1, 0.2, 0.9) by set-:3/group-1 experiments. 

set group bound function I </>o - </> I 100 - 01 I no - n I n* 

r.p2(R) 0.0028:39 0.002202 0.002:389 0.00;3;3:35 

Boundl 'l/J2(R) 0.017779 0.002051 0.008529 0.016018 

x2(R) 0.000116 0.000764 0.000206 0.000:359 

<p2(R) 0.002977 0.002078 0.002:389 0.00;3;39;3 

set- :3 group-2 Bound2 1/J2 ( R) 0.017857 0.002041 0.0085:36 0.016072 

x2(R) 0.000077 0.000774 0.000199 o.ooo:361 

<p2 ( R) 0.002977 0.002078 0.002:389 0.00;3:39;3 

Bound:3 1/J2 ( R) 0.017857 0.002041 0.0085:36 0.016072 

X2(R) 0.000077 0.000774 0.000199 0.000:351 

Ta ble 5. 16: The compari sons bet ween Ro and the estimated ro tat ions from ini t ial guess 

(0.1, 0.2 , 0.9 ) by set-:3/ group-2 experiments . 
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(a) Initial guess (b) 2nd iteration ( c) 3rd iteration ( d) final result 

Figure 5.7: Example of the results of set-1 experiments: Minimizing cp(R) for £ 3 ,5,9 with 

initial guess (0.1, 1.4, 1.:3) under Bound 1. 

(a) Initial guess (b) 2nd iteration ( c) 3rd iteration ( d) final result 

Figure 5.8: Example of the results of set-1 experiments: Minimizing 7/J( R) for E:3,5 ,9 with 

initial guess (0.1, 1.4, 1.:3) under Boundl. 
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(a) Initial guess (b) 2nd iteration ( c) 3rd iteration ( d) final result 

Figure 5.9: Example of the results of set-1 experiments: Maximizing x( R) for the peanut 

with initial guess (0.1, 1 .4, 1.:3) under Bound 1. 

(a) Initial guess (b) 2nd iteration (c) 3rd iteration ( d) final result 

Figure 5.10: Example of the results of set-1 experiments: Maximizing x( R) for the pillow 

with initial guess (0.1, 1.4, 1.:3) under Boundl. 
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(a) Initial guess (b) 2nd iteration ( c) 3rd iteration ( d) final result 

Figure 5.11: Example of the results of set-:3 experiments: Minimizing cp( R) for E3,5 ,9 with 

initial guess (0.1, 4.2, 1. 7) under Bound3. 

(a) Initial guess (b) 2nd iteration ( c) 3rd iteration ( d) final result 

Figure 5.12: Example of the results of set-3 experiments: Minimizing 1/J( R) for E3 ,5,9 with 

initial guess (0.1, 4.2, 1. 7) under Bound:3. 
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(a) Initial guess (b) 2nd iteration ( c) 3rd iteration ( d) final result 

Figure 5. 1:3: Example of the results of set-:3 experiments: Maximizing x( R) for the peanut 

with initial guess (0.1,4.2, 1.7) under Bound:3. 

(a) Initial guess (b) 2nd iteration ( c) :3rd iteration ( d) final result 

Figure 5.14: Example of the results of set-:3 experiments: Maximizing x( R) for the pillow 

with initial guess (0.1, 4.2, 1.7) under Bound:3. 
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5.3.3 Variational Test 

Experiments have been conducted on the synthesized models and objects to test the 

methods in the situations where the orientation-based .representations of the synthesized 

models and objects are given by sampled data with one of the following variations: 

1. The sampling rates for the model and the object are different; 

2. The sampling data of the object are only given on a hemisphere; 

:3. For the starshaped surfaces, the choices of origin for the model and the object are 

different. 

The objective functions for group-0 of the set-3 experiments are used accordingly. 

Let Hs•f(E3 ,5 ,9 ;w) denote the interpolated functiori from the value of H(E3 ,5,9 ;w) at 

the vertices of the geodesic dome of frequency J. Similar notation applies to Fi(E3 ,5,9 ; w) 

and p(8Hi;w), i = 1,2. The objective functions for experiments using the data sampled 

at different rates are: 

cp(R) 

x(R) 

i fs
2 

Hs· 20(E3,s,9; R-1 (w))F{" 12(fto(E3,s,9);w)dw, 

{ fs
2 

Hs·20 (E3,5,9i R- 1 (w))Ft12 (Ro(E3,s,9); w )dw , 

{ ~ p8
•
20 (SHi; R- 1 (w ))(p3·12 (Ro(SHi); w ))2dw , i = 1, 2. 

t) J.$2 

Let 8 2
- denote the hemisphere with z < 0. Let F{z-( E3,5 ,9 ; w) denote the interpolated 

function from the value of H(E3,5,9 ;w) at the vertices of the geodesic dome that belong 

to s2
-. Similar notation applies to p(SHi;w), i = 1,2. The objective functions for 

experiments using the data sampled on the hemisphere are: 
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~NR) 

x(R) 
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Each optimization process proceeded with 4096 initial guesses under Bound:3. Ta

ble 5.17 presents the number of the initial guesses from which the optimal point Ro is 

found. 

Suppose the origin of the coordinate system for the object is located at position T in 

the coordinate system for the model, where Tis a :3-D vector. Let ps.T (SHi; w) denote the 

interpolated function from the value of p(T(SHi); w ), where p(T(S'Hi); w) is the radial 

function of SHi with respect to T. The objective functions for experiments with different 

choices of origin are: 

The vectors used in the experiments are listed in Table 5.18 along with indications about 

whether they are inside the objects. With each choice of the origin, the optimization 

process was tried with the 4096 initial guesses under Bound:3. Table 5.19 lists the number 

of initial guesses that lead the optimization converge to the optimal point R0 • The 

optimizations fail to converge to Ro for the peanut when T:3 and T4 are chosen and 

for the pillow when T4 is chosen. This is because T:3 is outside the peanut, T4 outside 

the kernel of the peanut2 and T4 outside the pillow. With the 4096 initial guesses, the 

optimizations converge to the same point for the same choice of vector T and the sanw 

object. 

Like in Section 5.:3.2, differences between ( cp0 , 00 , 0 0 ) and the triples, ( cp, 0, 0), found 

by the optimizations with initial guess (0.1, 0.2, 0.9) are listed in Table 5.20. The corn~-

2 Let ¢ = 1.0584:36;3;35 and 0 = f The point on the surface of the peanut determined by 

(¢, 0) is T' = (0 , l.499999999, 0.84:36918116) . The line segment T'T4 intersects the xy-plane at 

(.0569588428, l.272164628, 0), which is outside the peanut. 
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E:3,s,9 8H1 8H2 

Experiments cp(R) 1/> ( R) x(R) x(R) 

different sampling rates 4085 4070 4095 4095 

sampling on half sphere 4095 :3985 4096 4095 

Table 5.17: Results of testing different sampling rates and hemisphere sampling: the 

number of initial guesses out of the 4096 initial guesses converging to the optimal point. 

vectors inside the peanut inside the pillow 

T1 = (0.:3, 0.:3, 0. 7) yes yes 

T2 = (0.5, -0.7, 0.4) yes yes 

T:3 = (0.7, 1.0, o.:3) no yes 

T4 = (0.3, 0.:3 , -:3.6) yes no 

Table 5.18: Different choices of origin used in the experiments. 

sponding rotation angles, D*, of the rotation RoR- 1 are also listed. The results on the 

peanut are not presented because the peanut has rotational symmetries with infinitely 

many rotations representing the same attitude. To visualize the optimization result, 

matchings at different iterations from initial guess (0.1,4 .2, 1.7) are drawn. Figures 5.15-

5.18 show the results for experiments using data sampled at different sampling rates. 

Figures 5.19-5.22 show the results for experiments using data sampled over half sphere. 

Figures 5.2:3-5.27 show the results for experiments using data sampled with different 

choices of origin. In the figures, the shapes in thick gray are the models and the shapes 

in solid black are the shapes obtained at different iterations. 
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x(R) 

Choice of ·origin SH1 S H2 

T1 = (0.3, 0.3, 0.7) 4096 4096 

T2 = (0.5, -0.7, 0.4) 4096 4096 

T3 = (0. 7, 1.0, 0.3) 0 4096 

T4 = (0.3, 0.:3 , -3.6) 0 0 

Table 5.19: Results of testing the different choice of origin: the number of initial guesses 

out of the 4096 initial guesses converging to the optimal point. 

experiment function I <l>o - <I> I 100 - 01 I no - n I f2* 

<p( R) 0.000746 0.000914 0.001287 0.001451 

different sampling rate 1/J(R) 0.002660 0.000996 0.00290:3 o.oo:3568 

x(R) 0.000051 o.ooo:375 0.000114 0.000190 

<p(R) 0.011209 0.00:3:319 0.015578 0.017868 

sampling on half sphere 1/;(R) 0.01:3292 0.0057:38 0.012407 0.016240 

x(R) 0.000115 0.000:314 o.oooon 0.000167 

origin is at T1 for SH2 x(R) 0.041500 0.106776 0.027117 0.0566:32 

origin is at T2 for SH2 x(R) 0.020:306 0.082:305 0.022585 0.042571 

origin is at T3 for SH2 x(R) 0.050782 0.04420:3 0.0:3:3828 0.05:3769 

Table 5.20: The comparisons between Ro and the estimated rotations from initial guess 

(0.1, 0.2, 0.9) by experiments using variational testing data. 
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(a) lnitial guess (b) 2nd iteration ( c) 4th iteration ( d) final result 

Figure 5.15: Example of the results of variational tests: Minimizing c.p( R) for E3,5 ,9 with 

initial guess (0.1, 4.2, 1. 7) using data sampled at different sampling rates. 
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(a) lnitial guess (b) 2nd iteration ( c) 5th iteration (cl) final result 

Figure 5.16: Example of the results of variational tests: Minimizing i/J( R) for E3 ,5 ,9 with 

initial guess (0.1, 4.2, 1. 7) using data sampled at different sampling rates. 
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(a) Initial guess (b) 1st iteration (c) 2nd iteration ( d) final result 

Figure 5.17: Example of the results of variational tests: Maximizing x(R) for the peanut 

with initial guess (0.1, 4.2, 1. 7) using data sampled at different sampling rates. 

(a) Initial guess (b) 4th iteration ( c) 8th iteration (cl) final result 

Figure 5.18: Example of the results of variational tests: Maximizing x( R) for the pillow 

with initial guess (0.1, 4.2, 1. 7) using data sampled at different sampling rates. 
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(a) Initial guess (b) 2nd iteration ( c) 4th iteration ( d) final result 

Figure 5.19: Example of the results of variational tests: Minimizing cp( R) for E3 ,5 ,9 with 

initial guess (0.1, 4.2, 1. 7) using data sampled on half sphere. 

(a) Initial guess (b) :3rd iteration ( c) 6th iteration (d) final result 

Figure 5.20: Example of the results of variational tests: Minimizing 'lj;( R) for Ea, 5 ,9 with 

initial guess (0.1, 4.2, 1. 7) using data sampled on half sphere. 



Chapter 5. Experiments 127 

(a) Initial guess (b) 1st iteration ( c) 2nd iteration ( d) final result 

Figure 5.21: Example of the results of variational tests: Maximizing x( R) for the peanut 

with initial guess (0.1, 4.2, 1. 7) using data sampled on half sphere. 

(a) Initial guess (b) :3rd iteration ( c) 6th iteration (cl) final result 

Figure 5.22: Example of the results of variational tests: Maximizing x(R) for tlw pillow 

with initial guess (0.1, 4.2, 1. 7) using data sampled on half sphere. 
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(a) Initial guess 
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(b) 1st iteration 
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( c) 2nd iteration ( d) final result 

Figure 5.2:3: Example of the results of variational tests: Maximizing x(R) for the peanut 

with initial guess (0.1, 4.2, 1.7) using data sampled with new origin T1 . 

(a) Initial guess (b) 1st iteration ( c) 2nd iteration ( d) final result 

Figure 5.24: Example of the results of variational tests: Maximizing x( R) for the peanut 

with initial guess (0.1,4.2, 1.7) using data sampled with new origin T2 . 
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(a) Initial guess (b) 2nd iteration ( c) 3rd iteration ( d) final result 

Figure 5.25: Example of the results of variational tests: Maximizing x(R) for the pillow 

with initial guess (0.1, 4.2, 1. 7) using data sampled with new origin T1 . 

(a) Initial guess (b) 2dn iteration (c) 4th iteration ( d) final result 

Figure 5.26: Example of the results of variational tests: Maximizing x(R) for the pillow 

with initial guess (0.1,4.2, 1.7) using data sampled with new origin T2 • 

(a) Initial guess (b) 2nd iteration ( c) 4th iteration ( d) final result 

Figure 5.27: Example of the results of variational tests: Maximizing x(R) for the pillow 

with initial guess (0.1, 4.2, 1.7) using data sampled with new origin T3• 
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5.4 Experiments on Real Data 

5.4.1 Experimental Settings 

The three experimental shapes defined in Section 5.1 and used in experiments described 

in Section 5.:3 were custom fabricated as real solid objects of polyvinyl-chloride using 

automated, numerically controlled milling machine. The ellipsoid was machined from 

numerical data derived from its three axis lengths. The.starshaped objects were machined 

from numerical data sampled from their radial functions. A fourth object, a sphere, was 

machined from the same material to serve as a calibration object for photometric stereo. 

Photometric stereo was used to obtain surface gradients [74] and the principal curva

tures (77]. Photometric stereo uses reflectance data obtained from the calibration sphere 

to determine surface gradient, (p, q), at each visible point. At the same time, the partial 

derivatives of the reflectance map are determined. Photometric stereo then combines the 

partial derivatives of the intensity with the partial derivatives of the reflectance map to 

estimate the surface Hessian matrix. Combining the Hessian and the gradient determines 

the principal curvatures, k1 and k2. 

Three images of each object are taken under three different lighting conditions with 

the same imaging geometry. The visible hemisphere is the half sphere with z < 0, denoted 

as s2
-. The attitude of the objects with respect to the camera is set manually. The object 

is bomothetic to its model in the standard attitude, subject to an unknown rotation Ro, an 

unknown translation and an unknown scaling. The goal of the experiments is to determine 

the rotation, R0 . Images of the ellipsoid for attitude determination using the combination 

of the support function and the curvature functions are shown in Figure 5.28. Images of 

tlw peanut and the pillow for attitude determination using the the radial function an~ 

shown in Figure 5.29 and Figure 5.:30, respectively. 
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(a) first light source (b) second light source 

( c) third light source 

Figure 5.28: Images of the ellipsoid under three light sources. 
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(a) first light source (b) second light source 

( c) third light source 

Figure 5.29: Images of the peanut under three light sources. 
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(a) first light source (b) second light source 

( c) third light source 

Figure 5.:30: Images of the pillow under three light sources. 
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In the experiments, the gradient, (p, q), determines the mapping from sensed surface 

point to the point on the sphere as: 

( x, y, z) E c: --+ u = 1 
x (P, q, -1) E s2

- • 
..j712 + q2 + 1 

The principal curvatures, k1 and k2 , determine values for the first and second curvature 

functions as: 
1 1 

F1 (C; u) = -k + -k 
1 2 

1 1 
F2(C;u)=-k x-k. 

. 1 2 

The coupled depth/slope method by Harris [34) was used to reconstruct depth from 

gradient and obtain the relative height z of each surface point (x, y, z). Then the radial 

function was computed as the distance from a fixed point inside the kernel of the object 

to each visible surface point. The radial function does depend on the choice of this fixed 

point. By convention, the origin of the object coordinate system is taken to be the center 

of gravity of the object, whenever possible. 

Since surface data are acquired from a single viewpoint, the curvature functions and 

the radial function are not known over the entire sphere. Thus the objective functions 

(p(R), 1i(R) and x_(R) defined in Equation (4.19), (4.20) and (4.34) are used. The objects 

were arranged in such a way that the region over which the orientation-based represen

tations are available is the hemisphere s2-. Since the ellipsoid satisfies the conditions 

set in Chapter 4 the objective functions (p( R) and J( R) can be approximated by cp( R) 

and 1/,(R). 

Thus the objective functions for the real data experiments are: 

x(R) 
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5.4.2 Experimental Results 

In the experiments, the optimization process was executed 4096 times, each time cor

responding to a different initial guess for object rotation. The bound given to NLPQL 

is Bound:3 ( of Section 5.:3.2), which effectively makes a constrained optimization into an 

unconstrained optimization. All the initial guesses converged to points with the same 

function values of r.p(R), 1fa(R) or x_(R) and with the same object attitude. Thus, for the 

objects tested, the method is robust with respect to the initial guess. 

The attitude of the sensed object is established manually for each experiment. The 

true rotations of the objects with respect to their standard attitudes also are estimated 

manually. These estimated rotations are used as rough measures of accuracy to evaluate 

the rotations found by the optimization process. 

One way to evaluate the optimization results is to compare the rotation found by 

optimization with the estimated a priori rotation matrices. This approach is feasible 

for objects that have few symmetries. The ellipsoid, E.3,5 ,9 , has few symmetries since 

its three axes all are different. The pillow also has few symmetries. When an object is 

highly symmetric, like the peanut, it is difficult to evaluate the optimization results by 

comparing rotation because different rotations correspond to the identical object atti

tude. Table 5.21 presents the estimated a priori rotation, Ro, for the ellipsoid imaged 

in Figure 5.28 and the rotations, R1 and R2 , found by minimizing, respectively, cp(R) 

and 1/;(R). Also presented in the table are the matrices R0 H;1
, i = 1, 2, and their rota

tion angles. Table 5.22 presents the same material for the pillow imaged in Figure 5.:30. 

The rotations found by the optimizations are either the corresponding matrix in the two 

tables or that matrix multiplied on the right by a matrix corresponding to a reflection 

about one or more symmetry axis the object possesses. These matrices all define the 

same attitude for the given ·objects. 
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The estimated a priori 

rotation for the ellipsoid 

in Figures 5.28: 

The rotation found by 

minimizing c.p(R): 

The rotation found by 

minimizing 1/J(R): 

Ro= 

0. -0.4975121 -0.8674570 

0 0.8674570 -0.4975121 

1 0 0 

0.1771714 -0.4824572 -0.857814:3 

R1 = -0.1338156 · 0.8516999 -0.5066563 

0.9750404 0.20455;39 0.086:3366 

0.0555034 -0.5356140 -0.8426:369 

R2= 0.008:3401 0.8441571 -0.5:360:310 

0.99842:37 0.02272:39 0.051:3206 

0.9841453 0.0157715 -0.176661:3 

0.0082621 0.9908807 0. 1:!44883 

0.1771714 -0.13:38156 0.9750404 

0.9974258 0.0450055 -0.05582:38 

RoR21 = -0.0454001 0.9989519 -0.0058206 

0.0555034 0.0083401 0.9984237 

the angle of R0 R'11 = 0.22:39258 

the angle of R0 R21 = 0.0721171 

Table 5.21: The comparison between the estimated a priori rotation for the ellipsoid and 

the rotations found by optimizations on real data. 
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The estimated a priori 

rotation for pillow in 

Figure 5.:30: 

The rotation, R1, found 

by maximizing x(R): 

-0.50742:30 -0.5061200 0.697:3984 

0. 7149:388 

0.0499792 

Ro= 

R1= 

0.5418145 

-0.6700440 

-0.5364304 

0.5150653 

-0.66854:34 

0.9994210 

RoR'11 = -0.0222971 

0.0257003 

0.4419271 

0.7406:369 

-0.4966460 

0.44 7812:3 

0. 74:35098 

0.682:3:380 

0.7:308707 

0.0155850 

0.021705:3 -0.0262020 

0.9994980 -0.0225070 

0.0230782 0.99940:3:3 

the angle of R0 H11 = 0.0409629 

1;37 

Table 5.22: The comparison between the estimated a priori rotation for the pillow and 

the rotations found by optimizations on real data. 

A way to visualize the optimization result is to superimpose the rotated model onto 

the image of the object. As examples, the results of minimizing cp(R) and 1/J(R) with 

initial guess (0.1, 0.2, 0.1) are shown in Figure 5.:31 and Figure 5.:32, respectively. The 

results of maximizing x(R) for the peanut and the pillow with the same initial guess are 

shown in Figure 5.:3:3 and Figure 5.34, respectively. In the figures, the black and white 

shows the silhouette of the object and the wire frame shape in gray is the rotated model. 
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(a) initial guess. _(b) 1st iteration . 

(c) :3rd iteration . ( cl) 6th iteration . 

( e) 8th iteration. (f) 12th (the last) iteration. 

Figure .5.:31: Example of the results of real data experiments: Minimizing r.p( R) for the 

ellipsoid imaged in Figure 5.28 with initial guess (0.1, 0.2, 0.1 ). 
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(a) initial guess. (b) 2nd iteration. 

( c) :3rd iteration. ( cl) 4th iteration. 

(e) 8th iteration . (f) l:3th (the last) iteration. 

Figure 5.:32: Example of the results of real data experiments: Minimizing 1/;( R) for the 

ellipsoid imaged in Figure 5.28 with initial guess (0.1, 0.2, 0.1 ). 
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(a) initial guess. (b) 1st iteration . 

( c) 2nd iteration. (d) 5th iteration . 

(e) 7th iteration. (f) 9th (the last) iteration . 

Figure 5.:3:3: Example of the results of real data experiments: Maximizing x( R) for the 

peanut imaged in Figure 5.29 with initial guess (0.1,0.2,0.l). 
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(a) initial guess. (b) 2nd iteration . 

(c) 3rd iteration. ( d) 7th iteration . 

(e) 10th iteration . (f) 14th (the last) iteration . 

Figure 5.:34: Example of the results of real data experiments: Maximizing x_(R) for the 

pillow imaged in Figure 5.:30 with initial guess (0.1, 0.2, 0.1 ). 
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5.5 Summary 

Experiments have been conducted on three experimental shapes. Both synthetic data and 

data obtained from images of the real objects of the three experimental shapes have been 

used to test the feasibility of the approaches developed in Chapter 4. Existing numerical 

routines, the optimization routine NLPQL, the interpolation routine by Robert Renka 

and the integration routine QBOlAD, are utilized. 

Experimental results have been presented in three ways: 

1. Listing the numbers of the initial guesses, out of the 4096 initial guesses, that lead 

to the optimal point when the objective function is optimized; 

2. Listing both the difference between the triples found by optimization and the opti

mal points and the rotation angle of R0R-1 , where Ro denotes the optimal rotation 

and R denotes the rotation found by optimization; 

;3. Superimposing the rotated model onto the image of the object at different iterations 

of the optimization process. 

From the results shown in Tables 5.8-5.10 it can be concluded that slightly more 

initial guesses converge to the optimal point when using the first curvature function than 

the second curvature function. It is noted, from Tables .5.11-5.16, that optimizing t..p(R) 

and t..p 2 (R) estimates the optimal point slightly better than 1P(R) and '!f2 (R), whereas op

timizing 1/;1 ( R) estimates the optimal point slightly better than t..p 1 ( R). From Figure 5.:31 

and Figure 5.:32, it can be seen that the combination of the support function and the first 

curvature function gives a closer estimation of the true attitude of the real object than 

does the combination of the support function and the second curvature function. Thus 

the first curvature function performs slightly better than the second curvature function. 

This may be related to nothing more than the observation that, all else being equal, there 
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is less uncertainty in the sum of two numbers than there is in their product. This obser

vation is merely anecdotal since, of course, one also needs to take into account properties 

of the particular numerical optimization routines used. 

As expected, larger bounds allow more initial guesses converge to the optimal points. 

This is confirmed by the results shown in Tables 5.8-5.10. 

The methods are also tested with variations in data: data sampled at different rates 

for the model and for the objects, data sampled only over a half sphere and, for starshaped 

objects, data sampled with different choices of origin. The variations do not alter the 

performance of the methods, i.e., optimization converges to the correct attitude. 



Chapter 6 

Conclusions 

Orientation-based representations are a compact description of 3-D object shape. A de

sirable property that all orientation-based representations share is that the object and 

the representation rotate together. This makes an orientation-based representation well

suited to the task of attitude determination. This dissertation studies orientation-based 

representations and solves the attitude determination ·problem using some of the repre

sentations. To conclude, Section 6.1 highlights the major contributions of this research 

and Section 6.2 points out future research directions. 

6.1 Contributions 

The following orientation-based representations are surveyed: the support function, the 

normal representation, curvature functions, the distance function, the radial function, 

the cross sectional measure and the breadth and area functions. The coherent presen

tation of the mathematical background for these orientation-based representations is a 

contribution of this thesis. 

The support function, the first curvature function, the second curvature function and 

the radial function are used to solve the attitude determination problem. Inequalities 

that relate the orientation-based representatio1is of more than two sets are used to trans

form the attitude determination problem into optimization problems for which standard 

144 
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numerical methods exist. The transformations are theoretically justified. An important 

additional property of the optimizations is the fact that the value of the extremum is 

known a priori. Thus, one can always assess the validity of the solution found by the 

optimization. 

The use of the support function on smooth objects and the use of the first curvature 

function are novel. The first curvature function and the second curvature function are 

orientation-based. representations based on the Gauss map. The Gauss map is one-to-one 

for smooth strictly convex objects. The support function does not treat smooth objects 

and polytopes differently. The support function is defined for all points on the unit sphere 

regardless whether the object is smooth, a polytope or a combination. This is one of the 

reasons conjectured for its success in polyhedral shape matching [47]. The theorems on 

mixed volumes that have been used to transform the attitude determination problem 

into optimization problems apply to all convex bodies. When the objects are strictly 

convex and smooth, the mixed volumes can be computed via the support function of one 

object and the curvature functions of another object. A (technically) different treatment 

is required to develop algorithms for convex objects with developable or planar surfaces. 

The radial function is one-to-one for starshaped sets. It is defined based on the 

dilation map. Starshaped objects appear here as a useful generalization of convexity that 

extends, in a principled way, previous work on shape matching. The radial function also 

does not treat smooth objects and polytopes differently. The radial function is defined 

for all points on the unit sphere regardless whether the object is smooth, a polytope or 

a combination. The theorems on dual mixed volumes that have been used to transform 

the attitude determination problem into optimization problems apply to all compact 

starshaped objects. 

Photometric stereo provides dense, local estimates of both surface orientation and 

surface curvature. Imaging from au unknown viewpoint determines a visible hemisphere 
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of the representation. For smooth, strictly convex objects, matching the visible hemi

sphere to the full spherical model can be formulated .as a single, uniform optimization 

process. Within this framework, depth need not be represented explicitly. In particular, 

one does not need multiple viewpoint dependent representations of a modeled object. 

For starshaped objects, the radial function sensed from a single viewpoint may de

termine a portion of the representation that is bigger or smaller than a hemisphere. It is 

proven that the method matches the sensed portion of the representation to the complete 

representation of the model. 

The methods _are empirically demonstrated for smooth strictly convex objects and 

( coin pact) starshaped sets. Good matching results have been obtained. In the imple

mentation described, optimization proceeds using a large number of initial guesses. The 

correct attitude is found even when there is no a priori knowledge of object attitude. At 

the same time, optimization benefits from a good initial guess. This suggests that the 

approach also is well-suited to motion tracking aud navigation tasks where the solution 

at time t can be used as the initial guess at time t + 6..t. 

The method is robust because it is a true 3-D method that employs dense surface 

data, not just data from 2-D contours or other sparse sets of features. Indeed, for the 

ellipsoid, the 2-D occluding contour alone does not determine :3-D attitude. 

The radial function does, of course, depend on the choice of coordinate system origin. 

For most object shapes, the radial function will not change significantly for (slight) 

changes in the location of the origin. Intuitively, this suggests that the method is stable 

with respect to choice of origin, provided the origin is within the kernel of the starshaped 

set. Experiments on synthetic data support this intuition. 

1. 
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6.2 Future Directions 

Precise determination of accuracy and robustness on real data requnes more quanti

tative work. Accuracy assessment must take into account sensor calibration, a priori 

determination of the "correct" attitude of the presented object and uncertainty in the 

"shape-from" method used to acquire the raw orientation and curvature data. It would 

be helpful to agree upon a metric for rotation space to quantify differences between the 

correct and the estimated object attitude. 

The approach is intended for recognition, localization and inspection tasks using dense 

surface data that can be o1?tained from laser ranging, shape-from-shading or photometric 

stereo. The work here used data obtained from photometric stereo. It would be useful 

to experiment with other sources of dense surface data. 

Because of its flexibility in handling bounds and constraints, the optimization package 

NLPQL was chosen. Experiments were conducted under different conditions. Now, it 

is clear that the system can be implemented using unconstrained optimization, in which 

case significant speed up would be expected. Special hardware may improve efficiency, 

including that of numerical interpolation. Other possible practical enhancements include 

one shot uniform resampling of the non-uniformly sampled measured data on the sphere 

and calculating the required integrations directly on the sphere. 

Attempts to generalize representations based on convexity to handle more complex 

shapes have been of limited success. Attempts to generalize based on the theory of star

shaped sets may be more successful. One reason is because there is a direct connection 

between visibility and starshaped set. The object surface visible from a particular view

point naturally defines a set starshaped with respect to the robot. One can define the 

star hull of a non starshaped set analogous to the convex hull of a non convex set [44]. 

Star hulls are, by definition, starshaped. Matching of the star hull of the visible surface to 



Chapter 6. Conclusions 148 

the star hull of the modeled objects fits within the framework of the methods developed 

in this thesis and thus is a generalization that merits exploration. 
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Appendix A 

Symbols Used in the Thesis 

The left side is defined by the right side 
The d-dimensional real space 
The set of points in Rd except the origin 
set A is a subset of set B 
The interior of a set A 
The boundary of a set A 
The ( convex) kernel of a set A 
The dimension of a set A 
The convex hull of a set A 
The unit circle in R2

, also called the Gaussian circle 
The unit sphere in R3

, also called the Gaussian sphere 
The unit sphere in Rd 
The unit ball in Rd 
The volume of Ed, 7rd = 1rdf2 /r(d/2 + 1) 
The area of sd-l, Wd = d1r d = 21rd/ 2 /r( d/2) 
The d-rowed determinant whose i-th column consists of 
the coordinates of d-dimensional vectors ai in Rd 
The er-algebra of Borel subsets of a set A 
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Glossary 

algebra (Ra (61) page 14.) Let S be a nonempty point set. A class, A, of subsets of S 
is an a.lgebra if 1. 0 EA, SE A; 2. {A, B} c A ⇒ AUBE A and A - BE A. 

center Let S be a c mpact set. A point p in S is called a center of S if each chord of S 
through p is bisected by p. 

chord Let S be a compact set. A chord of S is a line segment between two boundary 
points of S. 

completely additive set function A set function J() on B(A) is said to be complet ly 
additive if for any tw set E1 , E2 E B(A) witb E 1 n E2 0 then 
/(E, + E2) = f(El) + J(E2). 

convex body (Bus .mann [15] page 41.) A convex body is a bounded closed convex set 
not n cessaril y with iuterior points. 

convex hull ( ;riinbaum (:32) paµ;e 14.) The convex hull of a set A ~ Rd is defined as 
the interser.tion of all the convex sets in Rd which contain A. 

convex hypersurface (Busemann [15) page :3.) A convex hyµe..rsurface in Rd is tb<"' 
boundary of a d-dimensi nal convex set C in Rd provided it is non-empty and 
connected. 

convex set (Griinbaurn [:32) page 8.) A set C ~ Rd is said to be convex if for each pair 
of distinct points x, y E C the closed s gment with endpoints x and y is contain<.d 
in C. 

convex set on sd-l (Griinbaum [:32) page 10.) As .t, Mon ,<;•d-l is (spherical) onvex if 
for ever u v E M u =/- ±v, M contains the shor~ r arc of tb . great circle :letf>n.:n..it 1-:d 
on ._•cl - l by u and 7. 

elementary symn1etric function ( van der Waerden [7:3) page 78.) Let x 1 , ... , Xn be 
variablrs. D<-'fi.ue 

CTt X1 + X2 + ' . · + Xn , 

CT2 X1 :r2 + :r1 X:3 + · · ' + X2X:3 + · · · + Xn-1 :r11 , 

0'3 X1X2X3 + X1X2:r4 + ·' · + Xn-2Xn-1Xn, 
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The function l7i is called the i-th elementary symmetric function of x 1 , •.• , x,.. 

kernel of a set (Lay [42] page 11.) The (convex) kernel of a set S' ~ Rd is the set of 
all points x E S such that every point of S is visible from x via S. 

Lipschitz condition A function is J(x) is said to satisfy a Lipschitz condition (with 
constant a) at a point x 0 if 

I f(x)-f(xo) l:S a I x-xo I 

for all x in some neighbourhood of x 0 • 

polytope (Griinbaum [:32] page :31.) A compact convex set(;~ Rd is called a polytope 
provided it is the convex hull of a finite set. A d-polytope is a polytope of dimension 
d. 

principal minor determinant (Browne [14] page 21 - 22.) Let A be an m x n matrix 
and let .s and t be two positive integers such that .s :S m, t s; n. Let the symbol 

denote the .s x t matrix lying in the i1 , i2 , .•. , is rows and in the j 1 , j 2 , ... , Jt columns 
of A. This matrix is called a minor matrix of A. If t = .s, so that the minor matrix 
is square, the determinant 

is called a minor determinant of A. The minor matrix Ai;:~::::: is called a principal 
minor matrix and its determinant a principal minor determinant of A. 

regular boundary point (Bonnesen-Fenchel [7] page 15.) If C has only one support 
hyperplane at a boundary point p, p is called regular. 

regular support plane (Bonnesen-Fenchel [7] page 15.) A support hyperplane of C is 
said to be regular if it intersects C at only one point. 

17-algebra (Rao [61] page 15.) Let S' be a nonempty point set. An algebra, A, of subsets 
of S is called a 17-algebra if An E A, n = 1, 2, ... ⇒ U~=l An E A also. 

simplex ( Griinbaum [:32] page 5:3.) A d-simplex is defined as the convex hull of some 
d + 1 affinely independent points. 

singular boundary point (Bonnesen-Fenchel [7] page 15.) A boundary point p of a 
convex body C is said to be singular if C has more than one support hyperplane 
at p. 
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starshaped set (Lay [42] pagf> 11. ) Let S ~ Rd. F r points x, y E S, we sa,y x s <~8 y 
via. . ' (y is visi ble" from :t: via 8 ) if th(~ line segment xy lies in S. A set ,')' ~ H 1 is 
starsbap .cl if th .re exjsts a point :1' E S such that x sees every point of S via S. 
We Ray t lrn , ' is starshaped with r .spect to x. 

strictly convex set A set C ~ Rd is said to be strictly convex if for each l air of dist inct 
points x, y E C the open segment with endp ints x aud y is contain d in the interior 
of C. 

support of a measure (Rao (61] p a.gt> 80.) The support of a measure µ defined in 
space n is lefin ed as the closed set 

.5pt(µ) = n - U{ G : µ( G) = 0 , G open } . 

support plane (Griin baum [:32] page 10.) Let v E Rd. A liyperplan<:" 
H = {:1.: E Rrlj (.i; ,· ) = t} iH said to cut a subse~ A of Rd if t,here exist, .i:1 ,:1·2 EA 
sucb tba.t (:r,1 , 7) < a and (:r2 , v) > a . A hyperpl ane H is said to . •u.ppor·t A if H 
does uoL cuL A au I t he d isb.tuc - I <:>tween Han I A is 0. W hen a hy1 e rplane H hat 
supports A is re1 resented as H = {x E R'1j (.:, •1) = <.'\'} sucli that (:i:, v) S ll• for a U 
x E A, H is referred to as the support by p .rp lane of A with outward normal 'I. 
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Spherical Harmonics 

This appendix briefly introduces spherical harmonics. More on spherical harmonics can 
be found in [51]. 

Definition C.1 (MacRobert [51] page 69.) Any solution <I>m of Laplace's Equation 

2 ~2<I> 02<1> d2<I> 
v <I> a ., + ~2 + -:--) ., = o :L'" Oy ( Z'-

which is homogeneous, of degree m, in x, y, z 1 is called a 8olid 8phcrical harmonic of 
degree m. 

Definition C.2 (MacRobert [51] page 70.) Let x = psin</>c.o. 0, y = psin</>sin0, z = 
p cos</J. Let <I>m = p1nwm be a solid spherical harmon.ir. of I .gree m, where Wm is a 
function of </J and 0 alone. The functions Wm obtained by dividing <I>m by pm is called a 
8urfacc 8phcrical harmonic of degree m. 

A function Wm of <P and 0 is a surface spherical harmonic of degree m if and only if 
it satisfies the following equation ([51], page 70): · 

l 8 ( . d\f1m) l ;Jl•'l!n, 
m( m + 1) Wm + ~ a"' sm</J ::i,1 2 + ~ !-lll'2 = 0 . 

S illy 'f' u,p SID lj) UV 

Let Pm(µ) be the Legendre polynomial of d gret' m. (See [51], page 67 1 fur ·l('Hnitions.) 
It is known that Pm ( cos</J) is a surface spherical harmonic of degree m. Ex1 andi 11~ Pm(f-l) 
in powers ofµ, the Legendre polynomials of degrees up to 10 are listed in Table C. l ([51], 
page 80). 

Let m and n be positive integers, n ~ m. Let 

Pm,n (µ) 
.6. 

1 A function such that if each of the variables is replaced by ,.\ times the variable, ,.\ can be completely 
factored out of the function, is said to be homogeneous. The power of ,.\ which can be factored out of 
the function is called the degree of homogeneity of the function. 
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Po(µ) 
Pi(µ) 

P2(µ) 

Pi(µ) 

P4(µ) 

Ps(µ) 

h(µ) 

A(µ) 

P8(µ) 

Pg(µ) 

Pio(µ) 

Let 

= 1 1 

µ, 

1 2 2 (:3µ - 1) ' 

1 ·3 
2(5µ' - :3µ) ' 

1 . 
8(:35µ 4 

- :30µ2 + :3) ' 

1 
-(6:3µ 5 

- 70µ 3 + 15µ) ' 
8 

1~ (2:31µ 6 
- :315µ 4 + 105µ2 - 5) , 

1 
-(429µ 7 

- 693µ 5 + :315µ:3 
- 35µ)' 

16 

1~8 (64:35µ 8 
- 12012µ6 + 69:30µ 4 

- 1260µ 2 + :35) , 

1 
128 (12155µ 9 

- 25740µ 7 + 18018µ 5 
- 4620µ 3 + 315µ) , 

2~6 ( 46189µ 10 
- 109:395µ8 + 90090µ 6 

- :30030µ 4 + :3465µ 2 
- 6:3) . 

Table C.l: The Legendre polynomials of degrees up to 10. 

Tm,n(µ) ~ (-1)11(1 -µ2)½ 11 Pm,n(µ), 

It is known ([51], page 121) that for arbitrary constants A and B, 

(Acos(n0) + Bsin(n0))Tm,n(cos<p) 

160 

is ,L :mrra<~<· splJerica.1 harmonic of degree rn. It is also kuuwu ([51], pag<" 125) that any 
surface spherical barmou ir 'Pm(¢, 0) o[ degree rn can b . expr<"ssed in t,lrn form 

m 

\Jlm(</J,0) = AoPm(cos<p) + 2)A 11 cos(n0) + Bnsin(n0)]Tm,n(cos¢), 
n=l 

where the A's and B's are constants. 

Let f ( <p, 0) be a continuous function of ¢ and 0 defined on the sphere. It is known 
([51], pa.e;e 1:31) that f(¢,0) ca,n be f~xpm1ded in a series 
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for O :S </> :S 1r, 0 :S 0 :S 21r. 

For integers rn and n, 0 :S n :S m, let 

Um,n( </>, 0) 
V,n ,n ( </>, 0) 

cos( n0)sinn ( </>) Pm,n (cos</>) , 

sin(n0)sin 11 (</>)Pm,n(cos</>). 

161 

Pigure C.l shows all I Um,n(</>,0) I and I V,n,n(</> ,0) I for rn = 0,1,2,:3. For any giv~n 
integer M ~ 0 , and arb itrary constants Am,n, Bm,n, 0 :S n :S m :S M, a surface in tbr .e 
dimensional space can be constructed as 

x p( </>, 0) sin</> cos0 , 
y p( </>, 0) sin</> sin0 , 

z p( </>, 0) cos</> , 

where 

p( ,j,, 0) = li:J~ { Am,n Um,n ( ,j,, 0) + B,,.,,, V,,., ,. ( ,j,, 0)) I · 
The reason for absolute value being taken is to guarantee the constructed surface is 
starshaped. 
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(a) Uo,o (b) lli,o (c) lf1 ,1 (d) Vi,1 

(h) Vi,1 

(i) Vi,2 

Fig11.re C.l: Projections of I Um,n (</1,0) I and I ½n,n(4>,0) I, 0 :Sn :S m,m = 0, 1,2,:3, unto 
a pl ant" that is peq endicula,r o (1, 1, 1). 




