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Abstract

Attitude determination finds the rotation between the coordinate system of a known
object and that of a sensed portion of its surface. Orientation-based representations record
3-D surface properties as a function of position on the unit sphere. They are useful in
attitude determination because they rotate in the same way as the object rotates. Three
such representations are defined using, respectively, the support function and the first and
second curvature functions. The curvature representations are unique for smooth, strictly
convex objects. The support function representation is unique for any convex object.

The essential mathematical basis for these representations is provided. The paper ex-
tends previous results on convex polyhedra to the domain of smooth, strictly convex surfaces.
Combinations of the support function of a known object with curvature measurements from
a visible surface transform attitude determination into an optimization problem for which
standard numerical solutions exist.

Dense measurements of surface curvature are required. Surface data can be obtained
from laser range finding or from shape-from-shading methods, including photometric stereo.
A proof-of-concept system has been implemented and experiments conducted on a real object
using surface orientation and surface curvature data obtained directly from photometric
stereo.






1 Introduction

Shape representations are required to support both recognition and localization tasks. Recog-
nition identifies the object. Localization determines the three translational and the three
rotational degrees of freedom of the object in space. Localization is required for many robot
vision tasks including directing a robot arm to grasp an object, navigation and camera cali-
bration. Attitude determination solves for the three rotational degrees of freedom between
the coordinate system of a known object and that of a viewer. Thus, attitude determination
is a sub-problem of localization.

One approach useful both for recognition and for attitude determination is to record
3-D surface properties as a function of position on the unit sphere. These representations
are termed orientation-based because one associates each point on the sphere with the unit
vector from the center of the sphere to that point. Orientation-based representations are
a compact description of 3-D object shape. Orientation-based representations have the
desirable property that the object and the representation rotate together. This makes them
ideal candidates for the task of attitude determination.

An orientation-based representation must define the mapping between surface points
and points on the sphere. The standard way is to use the Gauss map. The Gauss map takes
each surface point to the point on the sphere correspouding to the normal to the tangent
plane at that point. The Gauss map is unique for smooth (i.e., C'?), strictly convex objects'.
Representations used in computer vision include: the Extended Gaussian Image (EGI),
defined as the reciprocal of the Gaussian curvature [1], and the support function, defined as
distance from an origin to the tangent plane [2]. For polyhedra, the EGI specifies the area
of each face as a function of face orientation. The EGI has been used for both recognition
and attitude determination of polyhedra [3, 4, 5]. The support function appears explicitly
in one of the methods:described [5].

Mathematics defines other representations of 3-D shape based on the Gauss map. For
example, the first and second curvature functions are defined, respectively, as the sum of the
principal radii of curvature and the product of the principal radii of curvature?. These cur-
vature functions possess desirable mathematical properties when combined with the support
function and are the curvature measures used here?.

Several other local curvature measures can easily be defined as orientation-based repre-
sentations including the Gaussian and the mean curvature, popularized by Besl and Jain [6,
7], and Koenderink’s curvedness and shape index [8]. It has proven difficult to extend rep-
resentations based on the Gauss map beyond the convex case since, in general, the Gauss
map is many-to-one. Approaches have been described to decompose non-convex surfaces
into regions for which the Gauss map is unique and to augment the information recorded to
handle the many-to-one nature of the mapping [9, 10]. Alternatively, new orientation-based

A point set. is strictly convex if, given any two points in the set, the open line segment between the points
lies in the interior of the set. A convex C? surface is strictly convex if and only if its (Gaussian curvature is
everywhere positive. I

“Thus, for smooth objects, the EGI and the second curvature function are equivalent.

3For polyhedra, mathematics defines first and second area functions. These two area functions are analo-
gous to the two curvature functions defined for smooth strictly convex surfaces, In particular, for polyhedra,
the EGI is equivalent to the second area function.



representations can be defined by choosing a different way to establish the mapping be-
tween surface point and point on the sphere. Attitude determination has been demonstrated
for a more general class of “starshaped” objects using the radial function and the dilation
map [11].

The novel contribution here is to demonstrate 3-D shape matching for C? strictly convex
surfaces. This demonstration consists of theoretical foundations, algorithm development and
experimental proof-of-concept using real objects and surface data obtained from an existing
photometric stereo system.

Section 2 formalizes the necessary mathematical results concerning the support func-
tion, curvature functions and inequalities between mixed volumes. The mixed volumes used
combine the support function of one object with a curvature function of another. Section 3
defines attitude determination in terms of mixed volumes and shows how the problem can
be transformed into an optimization problem for which standard numerical solutions exist.
Section 4 describes the implementation and presents some experimental results. To be ef-
fective, dense estimates of surface shape are required. Dense surface data can be obtained
from laser range finding or from shape-from-shading methods, including photometric stereo.
Photometric stereo is particularly well-suited to the task since it provides robust local es-
timates of both $urface orientation and surface curvature, without the need to explicitly
determine depth [12]. The experiments test numerical solutions for three cases: 1) attitude
determination when both the model and sensed surface are given in known analytic form;
2) attitude determination when the sensed surface, then the model and then both are dis-
cretized versions of a known analytic form; and 3) attitude determination for a real object
with surface orientation and curvature data obtained directly from photometric stereo and
model data given in known analytic form. Cases 1 and 2 represent simulation studies that
were essential to software development, error analysis and tests of robustness. They are not
reported in detail here. Instead, Section 4 describes case 3 results on a real object. Section 5
summarizes the findings.

2 The Support Function and Curvature Functions

It is convenient to define the support function first for arbitrary points, v € R®, and then to
specialize the definition to points, u, on the (unit) sphere.

Definition 2.1 Let C' C R® be a nonempty bounded set. The support function H(C;v) of
C is the real-valued function defined by

H(C;v) =sup {(z,v) |z € C, ve R} .

The support function of a set, C, is positively homogeneous of degree one. That is,
H(C; ) = AH(C;v), for A > 0. Thus, representing the support function over the unit
sphere, ||v|| = 1, is sufficient to determine the function over the whole space, R>. Let 52
and S! denote, respectively, the unit sphere in R® and the unit circle in R%?. The support
function of a compact convex set C C R® maps the point u € $?, treated as a vector, to
the signed distance between the origin and the tangent plane of C' with outer normal wu.
Figure 1 shows the 2-D example of a convex polygon and its support function defined for
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Figure 1: The support function of a convex polygon.

vectors u € S'. The value of the support function is the distance between the origin and the
dashed arc along the direction determined by w.

An ellipsoid is an example of a smooth, strictly convex object and is the prototype shape
considered here. Let E,; . be the ellipsoid

22 oy 2
o + 7] + ol 1 (1)

The support function of E, . is
H(Eqpe;v) = \fazvﬁ + 02,2 + cus? (2)

for v = (vy,vy,v3) € R®.

Definition 2.2 Let A\; and \; be non-negative real numbers and let C; and C; be convex
objects. Then, the convex object, C', where

0:/\10]'{-/\202:{;\1(1!14'/\2.’82] :r,-GC,-,z'=I,2} (3)
is called the linear combination or mizture of C; and C,.

The support function of C is the same linear combination of the support functions of C;
and (. That is, H(C;v) = M H(Cy;v) 4+ A2 H(Cy;v). Consider the single point set {a} and
suppose Ay = Ay = 1. Then, H(C + {a};v) = H(C;v) + H({a};v) = H(C;v) + (a,v). This
illustrates the behavior of the support function under translation by a vector a. Equivalently,
this illustrates how the support function depends on the choice of coordinate system origin.
The difference is the term (a,v), where a is the (vector) difference between any two choices
of origin.

The support function of any set is convex. Conversely, any convex function that is
positively homogeneous of degree one is the support function of a convex body. If C;, C; are
nonempty compact convex sets in R® with H(Cy;v) = H(Cy;v) for every non-zero v € R,
then C; = C3. The support function uniquely characterizes convex sets. In fact, any compact
convex set (U can be represented by its support function as

C = {z|(z,v) < H(C;v),v € R®,v # 0} .
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A non-convex set and its convex hull have the same support function. This demonstrates
that the support function is unique only for convex sets.

Let C be a smooth, strictly convex 3-D object. Let z(C;u) be the unique point on the
surface of C' with outer normal u, u € S%. Let r1(C;u) and r2(C;u) be the two principal
radii of curvature of C at z(C;u). Then, the two curvature functions, Fy(C;u) and Fy(C;u),
can be defined as follows:

F(Ciu) = m(Ciu)+12(C5u),
F(Ciu) = m(Ciu)ry(Ciu) .

The second curvature is the reciprocal of the Gaussian curvature and the first curvature is
equal to twice the mean curvature divided by Gaussian curvature. The curvature functions
of Eyp, can be shown to be
A2 (u? + us?) + V2P (ug? + ua?) + ¥ (uy? + us?)
Fi(Eapeiuv) = TR TR P AR e L \ (4)
(a®ur? + b2uy? + c?uy?)®/
a’b e (ur? + up® + uz?)

(a'zu!?, + b2u__2'2 + C2U32)2 ?

Fy(Eapei )

I

(5)

for points u = (uy, ug, uz) € S

The important property that the support function and the curvature functions share
with other orientation-based representations is that they rotate in the same way as the
object rotates. Let R denote an arbitrary rotation. Then,

H(R(C);u) = H(C;R™'(u)), (6)
F(R(C)u) = F(C;R™(uv),i=1,2, (7)

for points u = (uj,us,uz) € 5%

The notion of mixed volume plays an important role in the studies of convex bodies
in higher dimensional spaces. The following is the definition by Busemann [13] (page 43)
restricted to R>.

Definition 2.3 (Busemann [13] page 43.) Let C;, 2 = 1,2,...,n, be n 3-D convex bodies.
Denote the volume of C by V(C). Let \; > 0,2 =1,2,...,n, be numbers and let C' be the
mixture :
C - Z /\;‘C,‘ .
=1
Then the volume of C' can be expressed as

n

VIC)=3D 3 Vi didi

i=1 j=1 k=1

which is a polynomial of degree three in the variables A\;. The coefficients V,;; are uniquely
determined by requiring that they be symmetric in their subscripts. It follows that the
coefficient V;;, depends only on the bodies C;, C; and Cy, not on any of the remaining n
bodies. Vjjj is called the mized volume of C;, C; and Cy and is written as V(C;, Cj, Cy).

5



Let C; and Oy be two smooth, strictly convex 3-D objects. Let B® be the unit ball* in
R3. Two mixed volumes, V(Cy, Ca, B®) and V(Ch, Cy, C;) are of particular interest because

V(Cy,Cs, B®)

/ C‘h ﬁl CZ} )d 1 (8)
V(Cy,Ca,Ca) = 3] (C1; ) Fy(Ca w)dw . 9)

These two mixed volumes combine the support function of Cy and the curvature functions of
(5. It should be noted that equations (8) and (9) do not depend on the choice of origin used
to define the support function. As will be seen, these two mixed volumes serve as similarity
measures for 3-D attitude determination.

Definition 2.4 Two sets P and @ are homothetic if and only if P = {a} + AQ for some
a€ R®and X\ > 0.

Objects that are homothetic differ by at most a translation and a scaling. The following
two theorems are fundamental:

Theorem 2.1 (Busemann [13] page 49.) Let Cy, C; and C5 be 3-D convex bodies. Then,
VE(CI) 021 0'3) > V(Ch Cl: 03) V(C2a CQ; C‘J) )

with equality if and only if C; and C; are homothetic.

Theorem 2.2 (Minkowski’s Inequality. Busemann [13] page 48.) Let C; and C; be 3-D
convex bodies. Then,

V3(C1,Ch,Ch) = V(C) V().
with equality if and only if Cy and C; are homothetic.

3 Solutions to the Attitude Determination Problem

Definition 3.1 Attitude determination is the problem of finding a rotation, R, such that
R(C'y) and C'y are homothetic, where Cy is a known 3-D model and C; is an instance of C;
under an unknown rotation, translation and scaling.

Throughout, assume that C is a given object model defined in a standard coordinate
system and that C; is a measured instance of C; subject to unknown rotation, translation
and scaling. By Theorem 2.1,

V(R(Cy), Ca, B®) > \JV(R( C1), B®) V(Cy, Cs, B3) (10)

with equality if and only if R(C,) and C, are homothetic. Further, it is known that
V(C, (', B?) is equal to 1/3 the surface area of a convex body C. Surface area is invariant
under rotation. Therefore, V(R(Cy), R(Cy), B?) = V(('y,C;, B®) and the minimum value of

4The unit ball, B3, is the unit sphere, S?, plus all its interior points.
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(10) is known independent of R. Accordingly, V(R(C:),C3, B®) achieves this minimum if
and only if R(C;) and C'; are homothetic. Similarly, by Theorem 2.2,

V(R(C1), Ca, C2) > {/V(R(Cy)) V¥(Ca) (11)

with equality il and only if B(C) and ('; are homothetic. Volume is invariant under rotation.
Therefore, V(R(Cy)) = V((';) and the minimum value of (11) is known independent of A.
V(R(Cy), Cq, () achieves this minimum if and only if R((";) and 'y are homothetic. Now,
define functions of R as follows:

@(R)
»(R)

The functions ¢(R) and 1(R) attain their known minima if and only if R(C;) and C, are
homothetic. Therefore, by Definition 3.1, the 3-D attitude determination problem can be
solved if and only if the minima of ¢(R) or ¥(R) can be found. Either of these minima is
an equivalent solution to the 3-D attitude determina,tion problem. The global minimum of

R) is \/V(Cl,Cl,B3) V(C2,Cs, B®) and that of ¥(R) is \/V((J ) V3(C3), both of which
are known independent of R. By the if-and-only-if CO‘I]dltiOI]S of Theorems 2.1 and 2.2, these
global minima are unique, modulo any rotational symmetries that C; possesses.

A rotation, R, can be represented as a triple (¢,0,52) interpreted to mean a counter-
clockwise rotation by angle © around unit vector (singcosf,singsing, cos¢). When R is
represented in this way, ¢(R) and ¥(R) are functions of the three variables ¢,60,Q € R® and
are written as (¢, 0,Q) and (¢, 0,Q). Thus, the problem of 3-D attitude determmatmn is
transformed into two equivalent optimization problems:

V(R(Cy),C,, B?), (12)
V(R(C,),C,, Cy) . (13)

e 1le

minimize:  ¢(¢,6,90), (¢,6,0) € R®, (14)
minimize:  (¢,6,Q), (4,0,Q) € R®. (15)

Since the objective functions are periodic and bounded, solutions to both of these optimiza-
tion problems necessarily exist.

It is important to note that the required mixed volumes are well defined as long as
Cy and Cy are 3-D convex bodies. Thus, optimization problems (14) and (15), derived
from Theorems 2.1 and 2.2, apply to polyhedra too. If C; and Uy are smooth and strictly
convex, then the objective functions ¢(R) and (/) can be written explicitly, according to
Equations (8) and (9), as

o(R) = f ) Pl Ol i
»(R) = 3/ w) Fa(Cow) du
In practice, sensed surface data typically is obtained from a single viewpoint. Thus,
the points at which the curvature functions of C* are known span only a hemisphere. To

proceed, it is necessary to “complete” the visible surface, thus converting it into a convex
body. Suppose the viewpoint is in the positive z direction. Further, suppose that the
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(a) R(Ch) (b) ¢’

Figure 2: Only the data on a hemisphere is used in optimization when the object is viewed
from a single viewpoint.

occluding boundaries of Cy and R(C;) each lie in a plane®. Assume coordinate systems are
assigned so that the plane for C; is z = 0 and so that the plane for R(C;) contains the origin.
Let R(C1)' be the convex body bounded by points of R(Cy) that are visible in the positive
z direction and by the plane containing the occluding boundary. Let C5' be the convex body
bounded by points of C, that are visible in the positive z direction and by the plane z = 0.
Figure 2 provides a 2-D example where Cy and C, are ellipses and where R(C;) and C,' are
the shaded regions shown. Of course, Theorems 2.1 and 2.2 still apply to R(C,)" and C,'.
Therefore,

V(R(CY), Cy', B®)
VV(R(C1), R(C1)', BY)

V(R(C1), C), CY) Jvz(c,
JV(R(C:)") - s -

with equality if and only if R(C’;)" and ' are homothetic. The minimum values of (16) and
(17) still are known independent of R. But, neither R(C,) nor €' is smooth and strictly
convex so that the mixed volumes in (16) and (17) are more difficult to derive. One can split
the analysis into the two hemispheres S*~ and $%*, where $?~ and 5%* denote, respectively,
the hemispheres corresponding to z < 0 and z > 0. Details are provided in [15]. The planar
regions of R(C'y)" and ' introduce new area and mixed area terms into the mixed volumes
that, while slowly varying, do depend on R. Ignoring these terms effects the accuracy of
the mixed volumes V(R(C,)',Cy', B*), V(R(C1), R(C1)', B®) and V(R(C;),Cy,Cy'). The

2 \/V(Cz’,czf, B9, (16)

and

®Marr [14] provides if and only if conditions for an occluding contour to be planar, independent of
viewpoint. Here, this is equivalent to assuming the surface is quadratic.



—f—.

Figure 3: Two 2-D convex objects that do match when viewed in the positive z direction
but that do not match over the whole unit circle.

effect, however, is small. When the analysis is confined to the hemisphere S?~, the objective
functions corresponding to (16) and (17) become:

1 e H(R(Ch);w) Fi(Cy;w) dw

—_— R 1
PR = T HR(C)sw) Fu(R(Ch)w) dol? v
B(R) 3 Js2= H(R(Ch);w) F2(C;w) dw (19)

(3 [s2- H(R(Cy);w) Fa(R(Cy)jw) dw]s

Minimizing %(R) and 1(R) only approximates the minimizing solutions to (16) and (17).
But, experiments on synthetic data suggest that the approximation is both accurate and
robust. Even if perfect, minimizing 3(R) and 1)( R) does not solve the attitude determination
problem, as defined in Definition 3.1, since part of the object is never seen and therefore
may not be matched correctly. It does solve the attitude determination problem correctly to
the extent possible, given the data available. Figure 3 depicts two 2-D convex objects that
match when viewed in the positive z direction but that do not match over the whole unit
circle.

4 Experiments

Experiments have been conducted on a real object to demonstrate the feasibility of the
approach. The object is the ellipsoid E359. Using Equations (2), (4) and (5), the support
function and the curvature functions are

H(Ess9;u) = \/9‘0112 + 25u,y? + 8luz? (20)
954u; 2 + 2250u2? + 2754u3?
(9’&‘.12 = 251!22 + 81‘.{1‘,32)31’2

(21)



18225(uy ? + uz? + us?)

(91‘.:512 + 25‘&22 -+ 8].1.:532)2 ’ (22)

Fz(E3,5,9; U) =

for points u = (uy,uz,u3) € S%

A polyvinylchlorid ellipsoid was custom machined by an automated, numerically con-
trolled milling machine using numerical data derived analytically for E359. A sphere of
comparable size was machined from the same material to serve as a calibration object for an
existing photometric stereo system.

Three light source photometric stereo uses three images of an object taken with the
identical imaging geometry but under different conditions of illumination. Reflectance is
measured empirically. A sphere is a useful calibration object because the full visible hemi-
sphere of surface orientations is present and each orientation is readily determined by simple
geometric analysis of the object silhouette. Calibration produces a lookup table mapping
measured intensity triples, (£, Ey, E3), to known surface orientations, represented by the
gradient, (p,¢). Once calibrated, photometric stereo determines, by table lookup, the gra-
dient, (p,q), for each intensity triple, (Ey, E;, E3), measured from the surface of any other
object made of the same material as the calibration object. Gradient estimation is robust be-
cause the three independent intensity measurements overdetermine the two unknown surface
orientation parameters.

In principle, dense curvature information can be obtained by differentiating the gradient,
(p,q). Photometric stereo provides a better way to obtain local curvature estimates. The
lookup table constructed for photometric stereo implicitly represents three image irradiance
equations, E;(z,y) = Ri(p,q), = 1,2,3, where (z,y) are the image coordinates and each
Ri(p,q),t = 1,2,3, is a reflectance map. As part of calibration, the reflectance maps, #;(p,q),
are made explicit because the partial derivatives of R;(p,q) with respect to p and ¢ are used
for curvature estimation. Thus, for each intensity triple, (F1, Ey, E3), calibration determines
the gradient, (p,q), and the six partial derivatives of R;(p,q), + = 1,2,3. Photometric
stereo then combines the partial derivatives of E;(z,y) with respect to z and y with the
partial derivatives of R;(p,q) to estimate the surface Hessian matrix. Curvature estimation is
robust because the six independent intensity gradient measurements overdetermine the three
unknown surface curvature parameters. Combining the Hessian and the gradient determines
the principal curvatures, k; and k;. Details of the photometric stereo system are described
in [12]. In the experiments described here, the gradient, (p,q), oblained from photometric
stereo determines the mapping from sensed surface point to the point u € 5% and the
principal curvatures, k; and k;, determine values for the first and second curvature functions,
Fi(Ciu) and Fo(C;u).

Since only a single viewpoint is used, the objective functions to optimize are the approxi-
mations, (k) and ¢(R), defined in Equations (18) and (19). Two experiments are described
using the images shown in Figures 4 and 5 respectively. The first example is solved using
?(R) and the second using P(R).

Let Cy be the model, Ej 59, in its standard attitude and let ', be the sensed object with
Cy = A Ro(C1) + {a} where Ry is a fixed but unknown rotation, A > 0 is an unknown scale
factor and @ € R® is an unknown translation. It is known that optimization is independent of
A. Therefore, without loss of generality, let A = 1. The functions F;(Cy;u) = F;(Ro(Ch);u),
t = 1,2, are estimated at all surface points visible to the camera. The rotation, Ry, is esti-
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(a) first light source (b) second light source

(¢) third light source

Figure 4: Images of F35g used with the objective function %(R), the combination of the
support function and the first curvature function. '

(a) first light source (b) second light source

(¢) third light source

Figure 5: Images of Es59 used with the objective function ¥(R), the combination of the

support function and the second curvature function.
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mated by minimizing %(R) and ¥(R). For comparison to ground truth, Ry also is determined

a priori as part of the experimental setup.
The surface integrals, given by Equations (18) and (19), are transformed into the volume

integrals:

Sy~ ATEETHRO)s(6, ) F(Ro(Cria(s, )0
(35 &7 H(R(Cr); (6,0)) i (R(Cr); (9, 0)) dodg:

FR) = afv H(R(C1); z(4,0)) F2(Ro(Ch); x(4, 0))dbd ’
(3 J3 1" H(R(C1); 2(¢,8)) Fa(R(Ch); 2(6, 6))dbdg]

where (¢, 0) = (singcosf, singsind, cosg). The numerical integration rontine QBOIAD from
Harwell [16] is used to evaluate the 2-D volume integrals. The interpolation routine of
Renka [17, 18] is used to interpolate the irregularly spaced values of Fi(Ro(Ch);u), 1 = 1,2,
obtained from photometric stereo, as required. As a result F;(Ro(Ci);u), ¢ = 1,2, become
! functions over the hemisphere §%~.

The nonlinear programming subroutine NLPQL [19] is used to find the minima of B(R)
and ¥(R). NLPQL can be used to solve optimization problems with constraints, optimiza-
tion problems with simple bounds, or unconstrained optimization problems. It requires an
estimate of the gradient of the objective function. Here, the gradients of the objective func-
tions, B( k) and 9)( R), are estimated by simple forward differencing. Convergence is achieved
either when the Kuhn-Tucker conditions (see [20] page 51) are satisfied to within a specified
accuracy or when the objective functions are not improved significantly given that the con-
straints are satisfied to within the specified accuracy. NLPQL does not guarantee that the
minima found are global. But, in this application, the true minima are known. Therefore,
the validity of the minima found by the subroutine is established.

In the experiments, the optimization process was executed 256 times, each time corre-
sponding to a different initial guess for object rotation. A very large bound was given to
NLPQL to effectively make a constrained optimization into an unconstrained optimization.
All the initial guesses converged to points with the same minimum values of B(R) or ¥(R)
and with the same object attitudes. Thus, for the object tested, F3 59, the method is robust
with respect to the initial guess.

The position of the sensed object is established manually for each experiment. The true
rotation of the object with respect to its standard attitude also is estimated manually. The
estimated rotation is used as a rough measure of accuracy to evaluate the rotation found by
the optimization process. A way to visualize the optimization result is to superimpose the
rotated model onto the image of the object. As examples, the results of the two optimizations
each with initial guess (0.1,0.2,0.3) are shown in Figure 6 and Figure 7, respectively. In the
figures, the black and white shows the silhouette of the object and the wire frame shape in
gray is the rotated model projected onto the image plane.

Since the three axes of the ellipsoid, E35g9, all are different, it has few symmetries.
Therefore, it is possible to evaluate the optimization results by comparing rotation matrices.
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(a) initial guess. (b) 3rd iteration.

(e) 9th iteration. (f) final result,

Figure 6: Results of real data experiments using the support function and the first curvature
function.
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(a) initial guess. (b) 1st iteration.

(¢) 2nd iteration. (d) 3rd iteration.

.

e

(e) 4th iteration. (f) final result.

Figure 7: Results of real data experiments using the support function and the second cur-
vature function.
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The estimated a priori rotation matrix for the ellipsoid imaged in Figure 4 is

0 —0.4627155767 —0.8865067936
0 0.8865067936 —0.4627155767
1 0 0

The rotation estimated by optimizing @(R) is the matrix

0.0591327494 —0.5181631311 —0.8532351889
0.0264112871  0.8552437408 —0.5175524972
0.9979006773  0.0080692626  0.0642582690

or this matrix multiplied on the right by a matrix corresponding to a reflection about one
or more axis. These matrices all define the same attitude since the ellipsoid is symmetric
about each coordinate axis in its standard attitude. The estimated a prior: rotation matrix
for the ellipsoid imaged in Figure 5 is

0 —0.3701448041 —0.9289740707
0 0.9289740707 —0.3701448041
1 0 0

The rotation estimated by optimizing ¥(R) is the matrix

—0.0371509607 —0.2698579447 —0.9621831926
0.0206643797  0.9624345419 —0.2707263137
0.9990959863 —0.0299406615 —0.0301789208

or, as before, this matrix multiplied on the right by a matrix corresponding to a reflection
about one or more axis.

5 Conclusions

The desirable property that all orientation-based representations share is that the object
and the representation rotate together. This makes an orientation-based representation
well-suited to the task of attitude determination. Photometric stereo provides dense, local
estimates of both surface orientation and surface curvature. Imaging from an unknown
viewpoint determines a visible hemisphere of the representation. For smooth, strictly convex
objects, matching the visible hemisphere to the full spherical model can be formulated as a
single, uniform optimization process. Within this framework, depth need not be represented
explicitly. .

The method transforms the 3-D attitude determination problem for smooth, strictly
convex objects into an optimization problem for which standard numerical solutions exist. An
important additional property of the optimization is the fact that the value of the extremum
is known a priori. Thus, one can always assess the validity of the solution found by the
optimization.

The algorithm demonstrated here explicitly assumes that the object surface is smooth
and strictly convex, thus ensuring that the Gauss map is one-to-one. The theorems on mixed
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volume apply to all convex bodies. A (technically) different treatment is required to develop
algorithms for convex objects with developable or planar surfaces. It should be noted,
however, that the support function need not treat smooth objects and polytopes differently.
The support function is defined for all points on the unit sphere regardless whether the
object is smooth, a polytope or a combination. This is one of the reasons conjectured for its
success in polyhedral shape matching [5].

Good matching results have been obtained. Precise determination of accuracy and ro-
bustness requires more quantitative work. Accuracy assessment must take into account
sensor calibration, a priori determination of the “correct” attitude of the presented object
and uncertainty in the “shape-from” method used to acquire the raw orientation and curva-
ture data. Based on the experimental work performed to date, the overall accuracy of the
method is consistent with what one can expect, given these other factors. It would be helpful
to agree upon a metric for rotation space to quantify differences between the correct and
the estimated object attitude. The method is robust because it is a true 3-D method that
employs dense surface data, not just data from 2-D contours or other sparse sets of features.
Indeed, for the test object, F3 59, 2-D contours alone do not determine 3-D attitude.

An obvious question is, “Which works best, the first or the second curvature function?”.
Experiments using purely synthesized data suggest that attitude determination using the
first curvature function is slightly more accurate. This probably is related to nothing more
than the observation that, all else equal, there is less uncertainty in the sum of two numbers
than there is in their product. This observation is merely anecdotal since, of course, one also
needs to take into account properties of the particular numerical optimization routines used.
Theory suggests a possible advantage to using the second curvature function when analysis
is confined to the visible hemisphere §2=. In this case, (R) may better approximate the
ratio of the true mixed volumes required than does B(R). However, experiments to date on
both real and synthetic data do not distinguish between B(R) and (R) either in terms of
accuracy or robustness.

In the implementation described, optimization proceeds using a large number of initial
guesses. The correct attitude is found even when there is no a priori knowledge of object
attitude. At the same time, optimization benefits from a good initial guess. This suggests
that the approach also is well-suited to motion tracking and navigation tasks where the
solution at one time can be used as the initial guess for the solution at the next sample time.
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