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ABSTRACT

A new method for designing multivariate data visu-

alization tools is presented. These tools allow users
to perform simple tasks such as estimation, target de-
tection, and detection of data boundaries rapidly and
accurately. Our design technique is based on prin-
ciples arising from an area of cognitive psychology
called preattentive processing. Preattentive process-
ing involves visual features that can be detected by
the human visual system without focusing attention
on particular regions in an image. Examples of preat-
tentive features include colour, orientation, intensity,
size, shape, curvature, and line length. Detection is
performed very rapidly by the visual system, almost
certainly using a large degree of parallelism. We stud-
ied two known preattentive features, hue and orienta-
tion. The particular question investigated is whether
rapid and accurate estimation is possible using these
preattentive features. Experiments that simulated dis-
plays using our preattentive visualization tool were
run. Analysis of the results of the experiments showed
that rapid and accurate estimation is possible with
both hue and orientation. A second question, whether
interaction occurs between the two features, was an-
swered negatively. This suggests that these and per-
haps other preattentive features can be used to create
visualization tools which allow high-speed multivariate
data analysis.

RÉSUMÉ

Une nouvelle m�ethode pour le design d'outils pour
la visualization de donn�ees multivari�ees est pr�esent�ee.
Ces outils permettent �a l'usager de r�ealiser rapidement
et pr�ecis�ement des tâches simples comme l'estimation,
la d�etection d'une cible et la d�etection des limites de
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donn�ees. Notre technique de design est fond�ee sur
des principles de traitement pr�eattentif en provenance
du domaine de la psychologie des connaissances. Le
traitement pr�eattentif comprend des caract�eristiques
visuelles qui peuvent être d�etect�ees par le syst�eme
visuel humain sans porter attention sur des r�egions
particuli�eres d'une image. La couleur, l'orientation,
l'intensit�e, la grosseur, la forme, la courbure et la
longueur de lignes sont autant d'exemples de car-
act�eristiques pr�eattentives. La d�etection est r�ealis�ee
tr�es rapidement par le syst�eme visuel, presque cer-
tainement utilisant un haut niveau de parall�elisme.
Nous avons choisi deux caract�eristiques pr�eattentives
connues: la teinte et l'orientation. La question parti-
culi�ere investigu�ee est s'il est possible d'obtenir des
estimations rapides et pr�ecises en utilisant ces car-
act�eristiques. Nous avons conduits des exp�eriences qui
utilisaient nos outils bas�es sur ces deux caract�eristiques
pr�eattentives. L'analyse des resultats des exp�eriences
d�emontre qu'une estimation rapide et pr�ecise est pos-
sible avec la teinte et l'orientation. Une seconde ques-
tion ayant trait �a l'int�eraction entre ces deux car-
act�eristiques fut r�epondue n�egativement. Ceci sugg�ere
que les caract�eristiques pr�eattentives peuvent être
utilis�ees pour cr�eer des outils de visualization qui per-
mettent une analyse rapide de donn�ees multivari�ees.

OVERVIEW

The �eld of scienti�c visualization draws on research
from a wide spectrum of traditional disciplines. These
include computer science, psychology, and the visual
arts. The \domain of visualization", as de�ned by a
National Science Foundation panel on scienti�c com-
puting, includes the development of speci�c applica-
tions, the development of general purpose tools, and
the study of research problems that arise in the process
[McC87]. To date, most research e�orts have focused



on visualization applications for speci�c problems and
environments. Relatively few e�orts have formulated
general guidelines for the design of visualization tools.

In this paper, we utilize an area of cognitive psychol-
ogy known as preattentive processing in an attempt
to develop such general guidelines. First, we review
a set of visualization requirements that are common
to applications ranging from visual interactive simu-
lation, to volume visualization, to multivariate data
analysis. Second, we summarize the area of preatten-
tive processing in order to reveal abilities and limita-
tions of human cognition that are relevant to these re-
quirements. Third, we describe a speci�c visualization
tool we have developed, based on these general consid-
erations, to assist oceanographers in numeric estima-
tion problems involving salmon migration simulations.
Finally, we discuss the implications of our approach,
both for the speci�c application of numeric estimation,
and for the development of general guidelines in scien-
ti�c visualization.

SCIENTIFIC VISUALIZATION

Many di�erent disciplines such as physics, chemistry,
oceanography, and management science use computer
simulations to model real-world phenomena. Visual
interactive simulation (VIS) is a type of computer sim-
ulation system which provides immediate visual feed-
back and user interaction [Bel87]. A key requirement
of VIS is a visualization technique which provides an
informative display of results in real-time. The tech-
nique must be computationally simple, yet must al-
low the user to rapidly analyse the data being dis-
played. Researchers use VIS tools to view their re-
sults as they are being produced. This allows them
to \steer" the simulation and direct its path to follow
interesting trends as the data is generated. A num-
ber of researchers who built VIS tools provide vari-
ous empirical and anecdotal results that show VIS to
be an improvement over existing simulation models
[Mel85][Set88].

The requirements for VIS are similar to another im-
portant class of problems, the visualization of output
from real-time applications. Systems like air tra�c
control require rapid and informative visualization of
multivariate data. These displays are often shared
by di�erent operators, who visually acquire di�erent
data from di�erent parts of the display at the same
time. The visualization technique must allow a va-
riety of tasks to be performed rapidly and accurately
on dynamically changing subsets of the overall display.
Medical imaging systems such as CT, MRI, and ultra-
sound are another type of application that could bene-

�t from real-time visualization techniques directed by
the user, who analyses the data and decides how to
proceed. An informative visualization technique that
allows rapid and accurate visual analysis of more than
one aspect of the data would decrease the amount of
time needed to complete the diagnostic task. This is
important, because these types of systems often cannot
be time-shared and thus any improvement in visualiza-
tion would increase the throughput for the system.

One explicit goal of visualization is to present data
to human observers in a way that is informative and
meaningful, on the one hand, and yet intuitive and
e�ortless on the other. This goal is often pursued
by attaching \features" such as colour, spatial loca-
tion, and size to each data element. Features are cho-
sen to show properties within and relationships among
data elements. This technique is used to represent
high-dimensional data in a low-dimensional environ-
ment. Multivariate data visualization addresses the
question \How can we display the information in a low-
dimensional environment, such as a computer screen
or printed media?" An ad hoc assignment of features
to individual data dimensions may not result in a use-
ful visualization tool. Indeed, too often the tool itself
interferes with the user's ability to extract the desired
information.

Researchers have approached the multivariate data vi-
sualization problem in di�erent ways. Enns discusses
using the human visual system to e�ciently process
large multivariate datasets [Enn90a]; he describes geo-
metric icons which combine the power of the computer
and the human visual system [Enn90b]. Ware and
Beatty designed a method that uses colour to repre-
sent multivariate data elements [War88]; subsets of the
data with similar values appear as a spatial \cloud" of
similarly coloured squares. Pickett and Grinstein have
been using results from cognitive psychology as a ba-
sis for design of their visualization tools [Pic88][Gri89];
they display structure in the data as a set of textures
and boundaries, so that groups of data elements with
similar values appear as a spatial group with a unique
texture in the display.

We approached multivariate visualization by de�ning
a set of requirements which we feel are inherent to this
class of problem. Speci�cally, we wanted to design a
visualization technique which supported:

� shared data, the technique should be able to dis-
play independent data values simultaneously. A
single user could choose to examine various rela-
tionships, or multiple users could simultaneously
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Figure 1: Examples of target detection: (a) target can be preattentively detected because it has the unique
feature \�lled"; (b) �lled circle target cannot be preattentively detected because it has no preattentive

feature unique from its distractors

examine independent data values

� speed, users should be able to obtain information
about any of the data values quickly

� accuracy, information obtained by the users
should accurately represent the relationship be-
ing investigated

Using an approach similar to Pickett and Grinstein,
we decided to use the built-in processing of the human
visual system to assist with visualization. Preattentive
processing describes a set of simple visual features that
are detected in parallel by the low-level human visual
system. We hypothesized that the use of preattentive
features in a visualization tool would allow users to
perform rapid and accurate visual tasks such as group-
ing of similar data elements, detection of elements with
a unique characteristic, and estimation of the number
of elements with a given value or range of values. We
tested this hypothesis using controlled psychological
experiments that simulated a preattentive visualiza-
tion tool. Analysis of the experiment results showed
our hypothesis was true for the class of data we used.
Before describing our experiments and results, we pro-
vide an introduction to preattentive processing.

PREATTENTIVE PROCESSING

Researchers in psychology and vision attempt to un-
derstand how the human visual system analyses im-
ages. One interesting result has been the discovery of
visual properties that are \preattentively" processed.
These properties are detected immediately, such that
viewers do not have to focus their attention to deter-
mine whether elements with the given property are

present or absent.

An example of preattentive processing is detecting a
�lled circle in a group of empty circles (Figure 1a). The
target object has a preattentive feature \�lled" that
the distractor objects do not (all non-target objects are
considered distractor objects). A viewer can quickly
glance at the image to determine whether the target
is present or absent. A conjunction occurs when the
target object is made up of two or more features, each
of which is contained in the distractor objects. Objects
that are made up of a conjunction of unique features
cannot be detected preattentively [Tri85]. Figure 1b
shows an example of a conjunction target. The target
is made up of two features, �lled and circular. Both
these features occur in the distractor objects (�lled
squares and empty circles). Thus, the target cannot
be preattentively detected.

Properties that are preattentively processed can be
used to highlight important image characteristics. Ex-
periments in psychology by Triesman, Jul�esz, and oth-
ers have used preattentive properties to assist in per-
forming the following visual tasks:

� target detection, where users attempt to rapidly
and accurately detect the presence or absence of
a \target" element that uses a unique preatten-
tive feature within a �eld of distractor elements
(Figure 1)

� boundary detection, where users attempt to
rapidly and accurately detect a texture boundary
between two groups of elements, where all the ele-
ments in each group have a common preattentive
feature (Figure 2)
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Figure 2: Form and hue segregation: (a) hue boundary is preattentively detected, even though form varies

in both groups; (b) hue interferes with detection of form boundary

� counting/estimation, where users attempt to
count or estimate the number of elements in a
display that have a unique preattentive feature

In general, tasks which can be performed in less than
250 milliseconds are considered preattentive. Within
this time frame the human visual system cannot decide
to change its focus of attention. This means preatten-
tive tasks require only \a single glance" at the image
being displayed.

In addition to the tasks listed above, scientists
have been examining the interaction between features
within a display. Callaghan found that varying certain
irrelevant features within a group can interfere with
boundary detection [Cal89]. Results showed that a
non-uniform hue interfered with form segregation (Fig-
ure 2b). It took subjects longer to determine where a
horizontal or vertical form boundary occurred, rela-
tive to a control array where hue was held constant.
However, a non-uniform form did not interfere with
hue segregation (Figure 2a); a hue boundary could
be detected in a �xed amount of time, regardless of
whether form varied or not. Callaghan found a sim-
ilar asymmetry between brightness and hue [Cal84].
Results showed that variation of brightness interfered
with hue segregation. However, variation of hue did
not interfere with brightness segregation.

A number of scientists have proposed competing the-
ories to explain how preattentive processing occurs,
in particular Triesman's feature integration theory
[Tri85], Jul�esz' texton theory [Jul83], and Quinlan and
Humphreys' similarity theory [Qui87]. Our interest is

in the use of features which have been shown to be
preattentive. We examined two such features, hue and
orientation, and investigated their use for a common
visualization task, estimation.

PREATTENTIVE ESTIMATION

Through experimentation, we sought to determine
whether or not research in preattentive processing can
help design more useful and intuitive scienti�c visual-
ization tools. We addressed two speci�c sets of ques-
tions about preattentive features and their use in vi-
sualization tools:

� Is it possible for subjects to provide a reasonable
estimation of the relative number of elements in a
display with a given preattentive feature? What
features allow this and under what conditions?

� How does encoding an \irrelevant" data dimen-
sion with a secondary preattentive feature inter-
fere with a subject's estimation ability? Which
features interfere with one another and which do
not?

Both of these questions address the visualization re-
quirements discussed in the previous section. Estima-
tion is often needed for rapid and accurate analysis of
visual displays. If preattentive features can be used,
VIS and real-time applications could employ this tech-
nique for e�ective real-time visualization. Similarly,
the ability to e�ciently encode multiple unrelated data
values in a single display would allow users to \share"
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the display, but only if no interference occurs. This
corresponds our requirements for a potential visual-
ization technique.

The experiments used data similar to that which oc-
curred in a set of salmon migration simulations being
run by the Department of Oceanography at the Uni-
versity of British Columbia [Tho92a][Tho92b]. Salmon
are a well-known and economically important type of
�sh that live, among other areas, on the western Cana-
dian coast. After a period of feeding and growth in the
open ocean, salmon begin their migration run. This
consists of an open ocean stage back to the British
Columbia coast and a coastal stage back to a freshwa-
ter stream to spawn. Salmon almost always spawn in
the stream where they were born. Scientists now know
salmon �nd their stream of birth using smell when they
reach the coast. The direction �nding methods used to
navigate from the open ocean habitat to the coast are
still being researched. The simulations are studying
the causal e�ects of ocean currents on sockeye salmon
migration patterns. Results such as ocean current pat-
terns and latitudes where each salmon arrived at the
B.C. coast (latitude of landfall) were generated during
the simulation. We chose to use this data to investi-
gate the likelihood of our techniques being relevant to
real-world problems and data.

We decided to examine two preattentive features, hue
and orientation. This was done by running experi-
ments which displayed data using coloured, rotated
rectangles. The features hue and orientation have been
shown to be preattentive in various experiments by
Jul�esz [Jul83] and Triesman [Tri85]. Two unique ro-
tations were used: 0� rotation and 60� rotation. Two
di�erent hues, H1 and H2, were chosen from the Mun-
sell colour space.

The Munsell colour space was originally proposed by
Albert H. Munsell in 1898 [Bir69]. It was later revised
by the Optical Society of America in 1943 to more
closely approximate Munsell's desire for a functional
and perceptually balanced colour system. A colour
from the Munsell colour space is speci�ed using the
three \dimensions" hue, chroma, and value. Hue refers
to a uniquely identi�able colour such as red, blue, or
blue-green. Individual hues are further subdivided into
subsections. A number before the hue speci�es its
subsection (e.g., 5R, 2B, or 9BG). Chroma de�nes a
colour's strength or weakness. Greys are colours with
a chroma of zero. Value refers to a colour's lightness
or darkness. A Munsell colour is speci�ed by \hue
value/chroma". For example, 5R6/6 would be a rel-
atively strong red, while 5BG9/2 would be a weak
cyan. We chose hues which satis�ed the following two

properties:

� Property 1: the perceived brightness of both rect-
angles coloured using hues H1 and H2 was equal
(isoluminence)

� Property 2: the perceived di�erence between hues
H1 and H2 was equal to the perceived di�erence
between a rectangle rotated 0� and one rotated
60� (where perceived di�erence is explained be-
low)

A feature of the Munsell colour space is that Munsell
colours with the same value are isoluminent. Property
1 was satis�ed by ensuring both hues had the same

value in Munsell space. We chose Munsell value 7,
because that slice through Munsell space provided a
large number of displayable colours for a variety of
di�erent hues.

Property 2 was satis�ed by running a set of prelim-
inary experiments. We started with a simple target
detection task. Subjects were asked to detect the pres-
ence or absence of a rectangle rotated 60� in a �eld of
distractor rectangles rotated 0�. Both the target and
distractor rectangles were coloured 5R7/8. The av-
erage reaction time for detection was computed from
the trials in which the subjects responded correctly.
After the �rst experiment, the target and distractors
were changed. The target was a rectangle coloured
10RP7/8. The distractors were rectangles coloured
5R7/8. The target was a single \hue step" from the
distractors in Munsell space. Both the target and dis-
tractor rectangles were rotated 0�. The average reac-
tion time for detection was computed from the trials
in which the subjects responded correctly.

The hues used for the target and distractors during
the second experiment were very similar. Because of

this, the average reaction time for the second exper-
iment was higher than the average reaction time for
the �rst experiment. Additional experiments were run
as follows.

� the target was moved another \hue step" away
from the distractors (i.e., 5RP7/8, 10P 7/8, and
so on)

� the second experiment was re-run, and average
reaction time was computed

� this process continued until an average reaction
time equal to or below the average reaction time
of the �rst experiment was obtained
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This process provided two isoluminent hues H1 and H2

with a perceived di�erence equal to that of a 60� rota-
tion, where perceived di�erence is measured by reac-
tion time in the target detection experiment. Analysis
of the preliminary experiment results led us to choose
a red hue (Munsell 5R 7/8) and a blue hue (Munsell
5PB 7/8).

Figure 3: Example of a display from block B1, data

value v1 (latitude of landfall) represented by hue, data
value v2 (ocean current) represented by orientation.

Hue is represented by grey scale

Our design allowed us to use oriented, coloured rect-
angles to represent data elements with two associated
data values v1 and v2. The experiment was divided
into four subsections or \blocks" of experiment trials
B1, B2, B3, and B4. The primary and secondary data
value varied within each block, as did the primary and
secondary preattentive feature. This gave us the fol-
lowing:

1. Primary data value was v1, represented by hue;
secondary data value was v2, represented by ori-
entation (Figure 3)

2. Primary data value was v1, represented by orien-
tation; secondary data value was v2, represented
by hue

3. Primary data value was v2, represented by hue;
secondary data value was v1, represented by ori-
entation

4. Primary data value was v2, represented by orien-
tation; secondary data value was v1, represented
by hue

During the experiment, subjects were shown a display
similar to Figure 3 for 450 milliseconds. The screen
was cleared, and subjects were asked to estimate the
number of elements in the display with a given preat-
tentive feature, to the nearest 10%. For example, in
blocks B1 and B3 subjects were asked to estimate the
number of rectangles coloured blue, to the nearest
10%. In blocks B2 and B4 they were asked to esti-
mate the number of rectangles oriented 60�.

The two data values v1 and v2 represented latitude
of landfall values and ocean current patterns from
Oceanography's salmon migration simulations. Lat-
itude of landfall had two possible values: \north" or
\south". Ocean current had two possible values: \low"
or \high". The primary data values for some trials
were modi�ed to meet statistical requirements for the
data used in the experiment. For example, in blocks
B1 and B2 the data value v1 (latitude of landfall) was
modi�ed to ensure that:

1. An equal number of trials had a given percentage
of data elements with a v1 value of \north" (i.e.,
4 trials where 5-15% of the data elements had a
v1 value of \north", 4 trials where 15-25% of the
data elements had a v1 value of \north", and so
on up to 85-95%). This allowed us to compare
estimation ability across a uniform range of per-

centages

2. Any dependence which might have existed be-
tween v1 (latitude of landfall) and v2 (ocean cur-
rent) was removed. This ensured subjects could
not infer information about the primary data
value by examining the secondary data value

Trials were divided equally between control trials,
where the secondary feature was �xed to a speci�c
constant value, and experimental trials, where the sec-
ondary feature was used to represent the secondary
data value which varied from element to element. This
allowed us to test for feature interference. Better per-
formance in control trials versus experimental trials
would suggest that using a secondary feature to encode
an \irrelevant" data value interfered with a subject's
estimation ability for the primary feature. We tested
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Interval Control 1 Control 2 Experimental

V �(V ) e �(e) V �(V ) e �(e) V �(V ) e �(e)

1 1.25 0.53 0.25 0.53 1.33 0.70 0.33 0.70 1.29 0.68 0.29 0.68

2 1.83 0.82 0.58 0.58 2.04 0.86 0.62 0.58 2.17 0.83 0.46 0.71

3 2.71 0.75 0.46 0.66 2.75 0.85 0.67 0.56 2.79 0.71 0.54 0.50

4 4.17 1.13 0.75 0.85 3.75 1.11 0.83 0.76 3.83 1.49 1.08 1.03

5 5.50 1.32 1.00 0.98 5.08 1.67 1.42 0.83 5.54 1.41 1.25 0.84

6 5.96 1.27 0.96 0.81 6.71 1.23 1.21 0.72 6.31 1.17 0.94 0.76

7 6.83 1.01 0.75 0.68 7.42 0.78 0.67 0.56 7.19 0.73 0.52 0.55

8 8.13 0.80 0.46 0.66 8.33 0.56 0.42 0.50 8.15 0.62 0.40 0.49

9 8.71 0.55 0.29 0.55 8.96 0.20 0.04 0.20 8.65 0.53 0.35 0.53

Total 5.01 2.71 0.61 0.75 5.15 2.84 0.69 0.74 5.10 2.72 0.65 0.77

Table 1: Summary of block B1 experiment results, showing average subject response V , standard deviation
of subject response �(V ), average subject estimation error e, and standard deviation of subject estimation

error �(e) for each interval

both for orientation interfering with hue estimation
and for hue interfering with orientation estimation.

Twelve subjects with normal or corrected acuity and
normal colour vision were tested. The experiments
were conducted in the Department of Psychology's
vision laboratory, using a Macintosh II microcom-
puter equipped with a 13-inch RGB monitor and video
hardware capable of displaying 256 colours simultane-
ously. The software used was designed and written
by Rensink and Enns to run preattentive psychology
experiments [Enn91]. Each subject completed either
blocks B1 and B3 (blocks using hue as the primary
feature) or blocks B2 and B4 (blocks using orientation
as the primary feature).

At the beginning of the experiment, subjects were
shown a sample display frame. The experiment proce-
dure and task were explained to the subjects. Subjects
were then shown how to enter their estimation. This
was done by typing a digit on the keyboard between
1 and 9, which corresponded to the interval (percent-
age of rectangles) they estimated contained the target
feature: interval 1 (5-15%), interval 2 (15-25%), and
so on up to interval 9 (85-95%). Subjects were told no
trial would contain less than 5% or more than 95% of
the target rectangles.

Subjects began the experiment with a set of practice
trials. This consisted of nine trials, one for each of the
nine possible intervals. In one trial 10% of the rectan-
gles were targets, in another 20% were targets, and so
on up to 90%. The practice trials were designed to cal-

ibrate the subjects' responses and to give them an idea
of the speed of the trials and the experiment. Trials
were displayed one after another to the subjects. If
subjects estimated correctly, they moved immediately
to the next trial. If they estimated incorrectly, the
trial was redisplayed, and they were told the correct
answer.

Next, subjects completed a second set of practice tri-
als. This phase consisted of 18 trials, two for each of
the nine possible intervals. Trials were displayed in
a random order to the subjects. This phase was de-
signed to run more like a real experiment block. Trials
in which the subjects estimated incorrectly were not
redisplayed and subjects were not told the correct an-

swer, although they did know whether their estimation
was right or wrong.

Finally, subjects completed two experiment blocks, B1

and B3 or B2 and B4. Each block consisted of 72 con-
trol trials and 72 experimental trials. The 144 trials
from each block were presented to the subjects in a
random order. Subjects were provided with an oppor-
tunity to rest after every 48 trials. Data from all four
phases were saved for later analysis.

RESULTS

The primary dependent variable examined was estima-
tion error, de�ned as the absolute di�erence between
the subject's estimate and the percentage of target ele-
ments for the display. Statistical analyses using t-tests
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and analysis of variance (ANOVA) F -tests revealed the
following �ndings:

� rapid and accurate estimation can be performed
using either hue or orientation

� there is no evidence of a subject preference for ei-
ther hue or orientation during the estimation task
for the particular hue and orientation values used

� there is evidence of a subject preference for the
spatial arrangement of data being displayed dur-
ing the estimation task

� there is no evidence that orientation interferes
with a subject's ability to perform hue estimation

� there is no evidence that hue interferes with a sub-
ject's ability to perform orientation estimation

The �rst question we asked was whether subjects were
able to perform accurate estimation in a 450 millisec-
ond exposure duration. Table 1 shows results of com-
bined subject data for the control and experimental
subsections of block B1 as an example of the data cal-
culated for each block. The results showed that ac-
curate estimation was possible during the experiment
for all four blocks. In the experimental subsections the
total estimation error e ranged from a low of 0.54 in
block B2 to a high of 0.65 in block B1. The standard
deviation �(e) was below 1.0 in all four blocks. This
indicates that subject responses were clustered close
to the correct estimate. Results from the two control
subsections show similar trends.

Subsection n1 n2 v t

Control 1 432 432 862 0.36

Control 2 432 432 862 1.43

Experimental 864 864 1726 0.45

Table 2: t-test results for estimation error rates
from hue and orientation trials, showing the sub-
section, the number of hue trials n1, the number
of orientation trials n2, the degrees of freedom v,
and the t-value t

A point of interest was whether a subject's estima-
tion ability di�ered depending on the feature being
estimated. A t-test was computed to see if mean es-
timation error was equal across primary features for
both the control and experimental subsections. Trials
were combined into two groups: trials where orienta-
tion was the primary preattentive feature and trials
where hue was the primary preattentive feature.

There appears to be no feature preference for the es-
timation task, since the control t-values (Table 2) are
less than 0:975t862 = 1:962 and the experimental t-
value is less than 0:975t1726 = 1:960. We did not ex-
pect to observe a feature preference, because we cali-
brated the perceived di�erence between our two hues
and our two orientations to be equal before the exper-
iment.

It is possible that the spatial distribution of the data
a�ects a subject's estimation ability. It may be easy
to perform estimation if the data elements cluster into
two distinct groups. Similarly, if the data elements
are distributed randomly throughout the display, esti-
mation may be di�cult. We used two di�erent data
sources during the experiment, v1 and v2, which cor-
responded to results from the salmon migration sim-
ulations. Both data types tended towards their own
distinctive spatial distribution. A di�erence in mean
estimation error across data types would indicate esti-
mation ability depends, at least in part, on the spatial
distribution of data being displayed. Trials were com-
bined into two groups: trials where v1 was the primary
data value and trials where v2 was the primary data
value.

Subsection n1 n2 v t

Control 1 432 432 862 2.06

Control 2 432 432 862 1.73

Experimental 864 864 1726 1.84

Table 3: t-test results for estimation error rates
from v1 and v2 trials, showing the subsection, the

number of v1 trials n1, the number of v2 trials n2,
the degrees of freedom v, and the t-values t.

Control subsection 1's t-value (Table 3) is greater than

0:975t862 = 1:962. This suggests data type did have
an e�ect on estimation error in control subsection 1.
Control subsection 2's t-value is less than 1.962, but
it does fall between 0:95t862 = 1:647 < p < 0:975t862.
Similarly, the experimental subsection's t-value falls
between 0:95t1726 = 1:645 < p < 0:975t1726 = 1:960.
The t-test results indicate the possibility of data type
in
uence on estimation error. With � = 0:10, we
would conclude data type may a�ect estimation error
in all three subsections. Additional experiments which
explicitly control the change in spatial distribution are
needed before we can state speci�cally its e�ect on the
estimation task.

One question of interest was whether encoding an ir-
relevant data value with a secondary preattentive fea-
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ture a�ected a subject's estimation ability. We began
by checking to see if orientation interfered with a sub-
ject's ability to estimate using hue. t-tests were com-
puted to compare estimation error mean across control
and experimental subsections for blocks B1 and B3,
the blocks that used hue as their primary preattentive
feature.

Subsection n1 n2 v t

B1 432 432 862 0.03

B3 432 432 862 0.21

Table 4: t-test results for estimation error rates
from control and experimentalhue trials, showing
the block, the number of control trials n1, the
number of experimental trials n2 , the degrees of
freedom v, and the t-value t

The t-values for both blocks (Table 4) are less than

0:975t862 = 1:962. Therefore, there appears to be no

interference due to encoding of an irrelevant data value
using orientation. Any di�erence in means is probably
due to sampling error.

We continued to investigate interference by checking to
see if hue interfered with a subject's ability to estimate
using orientation. t-tests were computed to compare
mean estimation error across control and experimental
subsections for blocks B2 and B4, the blocks that used
orientation as their primary preattentive feature.

Subsection n1 n2 v t

B2 432 432 862 0.23

B4 432 432 862 1.15

Table 5: t-test results for estimation error rates
from control and experimental orientation trials,
showing the block, the number of control trials
n1, the number of experimental trials n2, the de-
grees of freedom v, and the t-value t

The t-values for both blocks (Table 5) are less than

0:975t862 = 1:962. Therefore, the appears to be no
interference due to encoding of an irrelevant data value
using hue. Any di�erence in means is probably due to
sampling error.

EXPOSURE DURATION EXPERIMENTS

Our conclusions in the �rst experiment apply to data
displayed for an exposure duration of 450 millisec-
onds. This leaves two important questions unan-

swered. First, at what exposure duration are subjects
no longer able to perform robust estimation? Second,
do any interference e�ects begin to appear at lower ex-
posure durations? For example, we found that orien-
tation did not interfere with estimation of hue at a 450
millisecond exposure duration. It may be that an in-
terference e�ect does exist, but 450 milliseconds gives
subjects enough time to overcome this e�ect. Feature
preference may also be dependent on exposure dura-
tion.

We conducted a second experiment in which exposure
duration for each trial varied among �ve possible val-
ues: 15, 50, 100, 200, and 450 milliseconds. Trials were
presented to subjects in the following way:

� a blank screen was displayed for 200 milliseconds

� a focus circle was displayed for 100 milliseconds

� the trial was displayed for its exposure duration
(one of 15, 50, 100, 200, or 450 milliseconds)

� a \mask" of randomly oriented grey rectangles
was displayed for 100 milliseconds

� the screen blanked, and subjects were allowed to
enter their estimation

Because trials came from block B1, our primary data
value was v1 (latitude of landfall), represented by hue,
and our secondary data value was v2 (current pattern),
represented by orientation. Subjects estimated the
number of blue rectangles in each trial. As before, an
equal number of trials (10 control and 10 experimen-
tal) for each interval were used. Trials at each interval

were split evenly among the �ve exposure durations,
and were presented to the subjects in a random order
so the various exposure durations were intermixed.

Analysis of data from the previous experiment showed
estimation was accurate at every interval. Because of
this, we combined trials with a given exposure dura-
tion into a single block of data. For example, trials
that were displayed for 100 milliseconds formed a sin-
gle group of 2 control and 2 experimental trials from
each interval for a total of 18 control and 18 experimen-
tal trials. We plotted average estimation error versus
exposure duration to see if estimation ability was af-
fected by display time. Figure 4 shows the graph of
average estimation error versus exposure duration for
experimental trials.

Average estimation error and standard deviation of
error seemed to be reasonably stable, even down to
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Figure 4: Graph of average error across exposure du-

ration for combined results from exposure duration
experiment

100 milliseconds. Below that duration error values in-
creased rapidly. This indicates the minimum exposure
duration for robust hue estimation lies somewhere be-
tween 50 and 100 milliseconds. We concluded our anal-
ysis by checking to see if orientation interfered with
hue estimation at any of the exposure durations. t-
tests were computed to compare mean estimation er-
ror across control and experimental subsections for all
�ve exposure durations. The t-values for all durations
were less than 0:975t178 = 1:972. Only the 15 mil-
lisecond exposure duration had a t-value which might
be considered signi�cant, 0:90t178 = 1:286 < p <

0:95t178 = 1:653. This suggests orientation is not in-
terfering with hue estimation at any of the exposure
durations tested.

FUTURE WORK

Our experiments and related analysis leave open a
number of interesting avenues for future work. We
could examine in more detail numeric estimation and
its relationship to speci�c visualization applications.
We explicitly chose two hues whose perceived di�er-
ence from one another was equal to the perceived dif-
ference between two rectangles oriented 0� and 60�.
A choice of features perceptually di�erent from one
another might cause a subject feature preference dur-
ing the estimation task. We could also test di�erent
features, such as intensity and size, to see how they

perform during the estimation task.

Work which provides general guidelines for the use
of preattentive features in the design of visualization
tools should be pursued. Many visualization tasks re-
quire more than two data values to be encoded at each
spatial location. Future experiments could examine
how to encode higher-dimensional elements in a low-
dimensional environment. This type of visualization
tool could exhibit new and unexpected types of inter-
ference. There may also be a limit to the amount of
information a subject can extract and process at one
time.

The data values used in our experiment were de-
rived from salmon migration studies in Oceanography.
More comprehensive studies based on actual tasks per-
formed by researchers are needed before conclusive

evidence will exist for using preattentive features in
real-world multivariate data analysis such as salmon
migration simulations, air tra�c control, and medical
imaging. Other types of data should be investigated
as well if general visualization tools are to be based on
preattentive processing.
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