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Abstract

We investigate the application of multigrid techniques

to the solution of the \classic" radiosity equation.

After overviews of the global illumination problem

and of radiosity, we describe the latter's solution via

multigrid methods.

An implementation of the multigrid algorithm pre-

sented here is able to solve the classic radiosity equa-

tion in about 50% of the time required by the more

commonly-used Gauss-Seidel approach. Although

few researchers currently use classic radiosity, we dis-

cuss possibilities for the adaption of multigrid meth-

ods to more recent radiosity solution techniques.

1 Introduction

In this paper, we'll investigate the application of

multigrid techniques to the solution of the radiosity

equation, one of the two major approaches to the so-

lution of the global illumination problem. (The other

is raytracing.)

After a brief overview of the problem itself, we'll re-

view the radiosity method and then describe how we

can apply multigrid methods to its solution.

We'll con�ne ourselves to what [Heck91] refers to

as classic radiosity, the approach �rst disseminated

to the computer graphics community in [Coh85]. A

number of substantial improvements have been made

to radiosity since then, but as our goal here is to

investigate the usefulness of multigrid, the fact that

we're not really on the forefront of radiosity research

is of secondary relevance.

2 Global Illumination

The problem of global illumination is a longstand-

ing one with aspects in �elds as diverse as computer

graphics, architecture, and mechanical engineering.

The fundamental question of global illumination is

this: given the set of physical characteristics describ-

ing an illuminated environment, how does the light

distribute itself? The brief discussion of it we present

here follows after [Heck91].

In order to make the problem tractable, we make a

series of assumptions. The �rst is that we have a

non-participatory environment. This restricts us to

dealing with surfaces rather than volumes. The sec-

ond assumption is that the surfaces are all opaque,

so we don't worry about transmission.

From energy conservation, the outgoing intensity

Io(x;�o) (units of fenergyg fareag�1 ftimeg�1

fsolid angleg�1) at a point x in direction �o is given

by

Io(x;�o) =
e(x;�o)

�
+
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Ii(x;�i) �(x;�i;�o) cos �i d�i

where
e(x;�o)

�
is the (outgoing) emissivity, �i =

(�i; �i) is a direction on the hemisphere 
, Ii(x;�i)

1



is the incoming intensity, and �(x;�i;�o) is the re-


ectivity of the surface.

From out assumption of a non-participating medium,

the incoming intensity of a ray at x in direction 
 is

equal to the outgoing intensity of a ray that starts at

x
0 in direction 
0, so

Ii(x;�i) = v(x;x0) Io(x
0;�0

o)

where v(x;x0), the visibility function, is

v(x;x0) =

8>><
>>:

1 if there are no obstructions

between x and x0

0 otherwise

d�i, the solid angle subtended by an area dx0 whose

surface normal is inclined at an angle �0
o
away from

x� x0 is given by

d�i =
dx0 cos �0

o

jx � x0j
2

The next assumption we make is one of isotropicity:

that all surfaces are di�use emitters and re
ectors.

This leads to the following:

e(x;�o) = e(x)

Io(x;�o) = Io(x) �
u(x)

�
(1)

�(x;�o) =
�h(x)

�

where (1) de�nes the radiosity u(x). �h, the hemi-

spherical re
ectivity, varies between 0 (perfect ab-

sorption) and 1 (perfect di�use re
ection).

Combining all of this, we get the fundamental integral

equation for radiosity:

u(x) = e(x) + (2)

�h(x)

Z
�

cos �i cos �
0

o

� jx � x0j
2
v(x;x0)u(x0)dx0

where the integration now takes place over the set of

all surfaces �.

With the obvious de�nitions, we can rewrite (2) in

the form

u = f +Ku

where K is a linear integral operator. This identi�es

(2) as a Fredholm integral of the second kind.

3 Classic Radiosity

The classic ([Coh85]) way of solving (2) uses colloca-

tion. � is treated as a collection of N patches, with

radiosity ui constant on each patch i. If we then in-

tegrate over each patch i and divide by the patch's

area Ai, (2) becomes:

ui = ei + �i

NX
j=1

ujFij (3)

where ei is the integral of e(x) over patch i and Fij,

the form factor, is the fraction of radiation given o�

by patch j that reaches patch i. We have

Fij =
1

Ai

Z
�i

Z
�j

cos �i cos �
0

j

� jx� x0j
2
v(x;x0) dx0dx (4)

where �i is the area of patch i and �j is the area of

patch j.

We can rearrange (3) in the form

Au = e

where

A =

2
66664

1� �1F11 ��1F12 � � � ��1F1N

��2F21 1� �2F22

...
...

. . .
...

��NFN1 � � � � � � 1� �NFNN

3
77775

and then solve it using any of the standard techniques

for solving systems of linear equations. Like [Coh85],

most classic radiosity researchers use(d) Gauss-Seidel

iteration, which we'll refer to hereafter as \G-S".

Although this equation permits Fii 6= 0, as long as

our patches are 
at or convex, they cannot illuminate

themselves, so diag(A) = I, which is usually the case.

Fij is dimensionless, and it depends neither on the

illumination nor on the position of an observer, only

on the scene geometry. This is a big advantage of

classic radiosity over other global illumination solu-

tion techniques such as raytracing: once we have F,

we can change the illumination or observer positions,

and all we need do is re-solve (3).
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4 A Radiosity Model Problem

Before going any further, let's de�ne a simple radios-

ity problem:

A small room has been built inside a unit

cube. Light of uniform intensity enters

isotropically through a 1
2
by 1

2
hole in the

center of the ceiling. The walls have vary-

ing re
ectivities:

Wall �

x = 0 0.2

x = 1 0.6

y = 0 0.4

y = 1 0.8

z = 0 1.0

z = 1 1.0

For reasons that will soon be apparent, we'll choose

the number of patches N to be 6 � 4l for some non-

negative integer l. Table 4 shows some typical values,

along with N2, the resulting number of elements re-

quired in A and F.

l N N2

0 6 36

1 24 576

2 96 9,216

3 384 147,456

4 1,536 2,359,296

5 6,144 37,748,736

6 24,576 603,979,776

Table 1: Matrix Sizes of the Scaled Radiosity Model

Problem

So radiosity in its classic form places large demands

upon memory and time. Indeed, computing Fij ac-

curately and e�ciently is a problem with its own lit-

erature (see [Baum89], for example).

Things wouldn't be so bad if A were sparse, but in

the case of this model problem, it's not, as we can see

from Figure 1, a density diagram of the A from our

model problem with N = 96. The black regions cor-

respond to places where jaij j = 1 (the diagonal) and

the white regions correspond to places where jaij j = 0

(i 6= j, i and j on the same wall). The gray regions

indicate 0 < jaij j < 1.

The lack of sparsity is because our geometry dictates

v(x;x0) � 1. Paradoxically, if we add more obstruct-

ing objects such as a table and chairs to the room,

the matrix becomes sparser, although the number of

surfaces increases. [Coh88] cites a 10% occupancy in

a typical scene.

Figure 1 also shows that A is non-symmetric. This

asymmetry is caused by varying re
ectivity �.

Figure 1: Density of A for Model Problem, Normal-

ized to Largest (Diagonal) Element

5 Applying Multigrid to Ra-

diosity

[Hack85] describes how multigridmethods (hereafter,

\MG"), which were originally developed to solve el-

liptic PDE's, may be adapted to solve integral equa-

tions as well. In particular, Figure 2 shows his al-

gorithm for solving Fredholm integrals of the second

kind (u = f + Ku).

There are three notable di�erences between Figure 2

and the usual PDE MG algorithm:

� The smoothing step, which is often taken to be

(�1 =)1 or 2 G-S (typically) relaxations, is re-

placed by the very equation we're trying to solve,

and only applied once (at line 15).

� 
, the number of recursive calls to itself that
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1: procedure mg(l, u, f);

2: integer l;

3: array u, f;

4: begin

5: integer i;

6: array d, v;

7:

8: if l = 0 then

9: u := (I �K)�1f ;

10: else

11: begin

12: u := f +Ku;

13: d := I
H

h
(u�Ku � f);

14: for i = 1; 2 do

15: mg(l � 1, v, d);

16: u := u� Ih
H
v;

17: end

18: end

Figure 2: Pseudocode of Multigrid Algorithm for Ra-

diosity (after [Hack85])

mg() makes, is �xed at 2 (at line 14).

� There is no post-smoothing (�2 = 0).

In order for this algorithm to work, we need several

things in addition toK and f . In particular, we need

a multilevel gridding scheme, a way to compute K,

an initial u, a restriction operator IH
h
, a prolongation

operator Ih
H
, and a coarse grid solver for (I�K)�1f .

The choices we've made for each of these follow.

5.1 Gridding Scheme

For our model problem, we can assume each wall to

be covered with a rectangular grid. At level l, there

are 2l � 2l patches along each wall, and with 6 walls.

That's why we took N = 6 � 4l in Table 4.

In PDE problems, we often deal with u evaluated at

various points on a hierarchy of grids. In radiosity,

though, we must keep in mind that we're dealing with

values integrated over patches, not points. At any

level l, we need to evaluate F l

ij
not just between two

points, but between two patches.

5.2 Computing K

Since Kij = �iFij, computingK is equivalent to com-

puting the form factor. Doing this accurately is not

a trivial task, since Fij is a quadruple integral with a

potentially vanishing kernel. Various schemes such as

analytical ([Baum89]), hemicubes ([Coh85]), MG-like

hierarchy ([Han91]), and raytracing ([Wall89]) have

all been proposed.

For our purposes, we'll take a very simple and ex-

tremely approximate scheme and replace (4) by

Fij =
1

�
Aj

cos �i cos �
0

j

� jx � x0j2
v(x;x0) (5)

where cos �i, cos �
0

j
, x, and x

0 are all measured at

the center of their respective patches, v(x;x0) = 1 in

our geometry, and � is chosen so that
P

N

j=1Fij = 1,

which is also demanded by our geometry.

5.3 Initial u

MG convergence is usually pretty insensitive to the

initial choice for u. Often, u is initially set to all

0's. In this case, though, we can go one better and

set u = f , which in fact would be the solution if the

walls were non-re
ective. Also, line 12 in Figure 2

shows that this is what we'd get if we started with

u = 0 in the �rst place, so we're slightly speeding up

the iterative process.

5.4 Restriction

When solving PDE's with multigrid, the choice of

restriction and prolongation operators is often critical

to the convergence of the solution.

For all l > 0, each patch on level l� 1 corresponds to

four patches on level l, so the �rst type of restriction

that comes to mind is to take the mean of those four

patches as shown in Figure 3.

5.5 Prolongation

The �rst kind of prolongation that suggests itself is

injection, but our experience with injection in the
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Figure 3: Multigrid Restriction

PDE case indicates that injection often gives rise to

convergence problems.

We can do a more preferred kind of prolongation, bi-

linear interpolation, as shown in Figure 4. In this

case, each of the four subpatches gets a value inter-

polated between that of its parent patch and three of

the parent's neighbors.

-

Figure 4: Multigrid Prolongation

The only problems with this scheme happen at edges

and corners of walls. We don't want to use neighbor-

ing patches of adjoining walls, if they exist: too many

interesting e�ects such as interre
ection and changes

in re
ectivity happen there. That is: we expect dis-

continuities there in our solution, so we shouldn't

smooth them over.

We have two alternatives:

� Inject the parent u on the corners and lin-

early (one dimensionally) interpolate the parent

u with those of its two edge-neighbors on the

edges.

� Extrapolate the value of the missing patch.

Given the general unreliability of extrapolation and

the need for accuracy near edges and corners, we'll

use the former 1.

5.6 The Coarse Grid Solver

In our case, this means a solver for (I�K)u = f where

(I�K) is 6�6. Just about any solver will do for this,

even Gaussian elimination. In our case, though, we'll

choose 20 G-S iterations, because a routine to do that

is available, for reasons as we'll explain below.

6 Implementation

We have implemented this algorithm and an equiva-

lent G-S solver in C on a Sun SPARCstation-2. Fig-

ure 5 shows the result for l = 4. The x = 0 (lowest

re
ectivity) wall is on the left. The y = 0 wall has

been folded down so we can look inside the cube. As

we would hope, both algorithms yield approximately

identical solutions.

6.1 Performance

Table 2 shows performance �gures of the MG and

G-S solutions, and Figure 6 graphs these results. All

times are in seconds and include both user and system

time, the latter of which is always < 2% of the total.

Both MG and G-S stop when the maximum residual

drops below 10�4, scaled to account for decreasing

surface area (since, like u, the residual has dimensions

of fareag�1, we need to do this to obtain the same

fractional accuracy at varying grid spacings).

The uncertainties arise because the number of itera-

tions, niter should be taken to be �1 in all cases.

As often advertised, the number of iterations required

for MG to converge is independent of the size of the

problem. What's surprising, though, is that the same

is pretty much true for G-S.

The reason why G-S does so well in this case is evident

from Figure 1. A is strongly diagonally dominant

1We've actually tried using injection everywhere without

interpolation here and it seems to work �ne.
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Figure 5: Solution of Model Radiosity Problem for l = 4 (N = 1536)

since 0 � Fij � 1,
P

N

j=1Fij � 1 and 0 � �i � 1 for

all i : 1 � i � N .

In order to achieve these results, we made several

modi�cations to the original algorithm in Figure 2:

� Contrary to [Hack85], we changed

12: u := f +Ku;

back into a G-S iteration for smoothing:

12: u :=gs(K, u, f);

The reason for this is evident by noting that if,

as in our case, Fii = 0, the original form of line

12 is identical to Jacobi iteration, and the gen-

eral improvement of G-S over Jacobi is pretty

well established. (Even if Fii 6= 0, G-S would

probably still be a good choice.)

� Expanding the defect correction

13: d := I
H

h
(u�Ku� f);

into

13: d := I
H

h
u� IH

h
Ku� IH

h
f;

and noting that, just as we precompute K, we

can also precompute IH
h
K at the same time. This

reduces the number of multiplications required

for IH
h
Ku during defect computation by a fac-

tor of 4 at an increase of 25% in our memory

requirements.

� We added the enhancement described in

[Hack85] that foregoes smoothing on the �rst

(i = 1 on line 15) of the two recursive mg() calls.

6.2 In-Memory vs. On-The-Fly Form

Factor Evaluations

The largest N we've dealt with so far is 1536 (l =

4). That's because N2, 2359296, was the size of the
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Gauss-Seidel Multigrid

l N niter Time niter Time TimeMG

TimeG�S

1 24 11 < 0:017� 0:001 4 < 0:017� 0:004 � 1

2 96 11 0:1300� 0:01 4 0:10� 0:03 0.769

3 384 11 2:0� 0:2 4 1:0� 0:3 0.500

4 1536 12 35� 3 4 15� 4 0.429

Table 2: Performance of Multigrid vs. Gauss-Seidel on the Model Problem

Gauss-Seidel

Multigrid

log Time (sec)

log N

2

5

1e-01

2

5

1e+00

2

5

1e+01

2

5

2 5 1e+02 2 5 1e+03

Figure 6: CPU Time Required by Gauss-Seidel and Multigrid vs. N

largest (single-precision) K we could �t in memory.

An earlier version of the program computedKu (that

is, the form factors Fij) on-the-
y. With it, we were

able to reach N as large as 24576 (l = 6), which would

otherwise have required 2.4GB of memory!

We chose to go with an in-memory computation for

several reasons:

� Even with the simplest possible form factor cal-

culations, it took CPU-hours to get results for

large N .

� Most other classic radiosity work computes K

in-memory, which would indicate that other re-

searchers consider the time to do on-the-
y Fij
computation prohibitive. This is especially true

as most of them have more involved and accurate

form factor calculation techniques than (5).

� On-the-
y Fij computation prevented us from

using the IH
h
K speedup for MG. (Without it,

MG had only a negligible advantage over G-S.)
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7 Conclusions and Future

Work

MG has a de�nite advantage over G-S in solving clas-

sic radiosity problems. These days, however, very

few people do radiosity classically. In the past few

years, a number of techniques have been developed

that show large improvements over classic radiosity

in other and more substantial ways than we've done

here.

As [Hack85] mentions and as Figure 6 shows, both

MG and G-S solutions are dominated by the O(N2)

operations required to compute the Ku product. It's

intriguing to think about using MG to evaluate Ku

faster. [Brandt91] sketches some ways that this might

be done, which time does not permit us to explore.

The general idea is that given some tolerance �, �nd

ik, jk, and lk for 0 < k < Nk such that

�����Ku�

NkX
k=1

K
lk

ikjk
u
lk

jk

����� < �

for Nk � N .

In fact, we already have code that does something like

this using on-the-
y Fij computation (as this method

demands). Results are negative so far (about twice

as slow as G-S), the probable reason being that we

have not yet found suitable criteria for lk given �. We

also need a better form factor calculation than (5).

Other researchers in computer graphics are already

using MG-like techniques. [Han91] describe a tech-

nique they call \BF re�nement" which is an adaptive

MG solution.
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