
Automatic Synthesis
-of Sequential Synchronizations

by
Zheng Zhu and Steven. D. Johnson

Technical Report 93-3
Febuary 1993

Department of Computer Science
The University of British Columbia

6356 Agricultural Road
Vancouver B.C. CANADA V6T 1Z2

To appear in the procedings of the 1999 IFIP Conference on Ha1·dware Description Lan­
guages and their Applications (CHDL '99), Ottawa, Canada, April, 1993.

Also published as Indiana University Computer Science Department Technical Report
TR373.

. l

Automatic Synthesis of Sequential
Synchronizations*

Zheng Zhutt Steven D. Johnson§

Abstract

To compose sequential systems, designers usually have to devise a synchro­
nization mechanism which coordinates constituents of the composition in order to
achieve certain goals of computation. In this paper, we present a simple language
for specifying sequential behaviors. An advantage of the language is that a specifica­
tion of synchronization, when composition is required, can be easily obtained from
specifications of subsystems. We also briefly describe an algorithm which converts a
specification of synchronization to a description of synchronization in our language.

Our approach illustrates that, with a proper sequential descriptions of subsys­
tems, necessary synchronization can be obtained automatically. This frees designers
from control design·, thus leaving more time and energy to consider architectural im­
provement and timing efficiency.

1 Introduction

Composing simple subsystems to form a more complicated system has become a common
practice in digital hardware designs. In order to achieve certain goals of computation,
designers usually have to devise a synchronization mechanism which coordinates con­
stituents of the composition, if the constituents exhibit sequentlal behaviors. Therefme,.
providing formalisms and practical tools to faciLitate system composition has become not
only necessary but also an urgent task to CAD researchers and design practitioners. In
our opinion, a design system which facilitates design compositions should, at least, have
three capabilities:

• A specification language for sequential behaviors of systems.

•This work was supported, in part, by the National Science Foundation under the grants numbered
MIP87-07067, DCR85-21947, and MIP89-21842.

toept of CS, The University of British Columbia, Vancouver, B.C. 'anacla V6T 1Z2, zhu@cs.ub c.ca .
*Currently supported, in part, by operating grants OGPO 109688 and OGPO 046196 ft-om t.he Nat­

ural Sciences Research Council of Canada1 fellowships from the Province of British Columbia Advanced
Systems Institute, by research contract 92-DJ-295 from the Semiconducto1· lleseatch Corporation, and
by the Department of Computer Science, University of BriLish Colun b:ia, Vaucouver, B.C. Canada.

§Dept of CS, Indiana University, Bloomington, IN, USA 47405, sjohnsou@cs.indiana.edu.

1

• A method of extracting an appropriate synchronization requi1·en ents from (1) se­
quential descriptions of constituents to be composed and (2) the behavioral descrip­
tion of the result of the composition.

• An algorithm which converts an extracted synchronization requirement into a de­
scription of synchronization, in the language in which sequential behaviors of con­
stituents are specified.

In this paper, we present a simple language for specifying sequential behaviors of
digital circuits. An advantage of the languag is that a specification of synchronization,
when composition is required, can be easily obtained from specifications of subsystems.
We also briefly describe an algorithm which converts a specification of synchronization to
a description in our language.

Various languages for describing, verifying and synthesizing s · q uen.tial belrnviors of
hardwares have been proposed. Well known formalisms for cm1ClLrrent systems include
CSP [3] by Hoare and CCS [8] by Milner. In [7], Milner exLen<led CS to model synchrony.
Hardware design oriented formalisms, often based on formalisms sucl.i CSP and COS, have
been developed in the last, decade to address hardware design related issues . Those.include
CIRCAL [6] by Milne, HOP [2] by Gopalakrishnan and that reported in [9] by Subrah­
manyam. In recent years, more and more researchers have focused on hardware timing
related issues and have achieved substantial progress. Borriello [1] proposed a method of
specifying and automatically synthesizing hardwar int rfaces. Milne [5] investigated the
issues related to hardware timing description and vedficatiou. Wolf and Takach [11, 10]
used finite state machines to specify hardware and used on.trol transformations to explore
design spaces.

Majority of the work in this area focus on verification asp~ds oI sequential system de­
signs. There are only limited works (e.g. [1]) which addresse 1 formal and practical aspects
in derivation of sequential systems. The work reported in this p1- per ai1 s at providing a
language for sequential behaviors and an automatic genera,tion of synch ·onizations when
sequential compositions are performed. It is our view that derivation approach of designs
is a complement to verification approach of designs. Both should be pm:sued in parallel.

The paper is organized as follows: we first present an exampl t,o illustrate the problem
to be addressed. Section 2 presents a simple language for specifying sequ niial behaviors
of digital operations. Section 3 demonstrates, through examples, Low the language is used
to specffy sequential operations. Section 4 discusses the methods of specifying s quential
synchronizations and derivation of synchronizations from their specifications. Section 5
briefly introduces an algorithm used to derive a synchronization from its specification.

Example 1 In a behavioral specification of hardware, compositions of operations are rep­
resented by terms such as mul(rd(m, a), r) where m, a, r denote abstract registers. mul
and rd are primitive function symbols, denoting multiplication and memory-read oper­
ation respectively. The structure of the term illustrates clearly how the data channels
between hardware components I mul I and I rd I should be established. However, an actual
realization of the term requires knowledge of the sequential characterization of two compo­
nents. If either components is sequential, then the composition requires a synchronization

2

mechanism to coordinate the data communication between them. In this particular ex­
ample, I mul I and I rd I should be synchronized in such a way that I rd I will provide the
content of the memory cell to I mul I as long as it is needed.

2 The Specification Language

Our language for the sequential behavior specification is called the language of timing
expressions. Timing expressions serve two purposes: describing behaviors of sequential
systems and specifying sequential constraints a sequential system has to satisfy. In this
section, we briefly present its syntax and the semantics of the lang:uage. Instead of
presenting every detail of the language, we shall convey conce1 ts through examples. More
detailed and formal description of the language can be found in [12].

2.1 Timing Expressions and Timing Functions

Let T a set of terms1 , and #, .l be two special symbols. Elements of T, # and .l are
partially ordered by the "information content" to form the following partial order: for
every t E T, # C t C .l, and for ti, t 2 E T, if t 1 and t 2 are distinct, then they are not
ordered.

In a digital circuit, terms t0 , • • ·, tn, • • · E T represent known values carried by a
signal. # represents an unknown but fixed value while J_ is the symbol for invalid values.
One of the situations where an invalid value occurs on a signal is when two or more
signals carrying different values are "hard-wired'' together, such a.s short-circuit of source
and ground in a circuit. Situations where a signal carries an invalid value is generally
undesirable thus should be avoided.

Definition 2.1. TE(T) is the smallest set which satisfies:

1. € E TE(T) where€ is an empty string, # E TE(T) and T ~ TE(T);

2. If t ET, pis a signal and b E {O, 1}, then [p = b-+ t] E TE(T).

3. If r1,T2 E TE(T) and pis a signal, then (r1), T1/\r2, r1 -r2, r1 a and r 1 [p = b-+ a]
are elements of TE(T).

Every member of TE(T) is called a timing exp?'ession. Signal p in (p = b-+ a] is called a
control signal. We use 0('r) to denote the set of all control signals a.pi earing in 1.

For example,

(r1) [p = 1-+ O] (7'2) [p = 1 -+ X X y] X X y
(r3) [p = 1 -+ O] /\ [q = 1 -+ O] (r4) ([p = 1 -+ O] /\ [q = I -+ O]) 1

1 We are not concerned by how this set of terms is constructed. They may be generated from some
signature E, or obtained in some way.

3

are valid timing expressions. But

are not.

((po= 1--+ O] /\ (p1 = 1--+ O]) ([P2 = 0--+ a]/\ a)
((po= 1--+ O]-(p1 = 1--+ O]) ((p2 = 0--+ a]/\ a)

A timing expression (p = b --+ a] is called a (p, b)-iteration. Sometimes, when b is
known, it is also called a 1riteration. As explained later, (p = b--+ a] behaves similar to

while p = b do a

in conventional programming language.

Before we discuss the meaning of timing expressions, we nee I to introduce a binary
operator U on the set of all terms. It defines the consequence of join.ing two signals
together: Let t1 and t2 be either terms, or#,

t1 = #
t2 = #
t1 and t2 are identical
Otherwise

Intuitively, a timing expression denotes a sequence of values. Timing expression 0
denotes stream < 0 >. (p = 0 --+ 1] denotes a stream of zero or fmi te number of
ls. The length of the stream depends on th stream assigned Lo p. For example, if
< 0 0 0 1 0 0 • · • > is the stream for signal p, then [p = 0 -► l] is < 1 1 1 >. r1 r2

represents concatenation of streams denoted by -r1 and -r2 respectively. r1 /\-r2 denotes the
stream resulted from pair-wisely applying U operator to the streams denoted by r1 and
-r2 • For instance, r1 = 0 # l, r2 = # (p = 1 --+ 1) and p =< 1 1 1 0 >, then r1 /\ r 2 denotes
the stream< 0 111 >. Ha, /3 are streams de-no-Led by r1 and r2 , and len(a) is the length
of a, then r1 - r2 denotes the stream a j3+len(a) where f3+n de11ot s the suffix of /3 whose
first element is the n + 1th element of /3. If n is greater or equal to the length of (3, then
13+n = i. For instance, let a=< 0 # l 3 > and /3 =< 4 4 4 4 4 4 >, the resulting stream
is < 0 # 1 3 4 4 >. If /3 =< 4 4 >, then the steam denoted by r1 - r2 is < 0 # 1 3 >.

Functions which map signals to timing expressions are called timing functions in this
paper. We use the following notation to display a timing function p whose domain is
{ P1, · · · ,Pn}, and p(pi) = Ti for i = 1, · · ·, n:

Later in this paper, timing functions are used to specif'y behaviors of digital circuits.
When doing so, signals in the domain of a timing function denote either input ports
or output port of the specified digital component. All the control signals, except those
in the domain of the timing function, constitute the environment in which the specified
component operates. This leads to the following definition:

4

g=l/ e

So S2

Figure 1: Automaton for [g = 0 -+ #] [p = 0-+ a] a

Definition 2.2. Let r be a timing expression and p be a timing function. The environ­
ments of r, denoted by Env(r), is the set of all functions C(r)-+ {O, 1} 00 where {O, 1} 00

is the set of all infinite sequences of Os and ls. The environments of p, denoted by Env(p),
is the set of all functions (C(p) - dom(p))-+ {O, 1}00 where

C(p) = LJ C(p(p))
11edom(p)

In other words, an ·environment provides actual sequences for each of the control signals.

Example 2 Let pis timing function on {P1,P2,Pa,p4}:

p: P1 <¢= [g = 0-+ #] [pa= 0-+ a] a
P2 -¢= [g = 0-+ #] [pa= 0-+ b] b
Pa -¢= [g = 0 -+ #] [p = 0-+ O] 0 1
p4 <¢= [g = 0 -+ #] (p3 = 0-+ #] [rls = 0-+ a x b] a x b

and C(p) = {g,p3 ,p,rls}. An environment of pis a function {g,p,rls} -+ {0,1}00
•

Although p3 is used as a control signal, it is internally generated rather than imported.
Therefore, p3 is not a constituent of the environment.

2.2 Finite Interpretation of Timing Functions

The finite interpretation of timing function p simulates "one pass computation" of p.
Firstly, we can simulate a timing expression by a finite state automata (FSA). For example,
a timing expression

[g = 0-+ #] [p = 0-+ a] a
can be regarded as a four-state Mealy machine. The initial state is the timing expression
itself. Every suffix of the timing expression, e.g. [p = 0 -+ a] a and a, is a state. Finally,
the empty string E is the terminal state (Fi~;ure 1).

Using the diagram and given sequences of g and p, we can obtain the following corre­
spondence between input sequences and state-transition, and output values:

g: < 0 0 1 0 >
p: < 0 0 1 0 >

State: < So So S2 83 >
Output: < # # a>

5

-••••• •-•--••••--••-•- •----•-••------ - -----•-•--•---- ---••- I

t t t

I
I
I
I

I
I

---- '
p g rls

Figure 2: Timing Function pas a System of Parallel Automata

The sequence of output is what we expect intuit,ively from the timing expression when
signals q and pare assigned the given sequences respecLively. Th sequenc of states tells
us the "residue" of the timing expression in the giv n enviro1 menL. This analogy betwee)1
timing expressions provides the basis of meanings of timing fundious which are regarded
as systems of automata running in parallel in a lock-st p fashion. FOl' example, the timing
function in Example 2 can be viewed as four parallel automata shown in Figure 2. Arrows
into each box represent control inputs to the automaton. There are only three control
signals going into the system from outside of the dashed box.

Formally, let p be a timing function and e be an environment of p. £0 (p, e) is a function
on dom(e) U dom(p): ·

Definition 2.3. For every p E dom(p) U dom(e),

1. If p E dom(e), then £0 (p, e)(p) = e(p). If p(p) = c, then £0 (p, e)(p) = c. And if
p(p) = a, then £0 (p, e)(p) = a;

2. If p(p) = [q = b---+ a] then

Eo(p, e)(p) = { : Eo(p, e)(q) = b
Eo(p, e)(q) = -,b

3. If p(p) = T1 I\T2, then Eo(P, e)(p) = Eo(p[p/ri], e)(p) Ll £o(p[p/r2l, e)(p)

4. If p(p) = T1 -T2 or p(p) = T1 T2 then

£o(p[p/T1], e)(p) # c
Otherwise

2 of the definition needs some clarification. Apparently, when p q, the definition
becomes:

l"o(p, e)(p) = { : Eo(p,e)(p) = b
Eo(P, e)(p) = -,b

which causes self-reference of signal p thus undefined. Self-reference is analogous to the
race condition in circuit designs, or interlock jn theories of concurrent systems. An algo­
rithm for detecting self-references is described in [12]. A Liming fonction that does not

6

have self-reference during its evaluation in every given environment is called self-reference
free. Throughout this paper, we assume that every timing function is self-reference free.
The next definition simulates state transitions of an automaton.

Definition 2.4. Let T be a timing expression and e E Env(r). The continuation of T

under e, denoted by Cont (T, e) is defined by:

1.
Cont(t, e) = t, and Cont(a, e) = f

2.

{
t if e(p) = -,b

Cont([p = b-+ a], e) = [p = b-+ a] if e(p) = b

3.

{
Cont(r1, e) r2 if Cont(r1 , e) =/- e

Cont(r1 T2, e) = Gont(-r-2, e) 'f C t() , 1 on r1 , e = e

4. Let• E {/\,-}, then

{

Cont(r1,e) if Cont(r2,e)=e
Cont(r1 •r2,e) = Cont(r2,e) if Cont(r1 ,e) = e

Cont(r1 , e) • Cont (r 2 , e) Otherwise

To extend the above definition to timing functions, let p be a timing function and
e E Env(p). Cont(p, e) is defined as a timing function such that for every p E dom(p),
Cont(p, e)(p) = Cont(p(p), £0 (p, e)).

Finally, we can define the "finite" response of a timing function p to an environment
. e, denoted by ~p~ (e):

Definition 2.5. Let p be a timing function. ~p~: Env(p) -+ (dom(p) -+ 'T*(p)) is
defined by

~ ~ () _ { P 'rip E dom(p). p(p) = t
p e - £0 (p,e(l))!dom(p) ~Cont(p,e(l))~(e+) Otherwise

Example 3. Let e be an environment of the timing function in the Example 2:

e(l) e+
,-A-..

e(g) {= 0 1 1 0 0 0
e(p) {= 0 0 1 1 0 1

e(rls) {= 1 1 0 0 0 1

We now compute ~p~ (e) as follows:

~p~ (e)(P1) {= # a a a
~p~ (e)(P2) {= # b b b
~p~ (e)(p3) {= # 0 0 1
~p~ (e)(p4) {= # # # axb axb axb ..__,

fo(p,e(l))!dom(p) <C'ont(p,e(l)~(e+)

7

Finally, Cont (p, e(1)) = p,

Cont(Cont(p, e(l)), e(2)) : Pt {= [p3 = 0 ~ a] a
P2 ¢:: [p3 = 0 ~ b] b
p3 ¢:: [p = 0 ~ O] 0 l
p4 {= [p3 = 0 ~ #][r ls = 0 ~ a x b] a x b

Consequently,

Cont(Cont(Cont(p, e(l)), e(2)), e(e)): p1 {= [p3 = 0 ~ a] a
P2 {= [p3 = 0 ~ b] b
p3 {= 1
p4 {= [p3 = 0 ~ #][rls = 0 ~ a x b] a x b

~ can be extended to evaluating a timing exprnssion in a given environment as follows:
Let T be a timjng expression and e be an environment of T, and p be a timing function
such that dom(p) = {p} i C(r) and p(p) = T. Define ~T~ (e) =~p~ (e)(p).

The (infinite) semantics of timing functions is an extension of the finite interpretation.
We only give an informal description here. A detailed account can be found in [12).
The (infinite) semantics of a timing functioltl is a function which, giv n an envfronment
and a set of input sequences, returns sequences of data outp1Lts. Under a given control
sequence, the requirements for input data, including when da,t, is available on a particular
port, how long it lasts, etc., are represented by varjables in tb timing function's finite
interpretation. For example, assume that the timing function in Example 2 is evaluated
to a set of sequences:

Pt ¢==#a a a
P2¢==#b b b
p3¢:=#0 0 1
p4 {= # # # a x b a x b a x b

The set of the timing function imposes a restriction on data inputs: signals p1 and p2

need to be stable for three clock cycles before the output produces a x b for 3 consecutive
cycles. If the sequences of p1 and p2 are:

P1¢==4333···
P2¢==9777· ..

Then, the operation should respond to the input sequence and the given control envi­
ronment by generating the following sequence on signal p4 :

p4 <= # # # 21 21 21

However, if the input sequence cannot provide a stable input, say

Pt¢==4339, ..

Then the sequence for p4 is unpredictable because the sequence for p1 does not meet the
requirement.

8

0 0 done

adder r+ multiplier -

'

Figure 3: Digital Circuits

We use [p](e, a) to denote the meaning (infinite semantics) of the timing function pin
an environment e and input (data) sequence a . Sometimes, p may not require any data
input2 • In these situations, we simply use [p](e) to denote the infinite interpretation of p
in the environment e.

3 Specification of Digital Components

Specifications of digital components are concerned with different facets of their operations.
Among those facets are the algebraic properties of the operations, temporal character­
izations, constraints to the environment in which the components are used, electrical
properties such as fan-in, fan-out, power, input/output waveforms, and physical require­
ments such as layout, and so on. Sequential specifications introduced in this section
address two facets of operations: input/output (behavioral) relations among signals and
temporal properties of a specified operation.

3.1 Examples of Sequential Specification

We now present specifications of a combinational adder and a sequential multiplier (Fig­
ure 3). As a convention, we draw data signals vertically and control signals by vertical
and horizontal lines (e.g. start and done in Figure 3.) Arrows on signals indicate signal
flow direction.

2 e.g. p is a timing function which contains no variables but 0, 1 and #. Timing functions of this type
will be seen in later sections of this paper.

9

3.1.1 Example: A Combinational Adder

This combinational adder has two input signals i 1 and i 2 , and one output signal o (Fig­
ure 3). Its timing function Pa is:

Pa : i1 {= X1

i2 {= X2

0 {= X1 + X2

Since Pa does not have any control signal, its evaluation depends on data inputs only.
Assume a is:

a: i1 {= 1 3 5 · · ·
i2 {= 8 9 3 ...

Pa is evaluated to a sequence whose first 3 elements (a prefix of [Pa] (a)) are

(1+8) (3+9) (5+3)

3.1.2 Example: A Sequential Multiplier

Assume the multiplier in Figure 3 behaves as follows

"If 1, Xi, and X2 are values on signals start, i1 and i2 , respectively, at time
t1, x1, X2 stay on i1, i2 until time t2 which is the first time when or after t 1

that signal done holds value 1, then the value on signal o at time t 2 is x1 x x 2 •

The timing function of this multiplier is:

Pm : i1 {= [start = 0 ~ #] [done = 0 ~ x1]
i2 {= [start= 0 ~ #] [done= 0 ~ x2]

o {= [start= 0 ~ #] [done= 0 -¼ #] (x1 x x 2)

Let us evaluate Pm in an environment e and a where

e : start {= 0 0 1 0 1
done {= 0 1 0 0 1

a : i1 {= 4 3 3 3 3
i2 {= 2 9 5 5 5

We can compute a prefix of [Pm](e, a) in the following steps:

1. First, the finite interpretation of Pm:

~Pm~ (e) : i1 ~ # # X1 X1 X1

i2 ~ # # X2 X2 X2

o ~ # # # # (x1 x x2)

(1)

2. We then match the first 3 elements of a(i1) against those of ~Pa~ (e, a) (i1) to find
an assignment to the variable x1 = 3. Similarly, matching the first 3 elements of
a(i2) against ~Pa~ (e,a)(i2) yields an assignment to variable x2 = 5.

10

3. Therefore, the first four elements of [pm](e, a) is # # # (3 x 5). The rest of the
sequence is [Pm](e+3 , o:+3) where

e+3
: start <= 0 1

done<= 0 1
a+3 : i1 <= 9 1

i2 <= 7 8

4 Synchronization Specification and Derivation

4.1 Example: Sequential Composition

We now study how to compose the multiplier with a memory-read operator to perform the
operation mul(rd(m, a), r). We were given the tim ing function of a sequential multiplier
Pm earlier. The memory-read's timing function is Pr=

Pr : mem <= [sr = 0 _. #] m
addr <= [Sr = 0 _. #] a

r0 <= [sr = 0-. #] # [rls = 0-. rd(m, a)] rd(m, a)

In Pr, mem and addr are input signals and r0 is an output signal. s,., rls are input control
signals. Pr can be described narratively as:

The environment first raises start-read signal Sr and asserts the address
of a memory cell a to be accessed on signal addr . After one clock cycle, the
content of the memory cell becomes available on port r 0 and stays stable until
one clock cycle after the signal rls became 0.

It is not hard to see that connecting appropriate signals of two components alone does
not do the job. For example, assume that both operations start from their initial states.
Proper action should be taken to guarantee that when Sm signal rises, the correct value
from memory should be available on r0 so that it can appear on one of multiplier's input
signals. In Pm, the timing expression [sm = 0 -. #]'s termination signifies th rise of
Sm signal. In Pr, availability of memory cell's content is signHi.ed by t he termination of
the t iming expression [sr = 0 -. #] #. If both t iming expressions are regarded as
measurements of durations, we can say that a necessary condit ion to synchronize is that
[sm = 0 -. #] consumes at least as much time as [sr = 0 -t #] # does. We use the
following notation to express this condition:

(2)

On the other hand, we also need a condition that "[sm = 0 -t #] does not consume more
time than [sr = 0-. #] # [rls = 0-. rd(m,a)] rd(m,a) does", which is expressed by

[sm = 0 _. #] ~ [sr = 0 _. #] # [rls = 0 -t rd(m, a)] rd(m, a) (3)

Both (2) and (3) are called inequalities (of timing expressions). These two inequalities
impose constraints as shown in Figure 4, which consists of three groups of timing diagrams.

11

Clock

Sr

Sm ------+----- -~

Sm ---+----+-------i

Sr

rls
Sm ___ ___.

tl 12 t3

(W3)

Figure 4: Timing Diagrams: Inequality of Timing Expressions

WI shows the relationship among signals Sr, and Sm . The shaded a.reas mean '1don 't care
the values during the period". By the inequality (2), the rise of Sm (at time t3) can be
moved back to as early as t2 and still satisfy the inequality. However, if t3 < t 2 , then vVl
does not satisfy the inequality any more. W2 shows waveforms of signals which satisfy
inequality (3): the rise of Sm can be moved back to anywhere but not later than the rise
of rls at t3 • The issue we are facing is to find an arrangement of signal waveforms so that
both inequalities can be satisfied. If we compare Wl and W2, we find that waveforms in
W2 satisfy both inequalities (2) and (3). On the other hand, the waveforms in 14'3 also
satisfy inequality (3), but it does not satisfy (2), which requires the rise of Sm after t2•

5 Solving Systems of Inequalities

Solving a system of inequalities, such as (2) and (3), is a key for deriving a synchroniza­
tion required by the composition. In this s.ection, we briefly outline an algorithm and
theorems concerning the algorithm. It should be emphasized that the algorithm is more
a "constructive proof" of the existence of such an algorithm than a practical solution to
the problem.

There are three steps in the algorithm:

Step 1 Converting a system of inequalities to a set of timing relations;

Step 2 Eliminating self-references;

Step 3 Converting timing relations to timing functions.

12

5.1 Step 1

The first step is to convert a system of inequalities (1) to a set of timing relations (~(I)).
Every relation r E ~(I) is a finite set of pairs (p, T) where p is an input control signal and
r is a timing expression. For example, the inequalities

[sr = 0 --+ #] # :=; [sm = 0 --+ #]
[sm = 0--+ #] ::; [sr = 0--+ #] # [rls = 0--+ rcl(m, a)] rd(m, a)

(4)

can be translated to two timing relations:

{
(sm, [sr = 0--+ O] 0), }
(rls, [sr = 0--+ #] # - [sm = 0--+ O])

(5)

and

(6)

In (5), the pair
(sm, [sr = 0 --+ O] 0)

means that, in order to satisfy the first inequality, the input signal Sm should carry value
0 until one clock cycle after the signal Sr changes from Oto 1. The pair

(rls, [sr = 0--+ #] # - [sm = 0 --+ O])

means that, in order to satisfy the second inequality, values on signal rls should meet the
following conditions: Assume that the signal Sm receives n Os followed by a 1, and the
signal Sr receives m Os followed by a 1 (m, n ~ 0).

1. If m ~ n -1, that is, [sr = 0--+ #]#consumes more time than [sm = 0--+ #] does,
then the values on signal rls is a sequence of #s, i.e. don't-cares.

2. If m < n -1, that is, [sm = 0--+ #] consumes more time than [sr = 0--+ #]#does,
then rls will receive a sequence whose first m + 1 values are #s and then followed
by n - (m + 1) Os.

5.2 Step 2

The second step of the algorithm is to eliminate self-references in every timing relation in
~(I). r E ~(J) contains self-references if there exist

such that
Pi E C (T;+i) 0 :5 i :5 m - 2 and Pm-1 E C(To)

This means that dependencies among signals are cyclic, which is undesirable. In
general, there are two possible outcomes to a relation which contains self-references. The

13

first outcome is that the relation can be "repaired" by eliminating the s U-teference. The
following timing relation is an example of such a "repairable" self-refernnce r lation.

If the inequalities

[pl = 0 -+ 1] (p3 = 0 -+ O] -< [p1 = 0 -+ 1 l
[p2 = 0 -+ OJ (p4 = 0 -+ O] -< [p2 '= 0 -+ O]

are satisfied, then we can prove that (7) is equivalent to the following timing relation:

Furthermore, we can prove that the relation (8) is equivalent to the following [12]:

It is obvious that this timing relation does not contain any self-reference.

(7)

(8)

Another possibility is that the self-reference is a result of contradiction in original
inequalities or an over-constraint during solving inequalities. An example of contradicting
inequalities is:

[p = 0 -+ O] 0 ::5 [p = 0 -+ O]

It is translated to a singleton relation:

(9)

which contains a self-reference on signal p. This relation is not tepairable because the
inequality is contradictory: in every environment of [p = 0 -+ O], if tl1e evaluation of
[p = 0 -+ O] results in a sequence of length n, then the evaluation of [p = 0 -+ 0] 0 results
in a sequence of length n + l. Since n $ n + 1, (9) can not be true in any environment.

Timing relation (6) is an example of "over-constrained" partial solution. Although

is a solution to the second inequality in (4), it contradicts to the solution to the first
inequality in (4). Therefore, (6) will not lead to any solution to iuequalities in (4).

Our algorithm can detect such contradictions thus eliminate contradictory timing re­
lations. Otherwise, the algorithm translates a timing relation to an equivalent timing
relation which does not contain any self-reference.

14

5.3 Step 3

The last step of the algorithm is to translate relations to functions. This step is necessary
because, in general, Step 1 of the algorithm results in relations rather than functions.
This translation is done by merging all timing expressions related to the same signal. For
example, a timing relation, among others, contains the following two pairs:

(p, [sm = 0 --+ O] [d = 0 --+ O])
(p, [sr = 0--+ O] 0 [r = 0 7 O] 1)

(10)

Since both pairs denote values carried on signal p, it is necessary to find a synchronization
among signals involved in two expressions so that two expression represent a consistent
value sequence for signal p. Since the expression

[sr = 0 --+ O] 0 [r = 0 --+ O] 1

has a trailing value 1,

[sm = 0--+ O][d = 0--+ O] ::5 [sr = 0--+ O] 0 [r = 0 --+ 0)

is a sufficient condition under which two pairs can be "merged" into a single one:

(p, [sr = 0--+ O] 0 [r = 0--+ O] 1)

It can be proven that (10) is equivalent to the function

{
(p, [sr = 0--+ O]O[r = 0--+ O] 1), }
(r, [sr = 0--+ #] # - [sm = 0 --+ O] [d = 0--+ O])

In (12], we proved the following fact of the algorithm: given a system of inequalities
I, the algorithm terminates on I and returns three possible values:

1. {0}. 0 is an empty function which is regarded as an "unconstrained" timing function.
This means that every inequality in / holds on itself. An example of such an / is

which has a solution 0.

2. {l.}. This means that / does not have any solution.

3. {Ji,···, fn} where every Ji is a self-reference free timing function and every fi is a
solution of I.

15

6 Conclusion

This paper presented a language for sequential behavior specification. This language is
also used to specify sequential interfaces (synchronizations) for sequential compositions
and sequential control integrations. We also briefly described the algorithm which de­
rives a synchronization description in terms of timing functions from a synchronization
specification in terms of system of inequalities. The algorithm should be regarded as
a "constructive proof" of the existence of an algorithm rather than a practical solution
to the problem, due to its computational complexity. Currently, we are studying the
possibility of simplifying the algorithm and making it computationally tractable.

References

[1] BORRIELLO, G. Specification and synthesis of interface logic. In High-Level VLSI
Synthesis, R. Camposano and W. Wolf, Eds. Kluwer Acdemic Publishers, 1991, ch. 7,
pp. 153-176.

[2] GOPALAKRISHNAN, G. C., FUJIMOTO, F. M., AKELLA, V., AND MANI, N. S.
HOP: A process model for synchronous hardware; semantics and experiments in
process composition. Integration, the VLSI journal 8 (1989), 209-247.

[3] HOARE, C. A. R. Communicating Sequential Processes. Prentice Hall, 1985.

[4] MANNA, Z. Mathematical Theory of Computation. McGraw-Hill, New York, 1974.

[5] MILNE, G. Timing constraints, formalizing their description and verification. In Pro-
ceedings of the IFIP WG 10.2 9th International Symposium on Computer Hardware
Description Languages and Their Applications (1989), J. Darringer and F. Ramming,
Eds., North Holland.

[6] MILNE, G. J. CIRCAL and the representation of communication concurrency and
time. ACM Transactions on Programming Languages and Systems 1, 2 (1985).

[7] MILNER, R. Calculi for synchrony and asynchrony. Theo1·etical Computer Science
25 (1983), 267-310.

[8] MILNER, R. Communication and Concurrency. Prentice Hall, 1989.

[9) SUBRAHMANYAM, P. A. What's in a timing discipline?: Considerations in the
specification and synthesis of systems with interacting asynchronous and synchronous
components. In Lecture Notes in Computer Science (1989), M. Leeser and G. Brown,
Eds., Cornell University, Springer-Verlag.

[10] TAKACH, A., AND WOLF, W. Behavior FSMs for high-level synthesis and verifica­
tion. Tech. Rep. CE-W91-13, Dept of EE, Priceton University, 1991.

16

[11] WOLF, W., AND TAKACH, A. Architectural optimization methods for control­
dominated machines. In High-Level VLSI Synthesis, R. Camposano and W. Wolf,
Eds. Kluwer Acdemic Publishers, 1991, pp. 231-254.

[12] ZHU, Z. Structured Hardware Design Transformations. PhD thesis, Computer Sci­
ence Department, Indiana University, USA, 1992.

17

