
Objects That Cannot Be Taken Apart With Two Hands

Jack Snoeyink�

Department of Computer Science

University of British Columbia

Jorge Stol�y

Department of Computer Science

University of Campinas

Abstract

It has been conjectured that every con�guration C of convex objects in 3-space with disjoint

interiors can be taken apart by translation with two hands: that is, some proper subset of C

can be translated to in�nity without disturbing its complement. We show that the conjecture

holds for �ve or fewer objects and give a counterexample with six objects. We extend the

counterexample to a con�guration that cannot be taken apart with two hands using arbitrary

isometries (rigid motions).

1 Introduction

Have you ever felt, when you were trying to put something together, that you needed an extra

hand? In this paper we investigate questions of how many moving subassemblies are necessary

to assemble (or by reversing time, disassemble) con�gurations of convex objects. These questions

have applications in the �elds of mechanical assembly planning, robotic manipulation, computer

graphics, and recreational mathematics, as well as giving insight into the complexity of generalizing

from the Euclidean plane to 3-space.

Let C be a �nite set of convex sets (objects) in Euclidean space Ed. Objects in this paper

always have disjoint interiors. We say that con�guration C can be taken apart if some pair of

objects A;B 2 C can be moved arbitrarily far apart by rigid motions of the objects of C such that

the objects always have disjoint interiors. C can be taken apart with k hands if it can be partitioned

into k sets, C = C1 [ � � � [ Ck , and taken apart such that no relative motion occurs inside any Ci.
Finally, con�guration C can be taken apart by translation if it can be taken apart using a �nite

sequence of translational motions.
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In the plane, one can easily take any con�guration of convex objects apart by translation with

two hands. One can de�ne an aboveness relation for objects by saying that A is above B if a vertical

ray drawn upward from a point in the interior of B encounters A. This relation is acyclic in the

plane [5, 6]|a fact that is useful in many algorithms [8, 15]. Thus, there is a maximum object with

respect to aboveness and one can translate any maximum object upwards to in�nity. Computer

graphics textbooks often illustrate that the aboveness relation for convex objects in 3-space can

have cycles: three triangles can overlap cyclically when projected \upward" onto a computer screen.

In 1984, Dawson [4] showed an example of 12 convex tiles, none of which can be translated

\upward" without disturbing the others for any choice of \upward." That is, his example cannot

be taken apart with two hands by translating one object away from the rest. In 1988, Natarajan [12]

gave an example with 16 thin triangular plates. Already in 1963, Fejes-Toth and Heppes [6] had

given an example of 13 convex objects, 12 tetrahedra surrounding a rhombic dodecahedron, for

which no single object can move rigidly (according to an arbitrary isometry) without disturbing

the others. In section 5 we con�rm their conjecture that the central dodecahedron is not necessary.

Each of these three examples can be viewed as a sphere tiled with overlapping tiles such that

the neighbors of a single tile prevent its motion. Each example can be taken apart by translation

with two hands, however, by translating the tiles that cover a certain hemisphere away from the

rest. Thus, Natarajan [12] conjectured that every con�guration C of convex objects could be taken

apart by translation with two hands: that there always exists a proper subset A � C that can be

translated to in�nity by applying a common translation to the objects in A, without disturbing the

objects in the complement C n A. (No point of A enters the interior of an object in C n A during

the translation.)

In this paper, we construct counterexamples to this conjecture. Section 3 gives a con�guration

of six tetrahedra and a proof that it cannot be taken apart by translation with two hands. The

construction is based on the symmetries of a tetrahedron (the alternating group A4). Section 4

shows that this con�guration is minimal, in the sense that one object out of any con�guration of

�ve convex objects can always be translated to in�nity. Section 5 turns to arbitrary isometries and

con�rms a conjecture that Fejes-Toth and Heppes made about their construction, and section 6

gives a con�guration of 30 objects that cannot be taken apart by applying an isometry to any

proper subset. The 30 objects are formed by lacing �ve copies of the translational counterexample

of section 3 together (based on �ve subgroups of A4 that can be found in the alternating group A5).

The proof of this case is an exhaustive computer check of all non-symmetric cases, using an analysis

technique for positive-force closure grasps in robotics [11, 14] to check for possible in�nitesimal rigid

motions.

A short video on the counterexamples was included as part of the Video Review at the Ninth

ACM Symposium on Computational Geometry [16]. DEC Systems Research Center was distribut-
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ing the Video Review in VHS format (NTSC, PAL, or SECAM) as technical report 101a and 101b.

(Email: src-report@src.dec.com)

2 Preliminaries

We build the counterexamples of sections 3, 5 and 6 using symmetry groups. This reduces the

number of subsets that must be checked for possible disassembly. Because we can use group-

theoretic notation to compactly describe the constructions, we use this section to describe our

notation.

In brief, we will use the symmetry groups of a tetrahedron and a dodecahedron, which are the

alternating groups A4 and A5, respectively. Group elements are represented by rotation matrices

and group action on a set of points is simply multiplication of the points by the appropriate rotation

matrix.

In more detail, consider a regular tetrahedron, centered at the origin, with vertices a =

(+1;+1;+1), b = (+1;�1;�1), c = (�1;+1;�1), and d = (�1;�1;+1). Two of the symme-

tries of this tetrahedron can be represented by the rotation matricies

R =

0
BB@
�1 0 0

0 �1 0

0 0 +1

1
CCA and N =

0
BB@

0 +1 0

0 0 +1

+1 0 0

1
CCA;

where R rotates tetrahedron abcd by 180� around the line through segments ad and bc and N

rotates it by 120� around the line through a and the face 4bcd. (Multiplying the vertex vectors by

the matrices, we see that aR = d, dR = a, bR = c, cR = b, and that aN = a, bN = c, cN = d, and

dN = b.)

Using the operation of matrix mutiplication, we can generate a group by taking products of N

and R. Because of the identities R2 = I , N3 = I , and (NR)3 = I , there are twelve distinct matrices

that can be formed as products ofN and R|these are the rotation matrices representing the twelve

symmetries of the oriented tetrahedron abcd. Readers familiar with groups may recognized this as

the alternating group A4, which has a �nite presentation [3]:

A4 = fN;R j N3 = I; R2 = I; (NR)3 = Ig:

If we construct an object, we can use the rotation matrices to obtain symmetric objects. As

a simple example, the point a = (1; 1; 1) multiplied by the twelve di�erent rotation matrices gives

rise to the four vertices of tetrahedron abcd, with each vertex appearing three times. Using the

algebraists' convention of postmultiplying and associating from the left, aR = d, aRN = b and

aRNN = c, and a = aN = aNN (even though matrices I 6= N 6= NN). This application of group

elements (rotation matrices) to elements of some other space (points in E3) is an example of a
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group action. The set of all images of a set under a given group action is the orbit of the set. (For

rigorous de�nitions, see a book on group theory or abstract algebra [7].)

In the next section, we de�ne a plane through three points p = (6; 5;�2), pR = (�6;�5;�2),
and pN = (�2; 6; 5). If we call this plane �, then the orbit of � under the group action of A4

contains twelve distinct planes. Plane �N , for example, passes through pN , pRN , and pNN .

3 A twisted tetrahedron

In this section we construct a con�guration of six identical convex sticks that cannot be taken apart

with two hands using translational motions. Our construction, illustrated in �gure 1, essentially

takes six edges of a tetrahedron, extends them, and gives them a clockwise twist around each

vertex, then de�nes planes separating these edges and creates sticks as the intersections of halfspaces

bounded by these planes.

Figure 1: Three views of six objects that cannot be taken apart by two hands using translations

We prove four properties of this construction: First, the sticks de�ned as intersections of half-

spaces are non-empty, bounded, convex objects. Second, sticks have disjoint interiors. Third,

sticks share 2-dimensional contact regions. Fourth, for any proper subset of sticks, every possible

translation causes a moving stick to penetrate a stationary one at some contact region.

During the constuction, we use the rotation matrices N and R that generate A4, the group of

symmetries of a tetrahedron, as described in the previous section. We begin with the 12 points

formed by A4 acting on the point p = (6; 5;�2). Because the line segment joining p and pR is

invariant under rotation R, the orbit of segment (p; pR) consists of six di�erent segments, each

generated twice. (These segments are the extended and twisted edges of a tetrahedron.)

The three points p = (6; 5;�2), pR = (�6;�5;�2), and pN = (�2; 6; 5) de�ne a plane with

equation 92 + ~n � q = 0, where ~n = (35;�42; 46) is the normal vector to the plane. A point q is

said to be in the non-positive halfspace of this plane if 92 + ~n � q � 0. Notice that symmetries
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Plane equation for � Normal vector Points de�ning the plane

92 + ~n � q = 0 ~n= ( 35; �42; 46) fp; pN; pR g
92 + ~nR � q = 0 ~nR= (�35; 42; 46) fpR; (pN)R; (pR)R = pg

�92� ~nNN � q = 0 �~nNN = ( 42; �46; �35) fpNN; (pN)NN = p; (pR)NN g
�92� ~nNNR � q = 0 �~nNNR= (�42; 46; �35) fpNNR; (pN)NNR = pR; (pR)NNR g

Table 1: The four planes that contain p or pR and de�ne stick �.

of the tetrahedron, which are pure rotations, act on the normal vector as they do on points and

do not change the constant in a plane equation. Thus, we can name the 12 planes in the orbit

of 92 + ~n � q = 0 by their normal vectors. Four planes in the orbit contain either p or pR (see

table 1.) We can orient these planes so that plugging in the point q = (0; 0;�5=2), for example,

gives negative values for all four planes. We call the intersection of the four non-positive halfspaces

the stick �.

Lemma 1 The stick �, which is the intersection of the non-positive halfspaces of 92+~n�q, 92+~nR�q,
�92� ~nNN � q and �92� ~nNNR � q, is a non-empty, bounded tetrahedron.

Proof: The intersection is non-empty: (0; 0;�5=2) is in the interior of the non-positive halfs-

paces of the four planes.

The intersection is also bounded: because the positive linear combination of the normals

35(~n+~nR)+46(�~nNN�~nNNR) = 0, every vector in the subspace spanned by the normals can

be written as a positive linear combination of the normals. One can verify that the normals are

not coplanar, so every vector has positive projection on the normal to some plane, and motion

along the vector will eventually leave the non-positive halfspace of that plane.

The only non-empty, bounded region de�ned by four planes is a tetrahedron.

We can apply the group action to � to obtain an orbit with six di�erent sticks, each generated

twice.

Lemma 2 The six sticks de�ned by group action of A4 on � have disjoint interiors.

Proof: Stick �N uses the plane with equation �92� (~nNN)N � q = �92� ~n � q. Since � uses

this plane with the opposite sign, the interiors of �N and � are separated. In the same way,

the interiors of �NR, �NN, and �NNR are separated from that of �.

The only remaining stick is �NRNN, which in �gure 1 is clearly disjoint from �. For a

numerical proof, one can check that the plane (0; 0; 1) � q = 0 separates the vertices of the two

sticks.

Next, we observe that sticks that share a plane have a two-dimensional contact. We call such

sticks neighbors. Because of symmetries, it is su�cient to check that � and �N are neighbors.

Lemma 3 The intersection of sticks � and �N is a two-dimensional region.
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Proof: The point r = (�3404;�3105;�2975)=1365 satis�es 92 + ~n � r = 0, so r is in the

plane shared by sticks � and �N. The point r is strictly below the unshared planes of these

two sticks|plugging r into the left-hand sides of the plane equations gives strictly negative

numbers|therefore r is contained in a two-dimensional polygon � \ �N.

Theorem 4 Figure 1 illustrates a con�guration C of six tetrahedra that cannot be taken apart by

translation with two hands.

Proof: A stationary point in contact with the interior of a face of a moving object rules out

all translations with positive projection onto the normal of that face. To show that a proper

subset of C cannot translate in�nitesimally, it is enough to show that any direction has positive

projection on such a contact normal.

We consider all possible subsets, up to symmetry. Whether a subset or its complement

moves depends on one's point of view, so we can focus on subsets of at most three sticks.

The proof of lemma 1 has already shown that every vector can be expressed as a positive

linear combination of the normals of a single stick. Thus, no stick with four stationary neighbors

can translate.

Next, suppose that a moving subset A contains a stick � that has three stationary neighbors.

We show that A can translate only if A � f�g can translate. Let ~n be the normal of � at the

contact with its moving neighbor and let ~n1, ~n2, and ~n3 be the normals at stationary contacts.

The vector �~n can be expressed as a positive linear combination of ~n1, ~n2, and ~n3, by lemma 1.

If we treat � as stationary and �nd that some translation ~t is ruled out for A � f�g because

(�~n) �~t > 0, then ~ni �~t > 0 for some ~ni and translation ~t is also ruled out for A by motion of �

into one of its stationary contacts.

The only possible subsets remaining are three sticks that form a \tripod" or a \triangle"|

these subsets are complements. We therefore consider moving the tripod formed by sticks �,

�N, and �NN. The normals at stationary contacts are

Stick Contact normal

� : ~nR= (�35; 42; 46)

�~nNNR= (�42; 46; �35)
�N : ~nRN = ( 46; �35; 42)

�~nNNRN = (�35; �42; 46)

�NN : ~nRNN = ( 42; 46; �35)
�~nNNRNN = ( 46; �35; �42)

These normals span the space of all vectors and

31(~nR+ ~nRN + ~nRNN) + 53(�~nNNR� ~nNNRN � ~nNNRNN) = 0:
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Therefore, we conclude that no proper subset can be translated without penetrating its

stationary complement.

De Bruijn [5], and later Dawson [4], proved that any collection of n star-shaped objects with

disjoint interiors can be separated by n hands using translation: For each object, choose a point qi

from which object i is star-shaped, then translate object i with the velocity vector qi�q1. Since this
translation could be accomplished by scaling the entire con�guration about q1 and then shrinking

each object i radially about qi to its original size, there are no intersections during translation.

Therefore, n hands|i.e. n distinct motions|are su�cient for convex objects. Natarajan, in private

communication, has pointed out that n=2 hands are su�cient for constructions in which convex

objects can be partitioned into pairs that are in contact. Each pair becomes a star-shaped set, and

de Bruijn's argument applies. Thus, our twisted tetrahedron can be taken apart by translation

with three hands.

4 One of �ve can translate

To prove that the construction of the previous section is minimal, we show �rst that any member

of any con�guration C of four or fewer convex objects can be translated to in�nity and second that

some member of any con�guration C of �ve convex objects can be translated to in�nity.

We call a set of planes � a separating set for an object A 2 C if, for any object B 2 C, B 6= A,

some plane �AB 2 � separates the interiors of A and B. The set � is minimal if no proper subset

of � is a separating set for A. The region of A with respect to a separating set � is the intersection

of halfspaces de�ned by planes of � that contain A. We observe that objects that can be translated

to in�nity have unbounded regions.

Lemma 5 A member A of a set C of convex objects with disjoint interiors can be translated to

in�nity if and only if the region of A is unbounded with respect to some separating set of planes.

Proof: Because the region of A is convex, if it is also unbounded then it contains in�nite rays

from A. Object A can be translated along such a ray without crossing a plane of the separating

set, therefore A can be translated to in�nity without encountering another object of C.
If A can be translated to in�nity in direction �, then let Â be the union of A and all its

translates. Â is convex and its interior is disjoint from the other objects of the set. For each

other object, we can �nd a plane that separates it from Â|these planes also form a separating

set for A. The region of Â, which is also the region of A, is unbounded.

The `if' part of this lemma has an easy corollary:

Corollary 6 Any member of a con�guration C of at most four convex objects can be translated to

in�nity in some direction.

Proof: A minimal separating set for an object A 2 C consists of at most three planes, which

divide 3-space into eight unbounded regions.
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With di�culty that is disproportionate to the importance of the theorem, we can prove

Theorem 7 Some member of a con�guration C of �ve convex objects can be translated to in�nity.

We prove this theorem by supposing that there is a counterexample consisting of �ve disjoint objects

and then deriving a contradiction. First we prove that the objects can be assumed to be bounded

tetrahedra de�ned by ten separating planes and that any pair have intersecting faces. We will

then choose a set P of ten points in these intersection regions: one point common to each pair of

tetrahedra. We study the structure of the convex hull CH (P ), and prove that it has a ring of �ve

triangular faces on its boundary. Two adjacent triangles must be on the same \side" of this ring;

we can use those triangles to show that the objects are not disjoint.

Lemma 8 If there is a counterexample to theorem 7 then there is one with �ve bounded tetrahedra

A, B, C, D, and E de�ned by the ten planes �AB, �AC , : : :�DE that separate pairs. Furthermore,

faces de�ned in the same plane intersect: e.g. A \B is a polygon in �AB.

Proof: Suppose that we are given a con�guration C of �ve convex objects with disjoint interiors

such that no object can be translated to in�nity. We make from it a con�guration of �ve

tetrahedra.

Choose a minimal set of planes � that is a separating set for each of the objects. Note that

� contains at most ten planes: one plane �AB for each pair of objects A;B 2 C. If � contains

fewer than ten planes then some object X 2 C has a separating subset of at most three planes;

the region of X is unbounded and lemma 5 states that X can be translated to in�nity. We

can therefore assume that every object in C has a separating subset of four planes of �. Since

four planes in 3-space de�ne only one bounded region, a tetrahedron, we can further assume

that each object is contained in the tetrahedron de�ned by its four separating planes. We can

expand each object to �ll its tetrahedron: � remains a separating set for the expanded objects

and translation becomes only more di�cult.

For each pair of expanded objects (tetrahedra) A and B, we show

…AB
A

B
‘

Figure 2: Faces in �AB

that the intersection A\B is a two-dimensional region in the separat-

ing plane �AB. Initially, let � equal �AB . If the interiors of the faces

A \ � and B \ � do not intersect, then these faces can be separated

in � by a line ` as in �gure 2. Rotate � around ` so that � continues

to separate A and B, until � hits the vertex of A or of B that is not

in plane �AB . Suppose, without loss of generality, that � hits the vertex of A. Then the set

f�; �AC; �AD; �AEg is a separating set of planes for A that all pass through a common point.

In this set, the region of A must be unbounded and A can translate to in�nity.

We denote the vertex of the tetrahedron A that is �AC\�AD\�AE by AB because it is opposite

the face that intersects B. Let V denote the set of all twenty vertices from the �ve tetrahedra.

8



As illustrated in �gure 3, the AB{cone is the region de�ned by �AC ,

…AB A

A B {cone

AB {anticone

Figure 3: AB{cone and

AB{anticone

�AD, and �AE that contains A; the AB{anticone is the region separated

from A by �AC , �AD, and �AE . There are three facts to notice about

cones and anticones. First, any plane that cuts the AB{cone in a triangle

does not intersect the AB{anticone, and vice versa. Second, A will be

strictly inside the convex hull of any four points chosen one from the

interior of each of the four anticones de�ned by A's vertices. And third,

if the vertex AB is on the convex hull CH (V ), then the AB{anticone is

entirely outside CH (V ).

Because tetrahedra A and B intersect in a 2-dimensional region in

�AB , we can choose a point pAB 2 A \ B that lies on no planes of

� n f�ABg. For each (unordered) pair of objects X and Y , we can choose pXY in X \ Y such

that the only plane of � containing pXY is �XY and pXY is in general position with respect to the

previously chosen points. (No three points collinear, no four points coplanar, and no three de�ning

a plane parallel to a separating plane.) Let P denote the set of all ten points. To proceed toward

a contradiction, we will investigate the structure of the convex hull CH (P ) using the following

technical lemma.

Lemma 9 Suppose that the AB{anticone does not intersect CH (P ). Then the points pCD, pDE

and pCE form a face of CH (P ) that lies on the B side of �AB, is contained in the BA{anticone,

and whose plane cuts the BA{anticone in a triangle.

Proof: Let � denote the triangle de�ned by pCD , pDE and pCE and let  denote the plane

containing �. By convexity, the edges of � are contained in tetrahedra C, D, and E as labeled

in �gure 4.

By assumption, pCD is not in the AB{anticone. Since planes �AC and �AD separate A and

pCD, we know that the entire region containing pCD that is de�ned by �AC and �AD (shaded

in �gure 4) is on the A-side of �AE . Therefore, �AE cuts through the triangle � and separates

the region containing pCD from tetrahedron E. Similarly, planes �AC and �AD cut through �

and � cuts the AB{cone in a triangle as shown in �gure 4.

Now, we know that in the plane , rays starting from pCD and proceeding through E

intersect planes �AE , �CE , and �DE before E. By lemma 5 these rays must intersect �BE

afterwards (otherwise E would be in an unbounded region|see �gure 5). Similar arguments

apply to rays through pCE and D and pDE and C. Thus, in the plane , the planes �BC , �BD,

and �BE form a triangle that contain pCD, pDE and pCE as shown in �gure 5. In other words,

the plane  cuts the BA{anticone in a triangle that contains �.

Since B is a bounded tetrahedron de�ned by planes �AB , �BC , �BD, and �BE, there is no

point in space that is separated from B by all four planes. Therefore, � is on the B side of �AB.
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pC D

pD EpC E

C D

E

…AC

…AE

…AD

Figure 4: � cuts the

AB{cone

pC D

C D

E
AE

CE
DE

BE

BC
BD

AB

Figure 5: � is in the BA{anticone

Because the plane  cuts the BA{anticone in a triangle,  does not intersect B. Moreover, 

cuts the AB{cone on the B side of the separating plane �AB. Therefore  does not intersect A.

Point pAB is common to A and B, so both A and B lie strictly to one side of . Since all other

points of P lie on A or B,  certi�es that pCD, pDE and pCE form a face of CH (P ).

As a corollary of this lemma, we can show that if no points of CH (P ) are in the AB{anticone,

then there must be points of CH (P ) in several other anticones. For example, at most one anticone

from each tetrahedron is free of points of CH (P ).

Corollary 10 If the AB{anticone is free of points of CH (P ) then the BA{anticone, other anticones

from A, and other anticones opposite B must contain points of P .

Proof: Suppose the AB{anticone is free of points of CH (P ). Then lemma 9 says that pCD 2
CH (P ) is contained in the BA{anticone.

Lemma 9 also says that pCD is on the E side of �BE, since pCD is in the BA{anticone.

Therefore, pCD cannot be in the EA{anticone and, by the converse of lemma 9, the AE{anticone

must intersect CH (P ). Similarly, pCE is on the D side of �BD and pDE is on the C side of �BC,

so the AD{anticone and AC{anticone also contain points of CH (P ).

Finally, lemma 9 says that pCD is on the B side of �AB . Therefore, pCD cannot be in the

BC{anticone and, using the converse of lemma 9 once again, the CB{anticone contains points

of CH (P ). Similar arguments say that the DB{anticone and EB{anticone also contain points

of CH (P ).

We can now determine that all ten points of P appear on their convex hull, CH (P ), as part of

a ring of �ve triangles.

Lemma 11 By relabeling tetrahedra, we can assume that the following �ve triangles appear as faces

of CH (P ): 4pCDpDEpCE, 4pADpDEpAE, 4pABpBEpAE, 4pABpBCpAC , and 4pBCpCDpBD.
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Proof: We show that each tetrahedron has an anticone that is free of points of P , then argue

that corollary 10 permits only one listing of anticones, up to relabeling.

Notice that if any tetrahedron has points of P in each of its anticones, then that tetrahedron

is strictly inside the convex hull CH (P ). Now, the convex hull of the tetrahedra, CH (V ), has a

vertex, which we can label AB . Because the AB{anticone does not intersect CH (P ), lemma 9

says that points pCD and pDE lie on CH (P ). But this implies that the tetrahedra C, D, and

E are not strictly inside CH (P )|they each must have an anticone free of points of P . The

corollary implies that these anticones cannot be opposite B, so lemma 9 applied to one of these

anticones will show that a point of B also lies on CH (P )|B also has an empty anticone.

Corollary 10 shows that there is one empty anticone per tetrahedron and one of each sub-

script. With �ve anticones, this can only occur as a �ve-cycle AB, BC , CD, DE , and AE or as a

three- and two-cycle. Since two-cycles (e.g. AB and BA) are explicitly ruled out by corollary 10,

we must have the �ve-cycle, up to relabeling. Applying lemma 9 to these �ve empty anticones

give the �ve faces of CH (P ).

We can now �nish the proof of theorem 7 by showing that

D

E
D

E

pC D

pD E

pAE

pAB

pB C

pC E

pAD

pB E

pAC

pB D

Figure 6: The ring of faces

two objects must intersect. As �gure 6 illustrates, the �ve

triangular faces found by lemma 11 form a ring on the convex

hull CH (P ). Since the ring has odd length, there must be two

adjacent triangles that lie on the same side of the ring: they

are 4pCDpDEpCE and 4pADpDEpAE in the �gure. But then

the edges incident on the common vertex alternate: coming

from objects D, E, D, E in the �gure. Because the objects

are convex, this alternation means that the interiors of D and

E are not disjoint. This contradicts our initial assumption,

and establishes the theorem.
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5 The example of Fejes-Toth and Heppes

After seeing that not all con�gurations can be taken

72b

72c

a

72d

36c

24(c+ d)

18(b+ c+ d)

24(b+ c)

36d

24(b+ d)

36b

Figure 7: Three of the 12 bodies

apart with two hands using translation, one naturally

asks about other rigid motions. As mentioned in the in-

troduction, Fejes-Toth and Heppes [6] have given a con-

�guration of 13 objects|12 tetrahedra packed around

a rhombic dodecahedron|in which no single object can

move by any in�nitesimal rigid motion (isometry). They

also conjectured that the central dodecahedron was un-

necessary. In this section, we prove this conjecture as an

example of analysis of in�nitesimal isometries.

Theorem 12 There is a con�guration of 12 tetrahedra

with disjoint interiors such that no single tetrahedron can

be moved by an in�nitesimal isometry.

We begin with our regular tetrahedron abcd from section 2. A tetrahedral body is de�ned by

the four vertices 72b, 36b, 72c, and 24(b+ d). Figure 7 illustrates three of the twelve bodies that

are generated by the group action of A4.

Stationary contact points on moving faces will rule out certain isometries; we determine which

ones using an analysis technique that is common to closure grasps [11, 14] and assembly-sequence

planning [10, 17] in robotics. Any in�nitesimal rigid motion can be expressed as translational force

and a rotational torque applied to the origin and can be represented as a force/torque vector with

six coordinates. If we apply a force at a point p, pushing into a face with normal ~n, then the force

and torque applied to the origin is a positive multiple of the force/torque vector ~f = (�~n;�~n� p),

where � denotes the 3-d vector outer (or cross) product. Therefore, if we can �nd a set of stationary

contact points whose force/torque vectors ~f1; : : : ; ~fk span the six dimensional force/torque space

by positive linear combinations, then those points immobilize the body|any force/torque vector

will have positive projection on one of the ~fi.

72b= ( 72; �72; �72)
36b= ( 36; �36; �36)
72c= (�72; 72; �72)

24(b+ d) = ( 0; �48; 0)

Table 2: Body vertices

�: 0 = ( 1; 1; 0) � q
�: 0 = ( 1; 0; 1) � q
: 144= (�3; �3; �2) � q
�: �144= ( 2; 3; 3) � q

Table 3: Body plane eqns

12



Now, to prove that the body with vertices 72b,
36b=(36,-36,-36)

24(b+d)= 
(0,-48,0)

72b=
 (72,-72,-72)

72c
=(-72,72,-72) 

36b=(36,-36,-36)

36b

24(b+c)     
=(0,0,-48)

18(b+c+d)

  =(-18,-18,-18)

(35,-
35,-3

7)

(-18,-16,-20)

(-16,-20,-18)

(-3,1,-47)
(2,-48,-2)

(66,-68,-66)

(64,-68,-66)

fi

fl

–

Figure 8: A body unfolded

36b, 72c, and 24(b+d) cannot move rigidly, we need

to �nd normals and contacts for its faces. Figure 8

shows the faces of this body unfolded into the plane

after cutting along each of the three edges incident

on vertex 36b. From the Cartesian coordinates of

the vertices (table 2) we compute four plane equa-

tions, �, �,  and �, with outward-pointing normals

(table 3). The faces of �gure 8 are labelled by the

planes that contain them.

As the shading in �gure 8 indicates, the whole

of the faces in planes � and � are in contact with faces of other bodies. In the plane  the portion

of the face bounded by 72b, 24(b+ d), and 18(b+ c + d) is in contact; in the plane � the portion

bounded by 72c, 24(b+ c), and 18(b+ c + d) is in contact. We choose seven contact points from

the interiors of these contact regions as listed in table 4.

Plane Contact Force/torque vector

� : ( 35; �35; �37) ~f1= ( 1; 1; 0; �37; 37; �70)
� : ( 2; �48; �2) ~f2= ( 1; 0; 1; 68; 132; �68)
� : ( 66; �68; �66) ~f3= ( 1; 0; 1; 48; 4; �48)
 : ( 64; �68; �66) ~f4= (�3; �3; �2; 62; �326; 396)

 : (�16; �20; �18) ~f5= (�3; �3; �2; 14; �22; 12)

� : ( �3; 1; �47) ~f6= ( 2; 3; 3; �144; 85; 11)

� : (�18; �16; �20) ~f7= ( 2; 3; 3; �12; �14; 22)

Table 4: Contacts and force/torque vectors for the body

The interested reader can check that these vectors span the 6-d force/torque space and that

218400~f1 + 71252~f2 + 1548~f3 + 43927~f4+ 101673~f5+ 848~f6 + 71952~f7 = ~0:

Therefore the body cannot move by any in�nitesimal rigid motion.

6 A twisted triacontahedral design

In this section we form a con�guration of 30 identical convex objects that cannot be taken apart with

two hands using arbitrary isometries (rigid motions). The name comes from Co�n's book [2], which

includes some amazing puzzles based on 30 sticks arranged around the 30 faces of a triacontahedra.

Our proof of theorem 13 relies on computer support.
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Theorem 13 Figure 9 illustrates a con�guration of 30 convex sticks with disjoint interiors that

cannot be taken apart with two hands using arbitrary isometries.

Missing �gure twist.ps Missing �gure twist2.ps

Figure 9: 30 objects that cannot be taken apart by two hands using arbitrary isometries

Our construction laces �ve copies of the twisted tetrahedron into a dodecahedron|�gure 9

depicts one as solid among four wireframes on the right. These copies correspond to �ve subgroups

of A4 in A5, which is the group of symmetries of a dodecahedron. By judiciously choosing separating

planes, we get sticks that share two-dimensional contacts with ten neighbors.

Let � = (1 +
p
5)=2 denote the golden ratio and de�ne rotation matrices

F =
1

2

0
BB@

� 1 1

�

�1 1

�
�

1

�
�� 1

1
CCA and E =

1

2

0
BB@
�1 1

�
�

1

�
�� 1

� 1 1

�

1
CCA:

F and E generate A5, the group of symmetries of a regular dodecahedron:

A5 = fF;E j F 5 = I; E2 = I; (EF )3 = Ig:

(Given the dodecahedron whose vertices are points in the orbit of (1; 1; 1) under A5, F rotates by

2�=5 about a line through the center of a face; E rotates by � about a line through the center of

an edge.) The group elements

FEFE = N =

0
BB@

0 +1 0

0 0 +1

+1 0 0

1
CCA and EFFEF = R =

0
BB@
�1 0 0

0 �1 0

0 0 +1

1
CCA

are the generators of the A4 subgroup that we used in section 3. The group elements fI =

F 0; F 1; F 2; F 3; F 4g each lie in di�erent cosets of this subgroup. (That is, we get distinct copies of

A4 in A5 by starting with F i and multiplying by Ns and Rs.)

We construct sticks in a manner similar to that in section 3: Begin with the 60 point orbit of

p = (6; 5;�2) under the action ofA5. There are 30 line segments in the orbit of segment (p; pR), each

generated twice. Then de�ne planes separating (p; pR) from neighboring segments and intersect

their halfspaces to form one stick. Each stick is de�ned by ten separating planes, which are grouped

into three types in table 5. Four planes separate (p; pR) from neighbors within its A4 subgroup,

four planes separate it from neighbors in an A4 subgroup generated by R and EF , and two other

bisecting planes are de�ned.
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Table 5: Planes separating (p; pR) from neighbors

By numerical tests similar to those performed in section 3, we can see that

Figure 10: Stick

contacts

these planes form non-empty, bounded sticks with disjoint interiors. Each

stick has 2-dimensional contact with its ten neighbors, as shown in �gure 10.

(In this �gure and in �gure 9 the ends of the sticks have been clipped so

that the interesting part of the construction may be seen.) We choose one

point from each contact region (the average of the vertices) and form the

force/torque vectors that apply to the origin when a positive force acts on

each contact of each stick. Note that although decimal approximations to the

contact vectors are listed in table 5 for compactness, all these computations

can be done exactly in a rational �eld extended to include the golden ratio �

using symbolic algebra packages such as Maple and Mathematica. (We used

both.)

We consider possible in�nitesimal motions of a subset of sticks by a linear programming formula-

tion of the analysis of the previous section: Let A be the 6�k matrix of force/torque vectors where a

moving object is in contact with a stationary point. Non-degenerate basic feasible solutions [1, 13]

of the seven linear equations A~x = ~0 and
P

1�i�k xi = 1 express the origin as a positive linear

combination of seven force/torque vectors that span the space. If we show that this linear program

is feasible for each subset of sticks, then we have shown that the sticks cannot be taken apart

by any two-handed rigid motion. (The fact that seven is su�cient follows from Caratheodory's

theorem [9, 11] and that our force/torque vectors are in su�ciently general position. Otherwise we

might have to go to twelve and use Steinitz's theorem.)

There are 230 subsets to analyze; we can use a 30-bit integer to represent each subset. By

manipulating these bits, we can avoid analyzing symmetric cases, complementary cases, and cases

in which some moving stick has nine or ten stationary neighbors. This reduces the number of

subsets to 221:8. If we weaken the result to show that no motion to in�nity is possible (rather

than that no in�nitesimal motion is possible) then we can reduce the number of subsets to 216:8

by eliminating subsets with a moving triangle that is linked with a stationary triangle or 4-cycle.

Solving the linear programming problems for these subsets (using a revised simplex algorithm that

stores only the inverse of the current basis and not the entire tableau [1, 13]) takes 7 minutes on an

IBM RS6000/560, including the reduction. Because these reductions also make proving program

correctness more di�cult, we wind up not using them on the �nal run of the program, which takes

about 25 hours. We also ran the program on two other architectures, at least one of which had a

di�erent oating point implementation.

15



We should mention that, even with no pivoting, the condition numbers of all matricies that

arose were bounded by 106 using the L1 norm. We ran a second check with pivoting on subsets

for which the bound on the condition number became larger than 2 � 104. The actual condition

numbers in these cases were less than 3.

One could implement a general polynomial-time algorithm to analyze a con�guration by com-

puting the arrangement that the hyperplanes normal to the contact force/torque vectors induce on

the 5-dimensional sphere of unit force/torque vectors in 6-space. Within each cell one can de�ne

a unique blocking graph, with a directed edge from object A to B if contact with A prevents B

from moving according to force/torque vectors in the cell. No subset can move in�nitesimally i� all

blocking graphs are strongly-connected. (See Wilson and Matsui [17] for more detail.) In our case,

however, the 150 hyperplanes form an arrangement with 234 cells, and further reductions require

tricky programming.

7 Conclusion

The constructions in this paper are further evidence, if any were needed, that favorite techniques

and tools of computational geometry in the plane break down in 3-space.

Many mathematical and algorithmic questions remain to be answered: Exactly how many hands

are necessary to take apart any con�guration of convex objects? A speci�c con�guration? If one is

told how many hands are su�cient for a speci�c con�guration, how does one e�ciently compute a

motion? An entire disassembly sequence?
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