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Abstract 

This paper is about how to apply Bayesian Decision Theory to 
problems that involve multiple decisions and multiple variables. Our 
emphasis is on the computational aspects. 

Decision trees (Raiffa 1968) are the first paradigm where an agent 
can deal with multiple decisions. The non-forgetting influence diagram 
formalism (Howard and Matheson 1983, Shachter 1986) improves de­
cision trees by exploiting random variables' independencies of decision 
variables and other random variables. In this paper, we introduce a 
notion of decision networks that further explore decision variables' in­
dependencies of random variables and other decision variables. We 
also drop the semantic constraints of total ordering of decisions and of 
one value node. Only the fundamental constraint of acyclicity is kept. 

From a computational point of view, it is desirable if a decision 
network is stepwise-solvable, i.e if it can be evaluated by considering 
one decision at a time. However, decision network in the most gen­
eral sense need not to be stepwise-solvable. A syntactic constraint 
called stepwise-decomposability is therefore imposed. We show that 
stepwise-decomposable decision networks can be evaluated not only 
by considering one decision at a time, but also by considering one 
portion of the network at a time. 

Key word: decision analysis, influence diagrams, decision networks, Bayesian 
networks, stepwise-decomposability, evaluation. 
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1 Introduction 

Influence diagrams were introduced by Howard and Matheson (1981) as a way 
to graphically describe dependencjes among random vaTiabl s and decisions 
of a decision analysis problem. Influence diagrams without decision nodes 
and value nodes are called Bayesian networks (Pearl 1988). In this paper, 
we shall refer to influence diagrams with decision nodes and/or value nodes 
decision networks 1 . 

In comparison with decision trees (Raiffa 1968), decision networks are 
arguably more .intuitive, hence are pr ferr d for modeling; they are more 
structured and compact, hence aUow mor efficient treatments by computers. 
In this paper, we shall slightly modify the semantics of decision networks 
so that they also allow us to explore independencies among d cisions and 
between decisions and information, while decision trees do not. 

Specifically, decision networks are directed graphs with three types of 
nodes: decision nodes, random nodes and value nodes. Decision nodes rep­
resent decisions one wants to make. Random nodes represent random quan­
tities relevant to the decisions. Value nodes represent the decision maker's 
utilities. 

The basic constraint imposed on influence diagrams is acyclicity. A 
Bayesian network is required t b acyclic because conceptual.ly it originates 
from a particular order for expanding a joint probability of all the variables of 
interest by the chain rule of probabilities. A decision network is required to 
be acyclic because it can be viewed as a Bayesian ·network with deterministic 
nodes, and because arcs into decision nodes indicate time precedence. 

In addition to the basic constraint, traditionally decision n tworks are 
also required to: 

1. be regular, i.e. all the decision nodes be ordered; 

2. be no-forgetting, i.e. each decision node and it parents be the parents 
of all subsequent decision nodes; and 

3. have only one value node. 

1 In the literature, influence diagrams with decision nodes and/or values nodes are again 
called influence diagrams. Here, we want to distinguish between the two notions. Also 
note that the concept of decision network defined here is different from the concept with 
the same name in (Howard and Matheson 1981). 
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Howard and Matheson (1984) need the additional constraints because 
of their way of computing optimal decisions. In their framework, decision 
networks are first transformed into decision trees and then optimal decisions 
are obtained for the decision trees by the standard averaging out and folding 
back algorithm. The additional constraints assure that the transformation 
from a decision network to a decision tree is possible. 

The semantic justifications for the three additional constraints are as 
follows. Firstly, regularity follows if the decision network is to represent a 
single decision maker's view of the world. Secondly, arcs into decision nodes 
indicate information availability. If the decision maker does not forget infor­
mation, it is reasonable to impose the no-forgetting constraint. Finally, the 
one-value-node constraint is due to the standard setup of Bayesian decision 
theory. 

Shachter (1986) found a way to compute optimal decisions without trans­
forming decision networks into decision trees. Other algorithms were dis­
covered later (Shenoy 1990, Ndilikilikesha 1991). However, the additional 
constraints are still used in proving the correctness of the algorithms. The 
semantic justifications for the constraints remain the same. 

In this paper, we lift the three additional constraints and present a general 
theory of decision networks. 

Semantically, we want to lift those additional constraints for the following 
reasons. Firstly, we want to allow more than one decision maker. Even 
in the case of one decision maker, we want allow her /him the freedom of 
making certain decisions in an order of her /his own choice. These defeat the 
regularity constraint. Secondly, we shall re-interpret arcs into decision nodes 
as indication of both dependency and information availability, not merely of 
information availability. This defeats the no-forgetting constraint. Finally, 
we need more than one value node to maximally explore independencies 
between decisions and information. 

Syntactically, lifting the additional constraints enables us to develop a 
more insightful theory of decision networks. In particular, it leads us to dis­
cover the concept of stepwise-decomposable decision networks, which proves 
to be a good tradeoff between representativeness and computational effi­
ciency. It leads us to find efficient algorithms for computing optimal decisions. 
It also leads us to successfully exploit the possibility that some decisions are 
independent of some information by a preprocessing step. 

The paper consists of three parts. In part I, decision networks are intu-
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itively illustrated and formally defined. To gain precise understanding of the 
semantics, we go through the exercise of developing the concept of decision 
networks from the standard Bayesian decision theory setup by considering 
multiple decision problems. Semantic constraints are discussed to motivate 
the particular notion of decision networks we shall be dealing with in the rest 
of the paper. 

Part II proposes stepwise-decomposable decision networks as a tradeoff 
between representation adequacy and computational efficiency. We show that 
stepwise-decomposable decision networks can be evaluated by considering a 
series of what we shall call simple semi-Bayesian networks, each correspond­
ing to one decision node. The problem of evaluating simple semi-Bayesian 
networks are investigated and an algorithm is proposed. 

All previous research on decision networks has been about no-forgetting 
decision networks. In this paper, we propose and study stepwise-decomposable 
decision networks, which are more general than no-forgetting decision net­
works. However, the algorithms for evaluating no-forgetting decision net­
works can be used to evaluate stepwise-decomposable decision networks with 
minor modifications. In part III, we argue that our algorithm enjoys the 
advantage of modularity in comparison to other algorithms. We also dis­
cuss related work and provide a summary of the paper and a plan for future 
research. 
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Part I 

Bayesian networks and 
decision networks 
In this first part of this paper, we exhibit the concepts of Bayesian networks 
and decision networks. The concept of decision networks is intuitively illus­
trated through an example in section 2 and is formally defined in section 
6. Sections 3-5 are more foundational. Section 3 develops the concept of 
Bayesian networks from joint probabilities by means of the chain rule of 
probabilities, and by using the concept of conditional independencies. Sec­
tion 4 arrives at decision networks from the standard Bayesian decision theory 
setups by considering multiple decision problems. Section 5 discusses seman­
tic constraints on decision networks and motivates the particular notion of 
decision networks of interest to us in this paper. 

2 Decision networks intuitively 

In this section, we· illustrate the concept of decision networks through an 
example. 

Decision networks can be viewed from the qualitative level and the quan­
titative level. At the qualitative level, decision networks are directed graphs 
consisting of three types of nodes: decision nodes, random nodes and value 
nodes. They are used to graphically represent the structures of Bayesian 
decision problems. 

Consider the following extension to the oil wildcatter problem of Raiffa 
(1968). 

The oil wildcatter is deciding whether or not to drill in a new 
area. To aid his decision, he can order a seismic structure test. 
His decision about drill will depend on the test results if a test is 
ordered. If the oil wildcatter does decide to drill, crude oil and 
natural gas will be produced. Then, the oil wildcatter will decide 
his gas sale policy and oil sale policy on the basis of the quality 
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Figure 1: A decision network for the extended oil wildcatter problem. 

and quantity of crude oil and natural gas produced, and on the 
basis of market information. 

The structures of this decision problem can be represented by the decision 
network shown in Figure 1, where decision nodes are drawn as rectangles, 
random nodes as ovals, and value nodes as diamonds. 

Briefly, here is the semantics of a decision network. Arcs into random 
nodes indicate probabilistic dependencies. A random node depends on all its 
parents, and is independent of all its .non-des endants given the value of its 
parents. In the xtended oil wildcatter problem, test-result , for instance, 
probabilistically depends on seisimic-structure and the decision to test , 
but is independent of gas-underground and oil-underground if seismic­
structure is given and the test decision has been made. 

Arcs into decision nodes indicate both information availabilities and func­
tional dependencies. In our example, the arc from oil-produced to oil­
sale-policy means that the oil wildcatter will have learned the quantity 
and quality of crude oil-produced when he decides his oil-sale-policy, 
and he thinks that the quantity and quality of oil-produced should affect 
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his oil-sale-policy. There is no arc from oil-underground to oil-sale­
policy because information about oil-underground is not directly available. 
There is no arc from test-result to oil-sale-policy, because the oil wild­
catter figures that the information about the test-result should not affect 
his oil-sale-policy since that he will already have learned the quality and 
quantity of crude oil-produced at the time the policy is to be made. 

Arcs into value nodes indicate functional dependencies. A value node is 
characterized by a function of its parents. The values of the function are real 
numbers representing the decision maker's utilities about the alternatives. In 
the extended oil wildcatter problem, oil-sales is a (utility) function of oil­
produced, oil-market and oil-sale-policy. It depends on no other node. 
Given the quality and quantity of oil-produced, a state of oil-market, and 
an oil-sale-policy, the utility function gives us the expected oil-sales. 
The overall utility is the sum of all the value nodes. In our example, the 
overall utility is the sum of test-cost, drill-cost, oil-sale and gas-sale, 
where the costs are counted as negative utilities. 

At the quantitative level, a decision network contains the conditional 
probabilities of all the random nodes given their respective parents and prior 
probabilities of the random nodes without parents, and contains a utility 
function for each of the value nodes. 

In a decision network, decisions are made knowing the values of their 
parents. Optimal decisions are decisions that maximize the expected overall 
utility. The goal of decision analysis is to find the optimal decisions and to 
determine the optimal expected overall utility. 

3 Bayesian networks 

One way Lo W1derstand d cision networks is to think of Lhem as developed 
from the standard Bayesian Decision Theory setup. We shalJ explain this in 
th next section. In this section, w first develop the concept of Bayesian 
networks from joint probabilities by means of the chain rule of probabilities 
and the concept of conditional independency. 

Let X be a set of random variables. Let P(X) be the joint probability of 
the variables in X. It is usually difficult, if possible at all, to assess the joint 
probability directly. One way to assess the joint probability indirectly is first 
to choose an ordering over the variable set X, say x 1 , x 2 , •.• , xn, then to 
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expand the joint probability by the chain rule as follows: 

The ordering is called an expansion ordering. Because of equation ( 1), to 
assess the joint probability P(X), it suffices to assess P(xilx1, ... , Xi-1) for 
each i E { 1, ... , n}. 

Often a decision maker is able to determine a proper subset 1r(xi) of 
{ x1 , ... , x1_i} that are "di rectly related" to x1 such that other variables in 
{x1 , ... , Xi-d are only "indirectly related" to x, via 7r(xi)- Translating into 
the language of the probability theory this meao.s that Xi is independent of 
other variables in {x1 , ... , x1_i} given 7r(xi). Formally 

(2) 

This equation further reduces the assessment task. 
Given an expansion ordering x1 , ... , Xn and a 1r, we can construct a di­

rected graph with the variables in X as nodes by the following rule: 

For any Xi and Xj, draw an arc from Xi to Xj if and only if Xi E 
1r(xj), 

The acyclic directed graph such constructed, together with the conditional 
probabilities P(xil11'(xi)), is called a Bayesian network for the joint probabil­
ity P(X). 

As an example, consider the following decision scenario which is borrowed 
from (Poole and Neufeld 1991). The scenario involves five variables: alarm, 
fire, tampering, smoke, and leaving, denoting respectively the following 
propositions: the alarm is on, there is a fire, somebody is tempering; there 
is smoke and people leaving. An expansion ordering for the joint probabil­
ity P( alarm, fire, tampering, smoke, leaving) can be fire, tampering, 
alarm, leaving, smoke. Suppose it is reasonable to set 1r(tampering) = 0, 
7r(alarm) = {fire,tampering}, 1r(leaving) = {alarm}, and 1r(smoke) = 
{fire}. Then we get the Bayesian network net2 shown in Figure 2-(1). 
Another expansion ordering can be leaving, alarm, smoke, fire, tampering. 
Suppose it is reasonable to set 1r(alarm) = {leaving}, 7r(smoke) = {alarm}, 
1r(fire) = { alarm, smoke}, and 7l'(tampering) = {fire, alarm}. Then we 
get the Bayesian network net3 shown in Figure 2-(2). This network has more 
arcs than the one in net 2. 
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net2 net3 

Figure 2: Two Bayesian networks for the joint probability 
P(alarm, fire, tampering, smoke, leaving). 

How should one choose an expansion ordering? The answer provided by 
Howard and Matheson (1984) is that the ordering should be chosen such 
that the decision maker would feel natural and comfortable in assessing the 
1r(xi)'s and the P(xil?!"(xi))'s. For example, it probably is easier to assess 
P( alarmjfire, tampering) than to assess P(tamperingjfire, alarm). Smith 
(1989) says that one should choose the ordering to minimize the number of 
arcs in the resulting directed graph. In our example, net2 is preferred. Pearl 
(1988, pp. 50-51) claims that when there are cause-effect relationships among 
the variables, the structure of a Bayesian network can be directly deter:mined 
from the cause-effect relationships. For example, tampering and fire cause 
alarm, fire causes smoke, alarm causes leaving. 

4 Decision networks 

In this section, the concept of decision networks is derived from an attempt 
to solve multiple decision problems in the framework of the Bayesian decision 
theory. 

The standard setup of decision theory (Gardenfors 1988b, Fishburn 1988) 
includes a set of (random and decision) variables X, a utility function µ(X), 
and a set of probabilities { P6(X)} indexed by a parameter 8 2 • The decision is 

2If there is only one decision variable, 6 is a mapping from the the Cartesian product 
of the frames of the observed variables to the frame of that decision variable. Otherwise, 
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to choose a value for 8. The principle of maximizing expected utility states 
that the decision maker should choose a value 8° such that the expected 
utility is maximized: 

L Pso (X)µ(X) = maxs{L Ps(X)µ(X)}. (3) 
X X 

In the above equation, summation is used instead of integration because we 
deal only with discrete variables in this paper. However, most of the results 
can be easily extended to the case of continuous variables. 

Consider the case when the decision maker needs to decide on the values 
for a number of variables d1 , ... , dk. Let OBS(di) denote the set of all the 
variables whose values will become known to the decision maker at the time 
of decision di is to be made. Let 1r0(di) be a subset of OBS(di), such that the 
variables in OBS( di) - 1r0 ( di) are, according to the decision maker, irrelevant 
to the decision given 1r0 (di)- The value for each di is to be set based on 
the values of variables in 1r0 ( di)- We call such a problem a multiple decision 
problem, and write it as as V = {< di,1ro(di) > 11 ~ i ~ k}. 

The extended oil wildcatter problem is a multiple decision problem. The 
decision maker needs to set the value of test, the value of drill based 
on test-result, the value of gas-sale-policy based on the values of gas­
produced and gas-market, and the value of oil-sale-policy bas don the 
values of oil-produced and oil-market. 

Given a multiple decision problem V, let X be the set of all the variables 
in V and other variables that are relevant to the problem. For any variable 
x EX, let fli: be the frame of x, i.e. the set of all possible values of x. For 
any subset B ~ X' let nB = IlxeB nx. 

To determine a value for di based on the values of the variables in 1r0 (di) 
is to choose a function Oi : 01ro(d;) -t nd,· . Such a function is called a decision 
function (table) for di. Let Ai denote the set of all the decision functions for 
di. The policy space of the problem is the Cartesian product A = Ilf=1 Ai. 
An element of A is called a policy. 

A probability P is consistent with a policy 8 if for each di, P(dil1r(di)) 
is 1 when di= 8(1r(di)), and O otherwise. 

A policy 8 E A determines a set of probabilities over X, namely the 
set of probabilities that are consistent with 8. To solve the multiple decision 

it is a tuple of such mappings, each of which corresponds to one decision variable. Each 8 
determines a probability P6 over X. 
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problem in the foregoing Bayesian decision theory setup, one needs one single 
probability. An interesting question is: what knowledge and beliefs it takes 
for one to to be able to single out one probability P0 from the set? 

Since 8 asserts that di is a function of 1r0 (di), P0(X) must fulfill: 

(4) 

for any subset B ~ X that does not contain any descendents of di. 
An expansion ordering for P0(X) conforms to 'D if for each di, variables 

in 1r0 (di) precede di in the ordering. As we shall see in the next section, such 
an ordering is possible due to the semantic constraints on multiple decision 
problems. 

Given an expansion ordering x1 , ... , Xn that conforms to 1J, we can 
expand Ps(X), determine the 7r function, and construct a Bayesian network, 
denoted by N0, as in the previous section. 

Because of equation ( 4), it must be the case that 1r( di) = 1r0 ( di)- In words, 
the parents of di in N0 are the nodes in 1r0 ( di). 

In the Bayesian network N0, the conditional probability of each di given 
its parents 1r(di) is given by the policy 8. However, the network structure 
and the conditional probabilities of variables other than the decision variables 
need to be elicited by the decision maker from his knowledge and beliefs. We 
call this part of N0 a network of beliefs 3 for the multiple decision problem. 
In other words, the network of beliefs is the "difference" between N0 and 8. 

In order to solve a multiple decision problem in the framework of Bayesian 
decision theory, the decision maker needs also to express his preferences by 
a utility function µ(X). Let B ~ X be the set of variables of which U is 
an explicit function. We add µ( B) into the network of beliefs by creating a 
node v for µ(X) and drawing an arc to v from each of the nodes in B. This 
results in a decision network for the multiple decision problem. It specifies 
the beliefs and the utilities that have to be elicited before the problem can 
be solved in the framework of Bayesian decision theory. 

As an example, consider a decision scenario where a decision maker needs 
to decide whether to bring-umbrella based on weather forecast. An ad­
ditional variable, rain, which takes the value "yes" if it does turn out to 

31n the literature, authors sometimes refer to Bayesian networks as belief networks. 
Our concept of networks of beliefs is consistent with the usage of the term belief network 
except that our concept is more general. To us, a network of beliefs contains not only 
random variables, but also decision variables. 
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Figure 3: Two decision networks for the rain and umbrella problem. 

rain and "no" otherwise, is believed to be relevant to the decision and is 
included in our analysis. A decision function 8 : Otorecast -t Obring-umbrella 

determines a joint probability P5(rain, forecast, bring - umbrella). The 
expansion ordering rain, forecast, bring-umbrella conforms to the deci­
sion problem. It gives rise to the decision network net4 shown in Figure 3 
(1). The expansion ordering forecat, rain, bring-umbrella also conforms 
to the decision problem. It gives rise to the decision network nets also shown 
on Figure 3. It is easy to see that one can go between those two networks by 
reversing the arc between forecast and rain using Bayesian theorem (see 
Howard and Matheson 1984 and section 11). 

To end this section, let us point out that there may be more than one 
expansion ordering for P0(X) that conform to V. Thus there may be more 
than one network of beliefs for V. A question is whether two such networks 
demand the same amount of information. The answer is positive. Because 
we can start from one and arrive at another by fitting in an arbitrary policy 
8 to get the joint probability P5(X), and expanding A(X) using the ordering 
of the second network, and removing the P( di j1r( di) )'s. 

5 Semantic constraints 

In this section, we discuss semantic constraints on decision networks. We 
begin with acyclicity. 
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5 .1 Acyclicity 

A Bayesian network is a directed graph, and it originates from an expansion 
ordering for a joint probability. If there is an arc x -+ y, then x comes earlier 
than y in the expansion ordering. Therefore a Bayesian network must be 
acyclic. 

A decision network is also a directed graph, and it is obtained from a 
network of beliefs by adding one value node. As Bayesian networks, a network 
of beliefs originates from an expansion ordering for a joint probability. So, it 
must be acyclic. Consequently, decision networks must also be acyclic . 

There is one issue about the acyclicity of decision networks. In section 
4, we have assumed the existence of an expansion ordering for P0 (X) that 
conforms to a given multiple decision problem V = {<di, 1ro(di) > 11 ~ i ~ 
k }. We need to justify this assumption. 

Construct a directed graph G over X from V by, for each di, drawing an 
arc from each variable in 1r0 (di) to di, This directed graph must be acyclic 
because of the time precedence relationships implied by V. In fact, the value 
for di is to be set knowing the values of the variables in 1r0 ( di). Thus the 
values of the variables in 1r0 (di) must be determined, either by nature or by 
the decision maker, before the decision about di is made. In this sense we 
say variables in 1r0 (di) precede di in time. If there were a cycled~, d~, ... , 
di in G, then d~ precedes d; in time, ... , d3_1 precedes di in time, and d3 
precedes d~ in time. This is impossible. Therefore, G must be acyclic. 

It can be easily shown by induction that in a directed acyclic graph G, 
there exists at least one ordering of the nodes of G such that if x -+ y is an 
arc of G, then x precedes yin the ordering. Lets be such an ordering for the 
directed graph defined in the previous paragraph. Then s is an expansion 
ordering for P0(X) that conforms to V. 

5.2 Ordering of decisions 

Given a multiple decision problem V = {< di,1ro(di) > 11 ~ i ~ k}, there 
is a natural partial ordering among the decision nodes. A decision node di 
precedes another decision node di in V if di E 1ro( di), or di precedes dk and 
dk E 1r0 ( di). This ordering is not necessarily a total ordering, for there may 
exist di and di such that neither di precedes di nor di precedes di, 

If there is only one decision maker, then the decisions are made sequen-
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tially. If the order by which the decisions are to be made is known beforehand, 
then it is reasonable to require that the decision network be regular, i.e all the 
decision nodes be ordered. The previous literature only deals with regular 
decision networks. 

However, there may be cases where there are more than one decision 
maker. In the extended oil wildcatter example, it may well be the case 
that the test and drill decisions are made by the company headquar­
ter, while the gas sale policy is made by the gas department and the 
oil-sale-policy is made by the oil department. If there are more than 
one decision maker, it is not reasonable to require the decision network be 
regular. 

Even in the case of one decision maker, one may not be sure about the 
order by which the decisions are to be made a priori, but it is known that 
the order in which these two decisions are made is irrelevant to the optimal 
expected value. In the extended oil wildcatter example, the decision maker 
may choose to make the gas-sale-policy first, or he may choose to make 
the oil-sale-policy first, because he knows that the order is not impor­
tant. In such case, it is more appropriate to leave the choice to the decision 
maker himself rather than make the choice for him by imposing the regularity 
constraint. 

In this paper, the regularity constraint is lifted. A merits of doing so 
is that it allows one to explore more independencies between decisions and 
information. The reader will see this in the next subsection. 

5.3 Dependencies of decisions on information 

In a multiple decision problem V = {<di, 1r0 (di) > jl Si S k}, 1r0 (di) is the 
set of all the variables whose values are known at the time the decision di is 
to be made and whose values are, according to the decision maker, relevant 
to the decision di. In this sense, we say that 1r0 indicates both information 
availability and dependency. 

In the previous literature (Howeard and Matheson 1984), 1r0 indicates 
only information availability. In other word, 1r0 ( di) is defined to be the set of 
all the variables whose values are known at the time the decision di is to be 
made. If there is only one decision maker and the decision maker does not 
forget information, then for any decision dj that precedes di in V, it must be 
the case that dj E 1r0(di) and 1r0 (dj) C 1r0 (di)- A multiple decision problem 
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with this property is said to be no-forgetting. A decision network for a no­
forgetting multiple decision problem is a no-forgetting decision network. The 
previous literature only deals with no-forgetting decision networks. 

However, there are reasons for letting 1r0 indicate both information avail­
ability and dependency. First of all, the decision maker sometimes is able to 
tell that a decision does not depend on a particular variable. In the extended 
oil wildcatter problem, the decision maker may declare that test-result 
is irrelevant to the decision oil-sale-policy if the quality and quantity of 
oil-produced are known. In general, letting 71'o to indicate both informa­
tion availability and dependency enables the representation of knowledge and 
belief about a piece of information being irrelevant to a decision. 

Secondly, it is more difficult to identify the set OBS itself than to identify 
a subset 71'o such that variables in OBS-71'0 are (subjectively) irrelevant to the 
decision under consideration. In the extended oil wildcatter example, the de­
cision maker may have difficulties in determining whether gas-sale-policy 
will be available at the time oil-sale-policy is to be made. Nonetheless, 
the decision maker may judge that gas-sale-policy is irrelevant, and he can 
thus leave gas-sale-policy out side 7ro( oil - sale - policy) regardless its 
availability. 

Thirdly, if we require a multiple decision problem to be no-forgetting, then 
when we have a long chain of decision nodes, the 7ro( d) for decision nodes 
toward the end of the chain may consist of a large number of variables. This 
implies huge decision tables. However, as has already been shown (Shachter 
1988, Zhang and Poole 1992), many arcs in a no-forgetting decision network 
are irrelevant and hence can be harmlessly removed. Letting 1r0 indicate 
both information availability and dependency provides a semantics for the 
remaining networks after removing the irrelevant arcs from a no-forgetting 
decision network. 

Finally, letting 1r0 indicate both information availability and potential 
dependency uniforms the semantics for arcs into decision nodes and arcs into 
random nodes (Smith 1988). 

In this paper, we choose to let 1r0 indicate both information availability 
and dependency. This necessitates the lifting of the no-forgetting constraint. 
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5.4 Multiple value nodes 

In section 4, one value node v was introduced to represent the decision 
maker's utility function mu(X). As pointed out by Tatman and Shachter 
(1991), in many applications, µ(X) can usually be decomposed into th sum 
of a number of components, each of which only dep nds on a small number of 
variables. In the extended oil wildcatt r example, the overall utility function 
can be decomposed into four components, namely test-cost, drill-cost, 
gas-sales, and oil-sales. 

Suppose µ(X) decomposes into m components v1(Z1) + ... + vm(Zm), we 
replace the value node v by m value nodes v1 , ... , Vm, where Vi corresponds 
to fv; ( Zi), and we draw arcs from each of the variables of Zi to Vi. This 
results in a decision network with m value nodes. 

One advantage of having multiple value nodes is that it allow us to ex­
plore more independencies. In Figure 1, for instance, the node oil-produced 
separates oil-sale-policy, oil-market, and oil-sales from the rest of the 
network. The same would not be true if only one value node is allowed. 

6 Formal definitions 

In this section, we given the formal definitions of Bayesian networks and deci­
sion networks. Before getting started, let us note that in this paper, standard 
graph theory terms such as connected acyclic directed graphs, parents ( direct 
predecessors), children ( direct successors), predecessors, descendants ( succes­
sors), leaves (nodes wjth no children), and roots (nodes with no parents) will 
be used without giving the definitions. The reader is directed to Lauritzen et 
al (1990) for exact definitions. We shall use 1r(x) to denote the set of parents 
of a node x in a directed graph. 

A Bayesian network N is a triplet N = (Y, A, P), where 

l. Y is a set of variables (nodes) and A is a set of arcs over Y such that 
(Y, A) is a connected acyclic directed graph, 

2. Pis a set {P(xl1r(x))lx E Y} of conditional probabilities of the vari­
ables given their respective parents4

• 

4Note that when xis a root, 11"(x) is empty. When it is the case, P(x/11"(x)) stands for 
the prior probability of x. 
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The prior joint probability P.,v(Y) of a Bayesian network N = (Y, A, P) 
is defined by 

P(Y) = IT P(xJ1r(x)). 
xEY 

For any subset B ~ Y, the marginal probability P(B) is defined by 

P(B) = L P(Y). 
Y-B 

(5) 

(6) 

For any two subset B1 , B2 ~ Y, the conditional probability P(B1 JB2) is a 
number such that 

(7) 

A decision network skeleton is a connected acyclic directed graph G = 
(X, A) whose nodes are are partitioned into random nodes, decision nodes, 
and values nodes, and that the value nodes have no children. 

A decision network N is a quadruplet N = (X, A, P, F) where 

1. (X, A) is a decision network skeleton with random node set C, decision 
node set D and value node set U. 

2. Pis a set {P(cJ1r(c))Jc EC} of conditional probabilities of the random 
nodes given their respective parents. 

3. Fis a set {fv : n,r(v)-+R1 Jv E U} of value (utility) Junctions for the 
value nodes, where R1 stands for the real line. 

A decision Junction (table) for a decision node di is a mapping 8i : !11r(d;) -+ 

.Od,. The decision function space ~i for di is the set of all the decision 
functions for di. Let D = {d1 , .. ,,dk} be the set of all the decision nodes. 
The Cartesian product ~ = I]f=1 ~i is called the policy space for N, and a 
member 8 = ( 81 , ... , dk) E ~ is called a policy. 

The relationship between a decision node d1 and its parents 1r( d1) as indi­
cated by a decision function 8i : !1,r(di) -+ nd, is equivalent to the relationship 
as represented by the conditional probability Ps, ( di J1r( di)) given by 

(8) 
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for all o E Dd; and /3 E D,r(d;)· One can see that if viewed as a function of di, 
P,S;(dd1r(di) = /3) is the characteristic function of the set {dildi = 8i(,8)}. In 
formula that is 

(9) 

Since 8 = (81, ... , 8k), we sometimes write P5(dij1r(di)) for P5;(dil1r(di)). 
Because of equation (8), we will abuse the symbol 8 by letting it also denote 
the set {P5( dd1r( d1))jd.;ED} of conditional probabilities of the decision nodes. 

In a decision network N = (X, A, P, F), let Y = CUD. Let Ay be the set 
of all the arcs of A that lie completely in Y. Then the triplet (Y1 Av, PU8) is 
a Bayesian n twork 5

• We shall refer to this Bayesian network the Bayesian 
network induced from N by the policy 8, and write it as N5. The prior joint 
probability P5(Y) is given by 

(10) 

Because the value nodes do not have children, for any value node v, 1r( v) 
contains no value nodes. Hence 1r(v)~Y. Write Z for 1r(v). The expectation 
E5[v] of the value function fv(Z) under his given by 

E5[v] = L P5(Y)fv(Z). 
y 

The expected value E5[N] of N under the policy 8 is defined by 

E5[N] L Es[v] 
vEU 

L P5(Y) L fv(Z). 
Y vEU 

The optimal expected value E[N] of N is defined by 

(11) 

(12) 

( 13) 

The optimal value of a decision network that does not have any value nodes 
is zero. An optimal policy 8° is one that satisfies 

(14) 
5 Rernernber that 8 denotes a set of conditional probabilities for the decision nodes. 
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For a decision network that does not have value nodes, all policies are optimal. 
In this paper we shall only consider variables with finite frames. Hence 

there are only finite possible policies. Consequently, there always exists at 
least one optimal policy. To evaluate a decision network is to 

1. find an optimal policy, and 

2. find the optimal expected value. 
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Part II 

Evaluating decision networks 
To evaluate a decision network N, one needs, in the general case, to compute 
the expected value E5 [Af] of N under each policy 8, and to search through 
the entire policy space~ for a policy that yields the maximum expectation. 
This may be computationally expensive, because the policy space may be 
huge, and for each policy 8, the computation of E5[NJ is global in the sense 
that it potentially involves all the nodes of the network. 

So, it is desirable to impose some technical constraints on decision net­
works for computational efficiency. However, more constraints means less 
representation power. In this part, we propose the concept of stepwise­
decomposable decision networks as a tradeo:ff between representation power 
and computational efficiency and present algorithms for solving stepwise­
decomposable decision networks. 

The organization of this part is as follows. Section 7 defines the technical 
concepts of semi-Bayesian networks and semi-decision networks. Stepwise­
decomposable decision networks are introduced in section 8. In section 9, 
we shall show that a smooth stepwise-decomposable decision network can 
be evaluated by dealing with a number of simple semi-decision networks, 
each corresponding to one decision node of the original network. Section 10 
discusses the problem of evaluating simple semi-decision networks. Section 
11 demonstrates how to transform a decision network that is not smooth into 
one that is smooth. 

7 Semi-Bayesian networks and semi-decision 
networks 

In this section, we define the technical concepts of semi-Bayesian networks 
and semi-decision networks. We will be needing them later. The reader may 
wish to skip this section for now and come back to it when necessary. 

A semi-Bayesian network is a Bayesian network except that the prior 
probabilities of some of the root nodes are missing. More precisely, a semi­
Bayesian network is a quadruplet N = (Y, A, P : S), where (Y, A) is a 
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connected acyclic directed graph, P = {P(xl1r(x))lx E Y - S} is set of 
conditional probabilities, and Sis a set of root nodes whose prior probabilities 
are m1ssmg. 

As in Bayesian networks, we can define PN(Y) as follows, 

PN(Y) = IT P(xl1r(x )). (15) 
xE(Y-S) 

Unlike in Bayesian networks, here PN(Y) usually is not a probability. It 
may not sum to one. Thus, it is called the prior joint potential instead of 
the prior joint probability. Marginal potentials can be defined from the joint 
potential in the same way as marginal probabilities are defined from joint 
probabilities. 

Note that as there are no arcs from Y - S to S, the prior joint potential 
PN(Y) is nothing but the conditional probability of the variables in Y - S 
given S. 

A semi-decision network is a decision network except that the prior prob­
abilities of some of the random root nodes are missing. We use N = 
(X, A, P, :F : S) to denotes a semi-decision network, where S is the set of 
random root nodes whose prior probabilities are missing. 

Let Y = C U D be the set of random and decision nodes. Similar to 
the case of decision networks, a policy 6 induces a semi-Bayesian network 
(Y, Ay, PU6: S), which we shall refer to as the semi-Bayesian network in­
duced from N by the policy 6, and which will be written as N 6• Let Pr,(Y) 
be the prior joint potential of Nr,. 

For any value node v E U, 1r( v) ~ Y. The expected value Er,[N] of N 
under the joint potential P6(Y) is defined by 

Er,[N] = LPr,(Y) L fv(1r(v)). (16) 
Y veU 

The conditional expected value 6 Er,[NIS] of N given Sis defined by 

Er,[NIS] = L Pr,(Y) L fv(1r(v)). (17) 
Y-S vEU 

A semi-decision n etwork N = (X, A, P, :F : S) is simple if it contains 
exactly one decision node d and 1r(d) = S. 

6This choice of term is because of the note we made earlier in this section right after 
the definition of semi-Bayesian networks. 
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Lemma 1 Suppose ./If = (X, A, P, :F: S) is a simple semi-decision network. 
Then for any value /3 E !15 ) E5 [NIS = /3] only depends on the value 8(/3), 
and is independent of 8(a) /01· any other a E fls. 

Proof: Since 7r(d) = S, we can write P0(dlS) for P5(dl1r(d)). The joint 
potential P0(Y) is given by 

Po(Y) = P0(dlS = /3) II P(x/1r(x)). 
xEY-S,x-:f-d 

Therefore 

Eo[NIS = /3] = L P5(dlS = /3) II P(xl7r(x)) L fv(7r(v)). (18) 
Y-S xEY-~x-:f-d vEU 

The only term that contains 8 is P0(dlS' ;;:: /3), which only depends on t.he 
value of 8 at /3 according to equation (9). Therefore, the lemma is proved. D 

Because of the lemma, we sometimes writ E5 [NI S = /3] as E H (fJ )=a [NI S = 
/3] to signify the fact that it only depends on the value a of 8 at /3. 

Proposition 1 Suppose ./If ;;:: (X, A, P, :F : S) is a simple semi-decision 
network. For any 8° E ~, 

(19) 

if and only if for any value /3 E Os 

(20) 

Pro of: From equations ( 16) and ( 1 7), we see that 

E5[N] = L E5[./IIIS = a]. 
aEfls 

So, equation (20) implies (19). 
We now show that (19) implies (20). For the sake of contradiction, assume 

there were a policy 8° that satisfies (19) which did not satisfy (20). Then, 
there must exist another policy 81 and a value /3 E Os such that 
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Construct a new policy 82 which is the same as 81 at f3 and which is the same 
as 8° at all other values of S. By Lemm 1, Es2 [NIS = ,B) = Es1 [NIS = ,B], 
and Es2 [NIS =a]= Es0 [NIS = a] for any other a E Os. Hence, we have 

Es1 [NIS = ,8] + L Es0 [NIS = a] 
aE0s,af'(3 

> Es0 [NIS = ,8] + L Es0 [NIS = a] 
0tEOs,0tf'{3 

aEfls 

A contradiction. Therefore, it must be the case that (19) implies (20). The 
proposition is proved. D 

Corollary 1 Let N = (X, A, P, :F : S) be a simple semi-decision network 
and let d be the only decision node. Then an optimal policy 8° for N can be 
found pointwise by 

(21) 

8 Stepwise-decomposable decision networks 

In this section, we introduce stepwise-decomposable decision networks and 
define some relevant terms. We begin with the concept of moral graph. 

Let G = (X, A) be a directed graph. An arc from x to y is written as 
an ordered pair (x, y ). The moral graph m( G) of G is an undirected graph 
m( G) = (X, E) whose edge set Eis given by 

E = {{x, y }l(x, y) or (y, x) EA, or :3z such that (x, z) and (y, z) EA}. 

In words, { x, y} is an edge in the moral graph if either there is an arc between 
the two vertices or they share a common child. The term moral graph was 
chosen because two nodes with a common child are "married" into an edge 
(Lauritzen and Speigehalter 1988). 
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Figure 4: The relationships among the sets X, X 1 , X 2 , Yi, ½, and S. The 
three sets X 1 , X 2 and S constitute a partition of X - the set of all the 
nodes, while Yi, Y2 and S constitute a partion of CUD - the set of all the 
random and decision nodes. When the network is smooth at d, there are no 
arcs going from ½ to S. 

• In an undirected graph, two nodes x and y are separated by a set of nodes 
S if every path connecting them contains at least one node in S. In a directed 
graph G, x and y are m-separatedby S if they are separated by Sin the moral 
graph m(G). Note that for any node set S, it separates itself from any other 
set. 

Suppose N = (X, A, P, F) is decision network and dis a decision node 
of N. Let X 1 be the set of all the nodes that are m-separated from d by 
1r( d), with 1r( d) excluded, and X 2 be the set of all the nodes that are not 
m-separated from d by 1r(d). We observe that X 2 = X - (1r(d)UX1 ). Let 
Yi = X 1 n ( CUD) and ½ = X 2 n ( CUD). For the sake of simplicity, we 
shall write S for 1r( d). The relationships among the sets are illustrated in 
Figure 4. In the sequel, we shall refer to X 1 as the upstream set of 1r(d), X2 

as the downstream set of 1r( d). We shall also refer to Yi as the set of random 
and decision nodes in the upstream of 1r(d), and½ as the set of random and 
decision nodes in the downstreams of 1r ( d). 

M-separation implies conditional independence (Lauritzen et al 1990). 
Since Sm-separates Yi and½, we have for any policy 8 of N that P6(½1Yi, S) = 
Ps(Y2IS). Therefore 

Ps(Yi, S, ½) Ps(Yi, S)Ps(½IYi, S) 
Ps(Yi, S)Ps(Y2IS). (22) 

A decision network is smooth at the decision node d, if there are no arcs 
going from nodes in ½ to nodes in S. In other words, arcs between S and 
½ only go from 8 to JI;. 
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The decision network skeleton for the extended oil wildcatter problem 
(Figure 1) is not smooth because of the arc from seismic-structure to 
test-result. 

Let d1 , .•. , di be all the decision nodes in Yi U S and di+l, ... , dk be 
all the decision nodes in ½. Note that d E { di+ 1 , ••• , dk}. For a policy 
8 = (81, ... , 8k), let 81 = (81, ... , 8i) and 8u = (8i+l, ... , 8k). 

Lemma 2 If the decision network N is smooth at d, then we have 

j 

II P( x 111"( x)) II P,d di 111"( di)), (23) 
xeCn(Y1uS) 

k 

P.s(½IS) = II P(xl11"(x)) II P,ddil11"(di)). (24) 

So, P.s-(Yi, S) only depends on 81, and P.s(Y2IS) only depends on 8u. We 
shall write them as Ps1(Yi, S) and P.s-11 (½1S) respectively. 

Let d be a decision node in a decision network N. Denoted by Nu, the tail 
of N w.r.t dis a semi-decision network over SU X 2 • The graphical structure 
among the nodes is the same as in Iv except that all the arcs among nodes 
in S' are removed. The conditional probabilities and the value functions for 
nodes in X 2 are the same as in Iv. The nodes in S are viewed as random 
nodes, and their prior probabilities are missing. 

Denoted by N1, the body of N w.r.t d is a decision network over X 1 U 
S U { v}. The graphical structure among nodes in X 1 U S is the same as 
in Iv, so are the conditional probabilities and the values functions. The 
newly introduced node v is a value node, whose parent set is 11"( v) = S, 
and whose value function fv(S) is set to be the optimal conditional expected 
value E[NulS] of the tail Nu. 

In Figure 5, the concepts of body and tail are illustrated by using the 
extended oil wildcatter problem. 

Given a policy 8u = (8j+1, ... , 8k), the tail Nu becomes a semi-Bayesian 
network. Let PN11 ,5i1 (S, ½) denote the joint potential of this semi-Bayesian 
network. From the definition of tails one can see that PNm.s11 (S, ½) is qual 
to the right hand side of equation (24). Therefore 

(25) 
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Figure 5: Tail and body: The tail is a semi-decision network, where the prior 
probabilities for oil-produced and oil-market are missing. In the body, v is 
a new value node, whose value function is the optimal conditional expected 
value of the tail. 

Similarly, given a policy b1 = (b1 , •.• , bj), the body N1 becomes Bayesian 
network. Let PN1 ,.sAYi, S) denote the joint probability of this Bayesian net­
work. From the definition of bodies one can see the P.N1 ,sAYi, S) is equal to 
the right hand side of equation (23). Therefore 

(26) 

Let v1 , ..• , Vm be all the value nodes of N. We write Zi for 1r( vi). Suppose 
vi, ... , v1 E X1 US, and V1+1, ... , Vm E X2. Because of equations (25) and 
(26), we have 

m 

Eou[NnlS] - L PNuhAS, ½) L fv;(Zi) 
Y2 i=l+I 

m 

- L Po11 (Y2IS) L fvi(Zi), (27) 
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(1) net6 (2) net7 

Figure 6: Two decision networks that are not stepwise-decomposable. 

and 

I 

L P,v1 ,srCYi, S){Lfvi(Zi) + E[NnlS]} 

I 

L Ps1 (Yi, S){L fv;(Zi) + E[NnlS]}. (28) 

A decision network skeleton is stepwise-decomposable if either it contains 
no decision nodes or 

1. There exists a decision node d whose parents m-separate d itself from 
all other decision nodes and their parents. The node d will be referred 
to as a candidate decision node7 • 

2. The body Nr of N w.r.t dis stepwise-decomposable. 

A (semi-)decision network is stepwise-decomposable if its skeleton is. 
The decision network skeleton for the extended oil wildcatter problem 

(Figure 1) is stepwise-decomposable. Figure 6 shows two typical decision 
network skeletons that are not stepwise-decomposable. 

A stepwise-decomposable decision network N is smooth if either it con­
tains no decision nodes, or if it is smooth at some candidate decision node d 
and the body Nr of N w .r. t d is smooth. 

7Note that a candidate decision node has no decision node successors, i.e. it is a leaf 
decision node. 
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Proposition 2 Suppose N is a smooth stepwise-decomposable decision net­
work and d is a candidate decision node. Then 

1. The tail Nu of N w.r.t d is a simple semi-decision network, and 

2. The body N1 of N w.r.t d is a again a smooth stepwise-decomposable 
decision network. □ 
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9 Evaluating smooth stepwise-decomposable 
decision networks 

In this section, we show that an optimal policy for a smooth stepwise­
decomposable decision network can be computed by recursively evaluating 
the tail semi-decision networks. 

Theorem 1 Let N be a stepwise-decomposable decision network and d be a 
candidate decision node. Let Nu be the tail of N w.r.t d, and N1 be the body. 
If N is smooth at d, then 

1. If 811 is an optimal policy for Nu and 81 is an optimal policy for N1, 
then 8° =def (81,811 ) is an optimal policy for N. 

2. The optimal expected value E[N1] of the body N1 is the same as the 
optimal expected value E[N] of N. 

Proof: For any policy 8 of N, we have 

m 

Eo[N] = L Po(Yi, S, Y2) L fv;(Zi) (By definition) 
i=l 

m 

L Po1 (Yi, S)Pou(Y2IS) L fv;(Zi) (By equations 22 and Lemma 2) 
i=l 

I m 

LP01 (Yi,S){Lfv;(Zi)LPou(½IS)+ LPou(½IS) L fv;(Zi)} 
i=l 

I 

L Po1 (Yi, S){L fv; (Zi) + Eou[NnlS]} (By equation 27). (29) 
i=l 

Since 811 is an optimal policy for Nn and Nn is a simple semi-decision 
network, it follows from Proposition 1 that 

(30) 

Noticing that P01 (Yi, S) is non-negative, we have 

I 

Eo[N] L Po1 (Yi, S){L fv; (Zi) + Eou[NnlS]} (By equation 29) 
i=l 
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I 

< L Ps1(l7i, S){Lfv;(Zi) + Es11 [NulS]} (By equation 30) 
Y1,S i=l 

I 

L Ps1(Yi, S){L fv;(Z;) + E[NulS]} (By definition) 
Y1,S i=l 

Es1 [N1] (By equation 28) 

< Es1[N1] (Optimality of o'J) 
I 

L Ps1(Yi,S){Lfv;(Z;) + E[NulS]} (By equation 28) 
Y1,S i=l 

I 

- L Ps1(Yi, S){L fv;(Z;) + Es11 [Nu)S]} ( Optimality of o<II) 
Y1,S i=l 

- Eso[N]. (By equation 29) 

Therefore, the first statement of the theorem is proved. 
The foregoing derivation has also shown that 

Letting 8 be 8°, we get 

Eso[N] = Es1[N1]. 

Therefore E[N] = E[N1]. The proof is completed. D 

The theorem reduces the task of evaluating a smooth stepwise-decomposable 
decision network N into the task of evaluating the tail Nu, which is a sim­
ple sem_j-d cision network and the task of evaluating the body N1, which 
contains one less decision node than N. 

Let N-EVALUATE be a procedure that computes the (optimal) expected 
values of decision networks that do not have decision nodes. Let S-EVALUATE 
be a procedure that computes an optimal policy for, and the conditional 
optimal expected value of, any simple semi-decision network. Theorem 1 
and Proposition 2 suggest the following procedure for evaluating a smooth 
stepwise-decomposable decision network. 

Procedure EVALUATE: 

• Input: N - a smooth stepwise-decomposable decision net­
work. 
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• Output: An optimal policy and the optimal expected value. 

1. If there are no decision nodes, Call N-EVALUATE to com­
pute the expected value, and stop. 

2. Else 

• Find a candidate decision node d, 

• Construct the tail Nn of N w.r.t d, 

• Call S-EVALUATE to compute an optimal policy for 
a:o.d the optimal conditional expected values of Nn, 

• Construct the body N1 of N w.r.t d, and 

• Make a recursive call to EVALUATE to evaluate N1. 

The procedure N-EVAL U ATE is essentially about Bayesian network com­
putations, which is beyond the scope of this paper. We now turn to dis­
cuss how to write the procedure S-EVALUATE, which evaluates simple sem­
decision networks. 

10 Evaluating simple semi-decision networks 

Let N = (X,A, P,:F: S) be a simple semi-decision network. Let d be the 
only decision node. By definition 1r(d) = S. We want to find a decision 
function 8° : ns -+ nd such that 

According to Corollary 1, such a 8° can be found in a pointwise fashion. 
More precisely, for each value (3 E Os, the value 8°((3) can be determined 
through 

(31) 

An advantage of computing an optimal decision function 8° by equa­
tion (31) is that the conditional optimal expected values E[NI S], which are 
needed in defining a body, are computed as a by-product. 

The term Es:o(,6)=a[NIS = (3] is a function of a and (3. Let us write it as 
f ( a, (3) for the time being. Equation {31) states that to evaluate N we need 
to compute f( a, (3) for each a E nd and each (3 E ns. 
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A pointwise strategy for computing the function f ( a, /3) may involve re­
dundancy, because certain parts of the computation may be the same for 
different ( a, /3). In this sense, we say that there exist repetitions of compu­
tation due to a strategy pointwise on ( a, /3). 

Now, we transform the task of evaluating a simple semi-decision network 
into a tasks of computing marginal potentials in the semi-Bayesian network. 
This way, the function f ( a, /3) is computed as a whole instead of pointwise. 
Consequently the redundancy can be avoided. Another motivation for the 
transformation is that we can then make use of methods for Bayesian net­
work computations. What we are doing here is closely related to (Peot and 
Shachter 1992). The difference is that we deal with more than one valu 
node and we do not change the value nodes into observed node 

Let No be the semi-Bayesian network that is same as N except that it 
does not contain a conditional probability P0 ( dlS) for d. Let P0 denote the 
joint potential of No and let P0 denote the joint potential of N 0 • Then, we 
have 

Ps(Y) = Po(Y)Ps(dlS). {32) 

Consequently, we have 

(By definition) 
Y-S vEU 

L Ps(dlS)Po(Y) L f~(1r(v)) (By equation (32) ) 
Y-S 

- LLPs(dlS) L Po(Y)fv(1r(v)) 
vEU d Y-(Su{d}) 

- L LPs(dlS) L L Po(Y)fv(1r(v)) 
vEU d 1r(v) Y-(1r(v)uSu{d}) 

LL Ps(dlS) L Po(1r(v ), S, d)fv(1r( v )) (Marginal potential) 
vEU d 1r(v) 

As indicated out by equation (9), given S, P8(dlS) is nothing but the 
characteristic function X {dld=o(S)} ( d) of the set { did = 5( S)}. Therefore 

Es[NIS] =LL Po(1r(v),S,6(S))fv(1r(v)). (33) 
vEU 1r(v) 
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Let us now define the evaluation function e( a, (3) of N by 

e(a, (3) =LL Po(1r(v), S =:; (3, d = a)fv(1r(v)).Va End, V(3 Ens. (34) 
vEU 1r(v) 

Equations (31) and (33) together have established the following theorem. 

Theorem 2 Let N = ( X, A, P, :F : S) be a simple semi-decision network. 
Let d be the only decision node. Let e( a, (3) be the evaluation function. Then 

1. The conditional optimal expected values E[NIS] are given 

2. An optimal decision function 8° can be found by 

8°((3) = arg max 0 enve( a, (3), V (3 E Os. 

(35) 

(36) 

The theorem suggests that we can write the S-EVALUATE procedure as 
follows. 

Procedure S-EVAL U ATE 

• N - A simple semi-decision network. 

• An optimal policy and the optimal conditional expected val­
ues. 

1. Construct the semi-Bayesian network N0 • 

2. Compute the marginal potentials P0 ( 1r( v), S, d) for all value 
nodes v. 

3. Obtain the evaluation function e(a, (3) by equation (34). 

4. Compute the optimal conditional expected value by equa­
tion (35) and an optimal policy by equation (36). 

Note that because the marginal potential Po( 1r( v ), S, d) is computed as 
whole, the repetitions of computation due to a strategy pointwise on ( a, (3) 
are avoided. 

34 



11 Evaluating non-smooth stepwise-decomposable 
decision networks 

We have presented in section 8 an algorithm for evaluating smooth stepwise­
decomposable decision networks. In this section we show how to deal with 
non-smooth stepwise-decomposable decision networks. The idea is that we 
revise the evaluation algorithm so that if a decision network N is not smooth 
at a candidate decision node d, it will automatically smooth N at d by calling 
the subroutine SMOOTH(N, d), which is what this section is about. First 
of all, here is the revised algorithm. 

Procedure EVALUATE: 

• Input: N- a stepwise-decomposable decision network (which 
is not necessarily smooth). 

• Output: An optimal policy and the optimal expected value. 

1. If there are no decision nodes, Call N-EVALUATE to com­
pute the expected value, and stop. 

2. Else 

• Find a candidate decision node d. 

• If N is not smooth at d, call SMOOTH(N, d) and let 
N' be the resulting decision network. Else let N' be N. 

• Construct the tail N}1 of N' w.r.t d, 
• Call S-EVALUATE to compute an optimal policy for 

and the optimal conditional expected values of N11. 
• Construct the body N} of N' w .r. t d. 

• Make a recursive call to EVALUATE to evaluate N}. 

Before we can discuss the subroutine SMOOTH(N, d), we need to make 
some preparations. Two decision networks N and N' are equivalent if 

1. They have the same sets of random, decision and value nodes. 

2. Each decision node has the same parents in both networks. In other 
words, the two networks have the same policy space. 
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(1) Before arc reveraal (2) After arc reveraal 

Figure 7: The concept of arc reversal: At the beginning the parent sets of 
Ct and c2 are B U Bt and B U B2 U { ct} respectively. After reversing the arc 
Ct -+ c2, the parent sets become B U B1 U B2 U-{ c2} and B U B1 U B2. 

3. For each policy 8, the induced Bayesian networks N0 and NJ have the 
same prior joint probability. 

If two decision networks are equivalent, then they have the same policy 
space, and their expected values are the same given the same policies. Con­
sequently, they have the same optimal policy and the same optimal expected 
value. 

Arc reversal is an operation that transforms one decision network into 
another different but equivalent decision network (Howard and Mahteson 
1984, Shachter 1986). Let Ct and c2 be two random nodes in a decision 
network N. Suppose there is an arc from Ct to c2 , and there is no other 
directed path from c1 to c2. Let B = 1r( c1) n 1r( c2), B1 = 1r( c1) - 1r( c2), and 
B2 = 1r( c2) - ( 1r( c1) U {ct}). To reverse the arc c1 -+ c2 is to: 

1. Reverse the arc between c1 to c2 , draw an arc from each node in B2 to 
c1 , and draw an arc from each node in B1 to c2 ; and 

2. Define the conditional probabilities P(c2IB, B1 , B2) and P(c1 IB, Bi, B2 , c2 ) 

by 

P(c1, c2IB, Bi, B2) 
P(c2 IB, B1,B2) ' 

where P(c1, c2IB, Bi, B2) = P(c1l1r(c1))P(c2!1r(c2)), and P(c1!1r(c1)) 
and P( c2 l1r( c2)) are in turn given in the specification of N. 
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Proposition 3 Let N be a decision network. Let a .Af' be the decision net­
work obtained from .Af by reversing the arc between two random nodes. Then 
.Af' and .Af are equivalent. 

Proof: It is evident that the two networks have the same sets of random, 
decision and value nodes. It is also obvious that each decision node has the 
same parents in both .Af and .Af'. The conditional probabilities of random 
nodes other than c1 and c2 are the same in both networks. It follows from 
the definition of arc reversal that the product of the conditional probabilities 
of c1 and c2 is also P(c1, c2j1r(c1) U1r(c2)) in both networks. Consequently .Af' 
and .Af have the same expected value given the same policy. The proposition 
is proved. D 

We now start to discuss the subroutine SMOOTH. Let N be a stepwise­
decomposable decision network and let d be a candidate decision node. Let 
Y; be the set of random and decision nodes in the downstream of 1r(d). A 
node c E Y2 is disturbing w. r. t d if there is a directed path from c to at least 
one node in 7r ( d). 

Consider applying procedure EVALUATE to the network in Figure 1. 
The network is smooth at the candidate decision nodes gas-sale-policy 
and oil-sale-policy. After it evaluates those two decision nodes, the net­
work becomes the one shown in Figure 8 (1). In this network, drill is 
the candidate decision node, but the network is not smooth at drill. The 
nodes gas-underground, oil-underground and seismic-structure in the 
network shown are disturbing. 

Lemma 3 Let N be a stepwise-decomposable decision network and d be a 
candidate decision node. For any c1 E Y; and any c2 E 1r( d), 

2. If there is an arc from c1 to c2 in .Af, then c1 and c2 are both random 
nodes. So are the predecessors of c1 in Y;. 

Proof: The lemma follows immediately from the definition of stepwise­
decomposability and the definition of the set Y;. D 

A root disturbing node w. r. t d is a disturbing node whose parents, if any, 
are all in 1r( d). In our example, both gas-underground and oil-underground 
are root disturbing nodes. 

Now, here is the subroutine SMOOTH. 
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Procedure SMOOTH(Af, d) 

• Input: N - a stepwise-decomposable decision network. 
d - a candidate decision node of N. 

• Output: Af' - an equivalent stepwise-decomposable deci­
sion network that is smooth at d. 

While there are disturbing nodes: 

1. Find a root disturbing node, say c. 

2. Reverse, one after another, all the arcs emanating from c 
and on a directed path from c to 11" ( d). 

Theorem 3 The procedure SMOOTH terminates. The resulting decision 
network remains stepwise-decomposable, is smooth at d, and is equivalent to 
the input network. 

Proof: Let us first note that when an arc c --t c' between two random 
nodes is reversed, arcs need to be introduced from the parents of c' to c and 
from the parents of c to c', and that there are no other graphical changes. 

We now show that the algorithm does not destroy stepwise-decomposability. 
In SMOOTH all the arc reversals happen at step 2. Consider one pass 
through step 2. Suppose the arcs reversed are c --t c1 , ... , c --t ck. Some of 
those c/s may be in ?r(d). However, since they all have c as a parent, their 
other parents can only be in ?r( d) U 1-';. Thus after step 2, all the new arcs 
into c are from nodes in 11" ( d) U ½. Since all the parents of c, old or new, are 
in ?r(d) U ½, the new arcs into the c/s are also in ?r(d) U 1-';. Consequently, 
stepwise-decomposability is not destroyed. 

After this step 2, c is no longer a disturbing node. Thus the number of 
disturbing nodes is reduced by one. Therefore, an execution of the algorithm 
will eventually leave the while loop. When that happens, there are no longer 
any disturbing nodes w.r.t d. Consequently, the algorithm terminates and 
when it does, the resulting decision network is smooth at d. 

Finally, the equivalence between the resulting network and the input net­
work was established by proposition 3. D 

As an example, consider the stepwise-decomposable decision network 
shown in Figure 8 ( 1). It is not smooth at the candidate decision node 
drill. Both gas-underground and oil-underground are root disturbing 
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Figure 8: Arc reversal and smoothness. 

nodes. So, either the arc from gas-underground to seismic-str ucture 
or the arc from oil-underground to seismic- structure can be r ·versed 
first. Suppose the former of those two is reversed first. This introduces 
a new arc from oil-underground to gas-underground. Then the arc from 
oil-underground to seismic-structure and the arc from seismic-structure 
to test-result are reversed in order, which produces no more extra arcs. 
The resulting network is shown in Figure 8 (2). 

We notice in the example that the reversals do not change the moral 
graph. This is always true if none of the root disturbing nodes have parents 
(in 1r ( d)). Hence, arc reversals for the sak of sn10othness usually do not 
introduces many arcs. 
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Part III 

Related work and Summary 

12 Related work 

All the previous research on decision networks has been about no-forgetting 
decision networks. In this paper, we have proposed and studied stepwise­
decomposable decision networks, which is more general than no-forgetting 
decision networks. In this section, we restrict ourselves to no-forgetting de­
cision networks and discuss the pros and cons of our algorithm as compared 
to the previous algorithms for evaluating no-forgetting decision networks. 

There are at least four well developed algorithms for evaluating no-forgetting 
decision networks. The most popular one probably remains to be the one 
developed by Shachter (1986) based on the work of Howard and Matheson 
(1984) and Olmsted (1983). The algorithm evaluates no-forgetting decision 
networks by using four operations, namely barren node removal, arc rever­
sal, random node removal, and decision node removal. We shall refer to this 
algorithm as Shachter's first algorithm. 

Ndilikilikesha (1991) proposed no-forgetting potential decision networks 
as a generalization to no-forgetting decision networks, and designed an algo­
rithm to evaluate such decision networks by using three operations, namely 
barren node removal, random node absorption, and decision node absorp­
tion. Since the operation of arc reversal is avoided, this algorithm is believed 
to be more efficient than Shachter's first algorithm. We shall refer to this 
algorithm as Ndilikilikesha's algorithm. 

Let d be a leaf decision node in a no-forgetting decision network N, and 
let v1 , ... , vk be the value nodes in the tail of N w.r.t d. Shachter (1988, 
1990) have noticed that an optimal decision function 8° : D1r(d) -t nd can be 
obtained through 

for each (3 E D1r(d)· After this optimal decision function is computed, the de­
cision node d is replace by a deterministic node characterized by the function 
8°, resulting in a no-forgetting decision node with one less decision nodes. 
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Decision network 
evaluation 

Procedures for 
Bayesian network 

computations 

Figure 9: Modularity. 

Thus, the decision network can be evaluated by repeatedly using formula 
(37) . We shall ref r to this algorithm Shachter's s ond algorithm. 

Sh nay's algorjthm (Shenoy 1990) is a combination of the clique tree 
propagation approach for computing marginal probabilities a,nd the clique 
tree propagation approach to dynamic programming. The algorithm works 
on a directed clique trees build from the original no-forgetting decision net­
work. The directionality is due to the time precedence relationships encoded 
in the decision network. The evaluation process is carried out by eliminating 
nodes from the clique tree one by one. Random nodes are eliminated by 
means summation while decision nodes by means of maximization. 

One property of our evaluation algorithms is that it explicitly identifies 
the Bayesian network computation tasks that arise in the evaluation process, 
and dispatches them to subroutines that live in a module for Bayesian net­
work computations. In other words, our algorithm can be implemented on 
top of a module for Bayesian network computations. This is shown in Figure 
9. 

This modularity is important for three reasons. Firstly, researchers have 
long noticed the close relationship between decision network evaluation and 
Bayesian network computations (Cooper 1989, Peot and Shachter 1992). But 
no one has been able to clearly described the relationship. By explicitly 
identifying Bayesian network computations in decision network evaluation, 
our algorithm provides a clear picture about the relationship. 

Secondly, the modularity is desirable from an implementation point of 
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view. 
Thirdly, in both decision network evaluation and Bayesian network com­

putations, efficiency heavily depends on the elimination ordering (EO) cho­
sen. There have been a few heuristics for finding "good" EO's for Bayesian 
network computations, but none for decision network evaluation. The reason 
is not all possible EO's are valid for the decision network evaluation. Our 
algorithm enables one to directly use the heuristics of Bayesian networks to 
evaluate decision networks. 

However, Shachter's first algorithm, Pierre's algorithm and Shenoy's algo­
rithm do not clearly identify the Bayesian network computations involved in 
evaluating a decision network. Thus, they do not enjoy the modularity men­
tioned above. Consequently, heuristics for finding "good" EO's for Bayesian 
network computations have to be modified in order to be used for decision 
network evaluations. So far, there have been no research on how this can be 
done. 

Shachter's second algorithm does enjoy the modularity mentioned above. 
However, it is not as efficient as our algorithm, because computations in the 
tail are repeated. 

On the other hand, our algorithms carries an overhead when compared 
to the other four algorithms. When the network is not smooth, we need to 
convert it into a smooth one by a series of arc reversals. We also need to 
identify tails and bodies. 

Finally we would like to point out that Cooper (1989) contains a method 
for transforming the task of evaluating a no-forgetting decision network into 
tasks of computing conditional probabilities. The basic idea is similar to ours. 
However, we deal with stepwise-decomposable decision networks, which are 
more general than no-forgetting decision networks. Also, we have combined 
this idea with irrelevance results to give rise to notions like tail, body, and 
section. 

13 Summary 

This paper has been about how to apply Bayesian Decision Theory to prob­
lems that involve multiple decisions and multiple variables. Here is a sum­
mary of our contributions. 

First of all, the concept of decision networks has been developed from 
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a Bayesian Decision Theory setup by considering the so-called conditional 
multiple decision problems. This gives precise semantics to decision networks. 
A discussion on semantic constraints has led to the conclusion that acyclicity 
is the only constraint that is indispensable to decision networks. We thus 
make acyclicity the only semantic constraint our theory relies upon. 

Secondly from a computational point of view, it is desirable if a decision 
network is stepwise-solvable, i.e if it can be evaluated by considering one deci­
sion at a time. However, decision networks in the most general sense need not 
be stepwise-solvable. A syntactic constraint called stepwise-decomposability 
has therefore been imposed. · We have shown that stepwise-decomposability 
implies stepwise-solvability. 

Thirdly, the problem of evaluating stepwise-decomposable decision net­
works has been studied in detail. A number of important concepts, such as 
simple semi-decision networks, body, tail, and smoothness have been iden­
tified. We have shown that a stepwise-decomposable decision network can 
be evaluated by recursively considering the tails of the network, which are 
simple semi-decision networks, and each of which corresponds to one deci­
sion node in the original network. An algorithm has· been given to efficiently 
evaluate simple semi-decision networks. 

Could there be a condition that is weeker than stepwise-decomposability, 
but it still implies stepwise-solvability? The answer is negative, because it 
can be shown that stepwise-solvability also implies stepwise-decomposability. 
Another question is, does stepwise-decomposability severely limit the repre­
sentation power of decision networks? The answer is again negative. The 
reader is referred to Zhang (1993) for reasons. 

In Zhang (1993), we have introduced the concept of decision nodes being 
conditionally independent of part of available information. We have shown 
the equivalence between such independencies and removable arcs. A graphi­
cal criterion, namely the criterion of potential unaccompanied arcs, has been 
discovered for finding all such independencies implied by decision networks 
skeletons. A linear time algorithms has been designed to prune all the po­
tential unaccompanied arcs and the potential barren nodes before evaluation 
takes place. 
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