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Abstract

Theorem-proving and symbolic trajectory evaluation are both described as meth-

ods for the formal veri�cation of hardware. They are both used to achieve a common

goal|correctly designed hardware|and both are intended to be an alternative to con-

ventional methods based on non-exhaustive simulation. However, they have di�erent

strengths and weaknesses. The main signi�cance of this paper is the description of

a two-level approach to formal hardware veri�cation, where the HOL theorem prover

is combined with the Voss veri�cation system. From symbolic trajectory evaluation

we inherit a high degree of automation and accurate models of circuit behavior and

timing. From interactive theorem-proving we gain access to powerful mathematical

tools such as induction and abstraction. The interface between the HOL and Voss is,

however, more than just an ad hoc translation of veri�cation results obtained by one

tool into input for the other tool. We have developed a \mathematical" interface where

the results of the Voss system is embedded in HOL. We have also prototyped a hybrid

tool and used this tool to obtain veri�cation results that could not be easily obtained

with previously published techniques.

1 Introduction

Designing complex digital system in VLSI technology usually involves working at several

levels of abstraction, ranging from very high level behavioral speci�cations down to physical

layout at the lowest. One of the main di�culties in this process is to verify the consistency of

the di�erent levels of abstraction. Simulation is often used as the main tool for \checking" the

consistency. Typically the designer tries relatively few test cases, one at a time, and checks

whether the results are correct. Towards the end of the design phase, the circuit is then often
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simulated for an extended period of time. It is not uncommon to spend months of CPU time

on mainframe computers simulating the �nal design[25]. Despite this tremendous e�ort,

serious design errors often remain undetected. In addition, as designs become more complex

through the introduction of aggressive pipelining and concurrently-operating subsystems,

it becomes increasingly di�cult to anticipate the many very subtle interactions between

logically unrelated system activities.

The current situation can be summed up with the observation that the \quality" of the

veri�cation achieved by traditional simulation is rapidly deteriorating as the VLSI technol-

ogy progresses. Consequently, there has been a growing interest in using formal methods to

verify the correctness of designs. There are several approaches to formal hardware veri�ca-

tion: theorem-proving, state machine analysis, and symbolic simulation to mention a few.

These methods all have their strengths and weaknesses. In this paper we will illustrate how

theorem-proving can be used in conjunction with symbolic simulation to gain a veri�cation

methodology that draws on the strengths of each approach.

The paper is organized as follows. We �rst briey introduce theorem-proving and sym-

bolic simulation based formal hardware veri�cation. In particular, we focus on the two

approaches strengths and weaknesses. We then introduce the underlying theory for our

combined approach. We also outline a prototype implementation and describe some of the

results we have been able to derive using this prototype. We conclude with a small illus-

trative example and some conclusions and future directions. Although this paper contains

a number of examples, the main focus on our presentation is the \mathematical interface"

that we have developed to link theorem-proving with symbolic simulation. For a more com-

prehensive discussion of how to use the prototype system and some more realistically sized

examples, the reader is referred to the companion paper[23].

We believe the development of the mathematical interface between the HOL system and

the Voss system can be used as a guide for the development of other hybrid approaches to

formal hardware veri�cation. We strongly believe that the development of hybrid tools such

as HOL-Voss are essential if formal methods are to ever become more than an academic

interest in the VLSI design community.

2 Interactive Theorem Proving

One of the earliest approaches to formal hardware veri�cation was to describe both the

implementation as well as the speci�cation in a formal logic. The correctness result was

then obtained by using formal rules of reasoning to derive a relationship between the imple-

mentation and speci�cation of a design. In this section we will briey summarize the main

characteristics of this form of veri�cation.

Following [24] we de�ne a formal theory as follows: A formal theory S is de�ned when:

1. A �nite alphabet is given. The symbols of this alphabet are the symbols of the theory.

A �nite sequence of these symbols is called an expression of S.

2. A subset of the expressions of S are called well-formed formulas of S.

3. A �nite set of the well-formed formulas of S are called axioms of S.
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4. A �nite set of rules of inference is given. A rule of inference allows the derivation of a

new well-formed formula from a given �nite set of well-formed formulas.

A formal proof in S is a �nite sequence of well-formed formulas: f1; f2; : : : ; fn, such that for

every i, formula fi is either an axiom or can be derived by one of the rules of inference given

the set of formulas ff1; f2; : : : ; fi�1g. Traditionally, the last well-formed formula in a formal

proof is called a theorem of S, and the formal proof is a proof of this theorem.

To illustrate a formal theory, we will use the formulation of higher-order logic, as used

in the HOL theorem prover and described in[18, 19]. The alphabet used contains most of

the symbols from predicate logic, i.e., _, ^, ), 8, 9, etc. However, it also contains symbols

for lambda abstraction and various forms of type annotation. Some examples of well-formed

formulas are:

(9 + 12) : num

((9 + 12) = 3) : bool

(�x: ((x+ 12) = 15)) : num! bool

(The last formula denotes a function that takes a number and returns true if and only if the

number is 3.) A theorem is written as � ` t, and is read as: assumptions � imply theorem t.

Like many formal theories, the higher-order logic is de�ned using a very small number

of axioms. In the formulation used in the HOL system, only �ve primitive axioms are used.

These axioms range from, the very simple and \obvious" ones like

; ` 8t:bool: (t = T ) _ (t = F )

which basically states that a Boolean type is either true or false, to some much less obvious

axioms, like

; ` 8P : ? ! bool: 8x : ?: Px) P (�P )

which states some of the properties of the Hilbert �-operator which basically serves as a

\choice" operator1.

The number of rules of inference is also often quite small. In the formulation of higher-

order logic within the HOL system, there are only eight primitive rules of inference. The

following three rules are representative examples:2

t ` t

which allows us to make assumptions,

� ` t2

�� ft1g ` (t1 ) t2)

which allows us to discharge an assumption, and

�1 ` t1 ) t2 �2 ` t1

�1 [ �2 ` t2

1The axiom states essentially that for every predicate P over some domain, if P holds for some element

x in the domain, then �P denotes a value that satis�es P .
2We use the standard convention of writing rules of inference as a horizontal line with the assumptions

written above and the conclusion written below.
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which formalizes the informal rule of reasoning \if t1 implies t2 and t1 is true, then t2 must

also be true".

It is important to distinguish between proofs in the common mathematical sense and

proofs in a formal system. The former often relies on unspoken assumptions, assumed

knowledge, and leaps of intuition, whereas every step in the latter is completely justi�ed. Of

course, this means that a formal proof is very easy to check. For example, one can imagine

writing a very simple proof checker that checks each line of the proof that it is either an

axiom or that it has been obtained by a valid rule of inference given the preceding lines.

This strength of a formal proof is also its main drawback. Even very simple proofs can

take a very large number of steps to carry out. Consequently, trying to derive formal proofs

by hand is impractical. However, many of the steps in a formal proof is mostly tedious

book-keeping|something computers are very good at|and thus machine assisted theorem

provers have been developed.

Among the best known interactive theorem-provers are the Boyer-Moore Theorem Prover

[5] and the Cambridge HOL System [18, 19]. The Boyer-Moore Theorem Prover has been

used by researchers at Computational Logic Inc. to develop a multi-level proof of correct-

ness for a complete computer system including both hardware and software levels [3]. The

Cambridge HOL System has been used by researchers at Cambridge University to verify

aspects of the commercially-available Viper microprocessor designed by the British Ministry

of Defense for safety-critical applications [13].

One of the main strengths of the theorem-proving approach is its ability to describe and

relate circuit behaviors at many di�erent levels of abstraction. For example, when verifying

an adder, we can show that the relationship between the inputs and outputs corresponds to

addition as de�ned, for instance, by Peano axioms, rather than just a relationship between

Boolean variables. Thus, we can reason at di�erent algebraic levels and relate behaviors

between the levels. This point cannot be stressed enough, since one of the main di�culties

in formal hardware veri�cation is to convince oneself that the speci�cation is indeed correct.

By being able to reason about the circuit at increasingly higher levels of abstraction, we can

eventually minimize the semantic gap between the formal high-level speci�cation and the

informal, intuitive, speci�cation of the circuit that resides in the mind of the designer.

Unfortunately, theorem-proving based veri�cation requires a large amount of e�ort on the

part of the user in developing speci�cations of each component and in guiding the theorem

prover through all of the lemmas. Also, in order to make the proofs tractable, most attempts

at this style of veri�cation have been forced to use highly simpli�ed circuit models.

3 Symbolic Trajectory Evaluation

Symbolic simulation is an o�spring of conventional simulation. Like conventional simulation,

it uses a built-in model of hardware behavior and a simulation engine to compute, on demand,

the behavior of some design for some given inputs. However, it di�ers in that it considers

symbols rather than actual values for the design under simulation. In this way, a symbolic

simulator can simulate the response to entire classes of values with a single simulation run.

The concept of symbolic simulation in the context of hardware veri�cation was �rst pro-

posed by researchers at IBM Yorktown Heights in the late 1970's as a method for evaluating

register transfer language representations [12]. The early programs were limited in their ana-
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lytical power since their symbolic manipulation methods were weak. Consequently, symbolic

simulation for hardware veri�cation did not evolve much further until more e�cient methods

of manipulating symbols emerged. The development of Ordered Binary Decision Diagrams

(OBDDs) for representing Boolean functions [9] radically transformed symbolic simulation.

Since a symbolic simulator is based on a traditional logic simulator, it can use the same,

quite accurate, electrical and timing models to compute the circuit behavior. For example,

a detailed switch-level model, capturing charge sharing and subtle strengths phenomena,

and a timing model, capturing bounded delay assumptions, are well within reach. Also|

and of great signi�cance|the switch-level circuit used in the simulator can be extracted

automatically from the physical layout of the circuit. Hence, the correctness results can link

the physical layout with some higher level of speci�cation.

The �rst \post-OBDD" symbolic simulators were simple extensions of traditional logic

simulators [7]. In these symbolic simulators the input values could be Boolean variables

rather than only 0's, 1's as in traditional logic simulators. Consequently, the results of the

simulation were not single values but rather Boolean functions describing the behavior of the

circuit for the set of all possible data represented by the Boolean variables. By representing

these Boolean functions as Ordered Binary Decision Diagrams the task of comparing the

results computed by the simulator and the expected results became straightforward for many

circuits. Using these methods it has become possible to check many (combinational) circuits

exhaustively.

Recently, Bryant and Seger [10, 28] developed a new generation of symbolic simulator

based veri�er. Since the method has departed quite far from traditional simulation, they

called the approach symbolic trajectory evaluation. Here a modi�ed version of a simulator

establishes the validity of formulas expressed in a very limited, but precisely de�ned, temporal

logic. This temporal logic allows the user to express properties of the circuit over trajectories:

bounded-length sequences of circuit states. The veri�er checks the validity of these formulas

by a modi�ed form of symbolic simulation.

Although the general theory underlying symbolic trajectory evaluation, as described in

[10, 28], is equally applicable to hardware as software systems, we will only describe a

somewhat specialized version tailored speci�cally to hardware veri�cation. For a more com-

prehensive discussion of the general case, the reader is referred to [10, 28].

In symbolic trajectory evaluation the circuit is modeled as operating over logic levels 0,

1, and a third level X representing an indeterminate or unknown level. These values can be

partially ordered by their \information content" as X v 0 and X v 1, i.e., X conveys no

information about the node value, while 0 and 1 are fully de�ned values. The only constraint

placed on the circuit model|apart from the obvious requirement that it accurately model

the physical system|is monotonicity over the information ordering. Intuitively, changing an

input from X to a binary value (i.e., 0 or 1) must not cause an observed node to change from

a binary value to X or to the opposite binary value. In extending to symbolic simulation,

the circuit nodes can take on arbitrary ternary functions over a set of Boolean variables

V. Symbolic circuit evaluation can be thought of as computing circuit behavior for many

di�erent operating conditions simultaneously, with each possible assignment of 0 or 1 to the

variables in V indicating a di�erent condition.

Properties of the system are expressed in a restricted form of temporal logic having just

enough expressive power to describe both circuit timing and state transition properties, but
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remaining simple enough to be checked by an extension of symbolic simulation. The basic

decision algorithm checks only one basic form, the assertion, in the form of an implication

[A =) C]; the antecedent A gives the stimulus and current state, and the consequent C gives

the desired response and state transition. System states and stimuli are given as trajectories

over �xed length sequences of states.

Each of these trajectories are described with a temporal formula. The temporal logic

used here, however, is very limited. A formula in this logic is either:

1. UNC (unconstrained),

2. (a) n=1 (a node is equal to 1),

(b) n=0 (a node is equal to 0),

3. F1 ^ F2 (F1 and F2 must both hold),

4. B ! F (the property represented by formula F need only hold for those assignments

satisfying Boolean expression B),

5. NF (F must hold in the next state).

The temporal logic supported by the evaluator is far weaker than that of more traditional

model checkers. It lacks such basic forms as disjunction and negation, along with temporal

operators expressing properties of unbounded state sequences. The logic was designed as

a compromise between expressive power and ease of evaluation. It is powerful enough to

express the timing and state transition behavior of circuits, while allowing assertions to be

veri�ed by an extended form of symbolic simulation.

The constraints placed on assertions make it possible to verify an assertion by a single

evaluation of the circuit over a number of circuit states determined by the deepest nesting

of the next-time operators. In essence, the circuit is simulated over the unique weakest (in

information content) trajectory allowed by the antecedent, while checking that the resulting

behavior satis�es the consequent. In this process a Boolean function is computed expressing

those assignments for which the assertion holds.

The assertion syntax outline above is very primitive. To facilitate generating more ab-

stract notations, the speci�cation language can be embedded in a general purpose program-

ming language. When a program in this language is executed, it automatically can generate

the low-level temporal logic formulas and carry out the veri�cation process.

The Voss system is a formal veri�cation system based on symbolic trajectory evaluation

developed at University of British Columbia. Conceptually, the Voss system consists of two

parts as shown in Figure 1. The front-end is a compiler/interpreter for a small, fully lazy,

functional language. A speci�cation is written as a \program" in this language. When this

speci�cation program is executed, i.e., reduced to normal form, it builds up the simulation

sequence that must be run in order to completely verify the speci�cation.

The back-end of the Voss system is an extended symbolic simulator. The simulator uses

an externally generated �nite state machine description to compute the needed trajectories.

This �nite-state machine is a behavioral model of a digital circuit which can be automatically

generated from a transistor netlist by a separate tool called Anamos [8] or from a gate netlist

in Silos format[29] by a program called silos2exe. Since we are using the Anamos tool to pre-

compile a switch-level netlist, the Voss system can carry out switch-level veri�cation using

6



Voss 

C
om

pi
le

r/
 

In
te

rp
re

te
r 

Sy
m

bo
lic

 
Si

m
ul

at
or

 

Anamos 

Transistor 
Netlist 

Library (FL) 

pecification 
rogram (FL) 

Compiled 
switch-level 

model 

True/counter example

Silos2exe 

Silos 
Netlist 

Compiled 
gate-level 

model 

Figure 1: Voss veri�cation system

the full mossimII [6] switch-level model. The gate level simulator is (roughly) functionally

equivalent to the silos II [29] simulator. In addition, fairly comprehensive delay modeling

capabilities has been added for more accurate veri�cation. In order to achieve good perfor-

mance, the symbolic simulator employs event scheduling for both the circuit simulation as

well as in maintaining the veri�cation conditions

From the Voss user's point of view the Voss system veri�es assertions of the form,

FSM fsm (antecedent,consequent)

where fsm denotes a �nite-state machine and the pair (antecedent,consequent) expresses

a relationship over the trajectories of this �nite-state machine. The parameters antecedent

and consequent each denotes a list of \atomic" constraints. Each atomic constraint is a

5-tuples of the form (b,n,v,s,f) which, for a given trajectory, denotes the constraint that

\if the Boolean expression b is true then the node named by n has the value v in all states

of the trajectory from the start state s up to, but not including, the �nal state f".

To give a very simple example, the assertion,

FSM inverter ([(T,`input`,F,0,1)],[(T,`output`,T,1,2)])

expresses a relationship between the input and output node of an inverter for one particular

input value and where the output value is delayed by one time unit.

A slightly more sophisticated approach is illustrated by the assertion,

FSM inverter ([(T,`input`,v,0,1)],[(T,`output`,:v,1,2)])
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where the constants F and T have been replaced by the symbolic expressions v and :v.
It may appear that the temporal scope of the above assertion is limited to the �rst two

instants of discrete time|that is, \if the input at time 0 is v, then the output at time 1 will

be :v." However, the temporal scope of this assertion actually extends in�nitely along every

trajectory of the �nite-state machine. This is because the automatic veri�cation procedure

considers every state of the �nite-state machine to be a possible initial state of the machine.

At any point along any trajectory, the current state corresponds to the initial state of some

other trajectory. Because the temporal scope of the above assertion extends in�nitely along

every trajectory, the assertion can be accurately interpreted to express the property that

\for all times t, if the value of the input node of the inverter is v, then the value of the

output node at time t+1 will be ~v".

Symbolic trajectory evaluation does not require a hierarchy of behavioral speci�cations

to be formulated to match the structural hierarchy of the design. In fact, it is often su�cient

to use a speci�cation expressed in terms of the behavior of the complete circuit in response

to di�erent inputs and starting states. Consequently, the same speci�cation and veri�cation

program can often be used for quite di�erent implementations. Also, the exact details of how

the circuit works can often be left to the simulator to compute. This makes it possible to use

sophisticated circuit models without having to know the details of the model. In summary,

symbolic trajectory evaluation is a highly automated veri�cation methodology.

Unfortunately, this automation comes with a price. First of all, for some behaviors,

the computational requirements for carrying out a correctness proof can make the approach

infeasible for larger circuits. For example, verifying a circuit implementing 32-bit integer

multiplication is impossible using current symbolic trajectory evaluators. The reason is

simply that the Ordered Binary Decision Diagrams used to represent the outputs of the

multiplier grows exponentially in the size of the multiplicands, and thus is completely out of

reach for a 32 bit version.

A second serious drawback with symbolic trajectory evaluation is that the semantic gap

between the intuitive, informal, speci�cation the designer has in mind and the speci�cation

used in the symbolic trajectory evaluator is often undesirably large.

4 Pros and Cons of HOL and Voss

In this section we will summarize the various pros and cons with using interactive theorem

proving and symbolic trajectory evaluation for formal hardware veri�cation. To make the

discussion more concrete, we will use HOL and Voss as examples of tools used for the two

approaches.

In comparing the theorem proving approach with symbolic trajectory evaluation we can

conclude the following:

� In both cases, veri�cation is a matter of relating a bottom-level speci�cation of an

implementation to a top-level speci�cation of its intended function; these speci�cations

are mathematical models.

� In both cases, the users supplies both the bottom and top levels of speci�cation.
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� In symbolic simulation, expressiveness, with respect to the representation of data, is

generally �xed at the level of Boolean expressions.

� In theorem-proving, speci�cation languages are typically very expressive; theorem-

proving methods generally allow di�erent representations of data to be formally related

at increasing levels of abstraction.

� In both cases, veri�cation is governed by a �xed set of symbol manipulation rules.

� In symbolic simulation, veri�cation is completely automatic; a principal concern is

e�ciency.

� In theorem-proving, veri�cation is interactive and usually depends on the user to guide

the theorem-prover through a high-level proof strategy; a principal concern is user

control of the veri�cation process.

� In symbolic simulation, veri�cation is not tightly coupled to the hierarchical structure

of a design.

� In theorem-proving, veri�cation is tightly coupled to the hierarchical structure of a

design.

� In symbolic simulation, complexity is controlled by the use of an e�cient internal

representation with a canonical form.

� In theorem-proving, complexity is controlled by a variety of mechanisms including

induction and hierarchical proof strategies.

� In symbolic simulation, performance of the veri�cation process is determined mainly

by the speed and size of the host machine.

� In theorem-proving, performance is determined mainly by the expertise of the user.

Based the above points, one may conclude that symbolic simulation is a highly restricted,

but very e�cient method of formally verifying hardware while theorem-proving is a very

exible, but less automatic and less e�cient method.

In particular, we regard the ability to reason about data at increasing levels of abstraction

to be a major strength of theorem-proving. On the other hand, attempts to reason about

detailed level circuit behavior are generally very di�cult for theorem-proving methods|and

the results are not very convincing.

The strengths and weaknesses of symbolic simulation are exactly the opposite: symbolic

simulation does not support abstraction representations of data but it can be used to reason

about detailed circuit level behavior very e�ciently|and the the results are indeed convinc-

ing. Hence, an ideal veri�cation tool would draw from both methodologies. In the remaining

parts of this paper we will indeed describe exactly such a hybrid approach to formal hardware

veri�cation.
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5 Linking HOL to Voss

Our e�orts in developing a two-level veri�cation methodology focused initially on the es-

tablishment of a mathematical link between the underlying logical framework of the HOL

system and the notion of symbolic trajectory evaluation, as implemented in the Voss system.

This mathematical link was then used as the basis for the implementation of a prototype

veri�cation tool that extends the built-in functionality of the HOL system with additional

facilities for reasoning about very large �nite-state machines using symbolic trajectory eval-

uation. From a functional point of view, the HOL-Voss system can be described in two ways.

First, one can view the HOL-Voss system as a specialized extension of the HOL system. On

the other hand, one can also view the HOL system as a tool that can be used to develop,

provably correct, veri�cation procedures to be used in the Voss system. In this paper we

will primarily take the �rst view, but we will return to the second view in Section 8. The

current HOL-Voss system is actually implemented as the integration of HOL with the Voss

system where the HOL system delegates certain proof tasks to a concurrently executing Voss

system through a process-to-process communication channel.

5.1 Semantic Embedding of Voss in HOL

The cornerstone of our hybrid approach is the establishment of a mathematical link between

higher-order logic and the notion of symbolic trajectory evaluation. This link is established

by de�ning several new types (noderef, nodevalue, state, trajectory, and fsm) and

several new predicates (Trajectory, FSM and SuffixClosed). In HOL jargon, this link can

be described as a \semantic embedding" of Voss within higher-order logic.

A �nite-state machine is represented in our approach by a set of trajectories. A trajectory

is an in�nite sequence of states where a state is a mapping from node names to node values.

A set of trajectories represents a �nite-state machine in the sense that every trajectory in the

set is a possible sequence of states that might be observed for the �nite-state machine. Also,

any possible sequence of states that might be observed for this machine exactly matches one

of the trajectories in the set.

Table 1: Basic types for the Voss semantics.

noderef = :string

nodevalue = :bool

state = :string �>nodevalue

trajectory = :num �>state

fsm = :trajectory �>bool

This representation of a �nite-state machine is formalized in the HOL logic with a collec-

tion of HOL types as shown in Table 1. Node names are represented by :string, a built-in

HOL type. Similarly, node values are represented by :bool, also a built-in HOL type. The

function type, string! nodevalue is used to represent states. A trajectory is represented

by the function type num! state, which represent functions that map natural numbers

to states; in this representation, natural numbers are used to represent the position of the
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state in the state sequence. A �nite-state machine, is represented in the HOL logic by the

characteristic function for a set of trajectories3: trajectory! bool.

The next step in the development of our semantic embedding of Voss within higher-order

logic is the de�nition of a predicate called Trajectory. For a given trajectory tj and a given

5-tuple (b,n,v,s,f), this predicate expresses the condition that \if the Boolean expression

b is true, then the node named by n has the value v in all states of the trajectory tj from

the start state s up to but not including the �nal state f". More formally,

`def 8tj b n v s f.

Trajectory tj(b,n,v,s,f) = b ) (8i. s � i ^ i < f ) (tj i n = v))

The principal operator for expressing assertions about �nite-state machines in our hy-

brid approach is the predicate FSM. For a given �nite-state machine, fsm, this predicate

expresses the condition that \every trajectory of this �nite-state machine that satis�es a set

of constraints represented by a list of 5-tuples called the antecedent also satis�es a set of

constraints represented by a list of 5-tuples called the consequent". Formally, FSM is de�ned

as:

`def 8fsm antecedent consequent.

FSM fsm (antecedent,consequent) =

let p (tj,l) = ITLIST (�a b. a ^ b) (MAP (Trajectory tj) l) T in

8tj. fsm tj ^ p (tj,antecedent) ) p (tj,consequent)

The above de�nition of FSM requires some explanation since it involves the use of two

pre-de�ned functions, MAP and ITLIST, which may not necessarily be familiar to the reader.

The sub-expression, MAP (Trajectory tj) l denotes the application of the Trajectory

predicate for a given trajectory, tj, to a set of constraints represented by a list of 5-tuples,

l. This sub-expression evaluates to a list of Booleans values. We then iteratively combine

this list of Boolean values by logical conjunction using the higher-order function ITLIST:

ITLIST (�a b. a ^ b) (MAP (Trajectory tj) l) T

This sub-expression will evaluate to T, that is, \true", if and only if every constraint in the

set represented by the list l is satis�ed by the trajectory tj. A let-expression is used in the

de�nition of FSM to allow this sub-expression to be used for both the antecedent and the

consequent.

The �nal component of our semantic embedding of Voss within higher-order logic is the

de�nition of the predicate SuffixClosed:

`def 8fsm. SuffixClosed fsm = (8tj. fsm tj ) fsm(�n. tj(n+1)))

This predicate expresses the condition that the su�x of every trajectory of the �nite-state

machine|that is, the result of chopping o� any �nite initial sub-sequence of the trajectory|

is also a trajectory of the �nite-state machine. This condition is equivalent to the condition

that every possible state of the �nite-state machine is a possible initial state.

The semantic embedding of Voss within higher-order logic causes the speci�cation lan-

guage of Voss to become a subset of the speci�cation language of the HOL system. For

example, the assertion,

3A set of trajectories can also be used to model state machines with in�nite state, however we only intend

to ever use this representation for �nite-state machines.
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8v. FSM inverter ([(T,`input`,v,0,1)],[(T,`output`,:v,1,2)])

becomes a term of higher-order logic as a result of this semantic embedding. For a given value

of inverter, that is, the speci�cation of the constant inverter as a �nite-state machine,

the above assertion is either true or false. If the assertion is true, then it is a theorem of

higher-order logic. The goal of our hybrid approach|at a very fundamental level|is to

extend the HOL system with an additional proof procedure based on symbolic trajectory

evaluation for verifying assertions about �nite-state machines expressed in terms of FSM. This

proof procedure, called VOSS_TAC, can be used to verify that such assertions are theorems of

higher-order logic.

5.2 A Functional View of HOL-Voss

From a functional point of view, the HOL-Voss system can be described in terms of two

fundamental extensions to the HOL system:

� a special-purpose speci�cation mechanism, new_fsm_specification, for creating spec-

i�cations of �nite-state machines,

� a special-purpose proof procedure, VOSS_TAC, for verifying assertions about �nite-state

machines expressed in terms of the predicate FSM.

There is tight coupling between these two fundamental extensions. The proof proce-

dure VOSS_TAC can be used to verify assertions about a �nite-state machine only when the

speci�cation of this �nite-state machine has been created using new_fsm_specification.

Furthermore, no proof procedure except VOSS_TAC has access to speci�cations created by

means of new_fsm_specification.

The HOL system provides several standard mechanisms for creating speci�cations. These

speci�cation mechanisms are used to introduce new constants and partially specify the value

of these constants. For example, the HOL system provides a function, new_definition,

that could be used to introduce a new constant TWO and specify that this new constant is

equal to the value of the built-in constant 2. Evaluation of the meta-expression,

new_definition (`TWO`,"TWO = 2");;

in a HOL session would cause an internal database to be extended with both a new constant,

TWO, and a new axiom, ` TWO = 2.

In a similar way, the special-purpose speci�cation mechanism provided by HOL-Voss can

be used to introduce a new constant and give a partial speci�cation of its value. For example,

evaluation of the meta-expression,

new_fsm_specification (`inverter`);;

in a HOL-Voss session has the e�ect of introducing a new constant, inverter, and specifying

the value of this constant as an instance of a �nite-state machine. However, unlike standard

HOL speci�cation mechanisms where the speci�cation of this constant would be given by

an explicit term of higher-order logic, HOL-Voss looks for a speci�cation of this �nite-state

machine in an external �le called inverter.exe. The expected format of this external
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�le does not involve an explicit term of higher-order logic; instead, this �le is an encoded

representation of a set of next-state equations in a format produced by one of the circuit

compilers in the Voss system.

From a functional point of view, the result of using new_fsm_specification is similar

to the result of using a standard HOL speci�cation mechanism such as new_definition.

After evaluating the above expression to create a speci�cation for the inverter circuit, the

HOL-Voss user could inspect the database and see that a new constant, inverter, has been

introduced. Furthermore, the HOL-Voss user would see that this constant has been partially

speci�ed by the introduction of a new axiom,

` SuffixClosed inverter

which speci�es that every state of the �nite-state machine model of the inverter is a possible

initial state of the machine. However, the rest of the �nite-state machine speci�cation, in

particular, that part of the speci�cation which speci�es the actual behavior of the machine,

is stored in a second database maintained by HOL-Voss exclusively for the purpose of storing

speci�cations created by means of new_fsm_specification. The �rst database corresponds

to the database of a standard HOL system; its contents have a printable representation and

can be accessed by all of the facilities inherited by HOL-Voss from HOL for doing interactive

proofs in higher-order logic. However, the speci�cations in the second database do not have

a printable representation as terms of higher-order logic. Furthermore, these speci�cations

can only be accessed by the special-purpose proof procedure, VOSS_TAC.

The proof procedure VOSS_TAC is a HOL-Voss extension of the HOL system that can

be used to automatically verify assertions about �nite-state machines speci�ed by means of

new_fsm_specification. For example, if our current proof goal is of the form:

8v. FSM inverter ([(T,`input`,v,0,1)],[(T,`output`,:v,1,2)])

evaluation of the meta-expression,

e (VOSS_TAC `inverter`);;

would cause HOL-Voss to use symbolic trajectory evaluation to check the validity of this

assertion. If this assertion is found to be true, then evaluation of this meta-expression would

result in the generation of a new theorem,

` 8v. FSM inverter ([(T,`input`,v,0,1)],[(T,`output`,:v,1,2)])

with a status equal to theorems generated using only standard HOL proof procedures.

In the above example, the antecedent and consequent each consist of just one 5-tuple.

However, HOL-Voss is intended to be used to verify assertions about very complex �nite-state

machines where the antecedent and consequentmay each consist of thousands of 5-tuples.

For this reason, notational conveniences built-in the HOL logic such as as let-expressions

may be used in assertions submitted to VOSS_TAC. This is illustrated, for example, in the

following assertion about the implementation of a full-adder:
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8a b c.

let xor (n,m) = (n ^ :m) _ (:n ^ m) in

let sum (a,b,c) = xor (xor (a,b),c) in

let cout (a,b,c) = (a ^ b) _ (a ^ c) _ (b ^ c) in

let antecedent = [(T,`a`,a,0,20);

(T,`b`,b,0,20);

(T,`cin`,c,0,20)] in

let consequent = [(T,`sum`,sum (a,b,c),10,20);

(T,`cout`,cout (a,b,c),10,20)] in

FSM fulladder (antecedent,consequent)

Prior to verifying an assertion by means of symbolic trajectory evaluation, VOSS_TAC

will automatically apply a number of general-purpose reduction rules. Moreover, VOSS_TAC

will use the de�nitions of user-de�ned constants to reduce an assertion prior to checking the

validity of this assertion by means of symbolic trajectory evaluation. The mechanism for

these reductions is explained in the next section.

5.3 An Implementation View of HOL-Voss

The HOL-Voss system is implemented as the integration of HOL with the Voss system

where the HOL system delegates certain proof tasks to a concurrently executing Voss system

through a process-to-process communication channel. In our Unix-based implementation, the

HOL part of our implementation invokes Voss as a child process and communicates with Voss

by means of a pseudo-tty interface. The user interacts with HOL-Voss exclusively through

the standard HOL interface. Certain user interaction, in particular, the speci�cation of a

�nite-state machine using new_fsm_specification or the application of VOSS_TAC to an

assertion about a �nite-state machine, cause the HOL process to issue commands to Voss

using this pseudo-tty interface.

When new_fsm_specification is used to create a speci�cation of a �nite-state machine,

the HOL part of our HOL-Voss implementation commands Voss to read in the speci�cation

of the �nite-state machine from the external .exe �le. Earlier when describing the functional

view of the HOL-Voss system, it was explained that �nite-state machine speci�cations created

using new_fsm_specification are stored in a separate database. From an implementation

point of view, it can be seen that these �nite-state machine speci�cations are stored as

data structures within the Voss process while speci�cations created using standard HOL

speci�cation mechanisms such as new_definition are stored separately as data structures

in the HOL process.

When VOSS_TAC is applied to an assertion about a �nite-state machine, the assertion is

passed by means of the software interface from the HOL part of our hybrid tool to Voss and

Voss is then commanded to verify the assertion using symbolic trajectory evaluation. The

assertion is passed from HOL to Voss as a type-checked parse tree for the corresponding

HOL term. We have extended Voss to read such HOL terms directly and try to execute

them. In addition, every constant in the HOL system introduced by means of a de�nition

is also written out as a (type-checked) parse tree and stored as a let (letrec for recursive

de�nitions) in a Voss library. In fact, for every HOL theory the user builds up, there will be

a Voss library containing the de�nitions of all constants de�ned in the theory.

A number of HOL constants are built into the Voss system; these constants are listed in

Table 2. For Voss to be able to deal with any new constant, it has to be de�ned in terms
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of these known constants. The only major restriction of the constants is that the universal

and existential quanti�ers must be of type :(bool! bool)! bool, i.e., quanti�cation can

only be done over a Boolean variable. Note that the only \new" constant introduced in

HOL-Voss, i.e., a constant that is not part of standard HOL, is FSM.

Table 2: Built-in HOL constants recognized by Voss.

CONS 8 [1-9][0-9]* =

HD 9 + >

TL COND � �
NIL F �

T DIV ,

STRING : MOD FST

`...` ^ SUC SND

_ <

FSM =) �

When the Voss system receives a HOL parse tree for a goal to verify, it performs two

actions. First it reads in all the Voss libraries for the HOL theories used. It then tries to

reduce the obtained \functional program" to normal form. In the process, it will expand all

user-de�ned constants into the built-in constants, and execute the primitive operations. For

example, evaluation of the HOL meta-expressions

let z = new_definition(`z`, "z = 0");;

let factorial = new_prim_rec_definition(`factorial`,

"(factorial 0 = 1) ^

(factorial (SUC n) = (SUC n) * (factorial n))");;

would, in addition to storing the de�nitions in the HOL database, cause the de�nitions4

let z = 0 in

letrec (factorial 0 = 1) ^ (factorial (SUC n) = (SUC n) * (factorial n)) in

to be stored in a Voss library �le. Next, if the HOL-Voss user tries to prove the goal

"(factorial 5) + z = 120" by giving the meta-expression

e (VOSS_TAC ``);;

the following will happen. First, Voss will read in all the Voss libraries that contain user-

de�ned constants. In particular, Voss will read in the de�nitions of z and factorial shown

above. HOL will then send Voss the parse tree for the term (factorial 5) + z = 120. At

this point, Voss will be faced with the task of evaluating:

let z = 0 in

letrec (factorial 0 = 1) ^ (factorial (SUC n) = (SUC n) * (factorial n)) in

(factorial 5) + z = 120

4For readability, we have rewritten the parse trees in in�x notation.
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Voss will do so by computing that (factorial 5) evaluates to 120, z evaluates to 0,

(factorial 5) + z evaluates to 120, and �nally that (factorial 5) + z = 120 evalu-

ates to T. Note that in this example we did not use any of the symbolic trajectory evaluation

facilities of Voss. Normally the goal will of course contain at least one instance of FSM causing

Voss to carry out a complete symbolic trajectory evaluation.

There are some restrictions on what kind of de�nitional speci�cation that can be executed

by Voss. These restrictions come in three forms:

� quanti�cation can only be done over Booleans (the same holds for the Hilbert �-

operator),

� when a COND (conditional) is evaluated, the condition cannot contain any free variables,

and

� currently Voss is using �xed precision arithmetic and thus some provably correct goals

cannot be proven.

The last restriction is annoying but fairly straightforward to remove. In fact we are cur-

rently considering replacing the �xed precision arithmetic in the Voss system with arbitrary

precision arithmetic. Once this is done, this restriction can be lifted. Note however, that

the current version checks for overows and thus there is no danger of \proving" incorrect

results due to overows.

The second limitation is a consequence of the fact that we are not able to perform

symbolic evaluation of HOL terms. Thus, a term like:

(a _ b) ! :c j :b

cannot be evaluated since both a and b are free in the condition (a_b). Fortunately, it is often
fairly straightforward to replace these kinds of constructs with other Boolean operations. For

example, one can prove the following theorem

` ((a _ b) ! :c j :b) = (a _ b ) :c) ^ (:(a _ b) ) :b)

and using this result, we can rewrite the original goal to a form acceptable to Voss. Of course,

it is not always possible to �nd an equivalent form acceptable to Voss, and this limitation

remains as one of the most di�cult to deal with.

Finally, as already mentioned, the Voss system can only perform quanti�cation over

Booleans. Hence, all other quanti�cations must be rephrased in terms of quanti�cations

over Booleans. We will return to this later in this paper.

If the goal is veri�ed by Voss, it returns the result T, that is, \true", back to the HOL

system through the software interface; otherwise, the result F is returned to indicate that Voss

was unable to verify the goal. If the goal involves symbolic trajectory evaluation, the Voss

system will also print out debugging information and, most importantly, if the veri�cation

fails, a counterexample is given of the form of a node that does not have the right value at

the right time.
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5.4 Implementation Tradeo�s

The semantic embedding of the Voss speci�cation language in higher-order logic is just

one of many examples of special-purpose formalisms that have been semantically embedded

in the logical framework of the HOL system. One of several published examples is the

semantic embedding of CSP, a process algebra widely used for formal reasoning in the areas

of concurrency, communication, and distributed systems, in the HOL system [11]. The

�rst step in the development of a semantic embedding is to de�ne a basic set of operators

as predicates or functions in the underlying framework of higher-order logic. Next, proof

procedures of the embedded formalism are implemented as proof procedures in the HOL

system. As illustrated in the CSP example, the conventional implementation strategy for

extending the HOL system with a new proof procedures is to introduce a new HOL proof

procedure as a procedural abstraction de�ned ultimately in terms of built-in proof procedures

of the HOL system. The main advantage of this conventional implementation strategy is

the ease of arguing that the introduction of a new proof procedure in this manner does

not compromise the integrity of the HOL system: if the new proof procedure simply calls

a sequence of built-in HOL proof procedures, then it is easy to see that this new proof

procedure cannot be used to derive any theorem that is not already derivable from built-in

HOL proof procedures.

In the case of HOL-Voss, we have extended the HOL system with a single proof proce-

dure, VOSS_TAC, for verifying assertions about �nite-state machines. In principle, this new

proof rule could be implemented using the conventional implementation strategy outlined

above|that is, as a procedural abstraction de�ned ultimately in terms of built-in proof pro-

cedures. However, we decided against this implementation strategy for several reasons. Most

importantly, we decided that it would be an overwhelming disadvantage to re-implement the

symbolic trajectory algorithm rather than making direct use of the existing state-of-the-art

implementation provided by the Voss system. Also, creating the equivalent to VOSS_TAC

based solely on the built-in proof procedures would be prohibitively slow, since ultimately,

all the proofs would have to be constructed from very elementary inference rules. For ex-

ample, even in verifying relatively modest circuits, the Voss system often performs hundreds

of thousands or even millions of Boolean function applications and comparisons. Replacing

these, highly optimized, BDD manipulations with primitive rules of inference, is possible in

theory, but is clearly not a practical solution.

There is a more important reason why implementing a symbolic trajectory evaluator in

the HOL system may not be the right approach. The current implementation of HOL-Voss

appears to the user as a theorem prover on which a symbolic trajectory evaluator has been

crafted in. However, there is another way of looking at our general approach. Consider

using the HOL system as an \expert tool" used to derive libraries and proof procedures

to be used by the Voss system. Here, the main tool for day-to-day veri�cation is the Voss

system. Hence, the Voss system with its much simpler user-interface and high degree of

automation is the veri�cation tool used by the designers, whereas the HOL prover is used

by a smaller group of theorem-proving experts to develop suitable proof infrastructure and

provably correct proof procedures to be used in the Voss system.
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6 Proof Infrastructure

In the development of our hybrid approach we have spent considerable e�ort on the devel-

opment of proof infrastructure which increases the usability of our approach. In particular,

our e�orts to date have focused on the development of three main kinds of infrastructure:

� a library of pre-de�ned bitvector arithmetic functions and proofs,

� HCL|a small (experimental) speci�cation language, and

� general proof procedures for common veri�cation tasks in the HOL-Voss system.

In this section we will expand upon these topics.

6.1 Bitvector Arithmetic

Many, if not most, circuits perform some arithmetic on bitvectors. In these cases, it is

natural to use arithmetic functions on bitvectors in the speci�cation of the desired circuit

operation. In order to increase re-usability and simplify the task of writing speci�cations,

we have developed a \library" of bitvector operations. We represent bitvectors as lists of

Booleans and use a \little-endian" view of the bitvectors, i.e., the least signi�cant bit is

the head of the list. We have so far limited ourselves to de�ne relational and arithmetic

operations for unsigned bitvectors. In Table 3 we list some of the functions from the little-

endian library5. Note that we not only de�ne relational and arithmetic functions, we also

de�ne functions that translate natural numbers, as de�ned in the HOL system, back and

forth to the bitvector representation.

Since these arithmetic bitvector functions are likely to be used over and over again in

writing speci�cations, it is paramount that their de�nitions are correct. In most model

checking or symbolic simulation based veri�cation systems, we would have to ensure this

correctness manually. In fact, it is fairly unlikely that we would actually carry out a formal

correctness proof. In our case, however, we can formally prove that they correspond to our

standard notion of addition, multiplication, etc. as de�ned by Peano's axioms. In Table 4

we list a collection of the theorems that we have proven about our de�nitions. For example,

the theorem BV2NUM_NUM2BV states that for any natural number n, if we �rst convert n to

our bitvector representation using the num2bv function and then apply the function bv2num

to the resulting bitvector, we get n back. Similarly, the theorem BVPLUS_OF_BVNUMS states

that, for any two bitvectors a and b, the result of applying bvplus to these bitvectors and

converting the result to a natural number using the bv2num function yields the same number

as converting the bitvectors a and b to numbers and then adding them together.

Using the above correctness theorems allow us to develop some general proof procedures.

In particular, we have develop a procedure called BV_ARITH_TAC that can rewrite a goal

stated in terms of arithmetic functions and relations to a goal in terms of bitvector versions

of the operations. In Section 7 we illustrate the use of BV_ARITH_TAC.

It should be noted that the above speci�cations are in fact the bitvector speci�cations

directly used by the Voss system. Since the Voss system reads (type checked) HOL de�nitions

5We have also developed a \big-endian" library as a trivial extension of the little-endian library.
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Table 3: Subset of little endian bitvector operations.

`def (bv2num[] = 0) ^ (8h t. bv2num(CONS h t) = (h ! 1 j 0) + (2 * (bv2num t)))

`def (8m. num2bv_aux 0 m = []) ^

(8n m. num2bv_aux(SUC n)m =

((m = 0) ! [] j CONS(m MOD 2 = 1)(num2bv_aux n(m DIV 2))))

`def 8n. num2bv n = num2bv_aux n n

`def (8c. bvplus2_aux[]c = [c]) ^

(8h r c. bvplus2_aux(CONS h r)c = CONS(c ^ :h _ :c ^ h)(bvplus2_aux r(c ^ h)))

`def (8b c. bvplus_aux[]b c = bvplus2_aux b c) ^

(8h r b c. bvplus_aux(CONS h r)b c =

((b = []) ! bvplus2_aux(CONS h r)c j

CONS (h ^ :HD b ^ :c _ :h ^ HD b ^ :c _ :h ^ :HD b ^ c _ h ^ HD b ^ c)

(bvplus_aux r(TL b)(h ^ HD b _ c ^ HD b _ h ^ c))))

`def 8a b. a bvplus b = bvplus_aux a b F

`def (8av. av bvmult [] = [F]) ^

(8av h r. av bvmult (CONS h r) =

(MAP(�v. h ^ v)av) bvplus (CONS F(av bvmult r)))

`def (8b res. bvgreater_aux[]b res = res ^ bvequal_zero b) ^

(8h t b res. bvgreater_aux(CONS h t)b res =

(NULL b ! (res _ h _ :bvequal_zero t) j

bvgreater_aux t(TL b)(h ^ :HD b _ res ^ (h = HD b))))

`def 8a b. a bvgreater b = bvgreater_aux a b F

`def 8a b. a bvgeq b = bvgreater_aux a b T

Table 4: Sample of correctness theorems for bitvector operations.

BV2NUM_NUM2BV =

` 8n. bv2num(num2bv n) = n

SIZED_NUM2BV_BV2NUM_IS_SIZED =

` 8n b. sized n(num2bv(bv2num b)) = sized n b

BVPLUS_OF_BVNUMS =

` 8a b. (bv2num a) + (bv2num b) = bv2num(a bvplus b)

BVTIMES_THM =

` 8a b. (bv2num a) * (bv2num b) = bv2num(a bvmult b)

BVGREATER_THM =

` 8a b. (bv2num a) > (bv2num b) = a bvgreater b

BVGEQ_THM =

` 8a b. (bv2num a) � (bv2num b) = a bvgeq b
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directly, without further translation, the link between HOL arithmetic and the bitvector

de�nitions used in the Voss system is very strong.

An interesting side e�ect of our work on the combined HOL-Voss system, is libraries of

pre-proven bitvector de�nitions. These libraries can equally well be used when using the

Voss system or the HOL system as stand-alone veri�cation tools. Hence, the e�ort required

to establish the correctness results described above, can be amortized over many di�erent

application areas very quickly. Also, since these correctness proofs are only done once, the

e�ort needed is clearly worth it for the added con�dence we gain.

There is one more reason for carrying out the above correctness proofs. It allows us to

write our high-level speci�cations in terms of arithmetic relations and operations and then,

using the pre-proven theorems, rewrite the proof obligations to bitvector versions, which

eventually will be used in the Voss system for carrying out the veri�cation task. This is

important in order to minimize the semantic gap between the high level formal speci�cation

and the intuitive speci�cation residing in the head of the designer. We will return to this

later.

6.2 HCL

We saw earlier how Voss speci�cations can be written explicitly in terms of 5-tuple lists. How-

ever, writing speci�cations in this manner is too cumbersome for large complex speci�cations.

Instead, we envision the development of higher-level speci�cation languages which will be

automatically compiled into Voss speci�cations. We anticipate that some of these higher-

level speci�cation languages will be subsets of conventional hardware description languages

while others might be more experimental speci�cation languages. The only requirement is

that there must be an algorithm for compiling the higher-level speci�cations into lists of

5-tuples in a manner that preserves the meaning of the higher-level speci�cation.

To ensure the integrity of this approach, the higher-level speci�cation language must be

semantically embedded in HOL logic. The semantic embedding of this language will associate

a semantic function with every constructor of the language. Additionally, a compiler for the

higher-level speci�cation language will be implemented by a set of functions de�ned in higher-

order logic; these functions will compile higher-level speci�cations into Voss speci�cations

expressed in terms of 5-tuple lists. The integrity of the compiler functions can be ensured by

proving a \compiler correctness" result to show that the result of compiling a higher-level

speci�cation into a list of 5-tuples corresponds to the meaning of the higher-level speci�cation

given by the semantic functions.

The semantic embedding of higher-level speci�cation languages and use of compiler cor-

rectness techniques to ensure integrity is an adaptation of work described in [14, 20, 21, 22]

on compiler correctness techniques for higher-level programming languages. We hope that

many, if not most, of the higher-level speci�cation languages for HOL-Voss will be devel-

oped by HOL-Voss users rather than ourselves. Of course, this work will generally be done

by theorem-proving experts responsible for building infrastructure rather than regular users

responsible for using HOL-Voss to verify circuits.

To illustrate how a higher-level speci�cation language can be built on top of HOL-Voss in

this manner, we have developed the example of very simple { but very useful | higher-level

speci�cation language called HCL (for Higher-level Constraint Language).
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HCL provides a number of constructors to improve the readability of speci�cations. For

example, the constructor is is used in the HCL expression,

(`in` is T) during (3,10)

to directly express the constraint that the value of node `in` is T from time 3 to time 10.

HCL also provides support for the concise speci�cation of constraints about vectors of nodes.

For example, instead of writing out thirty-two separate 5-tuples to associate a vector of node

values X= [x0,x1,: : : ,x31] with a vector of nodes, RegA.0, RegA.1, : : : , RegA.31, the HCL con-

structor is_vec can be used to express this constraint: (nodevec 32 `RegA`) is_vec X.

The HCL constructors is and is_vec are both used to specify instantaneous constraints.

The HCL constructors during, along with for, when, andc and then, are used to specify

temporal constraints, that is, the application of instantaneous constraints over durations of

time. For example, the constructors is_vec, during and when could be used in the HCL

expression,

(((nodevec 32 `RegA`) is_vec X) during (33,78)) when B

to express the constraint that the contents of RegA are equal to X from time 33 until time 78

only if the Boolean variable B is true.

In Table 5 we give an abbreviated BNF for the abstract syntax of HCL.

Table 5: Abbreviated BNF for the HCL language.

hcl_inst ::= UNC |

node is bool_expr |

node_list is_vec bool_expr_list

hcl_stmt ::= hcl_inst for num |

hcl_inst during (num,num) |

hcl_stmt then hcl_stmt |

hcl_stmt when bool_expr |

hcl_stmt andc hcl_stmt

Using standard HOL techniques for embedding programming language-like notations

in HOL [14, 20], we have formalized the abbreviated BNF given in Table 5 by de�ning

two recursive data types: the data type hcl_inst is used to represent the parse trees for

instantaneous constraints while the data type hcl_stmt is used to represent the parse trees

for temporal constraints. The actual de�nitions of these types are given in Table 6.

While the constructors UNC, IS, IS_VEC, FOR, DURING, WHEN, ANDc and THEN could be used

directly to write down HCL speci�cations, we have de�ned aliases for these constructors that,

in some cases, provide in�x versions of these constructors. The de�nitions of these aliases

are given in Table 7.

Given the de�nitions above, the HOL parser would now be able to parse HCL programs

and build up a parse tree. The next step in our development of HCL was to de�ne a

pair of semantic functions which associate meanings with HCL parse trees. The semantic

function for HCL instantaneous statements, Sem_HCL_INST, takes a parse tree and returns a
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Table 6: Recursive types for HCL.

let hcl_inst_Axiom = define_type `hcl_inst_Axiom`

`hcl_inst =

UNC |

IS noderef nodevalue |

IS_VEC (noderef)list (nodevalue)list`;;

let hcl_stmt_Axiom = define_type `hcl_stmt_Axiom`

`hcl_stmt =

FOR num hcl_inst |

DURING num num hcl_inst |

WHEN hcl_stmt bool |

ANDc hcl_stmt hcl_stmt |

THEN hcl_stmt hcl_stmt`;;

Table 7: Constructor functions for HCL.

unc `def unc = UNC

is `def 8n v. n is v = IS n v

is_vec `def 8nl vl. nl is_vec vl = IS_VEC nl vl

for `def 8n ht. for n ht = FOR n ht

during `def 8ht n m. ht during (n,m) = DURING n m ht

when `def 8l b. l when b = WHEN l b

andc `def 8l1 l2. l1 andc l2 = ANDc l1 l2

then `def 8l1 l2. l1 then l2 = THEN l1 l2

predicate over states. This predicate determines whether the state satis�es the instantaneous

HCL speci�cation represented by the parse tree. The semantic function for HCL temporal

constraints, Sem_HCL, takes a parse tree and returns a predicate over trajectories. This

predicate determines whether the trajectory satis�es the temporal constraint represented by

the parse tree.

`def

( Sem_HCL_INST UNC = unc_sem) ^

(8s v. Sem_HCL_INST(IS s v) = is_sem s v) ^

(8nl vl. Sem_HCL_INST(IS_VEC nl vl) = is_vec_sem nl vl)

`def

(8n ht. Sem_HCL(FOR n ht) = for_sem n(Sem_HCL_INST ht)) ^

(8n m ht.Sem_HCL(DURING n m ht) = during_sem n m(Sem_HCL_INST ht)) ^

(8hi b. Sem_HCL(WHEN hi b) = when_sem(Sem_HCL hi)b) ^

(8h1 h2. Sem_HCL(ANDc h1 h2) = and_sem(Sem_HCL h1)(Sem_HCL h2)) ^

(8h1 h2. Sem_HCL(THEN h1 h2) = then_sem(Sem_HCL h1)(Sem_HCL h2) (End_HCL h1))

The semantic functions Sem_HCL_INST and Sem_HCL are de�ned in terms of semantic opera-

tors { one operator for each HCL constructor. For example, is_sem is de�ned as:

`def 8i v. is_sem i value = (�state. state i = value)
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and during_sem is de�ned as:

`def 8n m fn. during_sem n m fn = (�tj. 8i. i < (m � n) ) fn(tj(i + n)))

To illustrate the use of the above de�nitions, consider the HCL fragment:

(`in` is T) during (3,10)

Recall from Table 1 that a we model a trajectory as a function from natural numbers to

states, and that a state is modeled as a function from node names to Boolean. Hence, using

the above de�nitions we can prove that

` Sem_HCL((`in` is T) during (3,10))tj = (8i. i < 7 ) tj (i + 3) `in`)

Intuitively, given a trajectory tj, i.e., an in�nite sequence of circuit states, node in must be

true in the circuit states 3; 4; : : : ; 9 for this HCL formula to hold.

The de�nition of a formal semantics for HCL gives us a means of reasoning about HCL

speci�cations at higher levels. We complement the above set of semantic functions with a

corresponding set of compiler functions that can be used to automatically compile a HCL

speci�cation into a VOSS speci�cation. After reading in a HCL speci�cations, these compiler

functions can be applied to the parse tree representation of this HCL speci�cation to generate

a list of 5-tuples. The top-level compiler functions Com_HCL_INST and Com_HCL are de�ned

as:

`def

( Com_HCL_INST UNC = unc_com) ^

(8s v. Com_HCL_INST(IS s v) = is_com s v) ^

(8nl vl. Com_HCL_INST(IS_VEC nl vl) = is_vec_com nl vl)

`def

(8n ht. Com_HCL(FOR n ht) = for_com n(Com_HCL_INST ht)) ^

(8n m ht.Com_HCL(DURING n m ht) = during_com n m(Com_HCL_INST ht)) ^

(8hi b. Com_HCL(WHEN hi b) = when_com(Com_HCL hi)b) ^

(8h1 h2. Com_HCL(ANDc h1 h2) = and_com(Com_HCL h1)(Com_HCL h2)) ^

(8h1 h2. Com_HCL(THEN h1 h2) = then_com(Com_HCL h1)(Com_HCL h2)(End_HCL h1))

where, for example, unc_com and is_com are de�ned as:

`def unc_com = (�b f d. [(F,``,F,f,d)])

`def 8n v. is_com n v = (�b f d. [(b,n,v,f,d)])

and for_com and during_com are de�ned as:

`def 8d fn. for_com d fn = (�b f. fn b f(f + d))

`def 8n m fn. during_com n m fn =

(�b f. APPEND(for_com n unc_com b f)(fn b(f + n)(f + m)))

Note that the compiler function of an HCL program is a function of two arguments: the global

domain constraint and the global start time. Normally these will be T and 0 respectively.

If we now return to our HCL fragment (`in` is T) during (3,10) it is easy to prove

that:

23



` Com_HCL((`in` is T) during (3,10))T 0 = [(F,``,F,0,3); (T,`in`,T,3,10)]

which appears to be a reasonable translation.

It is now important to make sure that these compiler functions are correct. The problem

of verifying our compiler function for compiling HCL into a list of 5-tuples is illustrated by

the diagram in Fig. 2.

-

?

6

?-

� �

� �

HCL higher-order logic

list of 5-tuples higher-order logic

semantics of HCL

semantics of list of 5-tuples

HCL compiler logical equivalence

Figure 2: Veri�cation of HCL compiler.

As suggested by the commutative diagram in Fig. 2, the compilation of any HCL program

should result in a list of 5-tuples whose denotation (a term of higher-order logic) is logically

equivalent to the denotation (also a term of higher-order logic) of the original HCL program.

That is, we need to establish that

` 8hcl tj. Sem_Tuples (Com_HCL hcl T 0) tj = Sem_HCL hcl tj

where

`def 8l tj. Sem_Tuples l tj = ITLIST (�a b. a ^ b) (MAP (Trajectory tj) l) T

We have in fact carried out such a compiler correctness proof for the HCL compiler.

Since the Voss system reads HOL de�nitions directly, the veri�ed compiler functions are

in fact the exact functions used to compile the HCL programs in the Voss system. Most

examples of compiler veri�cation only involve the veri�cation of a compilation algorithm,

but here we have veri�ed the actual implementation of the compiler as a set of function

de�nitions.

During the compiler proof we encountered a mistake in the de�nitions of the compiler

functions. The oversight was related to the compilation of the is_vec construct. In the

compiler functions we had simply assumed that the length of the node list was equal to the

length of the value list, whereas the semantic functions make sure that this is indeed the

case. A bug of this kind could quite conceivably cause the veri�cation tool to generate a

\false positive", i.e., declare a circuit to be correct despite that it contains an error. Thus
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we feel the time spent carrying out the compiler correctness result was well worth the e�ort.

Also, the total time for a compiler proof for a language of this size is quite short (on the order

of one person week). Finally, as for the bitvector arithmetic described earlier, the compiler

proof is a task that is only done once.

6.3 Proof procedures

Finally, much of the work we have done is aimed at developing re-usable proof procedures

that are commonly encountered during a typical HOL-Voss proof. It is interesting to note

that many of the underlying results for these proof procedures are generalizations of informal

reasoning carried out manually before. Since all of these results have been formally proven

in the HOL system the level of con�dence is signi�cantly increased. In this subsection we

will highlight two of these general procedures.

The �rst procedure we will discuss deals with the generalization of timing speci�cations.

As mentioned earlier, every �nite-state machine speci�ed bymeans of new_fsm_specification

is su�x-closed | which is to say that every state is a possible initial state. As a consequence,

it is easy to see that the set of trajectories for a given state machine is su�x closed, i.e.,

if s = s0; s1; s2; : : : is a trajectory for some circuit, then any su�x of s is also a possible

trajectory of the circuit. This observation allows us to prove the following result:

` 8P fsm. SuffixClosed fsm )

((8tj. fsm tj ) (8t. P(�n. tj(t + n)))) = (8tj. fsm tj ) P tj))

which essentially states that for any predicate over trajectories, P, if we need to establish

that P holds for every start time t, then it is su�cient to prove that it holds for start time

0.

The above result allows us to develop a proof procedure, called REMOVE_FORALL_TIME_TAC,

that can rewrite a goal of the form

8v tj. fsm tj )

(8t. Sem_HCL ((`in` is v) during (t,t+5))tj )

Sem_HCL ((`out` is :v) during (t+2,t+6))tj)

to a proof obligation like

8v tj. fsm tj )

Sem_HCL ((`in` is v) during (0,5))tj )

Sem_HCL ((`out` is :v) during (2,6))tj

Our second example allows speci�cations to involve quanti�cation over other domains

besides Booleans. The Voss system can only quantify over Booleans. Hence, the highest

level of speci�cation that can be used in the Voss system must be stated in terms of bits

and bitvectors. Unfortunately, we often would like to state our speci�cations in terms of

quanti�cations over other domains than Booleans. For example, when dealing with circuits

that are performing arithmetic operations, it is often more natural to state the correctness,

and therefore the quanti�cation, in terms of natural numbers. On the other hand, since Voss

deals with an existing circuit of a speci�c size, we virtually always knows some bounds on

the numbers we would like to quantify over. In other words, we would like to be able to

quantify over some restricted, �nite, domains other than Booleans.
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The basic idea behind the RESTRICT_QUANT_TAC proof procedure is to replace quanti�-

cation over a �nite subset of the natural numbers with quanti�cation over a list of Booleans

used to represent the numbers. If \forall x::(f,t)" stands for \for all natural numbers x

between f and t", then using the general theorem

` 8P f t.

(forall x::(f,t). P x) =

foralln (BITS_REQ(t � f)(t � f))

(�bv. (num2bv(t � f)) bvgeq bv ) P(bv2num(bv bvplus (num2bv f))))

where

`def 8n P. foralln n P = foralln_aux n P[]

`def (8P list. foralln_aux 0 P list = P list) ^

(8n P list. foralln_aux(SUC n)P list = (8a. foralln_aux n P(CONS a list)))

is a function that quanti�es an expression over n Boolean variables and

`def (8m. BITS_REQ 0 m = 0) ^

(8n m. BITS_REQ(SUC n)m = ((m = 0) ! 0 j SUC(BITS_REQ n(m DIV 2))))

denotes a function that computes the number of bits required to represent the larger number,

the tactic RESTRICT_QUANT_TAC can be used to change a proof obligation like

forall i::(3,15). 8tj. fsm tj ) Sem_HCL(ant i)tj ) Sem_HCL(cons i)tj

to the following proof obligation:

foralln

(BITS_REQ(15 � 3)(15 � 3))

(�bv.

(num2bv(15 � 3)) bvgeq bv )

(8tj.

fsm tj )

Sem_HCL(ant(bv2num(bv bvplus (num2bv 3))))tj )

Sem_HCL(cons(bv2num(bv bvplus (num2bv 3))))tj))

If the antecedent and/or consequent now contains arithmetic functions using the argu-

ment i, we can then replace these arithmetic expressions with their corresponding bitvector

version by applying the BV_ARITH_TAC discussed earlier. In the next section we will see an

example of using these two proof procedures together.

A more interesting case is when we are not using these quanti�ed values in arithmetic

functions. Consider, for example a simple correctness proof of a 16 bit shift register. In-

tuitively, it is su�cient to check that the input is shifted in and that an arbitrary cell i is

shifted to i+ 1 (assuming i � 14). Our high level speci�cation might look like:

8u v. forall i::(0,14).

FSM

shift_reg

( (cycles 2)

andc ((`In` is u) during (0,tau))

andc (((EL i reg_nd_list) is v) during (0,10)),

(((EL(i + 1)reg_nd_list) is v) during (tau,tau + 10))

andc ((`Q.0` is u) during (tau,tau + 10)))
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Note that we are quantifying over i, but i is used to select a node in the node list. There

are two alternatives to change this goal into something Voss can deal with. The easiest

alternative is to simply let Voss explicitly perform the trajectory evaluation for i = 0, i = 1,

i = 2, etc. up to i = 14. Unfortunately, if the circuit is complex, this can take a very long

time. The alternative is to introduce a vector of Boolean variables to represent i. Call this

bitvector bi. This in itself is, however, not su�cient since Voss is not capable of executing

the HOL terms symbolically (it can only execute the circuit symbolically). So in our exam-

ple, Voss could not compute EL (bv2num bi) reg_nd_list. However, we can perform the

following algorithm: First compute for every instance of i that we want to quantify over the

set of 5-tuples that would be used in the symbolic trajectory evaluation. Add the condition

for each element in each set that corresponds to value j that bi bvequal (num2bv j). Fi-

nally, take the union of all the sets of 5-tuples, run the symbolic trajectory evaluation using

the complete sets, and �nally quantify over the Boolean values in bi. In [2] this idea was

introduced for a similar task and was there called symbolic indexing. In our version, we rely

on the de�nition

`def (8bv f. symb_idx 0 bv f = (f 0) when (bv bvequal (num2bv 0))) ^

(8n bv f. symb_idx(SUC n)bv f =

((f(SUC n)) when (bv bvequal (num2bv(n + 1)))) andc (symb_idx n bv f))

and the fundamental theorem

` 8maxv m a c.

(8i. i � maxv ) FSM m(a i,c i)tl) =

foralln

(BITS_REQ maxv maxv)

(�bi.

(num2bv maxv) bvgeq bi )

FSM m(symb_idx maxv bi a,symb_idx maxv bi c)tl)

where foralln is de�ned as shown earlier and essentially quanti�es a predicate over a list of

Booleans. One important point to make is that this symbolic indexing theorem is very gen-

eral. In particular, the dependency on i in the antecedent and consequent is left unspeci�ed.

In [2] symbolic indexing was used only for selecting a particular node in a �xed sized vector

of nodes, which is a simple special case of the above theorem. Here, we have a very general

result. Furthermore, since the result is provably correct (assuming we trust the semantic

embedding of Voss in HOL of course), we can now use symbolic indexing (with con�dence!)

in many other instances. We believe that this type of general results that can be derived,

given our semantic embedding of Voss in HOL, is an extremely important bene�t from our

approach.

An interesting note in this context is that there is now a new constraint imposed on how

to write de�nitions in HOL if they are to be executed by Voss. Traditionally, de�nitions

have been written as to simplify the later proofs, but now we must also be considering the

execution speed of the functions. Consider, for example, the following two de�nitions of

POW2

`def (8m. POW2 0 = 1) ^ (8n. POW2 (SUC n) = 2 * (POW2 n))

`def (8m. POW2 0 = 1) ^ (8n. POW2 (SUC n) = (POW2 n) + (POW2 n))
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The two de�nitions are clearly logically equivalent. However, the �rst de�nition requires n

function calls and n multiplications, whereas the second de�nition requires 2n function calls,

making it essentially unusable for anything but for very small n. We were \bitten" by this

phenomena several times during the development of the symbolic indexing proof procedure

and this is de�nitely an area that needs more work.

7 A Small Example

In this section we will illustrate the use of our two-level veri�cation system on a small

example. The main purpose of the example is to illustrate how the HOL-Voss system appears

to the user. For a more thorough discussion how the HOL-Voss system can be used as a

veri�cation tool and for a number of larger examples, the reader is referred to [23].

Our example illustrates how a very high-level speci�cation can be related to a very

detailed model of a circuit. The circuit, shown in Fig. 3, is a simple Domino CMOS circuit

(not necessarily a perfect example of Domino CMOS) with two 16 bits input words a and b

and one output bit out. Intuitively, the circuit is supposed to compare the number presented

on input a with the number presented on input b (both viewed as 16 bits unsigned binary

numbers) and output 1 if and only if a > b and b 6= 0, or, equivalently, if and only if a > b

and b > 0. Since we would like to minimize the semantic gap between this intuitive notion

of what we believe the circuit is supposed to do and the formal speci�cation for the circuit,

it is clear that the formal speci�cation should be stated in terms of arithmetic relations

and not in terms of bitvectors. However, at the same time, the circuit design uses quite

complex electrical phenomena and critical timing and thus a fairly sophisticated switch-level

and delay model is essential in order to explain the operation of the circuit.

With the above two requirements in mind, it becomes clear that no single veri�cation

tool is able to carry out the complete veri�cation task in some reasonable amount of time.

Consequently, it is an ideal illustration of the power of the HOL-Voss system. Here we will

state the correctness result in terms of arithmetic relations and will quantify over a �nite

subset of the natural numbers. In particular, using the notation forall x :: (a; b) to denote

\for all numbers x greater than or equal to a and less than or equal to b", the high-level

speci�cation for the circuit is given in Fig. 4.

The complete proof script needed to prove this goal in the HOL-Voss system is shown

in Fig. 5. The proof proceeds as follows. First we use the general theory for quanti�cation

over restricted domains as we described in Section 6.3 to replace the quanti�cation over the

natural numbers between 0 and 65353 by quanti�cations over two lists of Booleans. We then

rewrite the proof obligations (the goal) by using the bitvector versions of the arithmetic

relations. The third part of the proof deals with removing the \for all time" part of the

speci�cation and uses the proof procedure discussed in Section 6.3.

Since the Voss system uses Ordered Binary Decision Diagrams to represent the Boolean

functions encountered during the veri�cation, the e�ciency and speed of the veri�cation

process depend highly on the ordering of the Boolean variables. Since it is inherently di�cult

to automatically derive a good variable ordering for Voss speci�cations (since they depend

both on the circuit and the property we are trying to verify in a non-trivial way), we allow

the user to give a variable order. It should be pointed out, however, that the ordering

information can be incomplete and only will a�ect the e�ciency of the veri�cation task. In
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Figure 3: 16-bit circuit for computing a > b > 0.
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loadt `../../hol_voss_init`;;

let AgrB16 = new_fsm_specification `AgrB16`;;

% Define shorthands for the node names %

let clock = new_definition(`clock`, "clock = `phi1`");;

let output = new_definition(`output`, "output = `out`");;

let Na = new_definition(`Na`, "Na = reverse (node_vec 16 `a`)");;

let Nb = new_definition(`Nb`, "Nb = reverse (node_vec 16 `b`)");;

% The main verification goal %

g "forall a b::(0,65535). 8(tj:trajectory). AgrB16 tj )

8(t:num).

(Sem_HCL(

((clock is F) during (t,t+100)) andc

((clock is T) during (t+100,t+200)) andc

((Na is_vec (sized 16 (num2bv a))) during (t+80,t+200)) andc

((Nb is_vec (sized 16 (num2bv b))) during (t+80,t+200))) tj)

)

(Sem_HCL ((output is ((a > b) ^ (b > 0))) during (t+160,t+200)) tj)";;

Figure 4: High-level speci�cation for AgrB circuit.

e RESTRICT_QUANT_TAC;;

e BV_ARITH_TAC;;

e REMOVE_FOR_ALL_TIME_TAC;;

e (ORDER_TAC "interleave (bv:bool list) (bv':bool list)");;

e (VOSS_TAC `AgrB16`);;

Figure 5: Proof script for AgrB circuit.
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this case, a simple interleaving of the bitvector variables that correspond to the a and b

variables is su�cient to achieve a reasonably short veri�cation time.

Finally, the goal is sent to the Voss veri�cation system by executing the VOSS_TAC tactic.

In this case the veri�cation is successful, and we obtain the �nal theorem:

` forall a b::(0,65535).

8tj.

AgrB16 tj )

(8t.

Sem_HCL

(((clock is F) during (t,t + 100)) andc

(((clock is T) during (t + 100,t + 200)) andc

(((Na is_vec (sized 16(num2bv a))) during (t + 80,t + 200)) andc

((Nb is_vec (sized 16(num2bv b))) during (t + 80,t + 200)))))

tj )

Sem_HCL((output is (a > b ^ b > 0)) during (t + 160,t + 200))tj)

Altogether, the complete veri�cation takes about half a minute on a NeXT Station (25MHz

68040 processor). Most of this time is in fact spent loading the necessary libraries.

8 Conclusions and Future Work

Di�erent methods of formal veri�cation involve tradeo�s between automation, exibility,

expressibility, and accuracy. We conclude that a promising balance of these tradeo�s can

be achieved by using theorem-proving at higher levels and symbolic trajectory evaluation at

lower levels. Also, by integrating these two methods, we open up the possibility of verifying

mixed software/hardware systems[3, 22].

We believe that this work represents one of the �rst successful attempts to develop a

hybrid approach to formal hardware veri�cation which is mathematically rigorous to ensure

integrity, su�ciently general to be useful for a variety of design methodologies, and practical

for achieving useful results that could not be easily obtained with existing veri�cation tools.

We are aware of previously published work done at IMEC in Belgium [17] on multi-level

veri�cation which shares a common goal with our approach in exporting veri�cation results

obtained by BDD-based methods to higher level veri�cation tools. Distinguishing features

of our approach include our emphasis on the establishment of a mathematical link between

BDD-based methods and the underlying logical framework of higher-order logic. Also, the

two-level veri�cation tool described in [17] relies heavily on a speci�c design methodology

in order to automate much of the proof obligations, whereas our goal is a general purpose

veri�cation system. Work at Edinburgh University by K. Goosens [16] also shares a common

goal with our approach in the semantic embedding of a notion of veri�cation based on

symbolic simulation in a higher-order logic theorem prover. But unlike our approach where

we have re-used an existing implementation of a symbolic simulation algorithm, Goosen has

re-implemented a form of symbolic simulation as a proof rule in the Lambda theorem proving

system.

We believe that our hybrid approach o�ers considerable promise as a practical veri�cation

methodology that could bridge the current gap between conventional CAD practice and

formal hardware veri�cation techniques that have evolved over the past 10-15 years. We also
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believe that our hybrid approach will serve as a prototypical model of how other veri�cation

techniques can be combined|for instance, the combination of model-checking and interactive

theorem-proving.

Our short-term development e�orts will concentrate on the development of more infras-

tructure to increase the usability of our approach. Our goal is to minimize the amount

of interactive theorem-proving expertise required to achieve signi�cant veri�cations results.

One possible avenue is the development of a richer speci�cation language than HCL (in its

present form) together with the de�nition of suitable semantic and compiler functions. We

believe that some of our infrastructure which now exists in the form of proof procedures

can be re-cast as features of a higher-level speci�cation language leading to even greater

automation of the theorem-proving process. As mentioned earlier, we also look forward

to the possibility of other HOL-Voss users developing their own higher-level speci�cation

languages. It seems likely that development of higher-level speci�cation languages for HOL-

Voss can usefully build upon e�orts by others to formalize conventional hardware description

languages in higher-order logic [1, 4, 15, 30].

We are also considering the possibility of separating HOL-Voss into two tools. One

of these tools would be a tool used exclusively by infrastructure builders with expertise

in interactive theorem-proving. The main purpose of this expert tool would be to develop

infrastructure|for example, the de�nition of a new bitvector arithmetic function or even the

semantic embedding of a new higher-level speci�cation language. Such infrastructure would

be incorporated into a second standard \day-to-day tool" (i.e., Voss with extensive proof

libraries) which would be used primarily for verifying circuits. Alternatively, we may elect

to maintain HOL-Voss as a single tool but organize the functionality of this tool into a series

of subsets. In the beginning a user would use only a very small subset of the functionality of

HOL-Voss|perhaps nothing more than using HOL-Voss as a sophisticated simulator. As the

user's expertise and con�dence in the tool grows, the user can move on to increasingly large

subsets with access to a greater range of veri�cation techniques. This approach o�ers the

advantage that very little re-training is needed when more sophisticated veri�cation results

are desired.
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