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Abstract

We consider the construction of spline features on spline surfaces. 1 The approach taken is

a generalization of the hierarchical surface introduced in [Forsey88]. Features are regarded as

spline-de�ned vector displacement �elds that are overlain on existing surfaces. No assumption

is made that the overlays are derived from the base surface. They may be applied with any

orientation in a non-hierarchical fashion.

In particular, we present a \cheap" version of the concept in which the displacement �eld

is mapped to the base surface approximately, through the mapping of its control vectors alone.

The result is a feature that occupies the appropriate position in space with respect to the base

surface. It may be manipulated and rendered as an independent spline, thus avoiding the costs

of a true displacement mapping. This approach is useful for prototyping and previewing during

design. When a �nished product is desired, of course, true displacement mapping is employed.

1 Introduction

The more tools one has with which to build free-form spline surfaces, the more extensive are

the possibilities of imitating naturally-ocurring or industrial surfaces with spline models. Single,

tensor-product surfaces are limited in what they can achieve. For this reason, publications ap-

pear regularly on trimming, box-splines, multivariate splines, multi-sided patches, surface blending

and �llets, hierarchical surfaces, and warped surfaces [Casale87, Coquillart90, Dahmen91, Farin90,

Forsey88, Faux79, H�ollig89, Loop90, Sederberg86]. Here we investigate composite surfaces that are

constructed by layering displacement splines onto a root spline in a manner that generalizes the

hierarchical surfaces of [Forsey88].

Displacement mappings are standard tools in computer graphics [Foley90], and applying them

in a stagewise fashion to layer features onto a surface substrate is an idea that requires little

innovation to carry into implementation. Nevertheless, surface modelers are not usually built upon

1This work was supported by the Canadian Government under a Strategic NSERC grant, by the Province of

Ontario under an ITRC grant, and by General Motors and Digital Equipment.
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this principle because of the expense involved. Such surfaces are procedurally de�ned, and every

manipulation must be made implicitly, modifying the displacement and tracking the e�ect through

the construction process for every point to be rendered and evaluated. The hierarchical surfaces of

[Forsey88] avoided this expense by mapping only the control vertices of each level of displacement

onto their corresponding base surfaces. The resulting composite surfaces were limited in their

forms by the requirement that each displacement region be derived from the root surface by a

nested sequence of re�nements. In this paper we investigate the possibility of approximating a true

displacement construction by mapping only control vertices to form approximate displacements.

There is to be no restriction on the regions, or on the orientations of the displacements. One

uses these approximate displacements during an interactive process to design and preview the true

displacement result.

In Section 2 we review true displacement maps to set the terminology and context of our

proposals. In Section 3 we touch upon the local coordinate frames that are suitable for applying

displacements on surfaces. The approximate displacements of our proposal are based upon the

concept of representing the control vertices of displacement splines in scattered frames of reference

derived from the displacement's domain. We discuss scattered reference frames in Section 4. Section

5 provides the material for mapping control vertices to approximate a true displacement map, and

Section 6 provides a few words on the accuracy of this process. Section 7 closes with a mention

of multiple overlays and a �nal example. We assume that the reader is familiar with the concepts

and notations of splines; e.g. as presented in [Bartels87, Farin90].

2 Surface Displacement Maps

Let S(u; v) be a surface; that is, a collection of points in 3-D a�ne space [Foley90, Goldman85]

generated by two scalar variables, u and v, that belong to a 2-D a�ne domain DS. Let d(r; s) be a

displacement; that is, a collection of vectors in the same 3-D a�ne space generated by two variables,

r and s, belonging to another 2-D a�ne domain Dd. In order to keep the elements of the discussion

distinct, points will be given in upper case Roman characters, scalars in lower case Italic or Greek,

and vectors in lower case bold. Transformations will be given by upper case bold characters. A�ne

transformations are an important class, but we will not restrict ourselves exclusively to them. We

will, however, assume that our transformations are invertible.

The process of applying the displacement d to the surface S begins with the mapping of the

domain Dd into the domain DS by a transformation T. Then, for each, point (u; v) in the surface

domain contained within T(Dd), a pre-image point, (r(u; v); s(u; v)) = T�1(u; v) must be found.

The displaced version of the point S(u; v) is given by some interpretation of the a�ne, point-vector

sum S(u; v) + d(r(u; v); s(u; v)). In the terminology of [Forsey88], S is the base surface, d is an

overlay, and S + d constitutes a new base surface to which further overlays may be applied. If

this process is carried out repeatedly, the various domain images Dd will form a layered composite

of regions. Calculating the inverse transformation T�1 in such a situation takes on aspects of ray

tracing, in which each point (u; v) in DS must be tested for inclusion in each overlay domain's image

Dd. The collection of inclusion domains must be reported in the order in which the overlays were

applied. Needless to say, this hampers the interactive use of displacements as a modeling tool. The

restriction of strict domain nesting and alignment, provided by subdivision, made a restricted form

of displacements interactively supportable in [Forsey88].

The reason for the qualifying phrase \some interpretation of" in the above description arises

from the requirement that the overlay be sensitive to the local topography of the base. This

requirement is well known in texture mapping, showing up most painfully when a at pattern must
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be applied in reasonable way to a highly distorted surface. For this reason, representing d in the

world coordinate frame fO; i; j;kg

d = �(r; s)i+ �(r; s)j+ (r; s)k

and applying straightforward, componentwise addition

S(u; v) + d(r(u; v); s(u; v)) = [O + �(u; v)i+ �(u; v)j+ �(u; v)k]

+ [�(r(u; v); s(u; v))i+ �(r(u; v); s(u; v))j+ (r(u; v); s(u; v))k]

= O + [�(u; v) + �(r(u; v); s(u; v))]i

+[�(u; v) + �(r(u; v); s(u; v))]j

+[�(u; v) + (r(u; v); s(u; v))]k

is insu�cient to achieve reasonable displacements.

A more satisfactory displacement is achieved when each displacement vector d(r; s) is formulated

in a local coordinate frame fO(r; s); i(r; s); j(r; s);k(r; s)g

d = �(r; s)i(r; s)+ �(r; s)j(r; s)+ (r; s)k(r; s)

The coordinatewise addition of d(T�1) = d(r(u; v); s(u; v)) to S(u; v) is interpreted in a compatible

local coordinate frame on S, which is tied to the surface point S(u; v) as origin rather than to the

world origin O, and which is tied to surface coordinate vectors ff(u; v); g(u; v); h(u; v)g rather than

global coordinate vectors. Thus, S + d is interpreted as

S(u; v) + d(r(u; v); s(u; v)) ! S(u; v)

+�(r(u; v); s(u; v))f(u; v)

+�(r(u; v); s(u; v))g(u; v)

+(r(u; v); s(u; v))h(u; v)

This interpretation is presented in Figure 1.

Choosing local coordinates i; j;k and compatible coordinates f ; g;h is open to many research

possibilities. In Section 3 we present the choice we have been using.

3 Surface Frames of Reference

We compose local coordinates for d using the unit vectors in the r and s directions. These serve

as the i and j coordinate vectors. We regard these vectors, and the r; s domain, as being an a�ne

plane imbedded in the world coordinate frame. The third unit vector needed for a local coordinate

frame is provided by the world-space cross product of i and j, regarded in whichever order makes

sense in the context of the model being constructed. One choice will map d(r; s) onto displacements

for one side of S, and the other choice will map d(r; s) onto displacements for the reverse side of S.

One choice is useful in providing displacements that raise elevations on the base surface; the other

choice is useful in digging depressions into the base.

At a corresponding point S(u(r; s); v(r; s)) = S(T(r; s)) on the surface, a local coordinate frame

is constructed using the tangent plane and the surface normal. The unit direction vectors f and

g in the tangent plane should convey the directions of the vectors i and j as mapped by the
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Figure 1: Domain mapping and compatible local coordinate frames for displacements

transformation T and reected onto the surface S at the image point (u; v). The closest di�erential

geometric entities that meet this description are the partial derivatives vectors
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We have found it su�cient to approximate these vectors with di�erence quotients; e.g.,

@S

@r
�

S(u(r + �; s); v(r+ �; s))� S(u(r; s); v(r; s))

�

for a small value of � depending on the magnitude of the components of S and the round-o�

precision of the computer. These approximate partial derivatives, normalized, provide f and g at

(u; v). h is their cross product, normalized to provide the surface normal, whose sense is chosen to

be meaningful in the context of the model being constructed.

4 Domain Points and a Scattered Control Vertex Representation

True displacement mapping would require that this construction of coordinate frames be undertaken

at every point of interest for the surface. An approximation that involves mapping only the control

vectors dk;` of d, however, together with a corresponding number of domain points (r; s), has proven

useful in approximating the true displacement. This approximation can be used interactively for

model design and rendering. Our experience in this regard has been limited to tensor products

S(u; v) =
X

i

X

j

Si;jbi(u)bj(v)

d(r; s) =
X

k

X

`

dk;`ck(r)c`(s)

using nonuniform B-splines as basis functions, so we will present only this case here.

We associate each control vector dk;` with the domain point Ok;` = (rk; s`) over which it has

maximal inuence; that is to say, the point at which its corresponding basis function ck;`(r; s) =
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ck(r)c`(s) takes on a maximum. A suitable approximation to this, for practical purposes, is to take

the midpoint of the basis support (or for odd-degree B-splines, the middle knot of the support).

That is, for degree d, rk  
rk+rk+d+1

2
(or rk  r

k+
d+1

2

for odd degrees), where ck is positive over

the range of knots rk ; : : : ; rk+d+1, and similarly for s`.

The displacement spline d(r; s) must be a vector spline. As such, it is not sensitive to placement

of the origins O or Ok;` However, designers have grown used to working with spline surfaces rather

than spline vector �elds, and consequently the design of an overlay feature is best done in the form

D(r; s) =
X

k

X

`

Dk;`ck(r)c`(s)

=
X

k

X

`

[Ok;` + dk;`] ck(r)c`(s)

using the control vertices Dk;` instead of the control vectors dk;`.

The association of control vertex to domain point is used to provide an i; j;k coordinate frame,

as has been described, and the coordinates �; �;  of the control vertex in this local frame are found.

Plate 1 shows an example, where the control vertices appear as cyan cubes, and the local frames

appear as magenta gnomens. The control vectors can be visualized as the di�erence between each

cyan cube, Dk;`, and the origin, Ok;`, of its corresponding gnomen.

As we have mentioned, the domain Dd must be imbedded in the 3-D space of d(r; s) and

D(r; s). This becomes particularly easy to arrange, since, as may be seen from Plate 1, control

vertices around the margin of the displacement spline are not separated from the domain. In order

for a displacement to make sense as a modi�cation of the base surface that �ts seamlessly on that

base, the displacement spline must produce zero vectors around its margin. The design of such

a spline would begin with control vertices residing on the \zero plane", and only interior control

vertices would be moved. Thus, a displacement spline begins life, conceptially, as a displacement

applied to its own domain plane.

5 Domain and Control Vertex Mapping

For any mapping T of the domain Dd into DS, we apply T only to the domain points Ok;` associated

with the control vertices Dk;`. The image points, T(Ok;`) = T(rk; s`) = (uk;`; vk;`) are taken to

produce surface points S(uk;`; vk;`), and a local surface frame fk;`; gk;`;hk;` is produced as for true

displacement mapping. If

Dk;` = Ok;` + �k;`ik;` + �k;`ik;` + k;`ik;`

Then the point

S(Ok;`) + �k;`fk;` + �k;`gk;` + k;`hk;`

is assigned as an image of Dk;` and �k;`fk;`+�k;`gk;`+k;`hk;` is assigned as an image of dk;`. These

control vector images serve to de�ne a spline overlay surface that represents an approximation to

the displaced portion of the base surface:

S(u(r; s); v(r; s))+ d(r; s);
X

k

X

`

[S(uk;`; vk;`) + �k;`fk;` + �k;`gk;` + k;`hk;`] ck(r)c`(s)

for (r; s) 2 Dd.
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Plates 2{5 show this process applied to the displacement spline of Plate 1. Plate 2 shows an

a�ne mapping of the Dk;`-associated points, Ok;`, in Dd, shown as yellow spots, into the domain

DS, shown as a white square. Plate 3 shows the corresponding view of the base surface, in white,

the image control vertices, S(uk;`; vk;`) + �k;`fk;` + �k;`gk;` + k;`hk;` as cyan boxes, the surface

coordinate frames, fS(uk;`; vk;`); fi;j; gi;j;hi;jg as magenta gnomens, and the approximation to the

displaced surface, in yellow. Plate 4 shows the corresponding items in exploded view. Plate 5 shows

a Phong shaded version of the two surfaces combined.

It should be emphasised that the approximation to the displaced portion of the base surface,

shown in yellow on Plate 3, is a free-standing spline. It is no harder to render or manipulate than

the base surface itself. In particular, any manipulation of this spline surface will only serve to

change the quantities �k;`, �k;`, and k;`, which have a direct reection back to the unmapped

displacement d. Thus, this approximate displacement mapping serves not only as a cheap means of

rendering and previewing, it also serves as a mechanism for subsequent design editing. The editing

may proceed on the composite surface, by adjusting the control coordinates �k;`, �k;`, k;` to distort

the yellow surface of Plate 3, and the corresponding adjustment of these control coordinates will

adjust the shape of the feature surface D in Plate 1. Conversely, the editing may proceed directly on

the feature surface in Plate 1, and the changes in �, �,  may be transferred directly to the yellow

surface of Plate 3. Once the entities Ok;` = (uk;`; vk;`), ik;`, jk;`, kk;`, S(uk;`; vk;`), fk;`, gk;`, and

hk;` have been produced, editing an approximate displacement is no more costly than editing any

conventional spline. (In our usage, i, j, and k are constant, so the cost of the initial approximate

displacement is even less than this list of entities might suggest.)

The example shown in Plates 1{5 involved an a�ne transformation T. Dd was mapped to

DS using rotations and translations. Plates 6{8 show an overlay that is warped through a sine

function before being applied to the base surface. Plate 6 presents the mapped domain T(Dd);

Plate 7 shows a wire-frame rendering of the base surface, in white, and the displacement surface,

in yellow. Plate 8 presents a Phong-shaded rendering of the base and approximate displacement

surfaces together.

6 Accuracy

We have stressed that the displacement surfaces that are produced are only approximations to a

true displacement surface. It might appear that the yellow is pasted quite cleanly onto the white in

Plate 3; however, its boundary is merely a very close approximation to the base surface upon which

it is resting. The surfaces used in this example are bicubic. Except for the equiparametric lines,

u = const: and v = const:, a bicubic surface generally has degree six behavior. Thus, the margin

of the yellow displacement surface in Plate 3 is varying cubically, while the white base surface on

which it is resting is varying as a sixth degree surface, since the displacement margin is not oriented

along a line of constant u or v.

The true displacement surface, for which the yellow surface of Plate 3 is an approximation,

would be

S(u; v) =
X

i

X

j

Si;jbi(u)bj(v)

+
X

k

X

`

[�(r(u; v); s(u; v))f(u; v)

+�(r(u; v); s(u; v))g(u; v)
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+(r(u; v); s(u; v))h(u; v)]

ck(r(u; v))c`(s(u; v))

the yellow surface is merely

S(u; v) =
X

i

X

j

Si;jbi(u)bj(v)

+
X

k

X

`

[�(r(u; v); s(u; v))f(rk; s`)

+�(r(u; v); s(u; v))g(rk; s`)

+(r(u; v); s(u; v))h(rk; s`)]

ck(r(u; v))c`(s(u; v))

The example of Plates 6{8 are more readily comprehended as an approximation, despite ap-

pearing to be quite cleanly joined. After all, the yellow surface is varying as the sine of a cubic

function along one margin. This non-polynomial behavior cannot be matched by the base surface.

As a reducto ad absurdum example that approximate displacements can be pushed too far,

consider Plates 9{11. Here, the vector spline that de�nes the displacement is the zero vector spline.

The true displaced surface would coincide exactly with the base, but the approximate displacement

is mapped onto the base as a polygon that meets the base surface only at its corners. Plate 9 shows

an exploded picture. In Plate 10 the view is from above, and the base surface is clearly covering the

approximate displacement. Plate 11 shows the situation from below in Phong-shaded rendering.

Further evidence of the fact that only an approximate displacement is being produced may be

seen in Plates 17{19. In these plates the overlay surface is of a strongly contrasting color to the

base surface. Some spotting of red overlay appears mixed with white base along the margin of the

\ange" portion of the overlay (which extends quite far away from the central displacement hump,

as can be seen in Plate 16). This is partly due to z-bu�er resolution, but also due to the fact, as

in earlier examples, that the displacement is varying as a cubic along its margin, while the base is

varying as a sixth degree surface. The scalloped edge that the displacement appears to have, on the

other hand, is not primarily an issue of accuracy. Both surfaces are rendered by being tessilated into

rectangular facets. Since the surfaces are arranged at an angle to each other, so are these facets,

and the scalloping is due to the skewed arrangement of these rectangles. Rendering displacement

surfaces correctly requires the same skill as rendering trimmed and intersecting surfaces.

If the given approximation is unsatisfactory, two possibilities exist to achieve a closer approxi-

mation to the true displacement surface: degree elevation and subdivision [Bartels87, Farin90]. For

example, the zero displacement shown is represented by a bi-constant spline consisting of a single

patch; in short, a polygon. It could equally well be represented as a much higher degree spline

consisting of many more patches. By recursively segmenting the yellow polygon of Plates 9{11,

we could achieve a polygonal approximation to the displacement region on the base surface. Any

prescribed accuracy can be obtained. By allowing the degree to be raised as well, even greater

accuracy can be achieved for a given number of patches.

Considering the formulas for S(u; v) and S(u; v) given above, if sudivision alone is used so that

the maximum patch diagonal tends to zero, then the domain points Dk;` will become dense in Dd,

their images S(uk;`; vk;`) will become dense on S, and if S is C1 continuous, the vectors fk;`, gk;`,

and hk;` within the locality of S(u; v) will converge to f(u; v) resulting in the convergence of S(u; v)

to S(u; v). For further information on spline approximation, see [deBoor78].
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7 Multiple Overlays and a Final Example

A base surface with an overlay; that is, with a displacement region, is suitable to serve as the base

for further overlays. Plates 12{15 show two illustrations of this, with Plates 14{15 providing a

cautionary note. In Plate 12, the yellow overlay has been applied to the white base, and a further,

green overlay is applied that partially overlaps the yellow overlay's domain. The white-yellow base

on which the green overlay is placed has low curvature and is quite simple. The result of the

multiple overlays is well behaved, as is seen from the Phong-shaded rendering of Plate 13. In

Plate 14, however, the second overlay has been placed across the �rst. Since the �rst overlay has

resulted in an area of sharp curvature, the local coordinate frames produced by the approximate

mappings vary signi�cantly throughout the region. As a result, the basic shape of the green feature

is distorted by a considerable amount. In fact, the original shape of the yellow displacement, seen

in Plate 12, resulted in a green surface so distorted that it intersected itself in several places. Only

after reducing the sharpness of the yellow ridge did a reasonable composite surface (Plate 15) result.

We close with a \practical" example. The overlay, shown in red in Plates 16{19, derives from a

spline surface shaped as a single, straight ridge. It is mapped to the base surface, a bent tube, by

a rotation and a translation. The result provides a spiral feature along the length of the base. The

composite spline forms a familiar icon seen during that part of the year known as \SIGGRAPH

deadline time." Plate 16 presents a wire-frame view, and Plate 17 provides a Phong-shaded view.

In Plate 18 we have attempted to interest the Kollosal Kristmas Kandy Kompany of Hackensack,

NJ, in the concept of a slimmer cane, for the calorie minded. We merely pinched the base surface;

the overlay surface conformed automatically to the change. In Plate 19 we explored a specialty

version of the cane to be marketed in movie theaters when Batman II is released. In this case,

the change was edited into the cane by modifying the overlay surface directly in its position as a

feature on the base surface.
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