
A Framework for Interoperability Testing
of

Network Protocols
by

Jadranka Alilovic-Curgus
Son T. Vuong

Technical Report No. 93-11
April 1993

Computer Science Department
University of British Columbia

Vancouver, B. C. Canada V6T 1 Z2

A Framework for Interoperability
Testing of Network Protocols

Abstract

In this report, we extend the testing theory based on formal specifica
tions by formalizing testing for interoperability with a new relation intop.
Intuitively, P intops Q if, for every event offered by either P or Q, the
concurrent execution of P and Q will be able to proceed with the traces
in S, where S is their (common) specification. This theory is applica
ble to formal description methods that allow a semantic interp;etation of
specifications in terms of labelled transition systems. Existing notions of
implementation preorders and equivalences in protocol testing theory are
placed in this framework and their discriminating power for identifying
processes which will interoperate is examined. As an example, a subset of
the ST-II protocol is formally specified and its possible implementations
are shown to interoperate if each implementation satisfies the intop relation
with respect to S, the specification of the ST-II protocol (subset).

2

1 Introduction

In this work a general mathematical framework is developed for reasoning about
the interoperability of communicating systems. Interoperability is a pivotal no
tion within Open Distributed Processing (ODP) concept in general, and network
protocols in particular. If we assume that a (formal) abstract specification of a
communicating system is available, then the interoperability of its different imple
mentations is dependent on the design decisions taken during the implementation
process leading from the specification to an executable implementation. Viewed
this way, the question of interoperability of communicating systems is closely re
lated to the formalization of the notion of validity, i.e., the nature of the relation
which should hold between the implementation of a system and its (formal) spec
ification.

This formal relation has been a subject of extensive research (especially within
process algebraic techniques), and the results can broadly be summarized in two
categories.

Equivalence Relations

Extensional equivalences play a central role in reasoning about the external
behaviour of systems described by process algebraic languages (see, for example
[Mil80, ?]). Two processes are considered equivalent in this context if they cannot
be distinguished by external observation, i.e. short of taking them apart. Exam
ples of these equivalences are observation equivalence [Mil80] or various testing
equivalences [dN87].

Certain testing theories are naturally based on this notion of indistinguisha
bility by observation. Testing based on equivalence relations of this kind ensures
that the implementation wil1 behave exactly as prescribed by specification. For
testing communication protocols, equivalence relations conf-eq [Led92] and te
(Bri88] have been defined and proposed as a criterion which establishes that a
certain protocol implementation is a valid implementation of a given specification.

Implementation Relations

Implementation relations [Led92] allow the notion of validity between an im
plementation and its specification to be extended to those implementations which
are not externally equivalent to their specification. These relations have been less
studied within the process algebraic techniques than equivalences.

3

Some implementation relations based on the idea of reducing nondeterminism
as a valid implementation choice have been proposed so far for the use in testing.
Examples are con/, conr, red, ext [Bri88, Led92] defined for communication
protocols and djstributed systems in the context of .conformance testing.

We will briefly study both of these categories of relations on their represen
tatives from the area of communication protocols testing. We show that all of
the proposed relations are too strict if the interoperability of implementations
is desired. Moreover, the practical testers designed to test with these relations
as target criteria may be difficult to design and run, typically generating many
inconclusive test runs for test cases where these relations impose too strict re
quirements (see also [Bri88]). In particular, we show that the question of test
selection turns out to be impossible to solve adequatly within the proposed the
ories themselves.

We then introduce our work by formally defining what is meant by inter
operability of (two or more) communicating systems. We propose a new intop
relation which is defined to hold between an implementation and a specification
of a system. It insures that implementations which are valid in intop sense can
interoperate with other such implementations of the same specification. This
relation improves the efficacy of the test selection process by distinguishing the
traces which are unexecutable and those that are essential for basic interoper
ability, without the need to step outside the theory for an adequate solution. In
parti ular, it is a more efficient upper bound to the testing process than the previ
ously defined relations, since the number of inconclusive test runs is significantly
reduced.

This result is particularly significant for designing testers for systems which
are capable of running independent concurrent processes (i.e., for testing simul
taneous network connections). When it comes to testing modern network proto
cols such as ST-II (multimedia) communication protocol [Top90), some features
emerge (shown on the example ST-II specification throughout the report), that
were not critical in testing classical protocols usually considered in the protocol
test theory. For instance, even some basic functionality of an ST-II agent can
not be tested without testing at least three simultaneous connections. This then
poses a problem in protocol test design (which typically deals with one connection
or linear test sequences), which we feel is best solved by redefining the basic test
relations to better suit the design of modern protocols. At the same time, the
new testing framework greatly facilitates test development and tester design for
multiple simultaneous network connections, paving the way to meeting stricter
reliability requirements for tested communication systems.

4

We assume that formal specifications are given in process algebraic form, and
we draw most of the examples and comparisons from the testing theory for pro
cess algebras and, wherever possible, LOTOS (a brief overview to be found in the
APPENDIX 1.). Note, however, that this setting primarily serves to anchor our
discussion, and that all of the results can be derived for formal specification tech
niques that allow Labelled Transition Systems (LTS) as their underlying semantic
model and use interleaving semantics of concurrency. From now on we make no
difference between a labelled transition system and a process. In addition, we
will often use the technique detailed in [Mil80], to represent processes in terms of
Synchronization Trees (STs).

2 Implementation relations and interoperabil
ity

In this section we will define and briefly study the relations conj and red. We then
evaluate these relations informally with respect to the level of interoperability
achievable between implementations which are valid in the sense of these relations.
Our results apply to other relations mentioned in the introduction in much the
same way. The notation needed for the trace-refusal formalism used in the rest
of the report can be found in the APPENDIX 2.

2.1 Implementation Relations conj and red

Let A and P2 be processes, and L the set of observable actions.

The most straight forward proposal for systems equivalence is to consider as
equivalent two systems which can perform exactly the same sequences of visible
actions.

Definition 2.1 A ~a P2 iff for alls E L* : Pi = s =} if and only if P2 = s =>.

It is clear that A ~a P2 iff Tr(P1) = Tr(A) and it is obvious that it is an
equivalence relation, which we call strings equivalence [dN87].

Consider the following example.

Example 2.1 Let S be a process

S:= EstStreamReq{T1,T2}i
{ {SConnectTI; SConnectT2i S')

5

[}
(SConnectT2 ; SConnectTl; S'))

S' := (SAcceptn ; SRefuseT2i S")
[}
(SRef useT2; SAcceptTii S")

S" :=(ConConf lndTl; ConRejlndT2i D)
[}
(ConRejlndT2i ConConf lndTI; D)

The above is an example of a process (an excerpt from a connection establish
ment phase of ST-II communication protocol (Top90J, origin agent only). ST-II
protocol at origin may receive a stimuli in the form of a (multimedia) stream
establishment request from an application above, towards a number of targets
(Tl and T2 in the example). For simplicity, we have instantiated one possible
situation (where one target accepts and the other target rejects the connection) ,
resolved the parallel composition of two simultaneous connections into a simpler
choice ([]) structure, and shown some of the events and interleavings only. The
synchronization tree of this process is given in Figure 1 (a). (Figure 1 (b) repre
sents an ST-II agent as a target agent, again showing a simple instantiated case).
An implementation ls which is strings equivalent to the specification S will have
the following trace set, for traces of length ~ 3, (e is the empty trace)

Tr(Js) = {e,
EstStreamReq{T1,T2},
EstStreamReQ{Ti,T2}: SC onnectTl,
EstStreamReq{Tl,T2}•sc onnectT2,
EstStreamReq{Tl,T2}•sc onnectT1,SC onnectT2,
EstStreamReq{Tl,T2}•sc onnectT2,SC onnectT1}

More involved concepts of equivalence between a.specification and an imple
mentation include the consideration of the traces that can be observed at the
interface of a system with its environment as well as the sets of actions that may
be refused after a certain trace. Such relations are con/ and red.

Definition 2.2 P1 con/ P2 iff 'v'o- E Tr(P2) we have Ref(P1, o-) ~ Ref(P2, o-)
or equivalently

P1 con/ P2 iff 'v'o- E Tr(P2) n Tr(Pi) we have Ref(Pi, u) ~ Ref(P2, o-).

Informally, Pi con/ A iff, placed in any environment whose traces are limited to
those in P2 , Pi cannot deadlock when P2 cannot deadlock. This relation is known
as con/ ormance relation in protocol testing theory and is used for conformance
testing of protocol implementations [Bri88, Led92].

6

(•)
Tlw l,,a11el, nolr,1 i,," _,.,.,.

IIIIWIIT lo ,,.. min, rlllrlillK oJ

TC011,ueTJ

(6)

Figure 1: Connection Establishment Phase of ST-II protocol

Definition 2.3 P1 red P2 iff
(i)Tr(Pi) ~ Tr(P2) and
(ii)Pi conj P2 •

Red is the reduction relation. It limits the traces of a "red"-valid process Pl
to those of P2, but the essential deadlock property remains the same as in Def.
2.2.

These relations are the basis for the equivalence relations conf eq and te
[Led92, Bri88] proposed in protocol testing.

2.2 Implementation Relations· and Interoperability

Consider the implementation relations defined above on the example ST-II origin
specification S and the sample implementations /1 and /2 of this specification,
depicted in Figure 2 (a) and (b).

7

Stief, D

Co,.C Tl

(a)
(b)

Figure 2: Different implementations of a process S

Example 2.2 The process Il (Figure 2(a}}

/1 := EstStreamReq{T1,T2}i
((SConnectri; SConnech2i Jl')
0
(SConnectr2i SConnectTl; Il'))

/1' := (SAcceptTl; SRefuseT2i S")

Tl

is neither in relation con/ nor red with the process (specification) S. This is be
caus the refusal set Ref(ll, cr1), where cr1 = EstStreamReq{Tl,T2}· SConnectn.
SConnectT2 (or ui = EstSt.reamReq{Tl,Tl}· SConnectT2. SConnectn) includes,
among other sets, also the set {SRef user2 }, which is not in the refusal set for
the same trace in the process (specificatjon) S.

Example 2.3 The process 12 (Figure 2 (b))

8

/2 := EstStreamReq{T1 ,T2}i

((SConnectT1i S Connectr2; /2')
[]
(SConn ectT2i SConnectr1; /2'))

/2' := (SAcceptr1 ; SRefuseT2; /2")
[]
(SRefus eT2i SAcceptr1; /2")

/2" := ConRejlndr2 ; ConConf IndTl; D

is neither in relation con/ nor red with the process (specification) S. This is be
cause the refusal set Re/(/2, 0-2), where 0-2 = EstStreamReq{Tl,T2}• SConnectTI,
SConnectT2 , SAcceptTJ, SRefuseT2 , contains, among other sets, also the set
{ConConf IndTI}, which is not in the refusal set for the same trace in the speci
fication of the process S. (It is easy to see that there are three more traces which
share the same characteristic with the trace o-2 .)

Notice also, that neither of the equivalences generated by these implementa
tion relations holds.

This is because an observer (in the environment of these implementations)
will be unable to observe some traces at the interface of these implementations,
although they should be present in all implementations of S that are valid in the
sense of con/ and red. But are the implementations /1 and /2 equal with respect
to their ability to interoperate, as source agents, with other ST-II implementa
tions? A brief informal investigation (we defer the formal interoperability analysis
for a later section) and some knowledge of the semantics of the ST-II protocol
specification shows that the implementation 11 may fail to interoperate with a
full implementation of ST-II, if it is presented with the event SRef user2 before
the event SAcceptTl, However, the implementation /2 will always successfully
interoperate with any other implementation which fully implements ST-II. Even
more significantly, the implementation /3 of the same specification S, depicted
in Figure 3, also possesses the same ability to interoperate with full ST-II im
plementations under all circumstances, although it is not even strings equivalent
to S for very short traces (refer to traces Tr(ls) in Example 2.1).

There are frequent situations in network protocols where the choice to drop
some of the traces in an implementation of S will affect the externally observable
behaviour of the implementation but not its ability to successfully interoperate
with other implementations S where similar choices have been made. We quote
some of those:

9

Figure 3: An interoperable implementation of S

• one external stimuli (of the type Est Stream request) which generates multi-
ple protocol events which may be arbitrarily interleaved (e.g., events SConnectT1 ,

SConnectT2, ... , SConnectTn and implementation /3)

• accumulation of external stimuli (of the type SAccept or SRef use Protocol
Data Units in the example) which generates protocol events which may
be arbitrarily temporally ordered, provided they individually satisfy timing
correctness (e.g., events ConConflnd and ConRejfnd and implementation
/2)

• multiple independent network connections (represented by the arbitrary in
terleaving in the int rleaving model of concurrency) where any one of many
possible interleavings of certain events may be sufficient for interoperability

Note: Notice that, although many events initiated by the implementation under
observation will be in one of these categories, not all are: consider, for example,
certain priority control PDUs or express PDUs.

The observed problem is due to the fact that the formal theory of protocol
testing based on observation fails to distinguish between different aspects of the

inability of an implementation to evolve via specific events. The consequence is
that, in testing which is based on these equivalences and implementation rela
tions, the inability of implementations such as /1 and /2 to synchronize on some
specific observable events is treated in the same manner.

This characteristic has a profound impact on the design of the testing process
itself.

1. In such a theory a tester must be able and will try to synchronize on all
traces and observable events as described by the specification of the tested
system, which may result in numerous inconclusive test runs if an imple
mentation fails to react with the exact ordering of events that the tester
expects to see. Other solutions [APRS92] may include imposing artificial re
quirements on the testing process (such as establishing a stable state before
proceeding with testing), which may reduce the error exposition probability
of the testing process.

2. In addition, test selection under such premises becomes difficult to solve
effectively within the theory itself. A possible test selection scenario could
drop some traces that are crucial for interoperability (intuitively, an imple
mentation, such as /1, must be tested to be able to synchronize on SAccept
PDU followed by a SRef use PDU at any time, as well as vice versa), in
favour of such traces which cannot even be observed by testing for a particu
lar implementation (for instance, a ConConf Ind followed by ConRejlnd,
in case of the implementation /2), and which may be irrelevant for the
interoperability of such implementation.

To overcome these problems, we propose a new formal approach aimed at
resolving some practical test design issues and improve the efficiency of mul
ticonnection protocol testing in particular. The testing will still be based on
observation, but the underlying formal relation of validity will be greatly relaxed
to include such implementations which, on experimentation, are observed to have
many fewer traces than the specification. The successful termination of the test
ing process (if the theoretical upper bound were reachable) would guarantee that
all implementations of the same specification which pass will be able to interop
erate.

3 The interoperability Relations

In this section we define a new formal notion of validity between an implemen
tation and a specification of a communication system. Although the definition
appears more involved compared to other implementation relations, it turns out

11

that the test design based on this relation differs only slightly than the design
based on other implementation relations, whereas the testing based on this rela
tion is much mo.re efficient . We delay these practical considerations for the next
section, and concentrate on theoretical comparison next.

3.1 The intop Relation

We presuppose the existence of two subsets Lreq and Lalt of labelsets of visible
actions in L, such that:

Lreq n Lau = </> and Lreq u Lalt = L

Intuitively, we shall think of the elements of Lreq as events which must be ob
servable at the interface of an implementation whenever the specification allows
the possibility of synchronizing on that event in the state in which the imple
mentation is at the moment of observation (i.e., the ,,required,, synchronization).
On the contrary, the elements of Lau are such events, which may not necessarily
be observable at the interface of an implementation, although the specification
allows the possibility of synchronizing one such event at that point (i.e. the
"alternative" synchronization).

Similarly, let Refreq(P, u) = Ref(P, u)nP(Lreq) and Refa1t(P, u) = Ref(P, u)n
P(Lau) (where P(A) denotes the powerset (the set of all subsets) of a set A) be
the ~-maximal subsets of the refusal set Ref(P, u) which a.re completely con
tained in the powersets of Lreq and La1t, respectively.

Notice that these two sets always exist and are unique. Observe that the
refusal sets satisfy the following properties.

Proposition S.1 (Properties of refusal sets):

1. Refreq(P, u) and Refait(P, u) are subset closed

2. Refreq(P, u) U Refatt(P, u) ~ Ref(P, u) (not necessarily=)

3. Refreq(P, u) = </> => Refa1t(P, u) = Ref(P, u) and
Refa1i(P,u) = <P => Refreq(P,u) = Ref(P,u)

4. {Refreg(P,u) C Ref(P,u)(VRefo.11(P,u) C Ref(P,u)) => Refreq(P,u) U
Refati(P, o-) C Ref(P, u) (proper subsets}

5. Ref(P,u) ~ Ref(Q,u) => { Refreq(P,u) ~ Refreg(Q,u) A Refa1t(P,u) ~
Re !alt (Q, u)} (the opposite does not necessarily hold}

6. P({UReRef,-eq(P,11)R} U {UReRef .. u(P,11)R}) 2 Ref(P, u)

12

Let I be an implementation of a specification S.

Definition 3.1 I intop S iff \;/(1 E Tr(S) n Tr(I) we have

l. Refreq(l, u) ~ Refreq(S, u) , and

2. Lalt n Out(S, u) n Out(!, o-)-:/ <p V Lalt E Refa1t(S, o-)

3. For the set A= La1t n (Out(S,(1)\0ut(f,(1)) we have

Ref(I,o-)\{R I Rn A f. </>} S Ref(S,o-)

Informally, I intop S iff, when placed in an environment whose traces are lim
ited to the traces common to S and I, (i) the implementation I cannot deadlock
on any events from Lreq on which S cannot deadlock; (ii) the implementation I
cannot deadlock on all events from La1t on which S cannot deadlock.

As an example, consider the validity of the implementation /3 in the sense of
intop (it is easy to observe that /3 is neither in con/ nor red relation with S).

Example 3.1 Let Lreq = {EstStreamReq{Tl,TZ}, SAcceptT1, SRefuseT2} and
L,.1t = {SConnectT1, SConnectT2, ConConf IndT1 , ConRejlndT2}.
Consider the implementation 13 of S, after the trace u = EstStreamReq{Tl,T2},
Refreq(l3, o-) = P({ EstStreamReq{T1,T2} , SAcceptT1 , SRef useT2})
Refa1t(I3, u) = P({SConnectr2 , ConConf IndT1, ConRejlndr2})

Then,

1. Refreq(I3, u) ~ 'P({EstStreamReq{T1,T2} , SAcceptn , SRefuser2} =
Refreq(S, u), and

2. SConnectT1 E La1t, {SConnectT1} E Out(S, u) and {SConnectT1} E Out(I, u),
and

3. Ref(/3, u) = P ((UReRe/011 (1,cr)R) U (UReRe/req(I,cr)R)) = P({SConnectT2 ,
ConConf IndT1, ConRejlndr2} U { EstStreamReQ{Tt,T2} , SAcceptr1 ,

SRefuser2}) ,
and A = {SConnectr2}. Therefore,
Ref(/3,u)\{R I Rn{SConnectT2} f. </>} =P({ ConConflndT1, ConRejlndT2,
EstStreamReq{T1,T2} , SAcceptT1 1 SRefuseT2}) ~ Ref(S, u).

Therefore, I intop S by the Definition 9.1.

13

3.2 Properties of the intop Relation

We collect some easy facts about the intop relation.

Proposition 3.2 Let / intop Sand / = u ==>.

1. Reja1t(/,u) s; Rejalt(S,u) ==> Rej(I,u) s; Ref(S,u)

2. ('vu E Tr(S) n Tr(/), Reja1t(/, u) s; Reja1t(S, u)) ==> I conj S.

3. I conj S ==> I intop S (i.e. intop :) con!)

4. intop is reflexive

5. intop is not transitive

Proof: The proof of this theorem highlights some of the properties of the relation
intop and can be found in the APPENDIX 3.

3.3 The intopred Relation

The results of Proposition 3.1 (iv) and (v) are in keeping with the theory devel
oped in [Led92], that a valid implementation relation must be reflexive (because
specification is a valid implementat.ion of itself), but not necessarjly symmetric
or transitive (because the implementation and specification are not in general in
terchangeable). However, notice that similarly to conj, the relation intop allows
that additional traces may exist in the implementation, that are not part of the
specification. This feature becomes even more critical when interoperability of
different implementations is examined, since, in general, such implementations
may synchronize on traces that are not in their common specification. For such
traces, the concept of interoperability is really hard to define both formally and
informally. We therefore extend the formal notion of interoperability by defin
ing a relation which restricts the traces in an implementation to those of the
specification. Unlike intop, this relation is also transitive.

Definition 3.2 I intOPred S iff

1. Tr(!) s; Tr(S)

2. I intop S

Proposition 3.3 The relation intopred has the following properties:

1. intop :) intOPred

2. intOPred :) red

14

3. intopred is a preorder

Proof: The proofs for 1. and 2. are easy and follow directly from the definitions
of the corresponding implementation relations. The proof for 3. is quite involved
and can be found in the APPENDIX 4.

The above theoretical considerations are sufficient as a basis for specifying the
necessary architectural and design requirements in interoperability testing. We
do however note that the formal notion of interoperability as an implementation
relation can be extended in the sense of im1req and other formal theory given in
[Led92J.

4 The Interoperability Tester Design

After establishing the necessary theoretical basis in the previous section, we turn
our attention towards some practical considerations in interoperability testing
of network protocols. Based on these considerations, we outline the design of a
network protocol interoperability tester whose theoretical upper bound is the sat
isfaction of the interoperability relation intop between an Implementation Under
Test (IUT) and its specification S.

4.1 Architectural considerations

The general theory of protocol testing allows for different test architectures and
different test interfaces. Consider the test architecture given in Figure 4. Generally,
the Points of Control and Observation (PCOs) may be positioned at the upper
IUT interface (PCOl, PC04) as in the system SUTl in Fig. 4, or at the lower
IUT interface (PC02, PC03). For interoperability testing of protocol imple
mentations it is necessary to observe both upper interface (service) PC Os and
lower interface PCOs (as in SUT2 of Fig. 4.) in order to ensure the proper
internetworking of different implementations in all environments. In this report,
we concentrate on the interoperability of different implementations of the same
(peer) protocols. (It may be interesting to study to what extent the same theory
applies towards the interoperability of any two implementations that share the
same interface.) To take advantage of our theory, we model the interoperability
test architecture in the following manner:

l. I is a protocol implementation

2. IT is the interoperability tester

15

PCOl PC04

... - - - -- - - - -.~•' - '·~. - - -- - - - - - - - - - - -_.,,: ··' _· '· ·:... - - - - - - - - - -
I ! : • , I

I
I

...

r IT

I

I ._.,..... _____ _____. '-----""l""l.--~ I

low•r ······: ·····-- ·· ····•·. ·-·····--····- .. ······· ·· .. ···--··-·· _ • ········-t ·····
iaUtfae• I . . 1------ ------------ - ------ • • • I • L--~,..... I I ---- •

PC~2---····· i NET
1

·•---fuo3
: I
_________________________ J

I

--z:------------------------------------

Figure 4: Interoperability Test Architecture

3. NET is the underlying (network) connection between the I and IT. NET
behaves as a reliable FIFO channel in either direction (FIFO without loss)1

4. A tester IT is capable of observing at least one set of PCOs at the upper
interface of / and one set of PCOs at the lower interface of / or IT

5. A tester IT is capable of controlling PCOl and either PCO2 or PCO3.

We will also assume that an executable tester (an implementation of the in
teroperability tester IT) is capable of executing strong control over the PCOs it
controls in the following manner: it will always be able to synchronize on any
events that are its output events, before synchronizing on any events that are its
input. In particular, we expect that an executable tester is able to send a PDU
into network or request a service from an IUT at any time. If this assumption
holds, then the possibility of inconclusive test runs linked to the tester trying to
observe a particular event in Lreq as the next event is eliminated. This may or
may not hold for actual implementations, but will simplify our further analysis.

1 In our example specification, we adopt a simple strategy to prefix the name of each primitive
by the address at which it occurs including S for the source (calling) ST-II agent and T for
the target (called) ST-II agent, in order to allow for a simple NET process modelling. Other
specification possibilities that provide distinctness of interactions exist and are equally suitable
for this setting (see [Got92] for architectural details of interaction points in various specification
formalisms).

16

4.2 Formal Network Protocol Specification Issues

The requirements of interoperability testing regarding the observability and con
trollability of PCOs impose strict requirements on the formal specification style
of a protocol process to be tested. In LOTOS, this style requires that gates
modelling the PCOl and one of PC02 or PC03 not be hidden (i.e., event syn
chronization at these gates is visible). The observability of PC04 is entirely
optional and depends on the executable tester design. We require that all the
protocol processes be fully synchronized with the underlying process NET rep
resenting the network.

For illustration, we complete our example ST-II specification of the stream
establishment phase with the specification of the target process, supplying the
remaining visible interactions at these gates. We simplify the specification in
the manner similar to Example 2.1. (We will nor worry about the details of the
negotiation of connection establishment with the multimedia application above
and let the ST-II target agent decide on acceptance or refusal of the connection
itself.)

Example 4.1 The target ST-II agent Tis the process

T := (TConnectTI; TAcceptr1; D)
Ill .
(TConnectr2; T Refuser2)

The full specification of our example ST-II process is the independent parallel
composition of the processes S and T,

ST:= S Ill T

and is represented as a parallel composition of the synchronization trees given
in Figure 1.

The specification of the NET FIFO process can be given as in [Got92]. For
the purposes of our brief example we will informally observe that for every event
prefixed by T, i.e. event Te, on which the NET process synchronizes at inter
action points PC02 (PC03), it will subsequently synchronize on an event Se
at PC03 (PC02 respectively) distinguishable from th.e event Te by its prefix S
only, after which it is ready for a new interaction at PC03 or PC02. Similarly,
if the NET process synchronizes on an Se event at the interaction points PC02
(PC03) first, then this is followed by a synchronization -on a Te event at PC03
(PC02) and the process NET is ready for a new interaction. Notice that the

17

parallel composition of the processes ST and NET with all gates observable, will
yield exactly the traces of our full example ST-II specification. The following
example illustrates this behaviour.

Example 4.2 Consider the application of EstStreamReq{Ti,T2} at the PCOl,
and assume that the additional revealed PCOs are PC021 PC03 and PC04 (the
system specified is exactly SUT2 in Fig. 4). Then the following trace may be
observable at these PCOs:

u=EstStreamReq{Ti,T2}. SConnectT1• SConnectT2-TConnectT1• TConnectT2-
T AcceptTl. T RefuseT2• SAcceptT1• SRefuseT2• ConRejlndT2. ConConf IndTl

4.3 Interoperability Tester Design

In this section we introduce the design of the interoperability tester IT(S) for pro
tocol implementations. The purpose of the interoperability tester is to properly
clistingmsh between implementations that do or do not satisfy the intop relation
with respect to their specification S.

The construction of the interoperability tester IT(S) based on the the canoni
cal tester [Bri88, Led92). The canonical tester T(S) is constructed systematically
from the specification of the system Sand is defined in the following manner.

Definition 4.1 Let S be a specification. The canonical tester of S, T(S), is
defined implicitly as a solution X satisfying the following two equations:

1. Tr(X) = Tr(S)

2. VJ I conj S if£ (Vu EL* we have (LE Ref(! II X, u) ~LE Ref(X, u)))

We first observe that by the Proposition 3.1, 3., intop :) conj. Using this ob
servation, we can transfer the problem of finding the interoperability tester IT(S)
to "relaxing" the structure of the canonical tester T(S). We here do not repeat
the theoretical work of [Bri88, Led92}, but assume that the canonical tester T(S)
of a, specification S is given. The crucial observation in the construction of the
IT(S) is that the only behaviours that are treated differently jn the relations con/
and intop are precisely the ones that allow the choice over actions that are in Lalt•

In the canonical tester, the choice over the different actions in L is replaced
by the internal choice, i.e. these actions are prefixed by the internal action i.
Consider the example given in Figure 5, where S, T and IT denote the speci
fication, its canonical tester and its interoperability tester. In the derivation of
the canonical tester T(S), the purpose of this choice over i is to allow the tester

18

s T(S) IT(S)

L ab ={b, c}

Figure 5: A specification, its canonical tester T(S) and its interoperability tester
IT(S)

to attempt synchronization on each action (a, b, c in the example) in L at that
point in the specification.

By the definition 3.1 (of the intop relation), evolving via actions in Lreq

(I = a =} I' of the example) is also mandatory for every implementation I,
and we therefore leave the design of T(S) intact with respect to such actions
(the trace i.a.~). The tester IT(S) will also require synchronization on each such
sequence.

However, by the definition of the intop relation, for actions in La.it, not all
possible actions need to be observable or observed at that particular point. In
the example, either I = b =} I' or I = c => I" must be observable. It follows
that the tester IT(S) must attempt synchronization on either IT(S) = b =} or
IT(S) = c =>. In such cases, IT(S) is derived from the canonical tester T(S) by
substituting then internal choices of T(S), each followed by one of then different
actions in A~ La.rt by one internal choice.in JT(S) followed by the external choice
over the n different actions in A ~ La.It• Therefore, T(S) := i; a[]i; b[]i; c in the
example becomes IT(S) := i; a(]i; (b[]c). The interoperability tester will therefore
resolve such a choice in the course of the interaction with the environment (for
example, driven by the choice of the peer protocol implementation), rather than
by attempting to synchronize on each one of the actions. More specifically, if a
node in the synchronization tree of the canonical tester T(S) has the form

19

then it is transformed into a node of the synchronization tree of the interoper
ability tester IT(S) of the form

[]{ap; •• • 1 Pe P}[]{i; bri • .. , br e R ~ Q}[]i; ([]{bai • .. Iba e A~ Q}

where R is the set of ·all q E Q such that bq E Lreq and A is the set of all q E Q
such that bq E Lalt•

All other nodes and branches of T(S) are left intact.

We observe that the execution of IT(S) against an implementation I of a
protocol will have the following impact on the testing process:

• Within the theory itself, such a selection process can be designed, which
will guarantee not to sacrifice traces needed for interoperability in favour of
possibly unobservable traces ·

The test selection theory itself is beyond the scope of this report. We how
ever observe that all the events that can happen alternatively are collected
under the nodes which have all emanating branches labelled with the events
in La1t and the branches leading to such nodes are labelled i. Such nodes are
uniquely distinguishable and should participate in the test selection with
the weight representative of one test case only (other test selection criteria
assumed to contribute separately).

• fewer traces need to be examined or observed (even if they happen to be
implemented), resulting in a more efficient upper bound of the testing pro
cess

It follows immediately, from the construction of the tester and the definition
of the relation intop, if a branch labelled i leads to a node whose all ema
nating branches are labelled with the events in A ~ Lait, then the number
of tests is reduced from the number of events in A to a subtree which is to
be considered as one test case only.

• elimination of inconclusive test runs for test cases where one (of many)
possible temporal orderings of events is sufficient to guarantee the interop
erability of implementations

This observation follows directly from the fact that, for such events, the
multiple internal choices of the canonical tester are substituted with one

20

choice which is always possible to be resolved on interaction of the interop
erability tester with the environment

4.4 The interoperability of protocol implementations

We now turn to the formal notion of interoperability of two protocol implementa
tions within our framework. We restrict ourselves to the interoperability of peer
protocol implementations only. Therefore, the labelset of actions Latt can only
be interpreted in the context of the lower interface of protocol implementations.
We first introduce some necessary definitions.

Definition 4.2 The set Latt is said to be well defined if -,(3a E La1t) such that
NET = u * NET' - b.a -+ NET" for some u E Tr(N ET) and b E L , where
the events a and b are distinguishable only by the calling or called prefix (S or T
in our addressing convention) of the address at which they occur.

Informally, a well defined set Latt does not contain elements which can occur as
output of the underlying channel N ET.2 Observe that, although we consider
the interoperability notion between two implementations only, this definition is
general enough to apply also in the context of any number of implementations
and any number of connections, because of the properties of the NET channel.

We now give a definition of the interoperability between two implementations
of the same protocol specification.

Definition 4.3 P intops Q iff for every event offered by either P or Q,

1. the concurrent execution of P and Q yields traces in S and

2. the concurrent execution of P and Q will not deadlock after a trace u unless
S can deadlock after that same trace

We are now ready to prove the following result.

Theorem 4.1 Let La1t be well defined in the sense of definition 4.2. Let II and
/2 be two implementations and S their common specification. Let NET be a
reliable FIFO channel. Then,

(fl intopred S and /2 intopred S)* (II intops /2)

2Notice that the distinctness of interactions (by interaction points including a calling or
called agent prefix in this report) influences the definition of well-definedness of the set Lau.
Other specification styles may yield different instantiations of the same definition, but it suffices
to say that in our architectural model, (with underlying FIFO channel), such a definition is
always possible. ·

21

Proof: The proof of this theorem can be found in APPENDIX 5.

We finally observe that, if we substitute intop wherever intopred occurs in
the Theorem 4.1, we obtain a slightly weaker result. We cannot state anything
about the tr:aces that /1 and f2 may generate while concurrently executing, if
these traces are not in S. (they may even deadlock on such traces) . This is
why our final result is stated in terms of the relation intopred• As a matter of
practical importance, however, it is expected that a tester will only be able to
systematically examine the traces in S, and leave the verdict about the extra
traces in /1, 12 inconclusive.

5 Conclusion

In this report we have extended the formal theory of testing protocol imple
mentations by a new relation and proposed a corresponding test architecture,
specification style and tester design. The new framework is aimed at simplifying
the practical testing and consequently our considerations are often targeted more
towards applicability than rigorous theory. However, the framework could benefit
both from including more strict theoretical results { especially along the results
in [Led92]) as well as more efficient algorithmic solutions of the interoperability
tester derivation. For truly rigorous testing of modern network protocols in their
full multiconnection capacity, both ingredients are needed.

References

(APRS92) N. Arakawa, M. Phalippou, N. Risser, and T. Soneoka. Combina
tion of conformance and interoperability testing. In 5th International
Conference FORTE '92. Lannion,France, 1992.

[Bri88) B. Brinksma. A theory for the derivation of tests. In Aggarwal and
Sabnani, editors, Protocol Specification, Testing and Verification Vlll.
North-Holland, 1988.

[dN87] R. de Nicola. Extensional equivalences for transition systems. Acta
Informatica, {24):211-237, 1987. ·

(Got92) R. Gotzhein. Formal definition and representation of interaction
points. Computer Networks and ISDN Systems, {25):3-22, 1992.

[Led92] Guy Leduc. Conformance relation, associated equivalence, and new
canonical tester in lotos. In B. Jonnson, J. Parrow, and B. Pehrson,

22

editors, To Appear in: Protocol Specification, Testing and Verification
XI. North-Holland, 1992.

[Mil80) R. Milner. A calculus of communicating systems. In Lecture Notes in
Computer Science 92. Springer-Verlag, New York/Berlin, 1980;

[Top90) C. ed. Topolcic. Experimental internet stream protocol, version 2 (st
ii); rfc-1190. Internet Requests for Comments, {1190), October 1990.

23

APPENDIX 1: LOTOS

LOTOS (Language of Temporal Ordering Specification)[S] is a Formal De
scrjption Technique developed wlthln ISO (International Organization for Stan
dardization) for the formal specification of open distributed systems, and in par
ticular for those related to the Open Systems Interconnection (OSI) computer
network architecture. These concurrent real time systems are specified in 1O
TOS by defining the temporal relation among the interactions that constitute the
externally observable behavior of the system. In the Table 1 we give such rules
for the subset of LOTOS that is used in this report.

Combinator Axioms or Inference Rules
stop none
exit exit - o -+ stop
m·B m; B-m-+ B (m E L)

' i;B i;B - T-+ B
Table 1

B1[]B2 B1 - m -+ B~ I - B1 [] B2 - m -+ B;
B2 - m-+ B;I - B1[]B2 - m-+ B;

B1IIB2 B1 - m-+ B~,B2 - m-+ B;I - B1IIB2 - m-+ B~IIB;

24

APPENDIX 2: NOTATION

Processes (denoted by T, and ranged over by P, T, T1 , ••• will be sets of labelled
transition systems over an alphabet LU {i} (i is the unobservable action) of ele
mentary actions.

P - a -+ P' means that process P may engage in an action a E L and, after
doing so, behave like process P'.

P - ik -+ P' means that process P may engage in the sequence of k internal
actions and, after doing so, behave like process P'.

P - a.b-+ P' means 3P", such that P - a-+ P" and P" - b-+ P'
P = a => P' means 3k0 , k1 E N such that P - iko .a.ik1 -+ P'
P = a =>means 3P' such that P = a => P', i.e. P may engage in an action a
P =fa=> means -i(P =a=>) i.e. P cannot engage in an action a
P = u => P' means that process P may engage in a sequence of observable actions

u and, after doing so, behave like process P'.
P = u => means that 3P' such that P = u => P'
Tr(P) is the trace set of P, i.e. { u I P = u => }; Tr(P) is a subset of L*
P after u = {P' I P = u => P'}, i.e. the set of all behaviour expressions (or

states) reachable by u
Out(P, u) is the set of possible observable actions after the trace u, i.e.

Out(P, u) = { a E L I er.a E Tr(P)}

Ref(P, u) is the refusal set of P after trace u, i.e.

Ref(P, u) = {X ~ L I 3P' E P after u, such that P' =fa=>, \/a EX}

25

APPENDIX 3

Proof of the Proposition 3.2

The proof for 1. follows directly from the observation that in the case when
Refa.1t(l~ o-) ~ Refa1t(S, o-) then the set A from Def. 3.1, condition 3., is empty.
Since also I intop S, the condition in Def. 3.1, 3., holds which proves that
Ref(!, u) ~ Ref(S, o-) holds. (Notice that this is exactly the condition needed
for the opposite implication in Prop. 3.1, 5).

2. follows directly from 1. and the definition of conf relation.

3. Assume that Ref(!, u) ~ Ref(S, o-)Vu E Tr(S) n Tr(!).

• We have Refreq(I, u) = Ref(!, u)nP(Lreq) and Refre9(S, u) = Ref(S, u)n
'P(Lreq), Therefore,
Refre9(1, u) = Ref(!, u) n P(Lre9) ~ Ref(S, o-) n P(Lre9) = Refre9 (S, o-).

• Assume that the first part of Def. 3.1, 2., is not true. Then Va E La1t such
that a E Out(S,u) we have a r/. Out(I,u). Hence {a} E Refa.1t(I,u) ~
Refa.u(S, u) by Prop. 3.1, 5. We clearly have that the union of Out(S, u) n
La.ti and all one-element subsets of Refa.tt(S, u) must be equal to Latt• How
ever, since Out(S, u)nLo.tt E Refatt(S, u), it follows that La.It E Refa.1t(S, o-),
which proves that the second condition of the Def. 3.1 holds.

• The part 3. of Def. 3.1 holds trivially.

This proves that intop :::> conf.

4. and 5. follow directly from the definition of intop relation.

26

APPENDIX 4

Proof of Proposition 3.3

We will prove that intopred is a preorder.

1. intopred is reflexive since Tr(/) ~ Tr(/) and/ intop I (by Proposition 3.1.,
4.)

2. intopred is transitive: Let I intopred J and J intopred K. Then:

(a) (Tr(/)~ Tr(J) and Tr(J) ~ Tr(K)) *Tr(/)~ Tr(K)

(b) Let u E Tr(I(). Then

i. Refreq(l, u) ~ Refreq(J, <1) (from I intop J) and similarly
Ref.,.e9 (J, u) ~ Ref.,.e9(/(, u). These two relations imply Re/.,.e9(/, u) ~
Refreq(K, u).

ii. By the definition of the intop relation, 3a E L 0 1t n Out(J,u) such
that a E Out(!, u). Since u.a E Tr(J) ~ Tr(K) we conclude that

a E Lait n Out(K,u) and a E Out(I,u). Therefore, the second
requirement of Def. 3.1 is satisfied.

iii. Denote by B = La1t n (Out(!(, u)\Out(I, u)) and by O = La1t n
(Out(K, u)\Out(J, u)). a E O:::} u.a E Tr(K), but u.a ¢ Tr(J).
Therefore, u.a ¢ Tr(!). Thus a¢ Out(!, u). Hence C C B. Since
J intop K we have
Ref(J, u)\{R IR n C #<I>}~ Ref(K, u)
and consequently Ref(J, u)\ {RI Rn B =I-</>} ~ Ref(K, u). (*)
Put A= La1t n (Out(J, u)\Out(I, u)). Then,
Re J(I, u) \ { R I R n A # <I>} ~ Re J(J, u).
We have a E A * u.a, u.a ¢ Tr(I) * u.a E Tr(K) , u.a ¢
Tr(!)* a EB.
Thus, A C B. So, {R I Rn A =I- </>} c {R I Rn B =I- </>} and
therefore Re J(I, u) \ { R I R n B =/- <p} ~ Ref (I, u) \ { R I R n A =/
<I>} ~ Ref(J,u). Consequently, Ref(I,u)\{R I Rn B =I- </>} ~
R(J,u)\{R I Rn B #-</>}.By(*) it follows that
R(I,u)\{R I RnB =/- ¢,} ~ Ref(K,u).
This proves the third property in Def. 3.1, therefore I intop K.

(a) and (b) together prove that intopred is transitive. Therefore, intopred is a
preorder.

27

APPENDIX 5

Proof of the Theorem 4.1

First, observe that, by Definition 4.3, the concurrent execution of /1 and 12
includes both their independent simultaneous execution (i.e., II and 12 are com
municating with some other implementations 13 and /4), and their concurrent
execution where II and /2 are communicating with each other.

The first case is represented by independent interleaving in the interleaving
model of concurrency. The proof in this case follows directly from the trace set
inclusion property for the relation intopred {Def. 3.2., 1.).

Consider now the second case. For the purpose of this proof, we will consider
that the underlying NET connection has both sets of its PC Os (i.e. gates T and
S) attached to one protocol process I capable of running multiple connections.
Also, we assume that the specification S allows multiple concurrent processes cor
responding to these connections. Then, without loss of generality, the execution
of /1 and 12 can be viewed as the process l, specified as a parallel composition
of the corresponding multiple connections of the protocol specification S.

Let II intopred S and 12 intopred S, and let <7 E Tr(II II 12 II NET). Then
there exists a trace <71 (a prefix of <7) such that <71.a E Tr(/1 II 12 II NET) and
<71 E Tr(S). Denote by <7ti E Tr(II) (<712 E Tr(l2)) the projection of the trace
<71 on the events in /1 (/2 respectively). Observe that Il = a11 => ll' - a-+ or
12 = <712 => 12' - a-+. Then, <711 .a E Tr(/1) or <712 .a E Tr(/2). It follows that
(by the trace set inclusion for intopred relation and the operational semantics of
the parallel operator) if

{ll II 12 II NET)= <71 => (ll' II 12 II NET) - a-+ then
<71.a E Tr(S) and similarly for /2'. Therefore, every trace generated by the

concurrent execution of /1 and /2 is also a trace in S.

We next prove that (/1 11 12 11 NET) cannot deadlock after some <7.a E
Tr(ll 1112 II NET) if such a deadlock cannot occur after S = <7.a =>.
Suppose that, in our model, a is a lower interface event of the type Sa. Then,

(II II /2 II NET) =a'=> (II' 1112' II NET') =Sa-+ (II" 1112' II NET")
and

28

(11" II 12' II NET") -/a Ta=>
This, in particular, means that there exists a trace o-~2 E Tr(/2) such that
12 = o-12 => 12' -/a Ta=>. The proof is then completed by observing that,

1. o-_b E Tr(S) by the first part of the proof, and

2. Ta E Lreq (since Lalt is well defined) and Refreq(l2, ub) ~ Refreq(S, ub),
both by the assumptions of the theorem.

29

