
Formal Veri�cation by Symbolic Evaluation of Partially-Ordered

Trajectories�

Carl-Johan H. Seger

Department of Computer Science

University of British Columbia

Vancouver, B.C. V6T 1Z2 Canada

Randal E. Bryant

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213 USA

July 7, 1993

Abstract

Symbolic trajectory evaluation provides a means to formally verify properties of a sequential

system by a modi�ed form of symbolic simulation. The desired system properties are expressed

in a notation combining Boolean expressions and the temporal logic \next-time" operator. In

its simplest form, each property is expressed as an assertion [A =) C], where the antecedent

A expresses some assumed conditions on the system state over a bounded time period, and the

consequent C expresses conditions that should result. A generalization allows simple invariants

to be established and proven automatically.

The veri�er operates on system models in which the state space is ordered by \information

content". By suitable restrictions to the speci�cation notation, we guarantee that for every

trajectory formula, there is a unique weakest state trajectory that satis�es it. Therefore, we

can verify an assertion [A =) C] by simulating the system over the weakest trajectory for A

and testing adherence to C. Also, establishing invariants correspond to simple �xed point

calculations.

This paper presents the general theory underlying symbolic trajectory evaluation. It also

illustrates the application of the theory to the task of verifying switch-level circuits as well as

more abstract implementations.

1 Introduction

Verifying a digital system by conventional simulation is feasible only for very small systems, since

the large number of possible initial states and input sequences would require massive amounts of

case analysis. By exploiting a combination of abstraction and symbolic manipulation, on the other

hand, symbolic trajectory evaluation can verify the behavior of complex systems by a modi�ed form

of simulation. This method exploits abstraction by extending the system state space to include

elements representing sets of actual states, yielding a partially-ordered system model. A single

simulation sequence can then verify that the system would produce a unique result for a set of

initial states or input sequences. It exploits symbolic manipulation by a modi�ed form of symbolic

�This research was supported by the Defense Advanced Research Projects Agency, ARPA Order Number 4976,

by the National Science Foundation, under grant number MIP-8913667, by operating grant OGPO 109688 from the

Natural Sciences Research Council of Canada, and by a fellowship from the Advanced Systems Institute.

1

simulation. The Boolean expressions appearing in the system speci�cation are converted into

symbolic patterns for the simulator. Like a conventional simulation, a single run of the trajectory

evaluator models the system behavior over a single state sequence, although this sequence is both

symbolic and partially-ordered.

1.1 Partially-Ordered System Modeling

In earlier work, we demonstrated the utility of ternary modeling for verifying a variety of circuits

[9, 10]. Our methodology was based on ternary simulation of VLSI circuits, where a third value X

is added to the set f0; 1g of possible signal values, indicating an unknown or indeterminate logic

value. Assuming a monotonicity property of the simulation algorithm, one can ensure that any

binary (i.e., 0 or 1) values resulting when simulating patterns containing X's would also result when

the X's are replaced by any combination of 0's and 1's. Thus, the number of patterns that must

be simulated to verify a circuit can often be reduced dramatically by representing many di�erent

operating conditions by patterns containing X's. For example, we can verify that a particular

sequence of actions will yield a 1 (or 0) on some node regardless of the initial state by verifying

that this value results when starting from an initial state where all nodes are set to X. This requires

far less e�ort than analyzing the e�ect of the action on all possible initial binary states.

Ternary modeling is a special case of a more general abstraction technique based on partially-

ordered system models. That is, the actual state space of the circuit (in this case all possible

combinations of binary values) is extended with values representing sets of circuit states, such that

the resulting state set is partially ordered. With ternary simulation, a state with some nodes set

to X covers those circuit states obtained by replacing the X values with all combinations of 0 and

1. The state with all nodes set to X thus covers all possible actual circuit states. By extending the

next-state function of the circuit to one over the expanded state set, we can verify circuit behavior

for a set of di�erent operating conditions with a single simulation run. By suitable restrictions of

the speci�cation syntax and the extended next-state function, we can guarantee that any property

veri�ed on this more abstract form of simulation must also hold for the original circuit.

In this paper we generalize our previous results on ternary simulation to a wider class of

partially-ordered system models. This generalization simpli�es the presentation by allowing us

to focus on the essential properties of the abstraction technique while eliminating artifacts speci�c

to ternary modeling. It also allows us to apply our methods to more abstract data domains than

simple binary-valued signals.

1.2 Symbolic Simulation

Although ternary modeling, or its generalization, allows us to cover many conditions with a sin-

gle simulation sequence, it lacks the analytic power required for complete veri�cation, except for

restricted classes of circuits such as memories [9]. We have shown that by combining ternary mod-

eling with symbolic simulation [1], we can model even more complex sets of behaviors with a single

simulation run. With ternary symbolic simulation, the simulation algorithm designed to operate on

scalar values 0, 1, and X, is extended to operate on a set of symbolic values. Each symbolic value

indicates the value of a signal for many di�erent operating conditions, parameterized in terms of

a set of symbolic Boolean variables. In essence, ternary symbolic simulation allows us to combine

multiple ternary simulation sequences into a single symbolic sequence.

Simulators that support ternary modeling intentionally err on the side of pessimism for the sake

of e�ciency. That is, they will sometimes produce a value X even where exhaustive case analysis

would indicate that the value should be binary (i.e., 0 or 1). For example, most ternary simulators

evaluate logic functions in a ternary algebra created by extending the standard Boolean operators.

2

This algebra does not obey the law of excluded middle, because X + X = X, where + and are

ternary extensions of Boolean sum and complement, respectively. On the other hand, symbolic

simulation avoids this pessimism, because it can resolve the interdependencies among signal values,

and compute a+ a = 1 (the Boolean function that always yields 1). By combining the expressive

power of symbolic values with the computational e�ciency of ternary values, we can trade o�

precision for ease of computation.

1.3 Symbolic Trajectory Evaluation

Symbolic trajectory evaluation takes the notion of ternary symbolic simulation one step further by

providing a concrete means of specifying and verifying the desired behavior of the system operating

over time. In earlier papers [7, 11], we introduced the notion of symbolic trajectory evaluation for

ternary system models and demonstrated its utility on several actual circuits. In this paper we

generalize the technique to a wider class of system models and speci�cations. We also make our

previous, informal claims more precise and rigorous.

Our speci�cations take the form of symbolic trajectory formulas mixing Boolean expressions and

the temporal next-time operator. The Boolean expressions provide a convenient means of describing

many di�erent operating conditions in a compact form. By allowing only the most elementary of

temporal operators, the class of properties we can express is relatively restricted, as compared to

other temporal logics [14, 28]. Nonetheless, we have found that we can readily express many aspects

of synchronous digital systems at various levels of abstraction. It is quite adequate for expressing

many of the subtleties of system operation, including clocking conventions and pipelining.

Our decision algorithm is based on a generalized symbolic simulation. In its simplest form

it tests the validity of an assertion of the form [A =) C], where both A and C are trajectory

formulas. That is, it determines whether or not every state sequence satisfying A (the \antecedent")

must also satisfy C (the \consequent"). It does this by generating a symbolic simulation sequence

corresponding to the antecedent, and testing whether the resulting symbolic state sequence satis�es

the consequent.

A more complex condition of the form [A =) C]� ;G can also be veri�ed, where A and C are

trajectory formulas and G is an assertion. Intuitively, the formula is deemed to hold if and only if

for every sequence of states the system may go through, if the state sequence satis�es some number

of iterations of A, then it must also satisfy the same number of iterations of C and furthermore

the remaining sequence must satisfy G. Assertions of this form are useful for verifying circuits

that may remain in an idle state for an unbounded amount of time, e.g., for a processor held in

a \wait-state" by the memory subsystem. Our veri�cation method proves invariants of this form

by using symbolic simulation to compute a �xed-point which intuitively serves as a \summary" of

what states the system can be in after it has gone though any number of iterations of A.

An important property of our algorithm is that it requires a comparatively small amount of

simulation and symbolic manipulation to verify an assertion. The restrictions we impose on the for-

mula syntax guarantee that there is a unique weakest symbolic sequence satisfying the antecedent.

Furthermore, the symbolic manipulations involve only variables explicitly mentioned in the asser-

tion. Unlike other symbolic circuit veri�ers [3], we do not need to introduce extra variables denoting

the initial circuit state or possible primary inputs. Finally, the length of the simulation sequence

depends only on the depth of nesting of temporal next-time operators in the assertion and the

speed of convergence of the �xed-point calculations.

3

1.4 Related Work

Our approach to veri�cation relates most closely to the symbolic model checking algorithms devised

by a number of researchers [3, 13, 17]. Like our program, these algorithms verify that a �nite state

system, modeled symbolically, obeys a property expressed in temporal logic. Despite these general

similarities, however, there are signi�cant di�erences in the capabilities and complexities of the

algorithms. In particular, our method is the most restricted in terms of the class of systems that

can be modeled and in the properties that can be veri�ed. For example, the method of [13] can

model an arbitrary, nondeterministic system, since the system is described by a transition relation.

Our method can model some forms of nondeterministic behavior by encoding the set of possible

next states with the value corresponding to the greatest lower bound in the partial ordering. This

form of modeling would yield overly pessimistic results for highly divergent system behaviors,

however. These other algorithms can decide a class of formulas consisting of a complete branching

time, propositional temporal logic. Our method can only be used to verify properties of bounded

state sequences, intermixed with periods of invariant behavior. What we loose in expressive power,

however, we make up for in computational e�ciency. The computational e�ort required by our

veri�er is considerably less than theirs. Furthermore, our veri�er can operate by a generalized form

of simulation, making it possible to use a variety of detailed, simulation-based circuit and timing

models. One can view the combined e�ect of these research projects as providing a spectrum of

checking-based veri�ers that trade o� between expressiveness and performance.

Most other automated approaches to sequential circuit veri�cation are based on testing state

machine equivalence [16, 19]. Such methods are useful for comparing two di�erent (but hopefully

equivalent) representations of the system, such as one at a register-transfer level and one at a

gate level. However, they do not work well for verifying the correctness of incompletely speci�ed

systems, nor for reasoning about systems that employ methods, such as pipelining, that shift the

sequencing of activities in time. Furthermore, most of these methods assume that the system starts

in some known initial state. In actual circuits, the initial state usually cannot be predicted.

Symbolic simulation has been proposed by others as a hardware veri�cation technique. Bose

and Fisher have shown that these methods can be applied to complex circuits, including ones with

pipelining [2]. Their method, however, requires a complete characterization of the system by binary

symbolic simulation. That is, the user identi�es each place state is stored in the circuit, either as

charge on a node, or as a pair of complementary values within a static memory element. They

then symbolically simulate a single clock cycle, where each state variable and each input signal is

represented by a distinct Boolean variable, yielding a complete characterization of the next-state

functions for every state variable. This process of extracting the explicit next state function can be

quite costly. In contrast, our method represents the next state function implicitly as a combination

of circuit structure and simulation algorithm. We only compute the next state behavior for the

particular patterns required to verify a given assertion. These patterns involve far fewer variables

than is required by Bose and Fisher's functional extraction.

Other researchers have suggested symbolic simulation as a means of circuit veri�cation [18, 29].

None of this work has presented a clear methodology for sequential circuit veri�cation, however.

1.5 Outline of Paper

This paper presents the theoretical basis for symbolic trajectory evaluation. Following a summary of

the mathematical foundations, we describe the concept of partially-ordered system models and how

a system can be represented by the language consisting of all possible compatible state sequences,

referred to as trajectories. Next we introduce a \scalar" version of the speci�cation notation,

where only constant expressions are permitted. We show that any assertion in this notation can

4

be veri�ed by simulating the (unique) weakest state sequence satisfying the antecedent and testing

adherence to the consequent. We then show that the concepts generalize to the symbolic case,

where the speci�cations may contain expressions over a set of Boolean variables. One can view a

symbolic assertion as simply encoding a number of scalar assertions that can then be evaluated

simultaneously through symbolic simulation. Finally, we discuss some of the practical issues of

implementing and applying our theory to real-life digital circuits.

2 Mathematical Background

In this section we give precise de�nitions of many concepts that will be used throughout the paper.

Our goal here is to establish a mathematical foundation for the following sections. However, the

material is presented very concisely, and the reader may wish to refer to some introductory texts

for additional information. In general, we use calligraphic letters A;B; : : :, to denote sets and lower
case letters, a; b; : : :, to denote individual elements of sets. Unless otherwise stated, all sets are

assumed to be �nite.

The cartesian product A � B of two sets A and B is the set of all ordered pairs (a; b), where

a 2 A and b 2 B. A binary relation on a set B is any subset of B�B. Let R be a binary relation on

B, i.e., R � B � B. We say that R is reexive i� aRa for all a 2 B. Similarly, R is antisymmetric

i� aRb and bRa implies a = b for all a; b 2 B. Finally, R is transitive i� aRb and bRc implies aRc

for all a; b; c 2 B. A binary relation on B which is reexive, antisymmetric, and transitive is called

a partial order on B.
A poset (partially ordered set) is an ordered pair hS; v i, where S is a set and v is a partial

order on S. Intuitively, we will view a partial order as ordering the values by their \information

content." That is, elements less than others \contain less information".

If hS; v i is a poset, A � S, and b 2 S, then b is a lower bound of A i� bv a for all a 2 A. A
lower bound a of A is called greatest lower bound of A, written glb(A), if and only if bv a for every

lower bound b of A. The concept of upper bound and least upper bound of A, written lub(A), are
de�ned dually. If A = fa; bg, we will write glb(a; b) (lub(a; b)) rather than glb(fa; bg) (lub(fa; bg)).
Clearly, if glb(A) exists, it is unique, and the same holds for lub(A).

A poset hS; v i is said to have a universal lower bound ?2 S i� ? v a for every element a 2 S.
A poset is said to have a universal upper bound > 2 S i� av > for every element a 2 S.

A poset hS; v i is a complete lattice if lub(A) and glb(A) exist for every subset A � S. Given
that S is a �nite set, one can show [33] that if lub(a; b) and glb(a; b) exist for every a; b 2 S, then
hS; v i is a complete lattice. Note that, by de�nition, every complete lattice has a universal upper
bound > 2 S and a universal lower bound ?2 S.

If hS1; v1i; : : : ; hSn; vni are n complete lattices let S = S1 � : : :� Sn and for any a; b 2 S let

av b i� ai v i bi for 1 � i � n. It is easy to verify that hS; v i forms a complete lattice.
A mapping f :A ! B consists of a function f assigning an element b from the codomain B to

each element a of its domain A, written as b = f(a).

Given a poset hS; v i and a mapping f :S ! S, we say that f is monotone i�

av b =) f(a)v f(b)

This monotonicity de�nition is consistent with our use of information content. If a mapping is

monotone, we cannot \gain" any information by reducing the information content of the arguments

to the function.

A predicate over S is a special type of mapping S to the complete lattice with elements false and

true, with false as the universal lower bound and true as the universal upper bound. A predicate is

5

said to be simple i� p is monotone and there is a unique element p 2 S, called the de�ning value,

such that p(t) = true i� pv t for all t 2 S. Another way of stating this property is that p is a

simple predicate i� p is monotone and p(glb(fs 2 Sjp(s) = trueg)) = true.

A �xed-point of a mapping f :S ! S is a value a such that a = f(a). Furthermore, if hS; v i
is a complete lattice and f is monotone, then the mapping has a unique greatest �xed-point, i.e., a

�xed-point a such that a0 v a for any other �xed-point a0. This �xed-point is denoted Gfp a: f(a).

Furthermore, for the case where S is �nite, this �xed-point can be derived by iteratively computing

a0 = >, and ai = f(ai�1) for i > 0. Eventually some iteration step will yield ai = ai�1; this value

is the greatest �xed-point [33].

To express the behavior of a system working over time, we will reason about sequences of

elements from some set S. Conceptually, we will consider the sequences to be in�nite, although

the properties we will express can always be determined from some bounded length pre�x of the

sequence. Given a poset hS; v i, we extend the relation v to sequences pointwise. That is, if

� = �0�1 : : : and � = �0�1 : : : are two in�nite sequences of elements from S, then � v � i� �i v � i

for i � 0. Similarly, the de�nitions of lub and glb are extended pointwise. Finally, for notational

convenience, if � = �0�1�2 : : : we will often write � as �0~�, where ~� = �1�2 : : :.

3 Model Structure

The model we use of a system is simple and general. A model structure is a tupleM = [hS; v i; Y],
where hS; v i is a complete lattice and Y is a monotone successor function Y :S ! S. Intuitively,
the successor function is used to express constraints on the permissible sequences. In other words,

given that the system is in state s 2 S, we view Y (s) as denoting the least speci�ed state the

system can be in one time unit later. Here, \least speci�ed" is de�ned in terms of the partial order

v .

3.1 Structure Example

In order to make the theory easier to follow but also to provide a concrete application for the

general theory, we will use switch-level circuit veri�cation as a running example throughout the

paper. There are several reasons for this. First, there is a historical reason since this work grew

out of switch-level simulation and veri�cation. Secondly, there is a very close connection between

our notion of a model structure and the type of models that are used in switch-level simulation.

Nonetheless, the underlying concepts apply to more general classes of systems, examples of which

will be given later.

In switch-level models it is useful to allow each circuit node to take on one of three distinct

values. Let T = f0; 1;Xg denote such a set of values. There are several advantages in extending the
domain from f0; 1g to T . As a �rst advantage, this extension makes it possible to model an increased
range of circuit phenomena. For example, we can deal with circuits in which nondigital voltages are

generated in the course of normal circuit operation. This occurs frequently when modeling circuits

at the switch-level [6], due to (generally transient) short circuits or charge sharing. We can also

deal with circuits in which indeterminate behavior occurs due either to timing hazards or to circuit

oscillation. In all of these cases, the modeling algorithm expresses this uncertainty by assigning a

value X to the o�ending circuit nodes, indicating that the actual digital value cannot be determined

[12, 24]. Thus the value X is introduced to denote an \unknown" and possibly indeterminate value.

In order to formalize this concept of an \unknown" value, de�ne the partial order � on T as

follows: a � a for all a 2 T , X � 0, and X � 1. In Fig. 1 we show the Hasse diagram for the partial

6

 1

X

Figure 1: The � partial order.

order. We can view this partial ordering as ordering values by their \information content." That

is, X indicates an absence of information while 0 and 1 represent speci�c, fully-de�ned values.

Let T m, m � 1, denote the set of all possible vectors of ternary values of length m, i.e.,

fha1; : : : ; amijai 2 T ; 1 � i � mg. The partial order � is extended to T n pointwise: ~a � ~b i�

ai � bi for 1 � i � m. Unfortunately, hT m;�i is not a complete lattice, since the least upper

bound does not exist for every pair of elements in T m. We solve this by introducing a new top

element. In other words, let C = T m [f>g. Intuitively, one can either view > as the state vector

in which each node is both 0 and 1 at the same time or as an \overconstrained" state. We will

return to this later. Let v be the partial order on C de�ned as follows: sv > for every s 2 C and

if ~s;~t 2 T m then ~s v ~t i� ~s � ~t. Clearly, hC; v i forms a complete lattice in which ? = X; : : : ;X.

Thus we now have the �rst half of a model structure.

The underlying model of a switch-level circuit we use is quite simple, as well as general. A

circuit is a tuple (N ; ~y), where N is a set of nodes and ~y is a vector of excitation, or next state,

functions. In the mathematical presentation we will refer to the nodes as n1; n2; : : : ; nm, whereas

in our examples we often will use more descriptive names.

Since X is meant to denote an unknown value, a gate with an X on its input must treat this value

in a very conservative way. Consequently, the excitation functions are required to be monotone

with respect to the partial order �. This monotonicity requirement is consistent with our use of

information content. If a function is monotone, we cannot \gain" any information by reducing the

information content of the arguments to the function. In other words, changing some signals from

binary values to X will either have no e�ect on the next state values, or it will change some binary

values to X.

The excitation functions are de�ned in a non-traditional way. We view them as expressing

\constraints" on the values the nodes can take on one time unit later given the current values on

the nodes. By constraint we mean speci�c binary values, whereas the value X indicates that no

constraint is imposed. Since the value of an input is controlled by the external environment, the

circuit itself does not impose any constraint on the value; hence the excitation of an \input node"

is X. More formally, if node ni corresponds to an input to the circuit then yni
(~a) = X for every

~a 2 T m. Nodes that do not correspond to inputs are called function nodes. For a function node

ni the excitation function is a monotone ternary function yni
: T m ! T determined by the circuit

topology and functionality.

To illustrate our notion of excitation function, consider the CMOS circuit shown in Fig. 2. In

Fig. 3 we give a graphical representation of the next state function assuming the circuit behavior

is analyzed using a unit-delay model. Note that no matter what the current state is, the next state

function for the input is X. Also, if the current input is binary, it is easy to see that the output

one time unit later will be the complement of this value.

It should be pointed out that the \time unit" referred to above is the smallest period of time

that is distinguishable in the circuit model. The minimum delay in any individual component of

the circuit can be signi�cantly larger. Thus we are not limited to unit delay circuit models. For

7

n out

Figure 2: CMOS inverter.

0•1

0•X

X•X

0•0 X•0 1•1

X•1

1•X

1•0

Figure 3: Excitation function of unit delay inverter (in � out).

8

example, by using the transformation technique described in [30], both nominal delay and bounded

delay circuit models can be used. However, to make our example as simple as possible, we will use

a unit delay model unless otherwise stated.

In order to obtain a model structure, we only need to de�ne a monotone next time function

mapping C to C. We do this by extending ~y from T m ! T m to C ! C in the obvious way. Thus

de�ne:

Y (a) =

(
~y(a) if a 2 T m

> otherwise

Clearly, Y is monotone and thus MC = [hC; v i; Y] forms a model structure.

3.2 Trajectories

Let us now return to the more general theory in which [hS; v i; Y] is any model structure. Let S!

denote the set of all in�nite sequences of elements from S. In general, sequences are useful when

reasoning about model behaviors. However, not all sequences represent possible behaviors of a

model. The successor function generally restricts the possible sequences signi�cantly. We formalize

this property by introducing the concept of a trajectory. Given a model M and an arbitrary

sequence � = �0�1 : : : 2 S! we say that the sequence is a trajectory if and only if

Y (�i)v �i+1 for i � 0:

This rule for trajectories is consistent with our view of the successor function, i.e., a function

computing a constraint on the possible value of the successor state. Another way of describing the

next state function is to view it as computing the most general state the system can evolve into

during the next time step given its current state.

The set of all trajectories of modelM is denoted L(M). Occasionally it is convenient to restrict

the set of trajectories by requiring the �rst state in the trajectory to be greater than or equal to

some element in S. Consequently, de�ne

L(M; z) = f�0� j �0� 2 L(M) and z v �0g:

Note that L(M;?) = L(M).

The following proposition follows trivially from the de�nition of trajectories:

Proposition 1 If � = �0�1�2 : : : 2 L(M) then �1�2 : : : 2 L(M). In other words, the set L(M)

is su�x-closed, i.e. every su�x of every trajectory in L(M) is also in L(M).

Another way of stating Proposition 1 is to say that we assume that every state in S is a possible

initial state of the system.

In Fig. 4 we illustrate the set of all trajectories (L(MC)) for the unit delay inverter described

earlier. In this �gure, the set of labels encountered while traversing any in�nite path in the graph

denotes a trajectory. Before discussing this graph further, recall that the > state is used to represent

overconstrained states. In a matter of speaking, we consider that in is both 0 and 1 at the same

time in the state >. A similar remark holds for out. In view of this interpretation, we can draw

several conclusions from the graph. For example, we can see that for every trajectory �0�1 : : : such

that in is 1 in �0 we have that out is 0 in �1. The same statement holds with 0 replaced by 1 and

1 replaced by 0. At its core, our veri�cation methodology establishes properties such as these for a

given model structure. More speci�cally, in the next section we de�ne a small logic that allows us to

state properties like the ones above in a concise and unambiguous way. We then de�ne an e�cient

way of determining whether the formulas in the logic are valid for a particular model structure. In

fact, the main contribution of the paper is the development of a checking algorithm that only needs

to explore a tiny fraction of the complete state graph as opposed to how it is shown in Fig. 4.

9

0•1

0•X

X•X

0•0 X•0 1•1

X•1

1•X

1•0

Figure 4: L(MC) for a unit delay inverter.

4 Speci�cation Language

The basic speci�cation language we use is very simple. In fact, at a �rst glance it might appear

as if it can only be used to specify rather trivial behaviors. However, this is a bit of an illusion.

In particular, we will later in the paper extend the model structure to a symbolic domain and give

several examples of how non-trivial behaviors can be speci�ed in this language. By keeping the

language simple, we gain some very important properties. The most important is that there is a

unique weakest trajectory that satis�es a formula. By focusing initially on the scalar version, we

avoid the added complexity of the symbolic case while building a foundation upon which this more

general formulation can be based.

Assume hS; v i is a lattice with universal lower bound ?. Let P denote a set of simple predicates

over S. A trajectory formula is de�ned recursively as:

1. Simple predicates: p is a trajectory formula if p 2 P .

2. Conjunction: (F1 ^ F2) is a trajectory formula if F1 and F2 are trajectory formulas.

3. Domain restriction: (e ! F) is a trajectory formula if F is a trajectory formula and e is

either 0 or 1.

4. Next time: (NF) is a trajectory formula if F is a trajectory formula.

A trajectory formula is said to be instantaneous if it contains no next-time operators. Such a

formula expresses system properties at only a single point in time. For convenience, we often

drop parentheses when the intended precedence is clear. The domain restriction appears at �rst

somewhat strange. Its usefulness will not become apparent until later when we extend the trajectory

formulas to a symbolic domain.

10

The set of simple predicates is arbitrary. However, for convenience, we will always assume that

the predicate p0(s) � true is in P . Observe that p0 is indeed a simple predicate with de�ning value

?.
In switch-level veri�cation the natural simple predicates are of the following form:

1. (ni is 0) where ni 2 N , and

2. (ni is 1) where ni 2 N .

In other words, our simple predicates ask whether a node in the circuit is known to be 0 or 1. It

is easy to see that (ni is 0) and (ni is 1) are indeed simple with de�ning values

hX; : : : ;X; 0;X; : : : ;Xi

and

hX; : : : ;X; 1;X; : : : ;Xi;

where the 0 (1) is in position i. The only somewhat strange property of these predicates is that

they are both true in the (arti�cially introduced) > state. We ask the reader to simply accept this

for the time being. We will discuss the rami�cations of this later. For our example circuit of Fig. 2

we will use the �ve simple predicates: true, in is 0, in is 1, out is 0, and out is 1 with de�ning

values hXXi, h0Xi, h1Xi, hX0i, and hX1i respectively.
A trajectory formula describes constraints on some pre�x of a trajectory. In order to refer to

the length of this pre�x, we introduce the concept of \depth" for trajectory formulas. The depth

of a formula F , written d(F), is de�ned recursively.

1. d(p) = 1 if p 2 P is a simple predicate.

2. d(F1 ^ F2) = max(d(F1); d(F2)).

3. d(e! F) = d(F).

4. d(NF) = 1 + d(F).

The depth of a formula is simply the maximum number of nested next time operators plus one.

As a notational convenience, we de�ne for any trajectory formula F

F [i] =

(
F if i = 1

F ^Nd(F)(F [i�1]) otherwise,

where Nk
F denotes (N(N(: : :(F) : : :))) with k next-time operators. This notation allows us to

express a condition that repeats over time. For example, the formula (in is 0)[3] states that node

in stays at 0 for 3 consecutive time units. This is more concise than writing out the formula as

(in is 0) ^N(in is 0) ^NN(in is 0).

For our example circuit of Fig. 2 we can thus write trajectory formulas like:

(in is 0)^N(out is 1)

and

(0! ((in is 0)^N(out is 1)))^ (1! ((in is 1)^N(out is 0))):

The truth semantics of a trajectory formula is de�ned relative to a model structure and a

trajectory. In particular, given a model structure M and a trajectory �, the truth of a trajectory

formula F , written � j=
M
F , is de�ned recursively. In the following, assume that both � and �0~�

are members of L(M).

11

1. �0~� j=
M
p i� p(�0) = true.

2. � j=
M
(F1 ^ F2) i� � j=

M
F1 and � j=

M
F2

3. (a) � j=
M
(1! F) i� � j=

M
F

(b) � j=
M
(0! F) holds for every �.

4. �0~� j=
M
NF i� ~� j=

M
F .

For example, given the trajectory � = h00ih01ihXXihXXi : : : for the circuit shown in Fig. 2, it

is easy to verify that � j=
M
(in is 0) ^N(in is 0), but that

� 6j=
M
(0! ((in is 0)^N(out is 1)))^ (1! ((in is 1)^N(out is 0))):

5 Properties of Trajectory Formulas

We can extend the de�nition of simplicity from predicates to formulas in the obvious way, i.e., given

a model structure M, a formula F is said to be simple i� there is a de�ning trajectory � 2 L(M)

such that � j=
M
F i� � v �. In this section we �rst show that trajectory formulas are simple.

We then show how the de�ning sequence can be constructed. The construction is direct and very

e�cient. As a result, if the main veri�cation task can be phrased in terms of \for every trajectory

� that satis�es the trajectory formula A, verify that the trajectory also satis�es the formula C", it

becomes obvious how the veri�cation can be carried out: compute the de�ning trajectory for the

formula A and check that the formula C holds for this trajectory.

Before we can continue, we need a monotonicity result for trajectory formulas. The following

lemma states that if a trajectory formula holds for some trajectory �, then it also holds for every

trajectory � such that � v � .

Lemma 1 If �; � 2 L(M) and � v � then

� j=
M
F =) � j=

M
F

Proof: We prove the claim by induction on the formula structure. For the basis case, if F = p, for

some simple predicate p 2 P with de�ning value p, then if � = �0~� and � j=
M
F it follows from the

truth semantics of F that p(�0) = true. By the de�nition of a simple predicate it thus follows that

pv �0. If � = �0~� it follows from the fact that � v � that pv �0 v �0. Hence, we can conclude

that �0~� j=
M
F .

If F = (F1 ^ F2) then � j=
M
F implies that � j=

M
F1 and � j=

M
F2. Assuming inductively

that the claim holds for the formulas F1 and F2, it follows that � j=M F1 and that � j=
M
F2. This,

together with the truth semantics for F , imply that � j=
M
F .

If F = (1! F1) and � j=
M
F then, by the truth semantics, it follows that � j=

M
F1. Assuming

inductively that the claim holds for F1, i.e., that � j=M F1, it follows directly that � j=
M
F . On

the other hand, if F = (0 ! F1) then the claim follows trivially since (0 ! F1) holds for every

trajectory in L(M).

Finally, if F = NF1 then, by the truth semantics, �0~� j=
M
F implies that ~� j=

M
F1. Assuming

inductively that the claim holds for F1, i.e., that ~� j=M F1, it follows immediately that �
0~� j=

M
F .

Before stating our next result, it is convenient to introduce an in�x \choice" function mapping

f0; 1g� S! to S! and which is de�ned as:

e?� =

(
� if e = 1

?? : : : otherwise

12

We now show that given a trajectory formula F we can construct its de�ning sequence �F . This

sequence is the weakest possible in the sense that � j=
M
F i� � v �. Note that �F is not necessarily

a trajectory. We de�ne �F recursively as follows:

1. �p = p ?? : : : if p 2 P is a simple predicate with de�ning value p.

2. �F1^F2 = lub(�F1 ; �F2).

3. �e!F = e?�F .

4. �NF
=?�F .

For the particular case of switch-level veri�cation and the model structure MC, consider the

trajectory formula: f = (in is 0) ^N(in is 0). It is straightforward to see that

�
in is 0

= h0Xi hXXi hXXi : : :
�N(in is 0)

= hXXi h0Xi hXXi hXXi : : :

�
(in is 0)^N(in is 0)

= h0Xi h0Xi hXXi hXXi : : :

Note that �f is not a trajectory as can be seen from Fig. 4. However, it is clearly smaller than several

trajectories. For example, �f v h0Xi h01i hX1i hXXi : : : and �f v h0Xi h01i h01i hX1i hXXi : : :.
In general, we have the following result.

Lemma 2 For any trajectory formula F let �F be constructed as above. Then for every � 2 L(M)

� j=
M
F () �F v �

Proof: Assume that � 2 L(M), � j=
M

F , and that � = �0~�. We �rst prove that �F v � by

induction on the formula structure.

For the basis, if F = p, for some simple predicate p 2 P with de�ning value p, then, by

de�nition, �0~� j=
M
F implies that pv �0. Thus, since �F = p ?? : : : v �0~� = �, the basis holds.

Thus assume inductively that the claim holds for formulas F1 and F2.

If F = (F1^F2) then � j=M F implies that � j=
M
F1 and � j=M F2. By the induction hypothesis

it thus follows that �F1 v � and that �F2 v �. Hence, � is an upper bound on both �F1 and �F1 .

Consequently, � is also an upper bound on lub(�F1 ; �F2), i.e., �F = lub(�F1 ; �F2)v �, and the claim

follows.

If F = (1 ! F) then � j=
M
F implies that � j=

M
F1, and thus, by the inductive assumption,

that �F1 v �. However, by de�nition, �F = �F1 and the result follows. On the other hand, if

F = (0! F) then �F =?? : : : and the result follows trivially.

Finally, if F = NF1 then �0~� j=
M
F implies that ~� j=

M
F1. By Proposition 1 it follows that

~� 2 L(M). Therefore, by the induction hypothesis, it follows that �F1 v ~�. Since �F =?�F1 v �0~�

the result follows, and the induction step goes through.

Conversely, we now show that if � = �0~� is a trajectory in L(M) and �F v �, then � j=
M
F .

Again, we show this by induction on the structure of F .

For the basis, if F = p, for some simple predicate p 2 P with de�ning value p, then, by

de�nition, �F = p ?? : : :. Since, by assumption, �F v �0~� it follows that pv �0 and thus that

� j=
M
F and the basis holds. Hence, assume inductively that �F1 v � and �F2 v � implies � j=

M
F1

and � j=
M
F2.

If F = (F1 ^ F2) then �F = lub(�F1 ; �F2). This together with the assumption �F v � and the

de�nition of lub imply that �F1 v � and that �F2 v �. Hence, by the induction hypothesis, � j=
M
F1

and � j=
M
F2. By the truth semantics it thus follows that � j=

M
F .

13

If F = (1 ! F) then �F = �F1 . Since, by assumption, �F v � it follows that �F1 v �. Hence,

by the induction hypothesis, it follows that � j=
M
F1. Together with the truth semantics we can

conclude that � j=
M
F . On the other hand, if F = (0 ! F) then then the result holds trivially

since � j=
M
F holds for every � 2 L(M).

Finally, if F = NF1 then �F =? �F1 . Since, by assumption, �F v � = �0~� it thus follows

that �F1 v ~� and thus, by the induction hypothesis, that ~� j=
M
F1. Consequently, by the truth

semantics, we can conclude that � j=
M
F and the induction goes through and the claim follows.

From the above lemma we know that any trajectory satisfying F must be greater than or equal

to its de�ning sequence �F . Thus computing �F and then determining if a trajectory is greater than

or equal to �F allows us to quickly test whether the trajectory satis�es the formula F . However, �F
is not necessarily itself a trajectory. In the following we will show how to combine the constraints

on a state sequence implied by �F with those imposed by the system's excitation function to give

a trajectory. In fact, we will show that the obtained trajectory is the weakest possible trajectory

satisfying F .

It turns out that a slightly more general concept than a de�ning trajectory is often useful.

Thus, assume �F = �0
F
�1
F
: : : is the de�ning sequence for a formula F . De�ne �F (z) = �0

F
(z)�1

F
(z) : : :

inductively as follows:

� i
F
(z) =

(
lub(�0

F
; z) if i = 0

lub(�i
F
; Y (� i�1

F
(z))) otherwise

To illustrate the above construction, let us return to the trajectory formula f = (in is 0) ^N(in is 0)

with de�ning sequence �f = h0Xi h0Xi hXXi hXXi : : :. Assume we would like to compute

�f (?) = �f(XX). From the construction above, it follows immediately that

�0
f
(?) = 0X

�1
f
(?) = lub(�1

f
; Y (0X)) = lub(0X;X1) = 01

�2
f
(?) = lub(�2

f
; Y (01)) = lub(XX;X1) = X1

�3
f
(?) = lub(�3

f
; Y (X1)) = lub(XX;XX) = XX

� i
f
(?) = XX for i � 4

and thus that �f (?) = h0Xi h01i hX1i hXXi hXXi : : :. Note that from Fig. 4 we can immediately

see that �f (?) is a trajectory. It is more di�cult to verify, but from Fig. 4 and the truth semantics

of f , it can be seen that �f(?) is the smallest trajectory that satis�es f and that every other

trajectory that satis�es f is greater than �f(?). This is in fact no coincidence as we now will go

on to show.

Before we establish the main properties of �F (z), the following monotonicity property will be

needed.

Lemma 3 If sv t then �F (s)v �F (t), for any trajectory formula F .

Proof: We prove that � i
F
(s)v � i

F
(t) by induction on i. For the base case we have that �0

F
(s) =

lub(s; �0
F
)v lub(t; �0

F
) = �0

F
(s) by the monotonicity of lub. Assume now inductively that � i

F
(s)v � i

F
(t)

for some i � 0. It follows from the de�nition of � i+1
F

(z), the induction hypothesis, and the mono-

tonicity of lub and Y that � i+1
F

(s) = lub(�i+1
F

; Y (� i
F
(s)))v lub(�i+1

F
; Y (� i

F
(t))) = � i+1

F
(t) and the

claim follows.

The second key lemma of this section states that there is a de�ning trajectory for every trajec-

tory formula F and start condition z. More formally:

14

Lemma 4 Assume �F (z) is de�ned as above, then:

1. �F (z) 2 L(M; z),

2. �F (z) j=M F , and

3. for every � 2 L(M; z)

� j=
M
F () �F (z)v �

Proof: In order to prove that �F (z) 2 L(M; z) it is su�cient to show that z v �0
F
(z) and that

Y (� i�1
F

(z))v � i
F
(z) for i � 1. Since �0

F
(z) = lub(z; �0

F
), we can immediately conclude that z v �0

F
(z).

On the other hand, by the de�nition of lub it follows that for i � 1,

Y (� i�1
F

(z))v lub(�i
F
; Y (� i�1

F
(z))):

However � i
F
(z) = lub(�i

F
; Y (� i�1

F
(z))), and thus Y (� i�1

F
(z))v � i

F
(z) for i � 1. Altogether, �F (z) 2

L(M; z).

By the de�nition of lub it also follows that

�i
F
v lub(�i

F
; Y (� i�1

F
(z))) = � i

F
(z) for i � 1:

Hence, �F v �F (z). This, together with the fact that �F (z) 2 L(M; z) � L(M), means that

Lemma 2 apply. Thus, �F (z) j=M F .

Now assume � 2 L(M; z). Since �F (z) is a trajectory and �F (z) j=M F we can apply Lemma 1.

Hence, if �F (z)v � then � j=
M
F .

Finally, we establish the converse by showing that for any � 2 L(M; z), �F (z)v �. Thus,

assume � = �0�1 : : : is a trajectory, z v �0, and that � j=
M
F . We prove by induction on i that

� i
F
(z)v �i.

Since � = �0~� is a trajectory, Lemma 2 applies. Consequently, �0~� j=
M
F implies that �F =

�0
F
�1
F
: : : v �0~� = �. Furthermore, since � = �0~� 2 L(M; z) it follows that z v �0. In other words,

�0 is an upper bound for both z and �0
F
and thus lub(z; �0

F
)v �0. However, since �0

F
(z) = lub(z; �0

F
)

it follows directly that �0
F
(z)v �0 and the basis case holds.

Now assume inductively that � i
F
(z)v �i for some i > 0. Since � is a trajectory, it follows

that Y (�i)v �i+1. Also, by Lemma 2 we know that �F v � and thus that �i+1
F

v �i+1. To-

gether, these facts imply that �i+1 is an upper bound to both Y (�i) and �i+1
F

. Consequently,

lub(�i+1
F

; Y (�i))v �i+1. However, by the induction hypothesis, � i
F
(z)v �i. Hence, by the mono-

tonicity of Y and lub, it follows that

� i+1
F

(z) = lub(�i+1
F

; Y (� i
F
(z)))v lub(�i+1

F
; Y (�i))v �i+1

and the induction step goes through and the lemma follows.

Another way of stating this lemma is that every trajectory formula F is simple with de�ning

trajectory �F (?).
The above lemmas give a simple method for computing the de�ning trajectory and the de�ning

sequence for a trajectory formula. Unfortunately, there is a practical di�culty, since both the

de�ning trajectory and the de�ning sequence are theoretically in�nite sequences. The following

technical lemma will be useful later to show that only a �nite pre�x of the de�ning trajectories and

sequences are needed.

Lemma 5 Let F be a trajectory formula and let �F = �0
F
�1
F
: : : be the de�ning sequence for formula

F . Then �i
F
= ? for i � d(F).

15

Proof: We prove the claim by induction on the formula structure. For the basis, if F = p, for some

simple predicate p with de�ning value p, then �F = p ?? : : :. Since, d(p) = 1, it follows directly

that �i
F
=? for i � d(F) and the basis holds.

Assume inductively that �i
F1

=? for i � d(F1) and that �
i

F2
=? for i � d(F2) for some trajectory

formulas F1 and F2. If F = F1 ^ F2 then d(F) = max(d(F1); d(F2)). Consider any i � d(F). Since

d(F) � d(F1) and d(F) � d(F2) it follows from the induction hypothesis that �i
F1

=? and that

�i
F2

=?. Furthermore, since �F = lub(�F1 ; �F2) we can conclude that �i
F
=?.

If F = e ! F1 then there are two cases to consider. If e = 0 then �F =?? : : : and the claim

follows trivially. On the other hand, if e = 1 then �F = �F1 . By the induction hypothesis, �i
F1

=?
for every i � d(F1). Since, d(F) = d(F1), we can conclude that �i

F
=? for every i � d(F).

Finally, if F =NF1 then �F =? �F1 . By the induction hypothesis, �i
F1

=? for every i � d(F1).

Consequently, �i
F
=? for every i � d(F1)+1. However, d(F) = 1+d(F1) and thus �i

F
=? for every

i � d(F).

From this result we immediately get the following corollary.

Corollary 1 Assume A and C are two trajectory formulas. Let �A = �0
A
�1
A
: : : be the de�ning

trajectory for formula A and let �C = �0
C
�1
C
: : : be the de�ning sequence for formula C. Then

�C v �A i� �i
C
v � i

A
for 0 � i < d(C)

6 Veri�cation Methodology

Our speci�cation language describes a property of the systemM as a \trajectory assertion". Again,

we have chosen a quite limited language in order to gain e�ciency. We have three types of con-

structs: simple assertions, sequences, and iterations. Simple assertions are of the form \if the

system ever goes through a sequence of states satisfying trajectory formula A, then the sequence

of states better also satisfy the trajectory formula C". Sequences of assertions allow representing

system behaviors that shift from one \mode" to another. For example, it is convenient to use in

describing the desired behavior during each clock cycle for a microprocessor during the execution

of a multi-cycle instruction. Finally, a simple assertion can also be iterated an arbitrary number of

times. This construct is primarily useful for, automatically, establishing and proving invariants of

the system. For example, a typical use of the iteration construct is when specifying the possibility

of an arbitrary number of wait-states in a microprocessor. More speci�cally, we may want to verify

that the processor works correctly no matter how many wait-states the external memory interface

imposes. This could be accomplished by describing the constraints on the inputs during \wait

cycles" and iterate this simple assertion an arbitrary number of times.

More formally, a trajectory assertion is de�ned recursively as:

1. Simple assertions: [A =) C], where A and C are trajectory formulas and d(A) = d(C).

2. Sequences: [A =) C] ;G1, where A and C are trajectory formulas, d(A) = d(C), and G1 is

a trajectory assertion.

3. Iterations: [A =) C]� ;G1, where A and C are trajectory formulas, d(A) = d(C), and G1

is a trajectory assertion.

A trajectory assertion that does not contain any iteration, is said to be iteration-free.

The de�nition of a trajectory assertion is somewhat restrictive. For example, it does not allow

a trajectory assertion to end with an iteration. The reason for this restriction is to simplify the

16

de�nition of the truth semantics of trajectory assertions. In practice, it turns out not to be a serious

restriction since one can always append [true =) true] to an assertion that otherwise would end

with an iteration.

To illustrate trajectory assertions, consider �rst our inverter circuit of Fig. 2. The following

two assertions can constitute our speci�cation of a unit-delay inverter:

[in is 0^Ntrue =) Nout is 1]

and

[in is 1^Ntrue =) Nout is 0] :

Note that the Ntrue parts in the antecedents are simply there in order to make the depth of

the antecedent equal the depth of the consequent. In a practical system, these \�ller" functions

would be added automatically by the veri�cation system and thus would not have to be expressed

explicitly. However, in order to simplify the presentation of the general theory we have opted to

require the depth of the antecedent to be equal to the depth of the consequent.

1
n2

n3

n4 n5

Figure 5: Switch-level latch.

Our next example shows the use of the sequence construct. Consider the switch-level circuit

shown in Fig. 5. Intuitively, n1 is the input to a latch, n3 is the clock signal, n4 is the electrical

node that stores the state when the clock is low, and n5 is the output of the output bu�er. If the

state of the circuit currently is t 2 T 5, a typical switch-level analysis of the circuit would derive

the excitation functions:

y1(t) = X y2(t) = t1 y3(t) = X y4(t) = t1t4 + t3t1 + t3t4 y5(t) = t4

where all operators are assumed to be ternary. That is, nodes n1 and n3, being input nodes, have

excitation X. Nodes n2 and n5 are the outputs of simple inverters. Depending on the control signal

on n3, node n4 will either retain its stored charge (t3 = 0), or get the value from the �rst inverter

(t3 = 1). If t3 = X, node n4 will have a binary excitation only if the inverter output matches

the value already on the node, and value X otherwise. Such excitation functions can be derived

automatically from the transistor representation of the circuit by symbolic circuit analysis [6].

Since the latch is a sequential circuit and the clock signal changes the behavior quite drastically,

it is natural to specify the desired behavior as a sequence of sub-behaviors|one for each clock phase.

For example, a fairly natural trajectory assertion for the circuit that we may want to check may

look like:

G1 =
h
((n1 is 1) ^ (n3 is 1))

[2] =) true
[2]
i
;
h
(n3 is 0)

[2] =) (n5 is 1)
[2]
i
:

17

Recall that F [2] = F ^NF for an instantaneous trajectory formula F .

There is one subtle problem with specifying the desired behavior of the latch in the way shown

above. The problem is that we may be over-specifying the required behavior. In general, the desired

behavior of a latch can be expressed informally as: \given that the clock cycle is longer than some

minimum time the circuit can load an input when the clock is high and retain it when the clock

goes low". It is quite natural to use the iteration construct to formulate such a speci�cation. For

the same operation as above, the more general speci�cation would be written as:

G2 =
h
((n1 is 1) ^ (n3 is 1))

[2] =) true
[2]
i
; [(n1 is 1)^ (n3 is 1) =) true]� ;

[(n3 is 0) =) (n5 is 1)]
� ; [true =) true] :

Intuitively, we are here stating that if the clock is high and the input is 1 for at least two time units

and then the clock goes low, the output will remain 1. Note that a circuit that passes G2 will pass

G1, but the opposite does not necessarily hold.

Before we de�ne the truth semantics of a trajectory assertion we need to introduce a function

that removes some of the �rst elements in a sequence. Let the su�x of a sequence � be de�ned

recursively as follows:

su�x(n; �0~�) =

(
�0~� if n = 0

su�x(n� 1; �) otherwise.

Intuitively, the su�x function applied to some sequence removes the �rst n elements in the sequence.

The truth semantics of a trajectory assertion is de�ned relative to a model structure and a set

of trajectories in this model structure. In particular, given a model structure M and a set L of

trajectories, the truth of a trajectory assertion G, written L j=
M
G, is de�ned recursively as follows:

1. L j=
M
[A =) C] holds i� � j=

M
A implies � j=

M
C for all � 2 L.

2. L j=
M
[A =) C] ;G1 holds i� L j=

M
[A =) C] and ~L j=

M
G1, where

~L = f~� j ~� = su�x(d(A); �); � 2 L and � j=
M
Ag:

3. L j=
M
[A =) C]� ;G1 holds i� L j=

M
G1 and 8i � 1: L j=

M

h
A[i] =) C[i]

i
;G1.

Since we often require a trajectory assertion to hold for all possible trajectories, we use the

shorthand j=
M
G to denote L(M) j=

M
G.

Returning to our examples of trajectory assertions above, we can easily see from Fig. 4 that

L(MC) j=
M
[in is 0 ^Ntrue =) Nout is 1] ;

and that

L(MC) j=
M
[in is 1 ^Ntrue =) Nout is 0] :

What we will show in this section is how to determine the validity of a trajectory assertion without

having to compute the complete state space as was done in Fig. 4.

The following, rather technical, lemma will be useful later.

Lemma 6 Given a model structure M, an initial state z 2 S, and a trajectory formula F with

de�ning trajectory �0
F
(z)�1

F
(z) : : :, let ~L = f~� j ~� = su�x(d(F); �); � 2 L(M; z) and � j=

M
Fg.

Then ~L = L(M; �
d(F)

F
(z)).

18

Proof: Assume �rst that ~� 2 ~L. This implies that there is a � 2 L(M; z) such that � j=
M
F and

~� = su�x(d(F); �). Since ~� = su�x(d(F); �) and � 2 L(M; z) � L(M) we can conclude from

Proposition 1 that ~� 2 L(M). Hence, in order to prove that ~� 2 L(M; �
d(F)
F

(z)) it su�ces to

show that �
d(F)

F
(z)v ~�0. By Lemma 4 we know that �F (z)v � i� � j=

M
F for all � 2 L(M; z). In

particular, �
d(F)

F
(z)v �d(F) = ~�0 and the claim follows.

Conversely, assume ~� 2 L(M; �
d(F)
F

(z)). De�ne � = �0�1 : : : as follows:

�i =

(
� i
F
(z) if i < d(F)

~�i�d(F) otherwise

Clearly su�x(d(F); �) = ~�. If we now can show that � 2 L(M; z) and that � j=
M
F it would follow

that ~� 2 ~L and the claim of the lemma would be established.

In order to prove that � 2 L(M; z) we must establish that z v �0 and that Y (�i)v �i+1 for

i � 0. To show the former, note that, by de�nition, d(F) > 0 and thus �0 = �0
F
(z) = lub(z; �0

F
)

and therefore z v �0. In order to prove the latter we need to consider three cases. If 0 � i �
d(F) � 2, then �i+1 = � i+1

F
(z) = lub(�i+1

F
; Y (�i)) and thus Y (�i)v �i+1. On the other hand,

if i � d(F) then �i+1 = ~�i+1�d(F) and �i = ~�i�d(F). Since ~� 2 L(M; �
d(F)
F

(z)) � L(M) it

follows that Y (�i) = Y (~�i�d(F))v ~�i+1�d(F) = �i+1. Finally, since ~� 2 L(M; �
d(F)
F

(z)) it follows

that �
d(F)

F
(z)v ~�0 = �d(F). This, together with the fact that �

d(F)

F
(z) = lub(�

d(F)

F
; Y (�

d(F)�1

F
(z))),

implies that Y (�d(F)�1) = Y (�
d(F)�1

F
(z))v �

d(F)

F
(z)v �d(F). Altogether, Y (�i)v �i+1 for i � 0

and thus � 2 L(M; z).

By Lemma 4 we know that �F (z) j=M F . If we can prove that �F (z)v � then, by Lemma 1,

it would follow that � j=
M

F . We prove that � i
F
(z)v �i for i � 0 by induction on i. For the

basis, �0 = �0
F
(z) and the claim holds trivially. Now assume inductively that the claim holds for

some i � 1 � 0 and consider i. There are three cases to consider. If 0 � i � d(F) � 1 then

�i = � i
F
(z) and the claim follows trivially. On the other hand, if i = d(F) then �d(F) = ~�0.

Since ~� 2 L(M; �
d(F)
F

(z)) it follows that �
d(F)
F

(z)v ~�0 and the claim follows. Finally, if i > d(F)

then � i
F
(z) = lub(�i

F
; Y (� i�1

F
)). However, by Lemma 5, �i

F
= ? for i > d(F). Consequently,

� i
F
(z) = Y (� i�1

F
). Since we already has established that � 2 L(M; z) � L(M) it follows that

Y (�i�1)v �i. This, together with the induction hypothesis and the monotonicity of Y , implies

that � i
F
(z) = Y (� i�1

F
)v Y (�i�1)v �i. In all cases the induction step goes through and the claim

follows.

From the above lemma and the de�nition of L(M; z) the following proposition follows directly.

Proposition 2 Given a model structure M, an initial state z, and a trajectory assertion G, the

validity of L(M; z) j=
M
G can be computed recursively as follows:

1. L(M; z) j=
M
[A =) C] holds i� � j=

M
A implies � j=

M
C for all � 2 L(M; z).

2. L(M; z) j=
M
[A =) C] ;G1 holds i� L(M; z) j=

M
[A =) C] and L(M; �

d(A)
A

(z)) j=
M
G1.

3. L(M; z) j=
M
[A =) C]� ;G1 holds i� L(M; z) j=

M
G1 and 8i � 1: L(M; z) j=

M

h
A[i] =) C[i]

i
;G1.

In view of the properties of de�ning sequences and trajectories derived in the previous section,

our main veri�cation method is captured in the following \satisfaction" predicate for trajectory

assertions. The predicate is de�ned recursively as:

1. SAT(z, [A =) C]) i� �C v �A(z).

19

2. SAT(z, [A =) C] ;G1) i� SAT(z, [A =) C]) and SAT(�
d(A)

A
(z), G1).

3. SAT(z, [A =) C]� ;G1) i� SAT(~z, G1) and SAT(~z, [A =) C]), where

~z = Gfp �: glb(z; �
d(A)

A
(�)):

The greatest �xed-point above is well de�ned and can be computed iteratively since the domain S

is a �nite lattice and glb(z; �
d(A)
A

(�)) is monotone in �.

Again returning to our inverter example, we will illustrate the computation of

SAT(?, [(in is 0)^Ntrue =) N(out is 1)]):

First, from Section 5 we get that

�N(out is 1)
= hXXi hX1i hXXi hXXi : : :

and that

�
(in is 0)^Ntrue

(?) = h0Xi hX1i hXXi : : : :

Consequently, we have �N(out is 1)
v �

(in is 0)^Ntrue
(?) and, from the de�nition of v and SAT,

that SAT(?, [(in is 0) ^Ntrue =) N(out is 1)]) holds.

To illustrate the computation of SAT for a more complex trajectory assertion, consider again

the circuit shown in Fig. 5 and the assertion

G1 =
h
((n1 is 1) ^ (n3 is 1))

[2] =) true
[2]
i
;
h
(n3 is 0)

[2] =) (n5 is 1)
[2]
i
:

For convenience, let A1 = ((n1 is 1)^ (n3 is 1))
[2], C1 = true

[2], A2 = n3 is 0, and C2 = (n5 is 1)
[2].

Note that d(A1) = d(C1) = 2 and d(A2) = d(C2) = 2. In order to compute SAT(?, G1), we �rst

compute �A1
(?) = �A1

(hXXXXXi). From the de�nition of de�ning sequence, we get that

�A1
= h1X1XXih1X1XXihXXXXXihXXXXXi : : :

and thus

�0
A1
(hXXXXXi) = lub(�0

A1
; hXXXXXi) = h1X1XXi

�1
A1
(hXXXXXi) = lub(�1

A1
; Y (h1X1XXi)) = lub(h1X1XXi; hX0X0Xi) = h1010Xi

�2
A1
(hXXXXXi) = lub(�2

A1
; Y (h1010Xi)) = lub(hXXXXXi; hX0X01i) = hX0X01i

�3
A1
(hXXXXXi) = lub(�3

A1
; Y (hX0X01i)) = lub(hXXXXXi; hXXXX1i) = hXXXX1i

�4
A1
(hXXXXXi) = lub(�4

A1
; Y (hXXXX1i)) = lub(hXXXXXi; hXXXXXi) = hXXXXXi

� i
A1
(hXXXXXi) = hXXXXXi for i � 5:

In particular, �
d(A1)

A1
(?) = hX0X01i. Also, since C1 = true

[2], and thus �C1
= ?? : : :, it follows that

�C1
v �A1

(?) and therefore that SAT(?, [A1 =) C1]) holds. Similarly, we get

�A2
= hXX0XXihXX0XXihXXXXXihXXXXXi : : :

Since, �
d(A1)

A1
(?) = hX0X01i, we get that �A2

(�
d(A1)

A1
(?)) = �A2

(hX0X01i) equals

�0
A2
(hX0X01i) = lub(�0

A2
; hX0X01i) = hX0001i

�1
A2
(hX0X01i) = lub(�1

A2
; Y (hX0001i)) = lub(hXX0XXi; hXXX01i) = hXX001i

�2
A2
(hX0X01i) = lub(�2

A2
; Y (hXX001i)) = lub(hXXXXXi; hXXX01i) = hXXX01i

�3
A2
(hX0X01i) = lub(�3

A2
; Y (hXXX01i)) = lub(hXXXXXi; hXXXX1i) = hXXXX1i

�4
A2
(hX0X01i) = lub(�4

A2
; Y (hXXXX1i)) = lub(hXXXXXi; hXXXXXi) = hXXXXXi

� i
A2
(hX0X01i) = hXXXXXi for i � 5:

20

Since

�0
C2

= hXXXX1ihXXXX1ihXXXXXihXXXXXi : : :

it follows immediately that SAT(hX0X01i, [A2 =) C2]) holds. Altogether, we have that

SAT(?, [A1 =) C1] ; [A2 =) C2]):

Finally, we illustrate the computation of SAT for an assertion containing an iteration by com-

puting SAT(?, G2), where

G2 =
h
((n1 is 1) ^ (n3 is 1))

[2] =) true
[2]
i
; [(n1 is 1)^ (n3 is 1) =) true]� ;

[(n3 is 0) =) (n5 is 1)]
� ; [true =) true] :

Again for convenience, let A1 = ((n1 is 1) ^ (n3 is 1))
[2], C1 = true

[2], A2 = ((n1 is 1) ^ (n3 is 1)),

C2 = true, A3 = (n3 is 0), and C3 = (n5 is 1). As above, we get that SAT(?, [A1 =) C1]) holds

and that �
d(A1)

A1
(?) = hX0X01i. We now must compute the greatest �xed point value to represent

the set of all reachable states after some iterations matching A2, i.e., we need to compute

Gfp �: glb(hX0X01i; �
d(A2)
A2

(�)):

We do this by iterating starting from >. Note that Y (>) = > and thus � i
A
(>) = > for all trajectory

formulas A and i � 1. Thus:

�0 = >

�1 = glb(hX0X01i; �
d(A2)

A2
(�0)) = glb(hX0X01i; �

d(A2)

A2
(>)) = hX0X01i

�2 = glb(hX0X01i; �
d(A2)
A2

(�1))

= glb(hX0X01i; �
d(A2)
A2

(hX0X01i))

= glb(hX0X01i; hX0X01i) = hX0X01i

and thus ~z = Gfp �: glb(hX0X01i; �
d(A2)

A2
(�)) = hX0X01i. Since C2 = true, and thus �C2

= ?? : : : it

follows immediately that SAT(~z, [A2 =) C2]). These computations indicate that the circuit was

already in the stable state hX0X01i after the �rst 2 unit steps and will remain in this state as long

as n1 and n3 are held at 1.

In a similar fashion, we now compute the �xed point for the set of reachable states after some

iterations of A3. In other words, we compute

Gfp �: glb(hX0X01i; �d(A3)
A3

(�)):

Here we get:

�0 = >

�1 = glb(hX0X01i; �
d(A3)

A3
(�0)) = glb(hX0X01i; �

d(A3)

A3
(>))

= glb(hX0X01i;>) = hX0X01i

�2 = glb(hX0X01i; �
d(A3)
A3

(�1)) = glb(hX0X01i; �
d(A3)
A3

(hX0X01i))

= glb(hX0X01i; hXXX01i) = hXXX01i

�3 = glb(hX0X01i; �
d(A3)

A3
(�2)) = glb(hX0X01i; �

d(A3)

A3
(hXXX01i))

= glb(hX0X01i; hXXX01i) = hXXX01i

and thus ~w = Gfp �: glb(hX0X01i; �
d(A3)

A3
(�)) = hXXX01i. This computation shows that when clock

signal n3 is held low, node n4 will retain its stored value of 0, and n5 will remain at 1.

21

It is easy to verify that

�A3
(~w) = hXX001ihXXX01ihXXXX1ihXXXXXihXXXXXi : : :

Since �C3
= hXXXX1i?? : : : it thus follows that SAT(~w, [A3 =) C3]). Finally, it follows trivially

that SAT(~w, [true =) true]). Altogether, we can conclude that SAT(?, G2) holds.

We now return to the general theory by characterizing the satisfaction function. First we

establish the following monotonicity property.

Proposition 3 Given a trajectory assertion G, if sv t and SAT(s, G) then SAT(t, G).

Proof: We prove the claim by induction on the structure of G. For the basis, G = [A =) C],

we have that SAT(s, [A =) C]) implies that �C v �A(s). However, by Lemma 3, it follows that

�A(s)v �A(t) and thus �C v �A(t), which implies that SAT(t, [A =) C]). Now assume inductively

that the claim holds for s, t and trajectory assertions [A =) C] and G1. If G = [A =) C] ;G1 then

SAT(s, G) implies that SAT(s, [A =) C]) and SAT(�
d(A)
A

(s), G1). By the induction hypothesis it

follows that SAT(t, [A =) C]). Furthermore, by Lemma 3 it follows that �
d(A)

A
(s)v �

d(A)

A
(t). This,

together with the induction hypothesis, implies that SAT(�
d(A)

A
(t), G1) and the claim follows. Fi-

nally, if G = [A =) C]� ;G1 then SAT(s, G) implies that SAT(~s, [A =) C]) and SAT(~s, G1) for

~s = Gfp �: glb(s; �
d(A)
A

(�)). It follows directly from the de�nition of greatest �xed point that

Gfp �: glb(s; �
d(A)

A
(�))vGfp �: glb(t; �

d(A)

A
(�)) = ~t. Hence, by the induction hypothesis it follows

that SAT(~t, [A =) C]) and SAT(~t, G1) and therefore that SAT(t, G) and the induction step goes

through and the claim follows.

The following theorem constitutes one of the corner-stones in our veri�cation methodology.

Theorem 1 If G is an iteration-free trajectory assertion then for every z 2 S we have

L(M; z) j=
M
G i� SAT(z, G):

Proof:We prove the claim by induction over the structure of G. For the basis case, G = [A =) C],

we �rst show that if � j=
M
A implies that � j=

M
C for every � 2 L(M; z) then �C v �A(z). To

establish this, let � = �A(z). By Lemma 4 we know that �A(z) 2 L(M; z), and that �A(z) j=M
A. Hence, by assumption, �A(z) j=M C. However, by Lemma 2 it follows that �A(z) j=M C i�

�C v �A(z). Together, �C v �A(z).

To prove the converse, assume �C v �A(z). Consider an arbitrary � 2 L(M; z). There are two

cases to consider: If �A(z) 6v � then by Lemma 4 it follows that � 6j= A, and the claim follows.

Hence, assume �A(z)v �. This, together with our assumption that �C v �A(z), implies that �C v �.

Since � 2 L(M; z), Lemma 2 applies, and thus � j=
M
C.

Now assume inductively that for any x 2 S, L(M; x) j=
M
G1 i� SAT(x, G1) and that L(M; x) j=

M

[A =) C] i� SAT(x, [A =) C]). If G = [A =) C] ;G1 then, by the truth semantics of G and

Proposition 2, we have L(M; z) j=
M

G i� L(M; z) j=
M

[A =) C] and L(M; �
d(A)

A
(z)) j=

M
G1.

Together with the induction hypothesis we get that L(M; z) j=
M

G i� SAT(z, [A =) C]) and

SAT(�
d(A)
A

(z), G1). However, the latter holds i� SAT(z, G). Consequently the induction step goes

through and the claim follows.

Our next theorem is the second major result of this section and provides the basis for our

veri�cation methodology. It shows that one direction of the claim made in Theorem 1 for iteration-

free formulas also holds for general formulas. However, our �xed-point method for verifying formulas

with iteration can cause overly pessimistic results, and therefore the other direction may not hold.

22

Theorem 2 Let G be a trajectory assertion and let z 2 S. If SAT(z, G) then L(M; z) j=
M
G.

Proof:We prove the result by induction on the structure of G. For the basis, if G =
h
A[i] =) C[i]

i
,

for some i � 1, the claim follows immediately from Theorem 1. Now assume inductively that for

any x 2 S, SAT(x,
h
A[i] =) C[i]

i
) implies that L(M; x) j=

M

h
A[i] =) C[i]

i
for i � 1 and that

SAT(x, G1) implies that L(M; x) j=
M
G1.

If G = [A =) C] ;G1 then SAT(z, G) implies that SAT(z, [A =) C]) and SAT(�
d(A)

A
(z), G1).

By the induction hypothesis this implies that L(M; z) j=
M
[A =) C] and L(M; �

d(A)

A
(z)) j=

M
G1,

which together with Proposition 2 implies that L(M; z) j=
M
G.

If G = [A =) C]� ;G1 then, by Proposition 2, it follows that L(M; z) j=
M
[A =) C]� ;G1 i�

L(M; z) j=
M
G1 and for i � 1, L(M; z) j=

M

h
A[i] =) C[i]

i
and L(M; �

d(A[i])

A
[i] (z)) j=

M
G1. Thus, in

order to establish the induction step and show that SAT(z, [A =) C]� ;G1) implies L(M; z) j=
M

[A =) C]� ;G1 it su�ces to prove that:

1. SAT(z, [A =) C]� ;G1) implies L(M; z) j=
M
G1,

2. SAT(z, [A =) C]� ;G1) implies L(M; z) j=
M

h
A[i] =) C[i]

i
for i � 1, and

3. SAT(z, [A =) C]� ;G1) implies L(M; �
d(A[i])

A[i] (z)) j=
M
G1 for i � 1.

Before we prove the three cases, the following observations are useful. First, note that, by the de�ni-

tion of SAT, we have that SAT(z, [A =) C]� ;G1) implies that SAT(~z, G1) and SAT(~z, [A =) C]),

where ~z = Gfp �: glb(z; �
d(A)

A
(�)). Also, it is easy to verify that, by the de�nition of glb and the

de�nition of the �xed point equation, we have ~z v z and ~z v �
d(A[i])

A[i] (z) for i � 1.

By Proposition 3 and the fact that ~z v z it follows that if SAT(~z, G1) then SAT(z, G1). This,

together with the induction hypothesis implies that L(M; z) j=
M
G1 and the �rst claim is estab-

lished.

To prove that L(M; z) j=
M

h
A[i] =) C[i]

i
for any i � 1, we �rst note that, by de�nition,

SAT(~z, [A =) C]) holds i� �C v �A(~z). We will now prove, by induction on i, that if �C v �A(~z)

then �
C[i] v �

A[i](z). Given this result the second claim follows trivially from the de�nition of

SAT and the induction hypothesis. For the basis, i = 1, note that A[1] = A and C[1] = C.

Furthermore, since ~z v z and thus, by Lemma 3, we can infer that if SAT(~z, [A =) C]) then

SAT(z, [A =) C]). Altogether, we can conclude that �
C[1] v �

A[1](z). Now assume inductively that

SAT(~z, [A =) C]) implies �
C[i] v �

A[i](z) for some i � 1 and consider i + 1. By the de�nition of

�
C[i+1] and �

A[i+1](z) and the assumption that d(A) = d(C) we have �
j

C[i+1] = �
j

C[i] and �
j

A[i+1](z) =

�
j

A[i](z) for 0 � j < d(A[i]). Thus in order to show that �
C[i+1] v �

A[i+1](z) we only need to show

that su�x(d(A[i]); �
C[i+1])v su�x(d(A[i]); �

A[i+1](z)). However, from the de�nition of �
C[i+1] and

�
A[i+1](z) it follows that su�x(d(A[i]); �

C[i+1]) = �C and su�x(d(A[i]); �
A[i+1](z)) = �A(�

d(A[i])

A[i] (z)).

As above ~z v �
d(A[i])

A[i] (z) and thus, by Lemma 3, it follows that:

SAT(~z, [A =) C]) implies SAT(�
d(A[i])

A[i] (z), [A =) C]):

In other words, �C v �A(�
d(A[i])

A[i] (z)) and therefore �
C[i+1] v �

A[i+1](z). Altogether, if SAT(~z, [A =) C])

then �
C[i+1] v �

A[i+1](z) and the induction step goes through and the claim follows.

Finally, since SAT(~z, G1) and ~z v �
d(A[i])

A[i] (z) for i � 1, it follows directly from Lemma 3, that

SAT(�
d(A[i])

A[i] (z), G1). This, together with the induction hypothesis implies that L(M; �
d(A[i])

A[i] (z)) j=
M

23

G1 and the third claim follows.

The way we are representing sets of states during the �xed point calculation by the greatest

lower bound of the states in the set has some undesirable properties. In particular, if the lattice is

\too sparse", so that a very general state must be used to represent a set of states, it is quite likely

that we will lose too much information and thus may �nd that SAT does not hold even though a

more accurate calculation would show that the trajectory assertion is valid. Of course, from the

above theorems we know that this can only happen if we have iterations in the trajectory assertion.

To illustrate the problem of too sparse lattices, assume we have a circuit that contains a \sticky"

2-bit wait-state counter that sequences through the states h00i, h01i, and h10i, but no further, no

matter how many input pulses it receives. Suppose we want to check this counter by using an

iteration construct. If we �rst use the standard switch-level lattice introduced in Section 3, it is

easy to see that the �xed point calculation will be forced to set both nodes of the counter to X

since hXXi = glbfh00i; h01i; h10ig. Unfortunately, we have now lost information and thus we may

erroneously report a circuit failure that only could be triggered if the counter ended up in the state

h11i. On the other hand, if we used a more complete lattice the problem would disappear. For

example, if we use the power-set of fh00i; h01i; h10i; h11ig ordered by set inclusion as the domain

of the counter, we can distinguish between the set fh00i; h01i; h10ig and any set that contains the

state h11i.
The above theorem suggests a simple method for verifying a trajectory assertion G: compute

SAT(?, G). If G is iteration-free then we will obtain an exact answer in the sense that SAT(?, G)
holds if and only if j=

M
G holds. On the other hand, if there are iterations in G, then we can

only guarantee that if SAT(?, G) then j=
M
G. Unfortunately, there is a practical di�culty with

this approach since all the de�ning trajectories and the de�ning sequences are, as de�ned in the

previous section, in�nite. Note, however, that the �xed point calculation does not require us to

compute an in�nite de�ning trajectory since we only need to compute �A(�) for various � up to

d(A). Also, by Corollary 1, in order to compare a de�ning sequence with a de�ning trajectory in

computing the satisfaction function, it is su�cient to compute a bounded pre�x of the de�ning

trajectories and the de�ning sequences. Hence, we only need to compute a bounded pre�x of any

trajectory. Furthermore, it is easy to see that we never need to store more than three system states:

the current state, the next state, and the �xed point state if the assertion contains an iteration. In

summary, we can verify trajectory assertions very e�ciently.

A

B

Out

Figure 6: Pseudo XOR circuit.

Finally, there is one more, quite subtle, aspect of the veri�cation methodology we need to deal

with. The problem is that in order to make a non-lattice domain into a complete lattice, we often

add \arti�cial" top elements. Since every element is less than the top element, we are in a somewhat

dangerous situation if, during the computation of the de�ning trajectory, we end up in such a top

state. To illustrate a typical instance of this problem, consider trying to show that a circuit with in-

24

puts A and B and output Out implements the exclusive-or function. Intuitively, it seems that it would

be su�cient to prove that circuit satis�es the assertion [(A is a)^ (B is b) =) N(Out is a� b)], for

all a; b 2 f0; 1g. Unfortunately, this is not the case. For example, this assertion is satis�ed by the

rather useless circuit of Fig. 6, where the two inputs are tied together, and the output is always 0.

Whenever a 6= b the antecedent trajectory will end up in >, because inputs A and B are electrically

equivalent. The only values for which the trajectory does not end up in > are ones for which the

output should be 0, in which case the consequent is also satis�ed.

Any checking based purely on testing implications is prone to this sort of \false implies every-

thing" error. Problems of this sort have been encountered by researchers using other systems for

hardware veri�cation such as HOL [21] and EMC [14]. A solution to this problem in our context,

and in fact the solution we have adapted for our prototype tools, is a two-pronged approach. First,

the user can only add new top elements in forming a complete lattice. Thus we do not allow the

user to add arti�cial bottom or internal states. Secondly, our veri�cation system ensures that every

state in the de�ning trajectory does not contain any arti�cially introduced top elements. These

two constraints ensures that we are guaranteed that the de�ning trajectory is a genuine circuit

trajectory and thus that there is at least one circuit trajectory that satis�es the antecedent.

7 Symbolic Formulation

In the previous section we proved that to determine the validity of a trajectory assertion G it

su�ces to compute SAT(?, G). Unfortunately, when verifying all but a limited class of systems

(including many memory designs [9]) we would need to write down and verify an exponentially

large number of assertions. The coverage of multiple cases by the partially-ordered system model

lacks su�cient precision to reliably verify the many distinct operating conditions.

In this section we �rst extend the trajectory formulas by introducing symbolic trajectory formu-

las. Each symbolic trajectory formula can express a large number of assertions that the behavior

of the system must obey. We then introduce a method of verifying such a collection of assertions

via symbolic simulation. The key idea is to preserve the symbolic structure of the formulas in the

veri�cation algorithm. By doing so, we can replace the need for large amounts of case analysis

with algebraic manipulation. In essence, we will perform the case analysis implicitly rather than

explicitly.

7.1 Symbolic Expressions

Let V be a set of symbolic Boolean variables. For convenience, let B denote the set f0; 1g. An

assignment, �, is a mapping �:V ! B assigning a binary value to each variable. Let � be the

set of all possible assignments, i.e., � = f�:V ! Bg. A domain constraint, D � �, de�nes a

restriction on the values assigned to the variables. We will denote such domain constraints by

Boolean expressions. That is, let E be a Boolean expression over elements of V1. This expression

de�nes a Boolean mapping e: �! B and thus denotes the domain constraint D = f� j e(�) = 1g.
The set of all assignments � is denoted by the constant function _1, de�ned as yielding 1 for all

assignments. Expressing domain constraints by Boolean expressions allows us to compactly specify

many di�erent circuit operating conditions with a single formula.

In general, if D is a scalar domain set we extend it to a symbolic domain set, written D(V), by
de�ning

D(V) = ff : �! Dg:

1For the sake of brevity, we omit a formal syntax of Boolean expressions. Any standard expression syntax su�ces.

25

In other words, D(V) denotes the set of functions mapping an assignment in � to D.
For any element a of D, we let _a denote the constant function, yielding _a(�) = a for any

assignment �.

We extend all operations from scalar to symbolic domains in a uniform way. Consider an

operation op:D1 �D2 ! D3, de�ned over scalar domains D1, D2, and D3. Its symbolic counterpart

_op:D1(V)�D2(V) ! D3(V) is de�ned such that for all _a 2 D1(V) and _b 2 D2(V), we have

(_a _op _b)(�) = _a(�) op _b(�).

When extending a relation R symbolically, we de�ne the result to be a function specifying

the assignments under which its arguments are related. In other words, we actually extend the

characteristic function of the relation. That is, given a binary relation R � D1 � D2, de�ne
_R:D1(V)�D2(V)! B(V) as (_a _R _b)(�) = 1 if and only if _a(�) R _b(�).

7.2 Symbolic Trajectory Formulas and Assertions

A (scalar) trajectory formula expresses a constraint on a trajectory. We now extend this idea

by introducing symbolic trajectory formulas. A symbolic trajectory formula expresses a set of

constraints on a trajectory by representing a set of (scalar) trajectory formulas. More speci�cally,

a symbolic trajectory formula will be a function mapping an assignment � 2 � to a trajectory

formula.

Trajectory formulas can be extended to symbolic trajectory formulas in several ways. We

will present one particular de�nition here that is intuitively simple, yet powerful enough to make

speci�cations of desirable system properties fairly natural.

Assume hS; v i is a lattice, V is a set of symbolic Boolean variables, and P is a set of simple

predicates over S. A symbolic trajectory formula is de�ned recursively as:

1. Simple predicates: p is a symbolic trajectory formula if p 2 P .

2. Conjunction: (_F1^ _F2) is a symbolic trajectory formula if _F1 and _F2 are symbolic trajectory

formulas.

3. Domain restriction: (E ! _F) is a symbolic trajectory formula if _F is a symbolic trajectory

formula and E is a Boolean expression over V

4. Next time: (N _F) is a symbolic trajectory formula if _F is a symbolic trajectory formula.

Note that the only change from the de�nition of trajectory formulas is that the domain constraint

can now be a Boolean expression rather than only 1 or 0.

For the case of switch-level circuits, we introduce the notation (ni is E) as a shorthand for the

formula (E ! (ni is 1)) ^ (E ! (ni is 0)). That is, we constrain node ni to have the particular

symbolic Boolean value denoted by the expression E.

The concept of depth is extended to the symbolic domain in the natural way, i.e., the depth of

a symbolic trajectory formula is one greater than the number of nested next time operators.

A symbolic trajectory assertion is de�ned recursively as:

1. Simple assertions:
h
_A =) _C

i
, where _A and _C are symbolic trajectory formulas and d(_A) =

d(_C).

2. Sequences:
h
_A =) _C

i
; _G1, where _A and _C are symbolic trajectory formulas, d(_A) = d(_C),

and _G1 is a symbolic trajectory assertion.

26

3. Iterations:
h
_A =) _C

i
�

; _G1, where _A and _C are symbolic trajectory formulas, d(_A) = d(_C),

and _G1 is a symbolic trajectory assertion.

With the above development, including our shorthand notation, we can now combine our two

trajectory assertions that constitute our speci�cation of the unit-delay inverter circuit of Fig. 2 into

one symbolic trajectory assertion as follows. Assume V = fxg, then

[(in is x)^Ntrue =) N(out is x)] :

As a more complex example, consider the following symbolic trajectory assertion for the latch

circuit of Fig. 5. Here, assume that V = fc; ag. We have the symbolic assertion

G3 =
h
(n3 is c)

[2] ^ (c! (n1 is a))
[2] ^ (c! (n4 is a)) =) N2(n4 is a)

i
:

Informally, the antecedent states that depending on the c (\clock") variable we either load value a

into the latch (by setting n3 to 1 and n1 to a) or we assume that a is already stored in the latch

(with n3 set to 0 and n4 to a). The consequent states that value a is stored in the latch on the

third time unit.

Given a symbolic trajectory formula _F and an assignment � 2 �, the corresponding trajectory

formula, written _F (�), is de�ned recursively as:

1. p(�)
def
= p if p 2 P .

2. (_F1 ^ _F2)(�)
def
= (_F1(�) ^ _F2(�)).

3. (E ! _F)(�)
def
= (e(�)! _F (�)), where e is the Boolean function denoted by E.

4. (N _F)(�)
def
= (N(_F (�))).

Similarly, given a symbolic trajectory assertion _G and an assignment � 2 �, the corresponding

trajectory assertion, written _G(�), is de�ned recursively as:

1.
h
_A =) _C

i
(�)

def
=
h
_A(�) =) _C(�)

i
.

2. (
h
_A =) _C

i
; _G1)(�)

def
=
h
_A(�) =) _C(�)

i
; (_G1(�)).

3. (
h
_A =) _C

i
�

; _G1)(�)
def
=
h
_A(�) =) _C(�)

i
�

; (_G1(�)).

Given the above, we can now extend the j=M relation to the symbolic domain in the standard

way, i.e., if _F is a symbolic trajectory formula then for every � 2 L(M) we have

(� _j=
M

_F)(�) = 1 i� � j=
M
(_F (�)):

Similarly, if _G is a symbolic trajectory assertion then for any set L of trajectories we have

(L _j=
M

_G)(�) = 1 i� L j=
M
(_G(�)):

Now, given a model structureM and a symbolic assertion _G, the task of our checking algorithm

is to compute the Boolean function expressing the set of assignments under which the assertion

is true. For most veri�cation problems, this should simply be the constant function 1, i.e., the

assertion should hold under all variable assignments.

27

7.3 Checking Symbolic Trajectory Assertions

In Section 5, we showed how scalar trajectory assertions can be veri�ed very e�ciently by computing

the satisfaction predicate. By extending the functions and relations used in this process to the

symbolic domain, we can perform the same algebraic manipulations. Rather than a true/false

answer, we obtain a Boolean function denoting those assignments � for which the assertion holds.

De�ne the symbolic domains B(V), S(V), and S!(V) as denoting the set of functions mapping

an assignment in � to B, S, and S! respectively. Let _Y , _lub, _glb, _Gfp, and _? denote the symbolic

extensions of the successor function Y , the lub operation, the glb operation, the Gfp operation,

and the in�x ? operation respectively. Let _v be the extension of the ordering relation v to the

symbolic domain. Recall that a relation over a scalar domain extends symbolically to a function

specifying the assignments under which its arguments are related. The normal Boolean product

operation � serves as the symbolic extension of the logical \and" connective. That is, for any

assignment � (_a � _b)(�) = 1 i� _a(�) = 1 and _b(�) = 1. Finally, let _? denote the constant function

that always yields ?.
Given a symbolic trajectory formula _F , we de�ne its de�ning symbolic sequence _� _F recursively

as follows:

1. _�p = p _? _? : : : if p 2 P is a simple predicate with de�ning value p.

2. _� _F1^ _F2
= _lub(_� _F1

; _� _F2
).

3. _�
E! _F = e _? _� _F , where e is the Boolean function denoted by E.

4. _�N _F = _?_� _F .

Proposition 4 Let _F be a symbolic trajectory formula and let _� _F be its de�ning symbolic sequence.

Then, (_� _F)(�) = � _F (�), for every � 2 �.

Proof: Follows directly from the de�nition of symbolic trajectory formulas and the de�nitions of

S!, _lub and _?.

Given a symbolic starting state _z 2 S(V) and symbolic trajectory formula _F with de�ning

symbolic sequence _� _F
= _�0_F

_�1_F : : :, the de�ning symbolic trajectory _� _F
(_z) = _�0_F (_z) _�

1
_F
(_z) : : : is de�ned

inductively as follows:

_� i_F (_z) =

8><
>:

_lub(_�0_F ; _z) if i = 0

_lub(_�i_F ;
_Y (_� i�1

_F
(_z))) otherwise

Proposition 5 If _F is a symbolic trajectory formula and _z 2 S(V) let _� _F (_z) be the de�ning symbolic

trajectory for F . Then (_� _F
(_z))(�) = � _F (�)

(_z(�)) for every � 2 �.

Proof: Follows directly from the de�nition of symbolic trajectory formulas, Proposition 4, and the

de�nitions of _Y , and _lub.

Now, given a symbolic trajectory assertion _G de�ne its symbolic satisfaction predicate _SAT as

follows:

1. _SAT(_z,
h
_A =) _C

i
) = (_� _C

_v _� _A
(_z)).

2. _SAT(_z,
h
_A =) _C

i
; _G1) = (_SAT(_z,

h
_A =) _C

i
) � _SAT(�

d(_A)
_A

(_z), _G1)).

28

3. _SAT(_z,
h
_A =) _C

i
�

; _G1) = (_SAT(~_z, _G1) � _SAT(~_z,
h
_A =) _C

i
)), where

~_z = _Gfp _�: _glb(_z; _�
d(_A)
_A

(_�)):

In view of the above results and Theorems 1 and 2 the following theorem follows immediately.

Theorem 3 Assume _G is a symbolic trajectory assertion. Then for every � 2 �:

_SAT(_?, _G)(�) = 1 implies (_j=
M

_G)(�) = 1;

Furthermore, if _G is iteration-free, then

_SAT(_?, _G)(�) = 1 i� (_j=
M

_G)(�) = 1:

To illustrate the practical application of Theorem 3 consider the symbolic trajectory assertion

G3 de�ned as

G3 =
h
(n3 is c)

[2] ^ (c! (n1 is a))
[2] ^ (c! (n4 is a)) =) N2(n4 is a)

i
:

Assume we want to check this formula for the model structure corresponding to the circuit of

Fig. 5. We will show the computation of the symbolic de�ning sequence and the symbolic de�ning

trajectory. In order to do so, however, we must introduce an expression syntax for symbolic

ternary values, i.e., functions mapping Boolean assignments to ternary values. Following our earlier

convention, we will let _X denote the constant function for value X. We will use Boolean expressions

to denote cases where all assignments yield binary node values. Finally, for Boolean expression Et,

and symbolic ternary expressions E1, and E0 we will use the notation Et _!E1 j E0 to denote the

function

(et _!e1 j e0)(�) =

(
e1(�) if et(�) = 1

e0(�) otherwise,

where et, e1, and e0 are the functions denoted by the expressions Et, E1, and E0, respectively.

First, for the antecedent A = (n3 is c)
[2] ^ (c ! (n1 is a))

[2] ^ (c ! (n4 is a)), we obtain the

following elements for the de�ning sequence and trajectory:

i _�i
A

_Y (_� i�1
A

(?)) _� i
A
(?)

n1 n2 n3 n4 n5 n1 n2 n3 n4 n5 n1 n2 n3 n4 n5

0 c _!a j _X _X c c _! _X j a _X _X _X _X _X _X c _!a j _X _X c c _! _X j a _X

1 c _!a j _X _X c _X _X _X c _!a j _X _X a c _! _X j a c _!a j _X c _!a j _X c a c _! _X j a

2 _X _X _X _X _X _X c _!a j _X _X a a _X c _!a j _X _X a a

3 _X _X _X _X _X _X _X _X _X a _X _X _X _X a

� 4 _X _X _X _X _X _X _X _X _X _X _X _X _X _X _X

Similarly, it is easy to see that

_�C = h _X _X _X _X _Xih _X _X _X _X _Xih _X _X _Xa _Xih _X _X _X _X _Xih _X _X _X _X _Xi : : :

and thus that _�C _v _�A = _1, i.e., the assertion holds for all variable assignments.

29

8 Extensions to the Logic

The base logic, as described above, is convenient for deriving the underlying theory. Unfortunately,

expressing \interesting" assertions about real systems using only the constructs given in Section 4

is very tedious. Two shortcomings make using the logic cumbersome: the �ne granularity of the

timing, and the lack of more powerful logical constructs. We have already introduced several

shorthand notations that take partial steps in remedying these limitations. In general, one can

increase the expressive power of the logic greatly by introducing further shorthands. The semantics

of each such extension is de�ned by a syntactic translation into the base logic, and hence has a

well-de�ned semantics and implementation.

In order to de�ne a language for writing speci�cations we need to de�ne three entities: the syntax

of the language, the semantics of the language, and a compilation algorithm that can translate the

high-level constructs to the core logic. Furthermore, in order not to get astray in the process, a

properly de�ned compiler function should also be proven correct in the sense that the semantics of

the higher-level constructs are preserved by the compilation process. Although we will describe the

extensions we have made in fairly informal terms, Joyce and Seger [23, 31] has in fact formalized

a very similar language in higher-order logic and there proven that the compilation algorithm is

correct. Also, as a side e�ect of properly formalizing the semantics of the added constructs, we

open up the possibility of reasoning about the speci�cations themselves [31].

8.1 Timing Extensions

We have already introduced the notation F [k] to denote that property F should hold for k successive

time intervals, where each interval has duration given by the depth d(F). This concept can be

generalized to other sequencing constructs such as during, from{to, then, and for. With these we

can, for example, write ((p1 for 100)^ (p2 for 100)) then (p3 for 10) rather than having to write

(p1 ^ p2) ^N(p1 ^ p2) ^N
2(p1 ^ p2) ^ : : :^N

99(p1 ^ p2) ^N
100

p3 ^ : : :N
109

p3:

Each of these constructs has a straightforward de�nition in terms of our existing notation. As an

illustration, the duration construct, written during (s; e; F), has as arguments a start time s, an

end time e and an instantaneous trajectory formula F that is to hold over this interval. This can

be translated simply as true for e < s, or Ns
F [e�s+1] for e � s.

We have also seen that for most sequential circuits, reasoning at the unit step level is far too

tedious. Instead, we would like to write and verify speci�cations at a more abstract timing level.

For example, with phase-level timing, we view each period when the clocks are held at �xed values

to be a phase, and assume that each phase has some minimum length k [5]. For simplicity, we will

�rst assume that all phases have the same duration. A naive approach to phase-level timing would

be to translate an instantaneous phase formula F into F [k], and introduce A \next phase" operator

Np de�ned simply as Nk. That is, any property F should hold throughout the phase, and each

successive phase starts exactly k time units from its predecessor.

Although the above attempt at phase-level timing frees us from describing the desired behaviors

for every basic time unit, it has a serious drawback. The problem lies in the fact we must specify

the precise length of the phase. As a result, we overspecify the desired behavior. In fact, we only

show that the system works when all phases are exactly k basic time units long. Instead, we would

like to verify that the system works correctly as long as each phase is at least k time units long.

As was shown in Section 6 this can be accomplished by using the iteration construct of trajectory

assertions.

To illustrate the problem with �xed length phases and how it can be remedied, consider the

switch-level circuit of Fig. 7. Intuitively, n1 is the (inverted) input to a latch, n3 is the clock signal,

30

1
n2

n3

n4 n5 n6

Figure 7: Circuit illustrating the use of iteration.

n4 is the electrical node that stores the state when the clock is low, and n6 is the output of the

output bu�er. Suppose we are trying to determine whether a 0 stored in the latch will remain to

the end of the phase even if the clock goes high. Clearly, this is a property that a latch should

not satisfy, but if we assume that each phase is exactly 2 time units long, we could arrive at this

false conclusion. In order to check the validity of the statement by our naive model, the following

assertion would be used:h
(n4 is 0)^ (n3 is 0)

[2] =) true
[2]
i
;
h
(n3 is 1)

[2] =) (n6 is 0)
[2]
i
:

Circuit in Fig. 7 satis�es this assertion, because there is a 2 unit propagation delay from storage

node n4 to output n6. If we assume the phases to be 3 time units, and thus we try to check the

assertion h
(n4 is 0)^ (n3 is 0)

[3] =) true
[3]
i
;
h
(n3 is 1)

[3] =) (n6 is 0)
[3]
i
;

it is easy to see that the circuit in Fig. 7 does not satisfy the assertion. In order to avoid this

apparently \non-monotonic" behavior, it is preferable to check an assertion like:h
(n4 is 0) ^ (n3 is 0)

[2] =) true
[2]
i
; [n3 is 0 =) true]� ;h

(n3 is 1)
[2] =) (n6 is 0)

[2]
i
; [(n3 is 1) =) (n6 is 0)]

� [true =) true] :

where we have used the iteration construct to make sure the property we are checking holds no

matter how long the phases are. It is easy to see that this assertion will fail for the circuit shown

in Fig. 7. In particular, the last iteration assertion will fail.

We can generalize the above approach by de�ning a \stable phase assert" command. Assume

we would like to check some assertion [A =) C], where A and C are instantaneous formulas, during

a phase. Assume furthermore that phases are at least k basic time units long. The \stable phase"

assert command would simply be a shorthand for
h
A[k] =) C[k]

i
; [A =) C]�. In essence, we allow

the circuit to take k basic time units to reach a stable state. After these k units, we then prove that

[A =) C] is an invariant of the system and we also �nd a state containing as much information

as possible but guaranteed to be smaller than or equal every state the system can be in after any

number basic time units in which A holds. We then would continue the veri�cation of further

properties from this state.

Interestingly, this phase-level timing implements a form of \oscillation control" that was in-

cluded in the original cosmos simulator [5]. In the simulator, the user speci�es a limit on the

31

phase length k. When simulating a phase, the simulator computes new states for nodes until it

reaches a stable state. Once the limit k on unit steps is taken, however, any node changing state is

set to X rather than to its excitation. This procedure matches exactly the �xed-point implementa-

tion of the iteration construct for the ternary domain. In fact, our symbolic simulator implements

the �xed-point approach in its full generality.

8.2 Data Handling Extensions

There are several extensions that simplify the task of writing speci�cations. One powerful approach

is to use symbolic indexing, where a vector of Boolean functions is interpreted as the symbolic

representation of a bounded integer. This symbolic integer is then used to index into an array of

nodes [1, 7]. This notation provides a powerful technique for specifying and verifying the addressing

operations of a memory where the symbolic integer represents an address, and the vector of nodes

represents the di�erent memory elements.

For example, the e�ect of a write operation for a random-access memory can be speci�ed by an

assertion: h
(~Ad is ~A) ^ (write is 1)^ (data is d) ^Ntrue =) N(M[~A] is d)

i
In this assertion, ~Ad is a vector of the p nodes forming the address inputs to the memory, while ~A is

a vector of p Boolean variables. ~M is a vector of 2p nodes forming the memory elements. Informally,

the assertion states: \given address and data values A and d on the inputs, a write operation will

cause data d to be stored in memory location A. Note that we have interpreted the \next-time"

operator as denoting a complete cycling of the memory. In practice we actually operate the memory

at a phase-level, and use the phase-level timing model described above.

Memory veri�cation illustrates the e�ciencies our method gains by partially-ordered system

modeling. To verify the above assertion, the veri�er would execute a simulation with all memory

locations initialized to X, and with the address and data inputs set to Boolean variables, requir-

ing a total of p + 1 Boolean variables to verify the behavior of a 2p-bit memory. To check the

consequent, it would compare the resulting state of each memory location i with the function

[(ip�1�Ap�1) � � � � (i0� a0)] _?d, where ij is the jth bit in the binary representation of i, Aj is the

jth element of the vector of variables ~A, and � represents the Exclusive-Nor operation, i.e.,

the complement of Exclusive-Or. For example, for a 4-bit memory (p = 2), the veri�cation

conditions for each memory location would be:

M[0] M[1] M[2] M[3]

a1a0 _!d j X a1a0 _!d j X a1a0 _!d j X a1a0 _!d j X

Full veri�cation of a memory also requires verify the read operation, and verifying that neither

operation a�ects the data in any location other than the one being addressed. All of the operations

can be veri�ed by 3 symbolic simulations, none involving more than 2p + 1 variables. We can

exploit the large number of \don't care" conditions that arise in the operation of a memory. In

verifying memory behavior for a given location, we don't generally care what values were stored in

other memory locations. Similar methods can be used to e�ciently verify more complex systems

containing embedded memories and register arrays, such as microprocessors and data paths.

8.3 User De�ned Constructs

With the above extensions, it is more convenient to write speci�cations. However, any non-trivial

speci�cation would still be much too large and obscure to be practical. What is needed is some

way of structuring the speci�cation. In the prototype tools we have developed [11, 32] this is

32

accomplished by using a meta-language [20]. In other words, we use a general purpose language to

build up the various constructs that our speci�cation language contain.

In our original prototype system [11] we used a dialect of Lisp as meta-language. When the

Lisp program was run, it wrote to a �le the veri�cation conditions expressed in a slightly enriched

version of the core logic that resulted in the translation of the higher level constructs. This text

�le was then fed to a modi�ed version of the cosmos symbolic simulator.

In a more recent system, called Voss[32], developed at the University of British Columbia,

the meta language is a dialect of ML[27]. Here, the modi�ed version of the symbolic simulator

is incorporated directly in the language and thus the user interacts directly with the evaluator

through the ML language. For more details of this system, the reader is referred to [32].

Given that the veri�cation system is embedded in a general purpose language, and the user

actually writes code in this language, it is easy to de�ne new extensions. In fact, by writing

new functions and procedures it becomes very natural to express the trajectory assertions in a

hierarchical way, improving the readability of|and consequently the con�dence in|the assertions.

9 Veri�cation Over Other Domains

So far, all our examples have been related to switch-level (and gate-level) veri�cation. On the other

hand, the theory was developed using a very general model of systems. The question arises whether

there are other domains for which trajectory evaluation is useful. In this section we will discuss

one such domain and an application that can bene�cially be modeled in the domain.

Control

Adder

Register
File

Input
Commands

(srcA,srcB,dest)

Figure 8: Simple addressable register �le with ALU.

Consider verifying the circuit shown in Fig. 8. Intuitively, there are two properties we would

like to check:

33

1. If register A holds some value u and register B holds some value v and we request the circuit

to add registers A and B and put the result in register D, then u + v should be stored in

register D after the next cycle.

2. If register L stores some value u and we request the circuit to add registers A and B and put

the result in register D, where D 6= L, then register L should still contain the value u at the

end of the next cycle.

The circuit of Fig. 8 can clearly be modeled at a switch-level and be veri�ed using the switch-

level model we have used throughout the paper. However, for very wide data paths, this could

be quite expensive. Also, if the circuit contained a multiplier, rather than an adder, we would

very quickly encounter di�culties in carrying out the symbolic evaluation since we would most

likely represent the values on the nodes as some kind of ordered binary decision diagram which has

di�culties in representing multiplication [8].

What makes the above dependency on the word size unfortunate is that, in some sense, the

width of the data path is unrelated to the functionality of the circuit. In particular, the control

logic is likely to be independent of the width of the data path. The question arises how to verify

the control part for an arbitrary width of the data path. The natural way of verifying the controller

by writing a speci�cation in terms of internal control lines is both cumbersome and error prone.

What we would like to do is to replace the detailed implementation of the data path with a more

abstract, and computationally cheaper, version. If we do so, we split up the veri�cation task into

verifying that the abstract version of the data path correspond to the actual data path and that

the controller together with the abstract data path works as intended. The �rst task is quite

straightforward since the structure of the abstract data path will likely correspond very closely

with the structure of the actual data path. Thus we will focus on the second task. This approach

is conceptually similar to the abstraction techniques used in temporal logic model checking [15, 34].

 v s

B

Figure 9: Value domain for data path.

In order to illustrate the idea of using a more abstract domain and corresponding abstract ver-

sion of the data path, consider the at domain whose Hasse diagram is shown in Fig. 9. Intuitively,

u and v are used to represent arbitrary values and s is used to represent the sum of u and v. The

value B is used to denote an unknown value. A possible next-state function for the adder and a

possible next state function (Ri) for one of the of the register words when the write enable signal

(W) is 0, 1, and X respectively, are shown in Fig. 10. It is easy to convince oneself that the next

state function is monotone.

The complete lattice for the circuit can now be formed in the same way as for the switch-level

model discussed in Section 3, i.e., we form the cross product of all the subcomponents' domains

and then add an arti�cial top element. Also, the next state function can be derived by extending

the individual excitation functions to this extended domain. It is easy to verify that the obtained

lattice and next state function indeed satis�es our requirements for being a model structure. The

only remaining missing piece is now some simple predicates for this domain. We will use the obvious

ones: ni is u, ni is v, and ni is s, where ni is a node name in the circuit. Note that \node" in this

34

u

v

s

B

B u v s

B B B B

B B s B

B

B B B B

B B B

u

v

s

B B

u

v

s

u

v

s

B B

u

v

s

r i Ri ini Ri

W=0 W=1

u

v

s

B B

B

B

B

r i Ri

W=X

Figure 10: Monotone next state functions.

context does not correspond to any single electrical node of the circuit but to collections of signals

forming data words.

In order to write trajectory assertions that can check the two properties mentioned above, the

following shorthands are useful. Let ~I, ~J , ~K, and ~L each denote vectors of p Boolean variables indi-

cating possible address values, where p is the number of bits in an address. De�ne Operate(~I; ~J; ~K)

to denote the formula (~sA is ~I)^ (~sB is ~J)^ (~D is ~K), where node vectors ~sA, ~sB, and ~D denote the

address inputs for the control logic. Similarly, let Stored(~N; �), for � equal to u, v, and s, denote

the formula (R[~N] is �), where R denotes the set of \nodes" comprising the register �le.

With this notation we can express the two desired properties as follows:h
Operate(~I; ~J; ~K)^ Stored(~I; u)^ Stored(~J; v) =) NStored(~K; s)

i
and h

Operate(~I; ~J; ~K) ^ Stored(~L; u) =) (~K 6= ~L)!NStored(~L; u)
i
:

Here we have actually assumed a unit-delay for the complete cycle. An obvious generalization would

adapt the veri�cation conditions to more realistic timing. Note that the complete veri�cation only

requires 3 � log(n) Boolean variables for a register �le with n words. Also, the veri�cation is

independent of the actual width of the data path.

In many ways, the idea of using a at domain in carrying out the veri�cation is similar to the

idea of \generic" speci�cations [22]. In generic speci�cations, which relies on using higher-order

logic, the actual computation performed by the ALU and the other components in the data path,

are simply provided as functions that are not instantiated during the proof of the control logic.

In fact, the high-level correctness proof for the circuit of Fig. 8 would be of the form \for every

possible function f of proper type, the circuit will read the contents of registers A and B, apply f

to these two values, and write the result into register D. Our approach of using a at domain and

using a conservative next state function can be viewed as Skolemizing the universal quanti�cation

in the generic speci�cation and incorporating the computation in the value domain. Thus, the

value s we added to the domain, corresponds to f(u; v).

In general, this use of a at domain for parts of the circuit works well for circuits in which there

is a clear distinction between data path and control. The di�cult task of verifying the control

logic can thus be carried out independently of the width of the data path. Of course, in using

higher-level models such as this, one must generate more abstract system models than does our

current switch-level circuit analyzer. We leave this task as future research.

35

10 Conclusions

In terms of mathematical sophistication, the problem solved by our veri�cation algorithm is far

less ambitious than what is attempted by full-edged temporal logic model checkers. However, we

believe that our language is rich enough to be able to describe many important properties of a

system and to provide a direct path by which such properties may be automatically veri�ed. By

keeping the goals of our veri�er simple, we obtain an algorithm that is capable of dealing with

much larger circuits.

One interesting property of our algorithm, in fact, is that its computational complexity is

relatively insensitive to the system size. That is, the complexity is determined largely by the

complexity of the assertion to be veri�ed, measured in terms of the number of symbolic variables,

and the depth of nesting of next time operators. We have found that in many circuits, properties

can be expressed in terms of a surprisingly small number of variables. For example, our formulas

providing a complete speci�cation of of a k-bit random access memory involve only 2 + 2 log k

variables. Thus, we can perform the veri�cation in polynomial time irrespective of the heuristic

e�ciency of the Boolean manipulator.

An interesting question that still is unanswered is whether this type of combination of abstrac-

tion and symbolic manipulation can be used in more traditional model checking algorithms. For

example, is there some suitable domain for which we can approximate the powerset of the real sys-

tem by a much smaller complete lattice in such a way that the validity of some temporal formula

in the approximate lattice implies the validity of the formula in the real system.

Another open question is how to develop a practical veri�cation methodology using the type of

abstract domain veri�cation as was discussed in Section 9. In fact, the general question of what

kinds of methodologies can be used for this type of formal veri�cation is largely unanswered.

Acknowledgements

The �rst author would like to acknowledge the very productive research environment provided by

the Integrated Systems Design Laboratory at the University of British Columbia.

References

[1] D. L. Beatty, R. E. Bryant, and C.-J. H. Seger, \Synchronous Circuit Veri�cation by Symbolic

Simulation: An Illustration," Sixth MIT Conference on Advanced Research in VLSI, 1990.

[2] S. Bose, and A. L. Fisher, \Verifying Pipelined Hardware Using Symbolic Logic Simulation,"

International Conference on Computer Design, IEEE, 1989.

[3] S. Bose, and A. L. Fisher, \Automatic Veri�cation of Synchronous Circuits using Symbolic

Logic Simulation and Temporal Logic," IMEC-IFIP International Workshop on Applied For-

mal Methods for Correct VLSI Design, 1989, pp. 759{764.

[4] R. E. Bryant, \Graph-Based Algorithms for Boolean Function Manipulation", IEEE Transac-

tions on Computers, Vol. C-35, No. 8 (August, 1986), 677{691.

[5] R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. She�er, \COSMOS: a Compiled Simulator

for MOS Circuits," 24th Design Automation Conference, 1987, 9{16.

[6] R. E. Bryant, \Boolean Analysis of MOS Circuits," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol. CAD-6, No. 4 (July, 1987), 634{649.

36

[7] R. E. Bryant, and C.-J. H. Seger, \Formal Veri�cation of Digital Circuits Using Symbolic

Ternary System Models," Computer-Aided Veri�cation '90, E. M. Clarke, and R. P. Kurshan,

eds. American Mathematical Society, 1991, pp. 121{146.

[8] R. E. Bryant, \On the Complexity of VLSI Implementations and Graph Representations of

Boolean Functions with Application to Integer Multiplication," IEEE Transactions on Com-

puters, Vol. 40, No. 2 (February, 1991), pp. 205{213.

[9] R. E. Bryant, \Formal Veri�cation of Memory Circuits by Switch-Level Simulation," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 10, No. 1

(January, 1991), pp. 94{102.

[10] R. E. Bryant, \A Methodology for Hardware Veri�cation Based on Logic Simulation," J.ACM,

Vol. 38, No. 2 (April, 1991), pp. 299{328.

[11] R. E. Bryant, D. E. Beatty, and C.-J. H. Seger, \Formal Hardware Veri�cation by Symbolic

Ternary Trajectory Evaluation," 28th Design Automation Conference, June, 1991.

[12] J. A. Brzozowski, and M. Yoeli. \On a Ternary Model of Gate Networks." IEEE Transactions

on Computers C-28, 3 (March 1979), 178{183.

[13] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, \Sequential Circuit Veri�cation

Using Symbolic Model Checking," 27th Design Automation Conference, 1990.

[14] E. M. Clarke, E. A. Emerson, and A. P. Sistla, \Automatic Veri�cation of Finite-State Con-

current Systems Using Temporal Logic Speci�cations," ACM Transactions on Programming

Languages, Vol. 8, No. 2 (April, 1986), pp. 244{263.

[15] E. M. Clarke, O. Grumberg, and D. E. Long, \Model Checking and Abstraction," Proc. 19th

Annual ACM Symposium on Principles of Programming Languages, Jan., 1992.

[16] O. Coudert, C. Berthet, and J. C. Madre, \Veri�cation of Sequential Machines using Boolean

Functional Vectors," IMEC-IFIP International Workshop on Applied Formal Methods for Cor-

rect VLSI Design, 1989, pp. 111{128.

[17] O. Coudert, J.-C. Madre, and C. Berthet, \Verifying temporal properties of sequential ma-

chines without building their state diagrams," Computer-Aided Veri�cation `90, E. M. Clarke,

and R. P. Kurshan, eds. American Mathematical Society, pp. 75{84.

[18] J. A. Darringer, \The Application of Program Veri�cation Techniques to Hardware Veri�ca-

tion," 16th Design Automation Conference, 1979, 375{381.

[19] S. Devadas, H.-K. T. Ma, and A. R. Newton, \On the Veri�cation of Sequential Machines at

Di�ering Levels of Abstraction," 24th Design Automation Conference, 1987, 271{276.

[20] M. Gordon, R. Milner, and C. Wadsworth, \Edinburgh LCF", Lecture Notes in Computer

Science, No. 78, Springer Verlag, 1979.

[21] M. Gordon, \Why higher-order logic is a good formalism for specifying and verifying hard-

ware," Formal Aspects of VLSI Design, G. Milne and P. A. Subrahmanyam, eds., North-

Holland, 1986, pp. 153{177.

37

[22] J. Joyce, \Generic Structures in the Formal Speci�cation and Veri�cation of Digital Circuits",

The Fusion of Hardware Design and Veri�cation, G. Milne, ed., North Holland, 1988, pp. 50-

74.

[23] J. Joyce and C. Seger, \Linking BDD-Based Symbolic Evaluation to Interactive Theorem-

Proving", 30th Design Automation Conference, 1993 (to appear).

[24] J. S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg, \A Three-Level Design Veri�cation

System," IBM Systems Journal Vol. 8, No. 3 (1969), 178{188.

[25] R. P. Kurshan, and K. L. McMillan, \Analysis of Digital Circuits Through Symbolic Re-

duction," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

Vol. 10, No. 11 (November, 1991), pp. 1356{1371.

[26] C. A. Mead, and L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1980.

[27] R. Milner, \A Proposal for Standard ML", Proceedings of ACM Conference on LISP and

Functional Programming, Austin, TX, Aug. 1984, pp. 184-197

[28] A. Pnueli, \The Temporal Logic of Programs," 18th Symposium on the Foundations of Com-

puter Science, IEEE, 1977, pp. 46{56.

[29] D. S. Reeves, and M. J. Irwin, \Fast Methods for Switch-Level Veri�cation of MOS Circuits",

IEEE Transactions on CAD/IC, Vol. CAD-6, No. 5 (Sept., 1987), pp. 766{779.

[30] C-J. Seger, and R. E. Bryant, \Modeling of Circuit Delays in Symbolic Simulation", IMEC-

IFIP International Workshop on Applied Formal Methods for Correct VLSI Design, 1989,

pp. 625{639.

[31] C. Seger and J. Joyce, \A Mathematically Precise Two-Level Formal Hardware Veri�cation

Methodology", Technical Report 92-34, Department of Computer Science, University of British

Columbia, December 1992.

[32] C. Seger, \Voss|A Practical Formal Veri�cation System Based on Symbolic Trajectory Eval-

uation", in preparation.

[33] J. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language

Theory, MIT Press, 1977.

[34] P. Wolper, \Expressing Interesting Properties of Programs in Propositional Temporal Logic,"

Proc. 13th Annual ACM Symposium on Principles of Programming Languages, Jan., 1986,

pp. 184{193.

38

