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Automatic Synthesis of Sequential 
Synchronizations* 

Zheng Zhutt Steven D. Johnson§ 

Abstract 

To compose sequential systems, designers usually have to devise a synchro­
nization mechanism which coordinates constituents of the composition in order to 
achieve certain goals of computation. In this paper, we present a simple language 
for specifying sequential behaviors. An advantage of the language is that a specifica­
tion of synchronization, when composition is required, can be easily obtained from 
specifications of subsystems. We also briefly describe an algorithm which converts a 
specification of synchronization to a description of synchronization in our language. 

Our approach illustrates that, with a proper sequential descriptions of subsys­
tems, necessary synchronization can be obtained automatically. This frees designers 
from control design·, thus leaving more time and energy to consider architectural im­
provement and timing efficiency. 

1 Introduction 

Composing simple subsystems to form a more complicated system has become a common 
practice in digital hardware designs. In order to achieve certain goals of computation, 
designers usually have to devise a synchronization mechanism which coordinates con­
stituents of the composition, if the constituents exhibit sequentlal behaviors. Therefme,. 
providing formalisms and practical tools to faciLitate system composition has become not 
only necessary but also an urgent task to CAD researchers and design practitioners. In 
our opinion, a design system which facilitates design compositions should, at least, have 
three capabilities: 

• A specification language for sequential behaviors of systems. 
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• A method of extracting an appropriate synchronization requi1·en ents from (1) se­
quential descriptions of constituents to be composed and (2) the behavioral descrip­
tion of the result of the composition. 

• An algorithm which converts an extracted synchronization requirement into a de­
scription of synchronization, in the language in which sequential behaviors of con­
stituents are specified. 

In this paper, we present a simple language for specifying sequential behaviors of 
digital circuits. An advantage of the languag is that a specification of synchronization, 
when composition is required, can be easily obtained from specifications of subsystems. 
We also briefly describe an algorithm which converts a specification of synchronization to 
a description in our language. 

Various languages for describing, verifying and synthesizing s · q uen.tial belrnviors of 
hardwares have been proposed. Well known formalisms for cm1ClLrrent systems include 
CSP [3] by Hoare and CCS [8] by Milner. In [7], Milner exLen<led CS to model synchrony. 
Hardware design oriented formalisms, often based on formalisms sucl.i CSP and COS, have 
been developed in the last, decade to address hardware design related issues . Those.include 
CIRCAL [6] by Milne, HOP [2] by Gopalakrishnan and that reported in [9] by Subrah­
manyam. In recent years, more and more researchers have focused on hardware timing 
related issues and have achieved substantial progress. Borriello [1] proposed a method of 
specifying and automatically synthesizing hardwar int rfaces. Milne [5] investigated the 
issues related to hardware timing description and vedficatiou. Wolf and Takach [11, 10] 
used finite state machines to specify hardware and used on.trol transformations to explore 
design spaces. 

Majority of the work in this area focus on verification asp~ds oI sequential system de­
signs. There are only limited works ( e.g. [1]) which addresse 1 formal and practical aspects 
in derivation of sequential systems. The work reported in this p1- per ai1 s at providing a 
language for sequential behaviors and an automatic genera,tion of synch ·onizations when 
sequential compositions are performed. It is our view that derivation approach of designs 
is a complement to verification approach of designs. Both should be pm:sued in parallel. 

The paper is organized as follows: we first present an exampl t,o illustrate the problem 
to be addressed. Section 2 presents a simple language for specifying sequ niial behaviors 
of digital operations. Section 3 demonstrates, through examples, Low the language is used 
to specffy sequential operations. Section 4 discusses the methods of specifying s quential 
synchronizations and derivation of synchronizations from their specifications. Section 5 
briefly introduces an algorithm used to derive a synchronization from its specification. 

Example 1 In a behavioral specification of hardware, compositions of operations are rep­
resented by terms such as mul( rd( m, a), r) where m, a, r denote abstract registers. mul 
and rd are primitive function symbols, denoting multiplication and memory-read oper­
ation respectively. The structure of the term illustrates clearly how the data channels 
between hardware components I mul I and I rd I should be established. However, an actual 
realization of the term requires knowledge of the sequential characterization of two compo­
nents. If either components is sequential, then the composition requires a synchronization 
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mechanism to coordinate the data communication between them. In this particular ex­
ample, I mul I and I rd I should be synchronized in such a way that I rd I will provide the 
content of the memory cell to I mul I as long as it is needed. 

2 The Specification Language 

Our language for the sequential behavior specification is called the language of timing 
expressions. Timing expressions serve two purposes: describing behaviors of sequential 
systems and specifying sequential constraints a sequential system has to satisfy. In this 
section, we briefly present its syntax and the semantics of the lang:uage. Instead of 
presenting every detail of the language, we shall convey conce1 ts through examples. More 
detailed and formal description of the language can be found in [12]. 

2.1 Timing Expressions and Timing Functions 

Let T a set of terms1 , and #, .l be two special symbols. Elements of T, # and .l are 
partially ordered by the "information content" to form the following partial order: for 
every t E T, # C t C .l, and for ti, t 2 E T, if t 1 and t 2 are distinct, then they are not 
ordered. 

In a digital circuit, terms t0 , • • ·, tn, • • · E T represent known values carried by a 
signal. # represents an unknown but fixed value while J_ is the symbol for invalid values. 
One of the situations where an invalid value occurs on a signal is when two or more 
signals carrying different values are "hard-wired'' together, such a.s short-circuit of source 
and ground in a circuit. Situations where a signal carries an invalid value is generally 
undesirable thus should be avoided. 

Definition 2.1. TE(T) is the smallest set which satisfies: 

1. € E TE(T) where€ is an empty string, # E TE(T) and T ~ TE(T); 

2. If t ET, pis a signal and b E {O, 1}, then [p = b-+ t] E TE(T). 

3. If r1,T2 E TE(T) and pis a signal, then (r1), T1/\r2, r1 -r2, r1 a and r 1 [p = b-+ a] 
are elements of TE(T). 

Every member of TE(T) is called a timing exp?'ession. Signal p in (p = b-+ a] is called a 
control signal. We use 0( 'r) to denote the set of all control signals a.pi earing in 1. 

For example, 

(r1) [p = 1-+ O] ( 7'2) [p = 1 -+ X X y] X X y 
( r3) [p = 1 -+ O] /\ [q = 1 -+ O] ( r4) ([p = 1 -+ O] /\ [q = I -+ O]) 1 

1 We are not concerned by how this set of terms is constructed. They may be generated from some 
signature E, or obtained in some way. 
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are valid timing expressions. But 

are not. 

((po= 1--+ O] /\ (p1 = 1--+ O]) ([P2 = 0--+ a]/\ a) 
((po= 1--+ O]-(p1 = 1--+ O]) ((p2 = 0--+ a]/\ a) 

A timing expression (p = b --+ a] is called a (p, b)-iteration. Sometimes, when b is 
known, it is also called a 1riteration. As explained later, (p = b--+ a] behaves similar to 

while p = b do a 

in conventional programming language. 

Before we discuss the meaning of timing expressions, we nee I to introduce a binary 
operator U on the set of all terms. It defines the consequence of join.ing two signals 
together: Let t1 and t2 be either terms, or#, 

t1 = # 
t2 = # 
t1 and t2 are identical 
Otherwise 

Intuitively, a timing expression denotes a sequence of values. Timing expression 0 
denotes stream < 0 >. (p = 0 --+ 1] denotes a stream of zero or fmi te number of 
ls. The length of the stream depends on th stream assigned Lo p. For example, if 
< 0 0 0 1 0 0 • · • > is the stream for signal p, then [p = 0 -► l] is < 1 1 1 >. r1 r2 

represents concatenation of streams denoted by -r1 and -r2 respectively. r1 /\-r2 denotes the 
stream resulted from pair-wisely applying U operator to the streams denoted by r1 and 
-r2 • For instance, r1 = 0 # l, r2 = # (p = 1 --+ 1) and p =< 1 1 1 0 >, then r1 /\ r 2 denotes 
the stream< 0 111 >. Ha, /3 are streams de-no-Led by r1 and r2 , and len(a) is the length 
of a, then r1 - r2 denotes the stream a j3+len(a) where f3+n de11ot s the suffix of /3 whose 
first element is the n + 1th element of /3. If n is greater or equal to the length of (3, then 
13+n = i. For instance, let a=< 0 # l 3 > and /3 =< 4 4 4 4 4 4 >, the resulting stream 
is < 0 # 1 3 4 4 >. If /3 =< 4 4 >, then the steam denoted by r1 - r2 is < 0 # 1 3 >. 

Functions which map signals to timing expressions are called timing functions in this 
paper. We use the following notation to display a timing function p whose domain is 
{ P1, · · · ,Pn}, and p(pi) = Ti for i = 1, · · ·, n: 

Later in this paper, timing functions are used to specif'y behaviors of digital circuits. 
When doing so, signals in the domain of a timing function denote either input ports 
or output port of the specified digital component. All the control signals, except those 
in the domain of the timing function, constitute the environment in which the specified 
component operates. This leads to the following definition: 
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g=l/ e 

So S2 

Figure 1: Automaton for [g = 0 -+ #] [p = 0-+ a] a 

Definition 2.2. Let r be a timing expression and p be a timing function. The environ­
ments of r, denoted by Env(r), is the set of all functions C(r)-+ {O, 1} 00 where {O, 1} 00 

is the set of all infinite sequences of Os and ls. The environments of p, denoted by Env(p), 
is the set of all functions (C(p) - dom(p))-+ {O, 1}00 where 

C(p) = LJ C(p(p)) 
11edom(p) 

In other words, an ·environment provides actual sequences for each of the control signals. 

Example 2 Let pis timing function on {P1,P2,Pa,p4}: 

p: P1 <¢= [g = 0-+ #] [pa= 0-+ a] a 
P2 -¢= [g = 0-+ #] [pa= 0-+ b] b 
Pa -¢= [g = 0 -+ #] [p = 0-+ O] 0 1 
p4 <¢= [g = 0 -+ #] (p3 = 0-+ #] [rls = 0-+ a x b] a x b 

and C(p) = {g,p3 ,p,rls}. An environment of pis a function {g,p,rls} -+ {0,1}00
• 

Although p3 is used as a control signal, it is internally generated rather than imported. 
Therefore, p3 is not a constituent of the environment. 

2.2 Finite Interpretation of Timing Functions 

The finite interpretation of timing function p simulates "one pass computation" of p. 
Firstly, we can simulate a timing expression by a finite state automata (FSA). For example, 
a timing expression 

[g = 0-+ #] [p = 0-+ a] a 
can be regarded as a four-state Mealy machine. The initial state is the timing expression 
itself. Every suffix of the timing expression, e.g. [p = 0 -+ a] a and a, is a state. Finally, 
the empty string E is the terminal state (Fi~;ure 1). 

Using the diagram and given sequences of g and p, we can obtain the following corre­
spondence between input sequences and state-transition, and output values: 

g: < 0 0 1 0 > 
p: < 0 0 1 0 > 

State: < So So S2 83 > 
Output: < # # a> 
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Figure 2: Timing Function pas a System of Parallel Automata 

The sequence of output is what we expect intuit,ively from the timing expression when 
signals q and pare assigned the given sequences respecLively. Th sequenc of states tells 
us the "residue" of the timing expression in the giv n enviro1 menL. This analogy betwee)1 
timing expressions provides the basis of meanings of timing fundious which are regarded 
as systems of automata running in parallel in a lock-st p fashion. FOl' example, the timing 
function in Example 2 can be viewed as four parallel automata shown in Figure 2. Arrows 
into each box represent control inputs to the automaton. There are only three control 
signals going into the system from outside of the dashed box. 

Formally, let p be a timing function and e be an environment of p. £0 (p, e) is a function 
on dom(e) U dom(p): · 

Definition 2.3. For every p E dom(p) U dom(e), 

1. If p E dom(e), then £0 (p, e)(p) = e(p). If p(p) = c, then £0 (p, e)(p) = c. And if 
p(p) = a, then £0 (p, e)(p) = a; 

2. If p(p) = [q = b---+ a] then 

Eo(p, e)(p) = { : Eo(p, e)(q) = b 
Eo(p, e)(q) = -,b 

3. If p(p) = T1 I\T2, then Eo(P, e)(p) = Eo(p[p/ri], e)(p) Ll £o(p[p/r2l, e)(p) 

4. If p(p) = T1 -T2 or p(p) = T1 T2 then 

£o(p[p/T1], e)(p) # c 
Otherwise 

2 of the definition needs some clarification. Apparently, when p q, the definition 
becomes: 

l"o(p, e)(p) = { : Eo(p,e)(p) = b 
Eo(P, e)(p) = -,b 

which causes self-reference of signal p thus undefined. Self-reference is analogous to the 
race condition in circuit designs, or interlock jn theories of concurrent systems. An algo­
rithm for detecting self-references is described in [12]. A Liming fonction that does not 
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have self-reference during its evaluation in every given environment is called self-reference 
free. Throughout this paper, we assume that every timing function is self-reference free. 
The next definition simulates state transitions of an automaton. 

Definition 2.4. Let T be a timing expression and e E Env(r). The continuation of T 

under e, denoted by Cont ( T, e) is defined by: 

1. 
Cont(t, e) = t, and Cont(a, e) = f 

2. 

{ 
t if e(p) = -,b 

Cont([p = b-+ a], e) = [p = b-+ a] if e(p) = b 

3. 

{ 
Cont(r1, e) r2 if Cont(r1 , e) =/- e 

Cont(r1 T2, e) = Gont(-r-2, e) 'f C t( ) , 1 on r1 , e = e 

4. Let• E {/\,-}, then 

{ 

Cont(r1,e) if Cont(r2,e)=e 
Cont(r1 •r2,e) = Cont(r2,e) if Cont(r1 ,e) = e 

Cont( r1 , e) • Cont ( r 2 , e) Otherwise 

To extend the above definition to timing functions, let p be a timing function and 
e E Env(p). Cont(p, e) is defined as a timing function such that for every p E dom(p), 
Cont(p, e)(p) = Cont(p(p), £0 (p, e)). 

Finally, we can define the "finite" response of a timing function p to an environment 
. e, denoted by ~p~ (e): 

Definition 2.5. Let p be a timing function. ~p~: Env(p) -+ (dom(p) -+ 'T*(p)) is 
defined by 

~ ~ ( ) _ { P 'rip E dom(p). p(p) = t 
p e - £0 (p,e(l))!dom(p) ~Cont(p,e(l))~(e+) Otherwise 

Example 3. Let e be an environment of the timing function in the Example 2: 

e(l) e+ 
,-A-.. 

e(g) {= 0 1 1 0 0 0 
e(p) {= 0 0 1 1 0 1 

e(rls) {= 1 1 0 0 0 1 

We now compute ~p~ ( e) as follows: 

~p~ (e)(P1) {= # a a a 
~p~ (e)(P2) {= # b b b 
~p~ (e)(p3) {= # 0 0 1 
~p~ (e)(p4) {= # # # axb axb axb ..__, 

fo(p,e(l))!dom(p) <C'ont(p,e(l)~(e+) 
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Finally, Cont (p, e( 1)) = p, 

Cont( Cont(p, e(l)), e(2)) : Pt {= [p3 = 0 ~ a] a 
P2 ¢:: [p3 = 0 ~ b] b 
p3 ¢:: [p = 0 ~ O] 0 l 
p4 {= [p3 = 0 ~ # ][ r ls = 0 ~ a x b] a x b 

Consequently, 

Cont( Cont( Cont(p, e(l)), e(2)), e(e)): p1 {= [p3 = 0 ~ a] a 
P2 {= [p3 = 0 ~ b] b 
p3 {= 1 
p4 {= [p3 = 0 ~ # ][rls = 0 ~ a x b] a x b 

~ can be extended to evaluating a timing exprnssion in a given environment as follows: 
Let T be a timjng expression and e be an environment of T, and p be a timing function 
such that dom(p) = {p} i C(r) and p(p) = T. Define ~T~ (e) =~p~ (e)(p). 

The (infinite) semantics of timing functions is an extension of the finite interpretation. 
We only give an informal description here. A detailed account can be found in [12). 
The (infinite) semantics of a timing functioltl is a function which, giv n an envfronment 
and a set of input sequences, returns sequences of data outp1Lts. Under a given control 
sequence, the requirements for input data, including when da,t, is available on a particular 
port, how long it lasts, etc., are represented by varjables in tb timing function's finite 
interpretation. For example, assume that the timing function in Example 2 is evaluated 
to a set of sequences: 

Pt ¢==#a a a 
P2¢==#b b b 
p3¢:=#0 0 1 
p4 {= # # # a x b a x b a x b 

The set of the timing function imposes a restriction on data inputs: signals p1 and p2 

need to be stable for three clock cycles before the output produces a x b for 3 consecutive 
cycles. If the sequences of p1 and p2 are: 

P1¢==4333··· 
P2¢==9777· .. 

Then, the operation should respond to the input sequence and the given control envi­
ronment by generating the following sequence on signal p4 : 

p4 <= # # # 21 21 21 

However, if the input sequence cannot provide a stable input, say 

Pt¢==4339, .. 

Then the sequence for p4 is unpredictable because the sequence for p1 does not meet the 
requirement. 
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0 0 done 

adder r+ multiplier -

' 

Figure 3: Digital Circuits 

We use [p]( e, a) to denote the meaning (infinite semantics) of the timing function pin 
an environment e and input ( data) sequence a . Sometimes, p may not require any data 
input2 • In these situations, we simply use [p]( e) to denote the infinite interpretation of p 
in the environment e. 

3 Specification of Digital Components 

Specifications of digital components are concerned with different facets of their operations. 
Among those facets are the algebraic properties of the operations, temporal character­
izations, constraints to the environment in which the components are used, electrical 
properties such as fan-in, fan-out, power, input/output waveforms, and physical require­
ments such as layout, and so on. Sequential specifications introduced in this section 
address two facets of operations: input/output (behavioral) relations among signals and 
temporal properties of a specified operation. 

3.1 Examples of Sequential Specification 

We now present specifications of a combinational adder and a sequential multiplier (Fig­
ure 3). As a convention, we draw data signals vertically and control signals by vertical 
and horizontal lines ( e.g. start and done in Figure 3.) Arrows on signals indicate signal 
flow direction. 

2 e.g. p is a timing function which contains no variables but 0, 1 and #. Timing functions of this type 
will be seen in later sections of this paper. 
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3.1.1 Example: A Combinational Adder 

This combinational adder has two input signals i 1 and i 2 , and one output signal o (Fig­
ure 3). Its timing function Pa is: 

Pa : i1 {= X1 

i2 {= X2 

0 {= X1 + X2 

Since Pa does not have any control signal, its evaluation depends on data inputs only. 
Assume a is: 

a: i1 {= 1 3 5 · · · 
i2 {= 8 9 3 ... 

Pa is evaluated to a sequence whose first 3 elements ( a prefix of [Pa] (a)) are 

(1+8) (3+9) (5+3) 

3.1.2 Example: A Sequential Multiplier 

Assume the multiplier in Figure 3 behaves as follows 

"If 1, Xi, and X2 are values on signals start, i1 and i2 , respectively, at time 
t1, x1, X2 stay on i1, i2 until time t2 which is the first time when or after t 1 

that signal done holds value 1, then the value on signal o at time t 2 is x1 x x 2 • 

The timing function of this multiplier is: 

Pm : i1 {= [start = 0 ~ #] [done = 0 ~ x1] 
i2 {= [start= 0 ~ #] [done= 0 ~ x2] 

o {= [start= 0 ~ #] [done= 0 -¼ #] (x1 x x 2 ) 

Let us evaluate Pm in an environment e and a where 

e : start {= 0 0 1 0 1 
done {= 0 1 0 0 1 

a : i1 {= 4 3 3 3 3 
i2 {= 2 9 5 5 5 

We can compute a prefix of [Pm]( e, a) in the following steps: 

1. First, the finite interpretation of Pm: 

~Pm~ ( e) : i1 ~ # # X1 X1 X1 

i2 ~ # # X2 X2 X2 

o ~ # # # # (x1 x x2) 

(1) 

2. We then match the first 3 elements of a( i1) against those of ~Pa~ ( e, a) ( i1) to find 
an assignment to the variable x1 = 3. Similarly, matching the first 3 elements of 
a(i2) against ~Pa~ (e,a)(i2) yields an assignment to variable x2 = 5. 
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3. Therefore, the first four elements of [pm](e, a) is # # # (3 x 5). The rest of the 
sequence is [Pm]( e+3 , o:+3 ) where 

e+3 
: start <= 0 1 

done<= 0 1 
a+3 : i1 <= 9 1 

i2 <= 7 8 

4 Synchronization Specification and Derivation 

4.1 Example: Sequential Composition 

We now study how to compose the multiplier with a memory-read operator to perform the 
operation mul(rd(m, a), r). We were given the tim ing function of a sequential multiplier 
Pm earlier. The memory-read's timing function is Pr= 

Pr : mem <= [sr = 0 _. #] m 
addr <= [ Sr = 0 _. # ] a 

r0 <= [sr = 0-. #] # [rls = 0-. rd(m, a)] rd(m, a) 

In Pr, mem and addr are input signals and r0 is an output signal. s,., rls are input control 
signals. Pr can be described narratively as: 

The environment first raises start-read signal Sr and asserts the address 
of a memory cell a to be accessed on signal addr . After one clock cycle, the 
content of the memory cell becomes available on port r 0 and stays stable until 
one clock cycle after the signal rls became 0. 

It is not hard to see that connecting appropriate signals of two components alone does 
not do the job. For example, assume that both operations start from their initial states. 
Proper action should be taken to guarantee that when Sm signal rises, the correct value 
from memory should be available on r0 so that it can appear on one of multiplier's input 
signals. In Pm, the timing expression [sm = 0 -. # ]'s termination signifies th rise of 
Sm signal. In Pr, availability of memory cell's content is signHi.ed by t he termination of 
the t iming expression [sr = 0 -. #] #. If both t iming expressions are regarded as 
measurements of durations, we can say that a necessary condit ion to synchronize is that 
[sm = 0 -. #] consumes at least as much time as [sr = 0 -t #] # does. We use the 
following notation to express this condition: 

(2) 

On the other hand, we also need a condition that "[sm = 0 -t #] does not consume more 
time than [sr = 0-. #] # [rls = 0-. rd(m,a)] rd(m,a) does", which is expressed by 

[sm = 0 _. #] ~ [sr = 0 _. #] # [rls = 0 -t rd(m, a)] rd(m, a) (3) 

Both (2) and (3) are called inequalities (of timing expressions). These two inequalities 
impose constraints as shown in Figure 4, which consists of three groups of timing diagrams. 
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Clock 

Sr 

Sm ------+----- -~ 

Sm ---+----+-------i 

Sr 

rls 
Sm ___ ___. 

tl 12 t3 

(W3) 

Figure 4: Timing Diagrams: Inequality of Timing Expressions 

WI shows the relationship among signals Sr, and Sm . The shaded a.reas mean '1don 't care 
the values during the period". By the inequality (2), the rise of Sm ( at time t3 ) can be 
moved back to as early as t2 and still satisfy the inequality. However, if t3 < t 2 , then vVl 
does not satisfy the inequality any more. W2 shows waveforms of signals which satisfy 
inequality (3): the rise of Sm can be moved back to anywhere but not later than the rise 
of rls at t3 • The issue we are facing is to find an arrangement of signal waveforms so that 
both inequalities can be satisfied. If we compare Wl and W2, we find that waveforms in 
W2 satisfy both inequalities (2) and (3). On the other hand, the waveforms in 14'3 also 
satisfy inequality (3), but it does not satisfy (2), which requires the rise of Sm after t2• 

5 Solving Systems of Inequalities 

Solving a system of inequalities, such as (2) and (3), is a key for deriving a synchroniza­
tion required by the composition. In this s.ection, we briefly outline an algorithm and 
theorems concerning the algorithm. It should be emphasized that the algorithm is more 
a "constructive proof" of the existence of such an algorithm than a practical solution to 
the problem. 

There are three steps in the algorithm: 

Step 1 Converting a system of inequalities to a set of timing relations; 

Step 2 Eliminating self-references; 

Step 3 Converting timing relations to timing functions. 
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5.1 Step 1 

The first step is to convert a system of inequalities (1) to a set of timing relations (~(I)). 
Every relation r E ~(I) is a finite set of pairs (p, T) where p is an input control signal and 
r is a timing expression. For example, the inequalities 

[sr = 0 --+ #] # :=; [sm = 0 --+ #] 
[sm = 0--+ #] ::; [sr = 0--+ #] # [rls = 0--+ rcl(m, a)] rd(m, a) 

(4) 

can be translated to two timing relations: 

{ 
(sm, [sr = 0--+ O] 0), } 
(rls, [sr = 0--+ #] # - [sm = 0--+ O]) 

(5) 

and 

(6) 

In (5), the pair 
(sm, [sr = 0 --+ O] 0) 

means that, in order to satisfy the first inequality, the input signal Sm should carry value 
0 until one clock cycle after the signal Sr changes from Oto 1. The pair 

(rls, [sr = 0--+ #] # - [sm = 0 --+ O]) 

means that, in order to satisfy the second inequality, values on signal rls should meet the 
following conditions: Assume that the signal Sm receives n Os followed by a 1, and the 
signal Sr receives m Os followed by a 1 (m, n ~ 0). 

1. If m ~ n -1, that is, [sr = 0--+ #]#consumes more time than [sm = 0--+ #] does, 
then the values on signal rls is a sequence of #s, i.e. don't-cares. 

2. If m < n -1, that is, [sm = 0--+ #] consumes more time than [sr = 0--+ #]#does, 
then rls will receive a sequence whose first m + 1 values are #s and then followed 
by n - ( m + 1) Os. 

5.2 Step 2 

The second step of the algorithm is to eliminate self-references in every timing relation in 
~(I). r E ~(J) contains self-references if there exist 

such that 
Pi E C ( T;+i) 0 :5 i :5 m - 2 and Pm-1 E C( To) 

This means that dependencies among signals are cyclic, which is undesirable. In 
general, there are two possible outcomes to a relation which contains self-references. The 
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first outcome is that the relation can be "repaired" by eliminating the s U-teference. The 
following timing relation is an example of such a "repairable" self-refernnce r lation. 

If the inequalities 

[pl = 0 -+ 1] (p3 = 0 -+ O] -< [p1 = 0 -+ 1 l 
[p2 = 0 -+ OJ (p4 = 0 -+ O] -< [p2 '= 0 -+ O] 

are satisfied, then we can prove that (7) is equivalent to the following timing relation: 

Furthermore, we can prove that the relation (8) is equivalent to the following [12]: 

It is obvious that this timing relation does not contain any self-reference. 

(7) 

(8) 

Another possibility is that the self-reference is a result of contradiction in original 
inequalities or an over-constraint during solving inequalities. An example of contradicting 
inequalities is: 

[p = 0 -+ O] 0 ::5 [p = 0 -+ O] 

It is translated to a singleton relation: 

(9) 

which contains a self-reference on signal p. This relation is not tepairable because the 
inequality is contradictory: in every environment of [p = 0 -+ O], if tl1e evaluation of 
[p = 0 -+ O] results in a sequence of length n, then the evaluation of [p = 0 -+ 0] 0 results 
in a sequence of length n + l. Since n $ n + 1, (9) can not be true in any environment. 

Timing relation (6) is an example of "over-constrained" partial solution. Although 

is a solution to the second inequality in ( 4), it contradicts to the solution to the first 
inequality in (4). Therefore, (6) will not lead to any solution to iuequalities in (4). 

Our algorithm can detect such contradictions thus eliminate contradictory timing re­
lations. Otherwise, the algorithm translates a timing relation to an equivalent timing 
relation which does not contain any self-reference. 
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5.3 Step 3 

The last step of the algorithm is to translate relations to functions. This step is necessary 
because, in general, Step 1 of the algorithm results in relations rather than functions. 
This translation is done by merging all timing expressions related to the same signal. For 
example, a timing relation, among others, contains the following two pairs: 

(p, [sm = 0 --+ O] [d = 0 --+ O]) 
(p, [sr = 0--+ O] 0 [r = 0 7 O] 1) 

(10) 

Since both pairs denote values carried on signal p, it is necessary to find a synchronization 
among signals involved in two expressions so that two expression represent a consistent 
value sequence for signal p. Since the expression 

[sr = 0 --+ O] 0 [r = 0 --+ O] 1 

has a trailing value 1, 

[sm = 0--+ O][d = 0--+ O] ::5 [sr = 0--+ O] 0 [r = 0 --+ 0) 

is a sufficient condition under which two pairs can be "merged" into a single one: 

(p, [sr = 0--+ O] 0 [r = 0--+ O] 1) 

It can be proven that (10) is equivalent to the function 

{ 
(p, [sr = 0--+ O]O[r = 0--+ O] 1), } 
(r, [sr = 0--+ #] # - [sm = 0 --+ O] [d = 0--+ O]) 

In (12], we proved the following fact of the algorithm: given a system of inequalities 
I, the algorithm terminates on I and returns three possible values: 

1. {0}. 0 is an empty function which is regarded as an "unconstrained" timing function. 
This means that every inequality in / holds on itself. An example of such an / is 

which has a solution 0. 

2. {l.}. This means that / does not have any solution. 

3. {Ji,···, fn} where every Ji is a self-reference free timing function and every fi is a 
solution of I. 
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6 Conclusion 

This paper presented a language for sequential behavior specification. This language is 
also used to specify sequential interfaces (synchronizations) for sequential compositions 
and sequential control integrations. We also briefly described the algorithm which de­
rives a synchronization description in terms of timing functions from a synchronization 
specification in terms of system of inequalities. The algorithm should be regarded as 
a "constructive proof" of the existence of an algorithm rather than a practical solution 
to the problem, due to its computational complexity. Currently, we are studying the 
possibility of simplifying the algorithm and making it computationally tractable. 
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