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Abstract 

Attitude determination finds the rotation between the coordinate system of a known 
object and that of a sensed portion of its surface. Or.ientatjon-based representations record 
3-D surface properties as a :functi n of position on the unit sphere. Th y are useful in 
attitude determination because they rotate in the same way as th obj ct rotates. ,hr e 
such representat,ions are defined using, respect.ively, the support function and the first and 
second curvature functions. The curvat,ur representations are unique for smooth, strictly 
convex objects. The support function representation is unique for any con.v x obj ~ct . 

The essential mathematical basi for these representations is provided. Th · paper ex­
t nds previous results on conv x polyhedra to the domain of smooth str ictly convex urfaces. 
Combinations of the support fun tion of a known object with curvature measurements from 
a visible surface transform attitude determination into an optimization problem for which 
standard numerical solutions exist. 

Dense measurements of surface curvature are required. Surface data can be obtained 
from laser range finding or from shape-from-shading methods, including photom ·'tri stereo. 
A proof-of-concept system has been implement d and exp riments conducted on a Teal object 
using surface orientation and surface curvature data obtained directly from photometric 
stereo. 
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1 Introduction 

Shape representations are required to support both recognition and localization tasks. Recog­
nition identifies the object. Localization determines the three translational and the three 
rotational degrees of freedom of the object in space. Localization is required for many robot 
vision tasks including directing a robot arm to grasp an object, navigation and camera cali­
bration. Attitude determination solves for the three rotational degrees of freedom between 
the coordinate system of a known object and that of a viewer. Thus, attitude determination 
is a sub-problem of localization. 

One approach useful both for recognition and for attitude determination is to record 
:3-D surface properties as a function of position on the unit sphere. These representations 
are termed orientation-based because one associates each point on the sphere with the unit 
vector from the center of the sphere to that point. Orientation-based representations are 
a compact description of 3-D object shape. Orientation-based representations have the 
desirable property that the object and the representation rotate together. This makes them 
ideal candidates for the task of attitude determination. 

An orientation-based representation must define the mapping between surface points 
and points on the sphere. The standard way is to use the Gauss map. The Gauss map takes 
each surface point to the point on the sphere corresponding to the normal to the tangent 
plane at that point. The Gauss map is unique for smooth (i.e., C2

), strictly convex objects1
. 

Representations used in computer vision include: the Extended Gaussian Image (EGI), 
defined as the reciprocal of the Gaussian curvature [1], and the support function, defined as 
distance from an origin to the tangent plane [2]. For polyhedra, the EGI specifies the area 
of each face as a function of face orientation. The EGI has been used for both recognition 
and attitude determination of polyhedra [3, 4, 5]. The support function appears explicitly 
in one of the meth cL· !es r ile~ [5]. 

Mat hemat ics defines otb r representations of :3-D shape based on the Gauss map. For 
example, the first and s cond curvature functions are defined, respectively, as the sum of the 
principal radii of curvature and the product of the principal radii of curvature2

• These cur­
vature functions possess desirable mathematical properties when combined with the support 
function and are the curvature measures used here3 • 

Several other local curvature measures can easily be defined as orientation-based repre­
sentations including the Gaussian and the mean curvature, popularized by Bes! and .Jain [6, 
7], and Koenderink's curvedness and shape index [8]. It has proven difficult to extend rep­
resentations based on the Gauss map beyond the convex case since, in general, the Gauss 
map is many-to-one. Approaches have been described to decompose non-convex surfaces 
into regions for which the Gauss map is unique and to augment the information recorded to 
handle the many-to-one nature of the mapping [9, 10]. Alternatively, new orientation-based 

1 A point s<-11. is strictly convex if, giv n any two points in the set, the open line segment between the points 
lies in th . interior of the set. A convex C 2 surface is strictly convex if and only if its Gaussian curvature is 
everywhere positiv , · 

2Thus, r r s1a ot.h obj ds, the EGI and the sec nd curvature fu11 ctio11 are equivalent. 
3 For p lyh clra, math Prnatics defines first and •concl area fuu t:i ns. TliPs tw ar -a fun ctions are analo­

gous to the two curvature func.t,ions defined for smooth stri ctly rnnvex surfaces. In pn,rL irnlar, for polyhedra, 
t he EGI is quivalent to the s cond area function. 
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representations can be defined by choosing a different way to establish the mapping be­
tween surface point and point on the sphere. Attitude determination has been demonstrated 
for a more general class of "starshaped" objects using the radial function and the dilation 
map [11]. 

The novel contribution here is to demonstrate 3-D shape matching for C2 strictly convex 
surfaces. This demonstration consists of theoretical foundations, algorithm development and 
experimental proof-of-concept using real objects and surface data obtained from an existing 
photometric stereo system. 

Section 2 formalizes the necessary mathematical results concerning the support func­
tion, curvature functions and inequalities between mixed volumes. The mixed volumes used 
combine the support function of one object with a curvature function of another. Section 3 
defines attitude determination in terms of mixed volumes and shows how the problem can 
be transformed into an optimization problem for which standard numerical solutions exist. 
Section 4 describes the implementation and presents some experimental results. To be ef­
fective, dense estimates of surface shape are required. Dense surface data can be obtained 
from laser range finding or from shape-from-shading methods, including photometric stereo. 
Photometric stereo is particularly well-suited to the task since it provides robust local es­
timates of both surface orientation and surface curvature, without the need to explicitly 
determine depth [12]. The experiments test numerical solutions for three cases: 1) attitude 
determination when both the model and sensed surface are given in known analytic form; 
2) attitude determination when the sensed surface, then the model and then both are dis­
cretized versions of a known analytic form; and 3) attitude determination for a real object 
with surface orientation and curvature data obtained directly from photometric stereo and 
model data given in known analytic form. Cases 1 and 2 represent simulation studies that 
were essential to software development, error analysis and tests of robustness. They are not 
reported in detail here. Instead, Section 4 describes case 3 results on a real object. Section 5 
summarizes the findings. 

2 The Support Function and Curvature Functions 

It is convenient to define the support function first for arbitrary points, v E R3
, and then to 

specialize the definition to points, u, on the (unit) sphere. 

Definition 2.1 Let CC R3 be a nonempty bounded set. The support function H(C; v) of 
C is the real-valued function defined by 

H(C;v) = sup{(x,v) Ix EC, v E R3
}. 

The support function of a set, C, is positively homogeneous of degree one. That is, 
H(C;Av) = AH(C;v), for A> 0. Thus, representing the support function over the unit 
sphere, llvll = 1, is sufficient to determine the function over the whole space, R3 • Let 8 2 

and S 1 denote, respectively, the unit sphere in R3 and the unit circle in R2 . The support 
function of a compact convex set C C R3 maps the point u E S2 , treated as a vector, to 
the signed distance between the origin and the tangent plane of C with outer normal u. 
Figure 1 shows the 2-D example of a convex polygon and its support function defined for 
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Figure 1: The support function of a convex polygon. 

vectors u E 81
. The value of the support function is the distance between the origin and the 

dashed arc along the direction determined by u. 
An ellipsoid is an example of a smooth, strictly convex object and is the prototype shape 

considered here. Let Ea,b,c be the ellipsoid 

x2 y2 z2 
2 + -b2 + 2 = I · a C 

(1) 

The support function of Ea,b,c is 

H(Ea,b,c;v) = Ja2v1 2 + b2v22 + c2 v32 , (2) 

for v = (v1 ,v2,v3 ) E R3
. 

Definition 2.2 Let ,\1 and ,\ 2 be non-negative real numbers and let C1 and C2 be convex 
objects. Then, the convex object, C, where 

(3) 

is called the linear combination or mixture of C1 and C2 • 

The support function of C is the same linear combination of the support functions of C1 

a,nd C2, That is H(C; v) = >-:iH( 1 ; v) + >-. 2H(C2; v). Consider the single point set {a} and 
su1 Jos . >-. 1 -= >-.2 = 1. Tb n H( + {a}; v) = H( ;v) + H({-et};v) = H( \v.) + {n,v). This 
il111strates the behavior of th support fun .tion und r translation by a vector a. Equivaleutly, 
this illustrates how the support function depends on the choice of coordinate system origin. 
The difference is the term (a, v), where a is the (vector) difference between any two choices 
of origin. 

The support function of any set is convex. Conversely, any convex function that is 
positively b mogene us of de ree one is the support function of a couvex body. If C1 , C2 are 
nonempty com pa.ct . nvex s ts in R3 with H( 1 ; v) = H( C2 ; v) for very n n-zero v E R3, 
then C1 = C2 • The support function uniquely characterizes convex sets. In fact, any compact 
convex set C can be represented by its support function as 

C = { x I (x, v) :S H( C; v), v E R3
, v -/- 0} . 
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A non-convex set and its convex hull have the same supp.ort function. This demonstrates 
that the support function is unique only for convex sets. 

Let C be a smooth, strictly convex 3-D object. Let x(C; u) be the unique point on the 
surface of C with outer normal u, u E S 2 • Let r1 (C; u) and r 2 (C; u) be the two principal 
radii of curvature of Cat x(C; u). Then, the two curvature functions, F1(C; u) and A(C; u), 
can be defined as follows: 

F1(C;u) 
F2(C; u) 

r1(C; u) + r2(C; u), 
r1(C; u)r2(C; u). 

The second curvature is the reciprocal of the Gaussian curyature and the first curvature is 
equal to twice the mean curvature divided by Gaussian curvature. The curvature functions 
of Ea,b,c can be shown to be 

a2b2( u12 + u22) + b2c2( u/ + ui) + a2c2( u12 + u32) 

( a2u12 + b2u22 + c2ui)3/2 

a2b2c2( u12 + u:.i2 + U32) 

( a2u12 + b2u22 + c2ui)2 ' 

for points u = ( u 1 , u2 , u3) E 8 2
. 

(4) 

(5) 

The important property that the support function and the curvature functions share 
with other orientation-based representations is that they rotate in the same way as the 
object rotates. Let R denote an arbitrary rotation. Then, 

H(R(C);u) 

Fi(R(C); u) 

for points U = ( U1, U2, u3) E 8 2
• 

H(C; R- 1(u)), 

Fi(C; R-1(u)), i = 1, 2, 

(6) 
(7) 

The notion of mixed volume plays an important role in the studies of convex bodies 
in higher dimensional spaces. The following is the definition by Busemann [1:3] (page 4:3) 
restricted to R3

• 

Definition 2.3 (Busemann (13] page 43.) Let Ci, i = 1, 2, ... , n, be n 3-D convex bodies. 
Denote the volume of C by V(C). Let Ai 2'. 0, i = 1, 2, ... , n, be numbers and let C be the 
mixture 

n 

C = LAiCi. 
i=I 

Then the volume of C can be expressed as 

7t n n 

V(C) =LL L VijkAjAjAk 
i=l j::::l k=l 

which is a polynomial of degree three in the variables Ai. The coefficients Vijk are uniquely 
determined by requiring that they be symmetric in their subscripts. It follows that the 
coefficient Vijk depends only on the bodies Ci, Cj and Ck, not on any of the remaining n 
bodies. Vijk is called the mixed vofome of Ci, Cj and Ck and is written as V(Ci, Cj, Ck)-
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Let C1 and C2 be two smooth, strictly convex 3-D objects. Let B 3 be the unit ball4 in 
R3 . Two mixed volumes, V(C1 , C2, B 3 ) and V(C1 , C2, C2) are of particular interest because 

- ! / H(C1 ;w)Fi(C2;w)dw, 
6 }s2 

! / H(C1 ;w)F2 (C2 ;w)dw. 
31s2 

(8) 

(9) 

These two mixed volumes combine the support function of C1 and the curvature functions of 
C2 • It sh uld be noted t.hat equations (8) and (9) do not depend on the choice of origin used 
to define he support fun :t.ion. As will be seen, these two mixe I volumes serve as similarity 
measures for 3-D attitude determination. 

Definition 2.4 Two sets P and Q are homothetic if and only if P = {a} + >-.Q for some 
a E R3 and ).. > 0. 

Objects that are homothetic differ by at most a translation and a scaling. The following 
two theorems are fundamental: 

Theorem 2.1 (Busemann [13] page 49.) Let C1 , C2 and C3 be 3-D convex bodies. Then, 

with equality if and only if C1 and C2 are homothetic. 

Theorem 2.2 (Minkowski's Inequality. Busemann (13] page 48.) Let C1 and C2 be :3-D 
convex bodies. Then, 

V3 (C1,C2,C2) ~ V(C1)V2(C2). 

with equality if and only if C1 and C2 are homothetic. 

3 Solutions to the Attitude Determination Problem 

D finition 3.1 A ttit1.Ld determination is the problem of finding a rotation, R, su b that 
R(O,) au l ,2 ar hum t.betic, wh re C1 is a known 3-D model and C2 is an instauc of C\ 
under an unknown ro ation , translation and scaling. 

Througl1 ut. assume t li at C1 is a given object model de-fin d in a stau lard ordinate 
system and that C2 is a m a.sured instan e of C1 subject to unknown rotation, tra.ns lation 
and scaling. By Theorem 2.1, 

(10) 

with equality if and only if R( C1 ) and C2 are homothetic. Further, it is known that 
V(C, C, 8 3

) is e 1ual to 1/:3 the surface area of a c nv x body C. Surface area is invariant 
under r tation. TlH·refore, V(R(C1 ),R(C1 ) B 3

) = V( C1 ,C1 ,B3
) and them.inimumvalue of 

4The unit ball, B 3
, is the unit sphere, S 2 , plus all its interior points. 
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(10) is known independent of R. Accordingly, V(R(C1 ), C2 , B 3
) achieves this minimum if 

and only if R( C1 ) and C2 are homothetic. Similarly, by Theorem 2.2, 

(11) 

wil,b <-·quality if and onJy if R( ) and ,2 a r . liomol,heti . V< lunw i · in variant mi 1 •r rol:a ion. 
Tl 1erdore, V(R(O,)) = V( 1) an 1 tbe ;11in.irnun ,alu f (11) i:; known i11 l ·µeo lrni f R. 
V(R( ,1 ), C2 , C'2 ) a hiev s this minimum if 'Llld uly if R( -1 ) and C2 are b moth ti . Now, 
define functions of R as follows: 

1.p(R) 
6 

V(R(C1),C2 ,B3
), 

_ '1/J(R) 
6 

V(R(C1), C2, C2). 

(12) 

(1:3) 

The functions <.p( R) and 1/J( R) attain their known minima if and only if R( C1) and C2 are 
homothetic. Therefore, by Definition 3.1, the 3-D attitude determination problem can be 
solved if and only if the minima of <.p( R) or '1/J( R) can be found. Either of these minima is 
an equivalent solution to the :3-D attitude determination problem. The global minimum of 

cp(R) is JV(C1, C1, B 3 ) V(C2 , C2 , B 3
) and that of '1/J(R) is fV(C1 ) V2 (C2 ), both of which 

are known independent of R. By the if-and-only-if conditions of Theorems 2.1 and 2.2, these 
global minima are unique, modulo any rotational symmetries that C1 possesses. 

A rotation, R, can be represented as a triple ( ¢>, 0, 0) interpreted to mean a counter­
clockwise rotation by angle n around unit vector (sinef>cos0, sin¢>sin0, cos¢>). When R is 
represented in this way, cp(R) and '1/J(R) are f~nc_tions of tl?,e three variables¢>, 0, n E R3 and 
are written as cp( ¢>, 0, 0) and 1/J( ¢>, 0, fl). Thus, the problem of 3-D attitude determination is 
transformed into two equivalent optimization problems: 

m1111m1ze: 

mmnn1ze: 

<.p(¢>,0,fl), (¢>,0,fl) E R3
, 

1/J(</>,0,fl), (¢>,0,fl) E R3
• 

( 14) 

( 15) 

Since the objective functions are periodic and bounded, solutions to both of these optimiza­
tion problems necessarily exist. 

1t i::; inr1 rtant t, note that the require I mixed voluni s are w .11 define I as long a,-; 
C1 and C2 ai·~ :3-D convex bodies. Tims optimization J rob l .ms (14.) an I (15), derived 
from Theorems 2.1 and 2.2, apply to p lybe lra too. If C 1 and 02 are smo iii and tric:tl. · 
·ouv .x then the objective functions cp(R) and 1/,(R) can be written xpLi it.ly ac-co rdin · tu 
• qnat i ns (8) and (9), as 

<.p( R) 

1p(R) 

i fs
2 

H(R(C1 ); w) F1 ( C2; w) dw , 

-
3
1 f H(R(C1 );w)F2(C2 ;w)dw. , 1s2 

In practice, sensed ::;iu·l'are data typi 'ally is obtain d from a, sing] viewp int. Th u::; 
the points at which the curvature functi ns of C 2 a rP- knowu span only a b misph r . To 
proceed, it is necessary to "complete" the visible surfa , thus onwffting 'it iu t0 a ·on vex 
body. Suppose the viewpoint is in the positive z direction. Further, suppose that the 
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(b) C/ 

Figure 2: Only the data on a hemisphere is used in optimization when the object is viewed 
from a single viewpoint. 

occluding boundaries of C2 and R( C1 ) each lie in a plane5
. Assume coordinate systems are 

assigned so that the plane for C2 is z = 0 and so that the plane for R( C1 ) contains the origin. 
Let R( C:1 )' be the convex body bounded by points of R( C1 ) that are visible in the positive 
z direction and by the plane containing the occluding boundary. Let Cz' be the convex body 
bounded by points of C2 that are visible in the positive z direction and by the plane z = 0. 
Figure 2 provides a 2-D example where C1 and C2 are ellipses and where R(C:1 )' and Cz' are 
the shaded regions shown. Of course, Theorems 2.1 and 2.2 still apply to R(C:1 )' and G2 '. 

Therefore, 

(16) 

and 

( 17) 

witb eq-uali _1 if aucl only if R(C1)' and 2' ar bomoth t i . The mill.imum valu .s f (16) an d 
(17) still an• known in<l pen l nt f R. But neither R( C:1 )' u r C/ _i s smooth aud st ri ctly 
convex so that ti. e mix i volumes in (16) a11 l (17) a.re m r difficult to derive. On -. cau split 
the an alysis into the two h rni spheres s2- and s2+ 1 wher . .. ·2- and 5'2+ I .ll Le r ,Spf! tively, 
the hem.ispberes corr sp ncling to z < 0 and z > 0. Details are provided in [15). The planar 
regions of R( C1 )' and C/ introduce 11 w area and mixed area terms in to the mixed volumes 
tlrn,t while sl wly vary ing, do cl p nd 011 R. Ignoring th ·e t; •rms effects the accuracy of 
th e mix . l v Jurn s V(R( ,1)' , •2' B3

), \l(R(C1)',R(C1)',B3 ) and V(R(C1)',C2',Cz'). The 

5 Marr [14) provides if and only if conditions for an occluding contour to be planar, independent of 
viewpoint. Here, this is equivalent to assuming the surface is quadratic , 
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Figure :3: Two 2-D convex objects that do match when viewed in the positive z direction 
but that do not match over the whole unit circle. 

effect, however, is small. When the analysis is confined to the hemisphere s2
-, the objective 

functions corresponding to (16) and (17) become: 

[½ fs2- H(R(Ci);w) F1(R(C1);w) dw]i ' 

5 fs2- H(R( Ci); w) F2( C2; w) dw 

( 18) 

( 19) 

Minimizing Zp(R) and 1/J(R) only approximates the minim.izing solutions to (16) and (17). 
But, experiments on synthetic data suggest that the appr ximati n is both accurate and 
robust. Even if perfect, minimizing ip( R) and --;jJ( R) does not solve the attitude determination 
problem, as defined in Definition 3.1, since part of the object is never seen and therefore 
may not be matched correctly. It does solve the attitude determination problem correctly to 
the extent possible, given the data available. Figure 3 depicts two 2-D convex objects that 
match when viewed in the positive z direction but that do not match over the whole unit 
circle. 

4 Experiments 

Experiments have been conducted on a real object to demonstrate the feasibility of the 
aPl roach. The ohje ·tis the ellips id E 3 ,5,9 . Using Equations (2), (4) and (5), the support 
function and the urvature functions are 

✓9u1 2 + 25u2 2 + 81 u3 2 
, 

954u12 + 2250u2 2 + 2754u32 

(9u1 2 + 25u22 + 81 u32 ) 3/ 2 
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for points U = ( U1, U2, u3) E S2
. 

18225(u1
2 + u/ + ul) 

(9u1 2 + 25u22 + 81 u3
2)2 ' 

(22) 

A polyvinylchlorid ellipsoid was custom machined by an automated, numerically con­
trolled milling machine using numerical data derived analytically for E3 ,5 ,9 • A sphere of 
comparable size was machined from the same material to serve as a calibration obj ect for an 
existing photometric stereo system. 

Three light source photometric stereo uses three images of an object taken with the 
identi cal imaging geometry but under different conditions of illumination. Reflectance is 
measured empirically. A sphere is a useful calibration object because the full visible hemi­
spher f su.rface ori ntation · is present and ach orj n t a.t iou is rearuly d termi11 d by simph~ 
g(:'omet ri ' ana lysis of t h obj ect silhouet te. Calibration produ ·es a look4p tahl m a pping 
m e-;1.5 w·e- I intensity t r iµ les (E1 , £ 2 E3 ) , to known smfac orientations, repr sent .d hy the 
g radient , (p q). On e caUl r,,1,ted, photom tri c stere det · rmiu "s , by table lcoku1 , th r gra­
di ent (p q) for <:'a b intensity tripl , (E1 , E1, , E3 ), measured from the surface of any other 
o bj <"r.t m a I of th . satm . m at aria) as the calibration object. Gradient estimation is robust be­
cause the three independent intensity measurements overdetermine the two unknown surface 
orientation parameters. 

In principl e , dense curvature information can be obtained by differentiating the gradient, 
(p , q). Photometric stereo provides a better way to obtain local curvature estimates. The 
lookup table constructed for photometric stereo implicitly represents three image irradiance 
equations,Ei(x ,y) = Ri(p,q),i=l,2,3,wh re (x,y)aretheimag , co rdinates aul .a.11 
Ri (p, q), i = 1, 2, 3, is a. rrfl. ,ctance map. As part of calibration, the reD .. tan e maps, Ri(J> q ), 
are made explicit becaus tbe p artial derivatives of Ri(P, q) with respect top and q are used 
for curvature estimation. Thus, for each intensity triple, ( E1 , E 2 , E3 ), calibration determines 
the gradient, (p,q), and the six partial derivatives of Ri(p,q), i = 1,2,:3. Photometric 
st~n~o then c mbines the partial leriva.tives f E;(x, y) with r .spect to x and y wiLb the 
I a rtial I. ri a t iv s of Ri(P, q) to est imat the surface Hessian matrix. Curvature estimation is 
robust because the six independent intensity gradient measurements overdetermine the three 
unknown surface curvature parameters. Combining the Hessian and the gradient determines 
the principal curvatures, k1 and k2 • Details of the photometric stereo system are described 
in [1 2]. In the experim :nts descri l d here, the gra.ruent, (p, q), obtained from ph I. m f'tric 
ster .o determines tb e mapping from sensed surface point to the p int u E s2 - and the 
principal curvatures, k1 and k2 , determine values for the first and second curvature functions, 
F1 ( C; u) and F2( C; u). 

Since only a single viewpoint is used, the objective functions to optimize are the approxi­
mations, c.p(R) and 1/J(R), defined in Equations (18) and (19). Two experiments are described 
1rning the irt 1a.ges sliown in Figmes 4 and 5 T sp tively. The first example is solved HSing 
- (Fl.) and b sec:on :I using 1/J(R). 

Let C 1 be the mod .l, E 3,s,9, in its st andar l at t it u I and I L C2 bP- t h . sensed l j .d wi b 
C!2 = >. Ro(C1 ) + {a} where Ro is a fixed but unkn wn rotation >. > 0 is an u11ku wn sc.:alf' 
factor and a E R1 is an unknown translation. It is known that optimization is independent of 
>.. Therefore , without loss of generality, let>.= 1. The functions F;(C2 ; u) = F;(R0 (C1 ); u) , 
i = 1, 2, are estimated at all surface points visible to the camera. The rotation , Ro, is esti-
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( a) first light source (b) second light source 

( c) third light source 

Figure 4: Images of E3 ,5,9 used with the objective function cp(R), the combination of the 
support function and the first curvature fui1ction. 

(a) first light source (b) second light source 

(c) third light source 

Figure 5: Images of £ 3 ,5,9 used with the objective function 1/J(R), the combination of the 
support function and the second curvature function. 
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mated by minimizing 1.p(R) and 'lj;(R). For comparison to ground truth, Ro also is determined 
a priori as part of the experimental setup. 

The surface integrals, given by Equations (18) and (19), are transformed into the volume 
integrals: 

wher<" x(</J, 0) = (sin¢cos0 1 sin cpsin0, . s</J). Th numeri cal inl gratiou rout.ine QB0lAD from 
Harwell [16) is use l to f'valuate th . 2-D volum int grals. Th . .- interp lation rou· ine of 
Renka [17, 18) is used to int rp late the irregularly spa d values of Fi( Ro( 1 ); u) , i = I, 2, 

b~a.ined from photometric stereo, as required. As a result Fi(Ro(C1 );u) , i = 1,2, become 
C 1 functions over the hemisphere s2-. 

The nonlinear programming subroutine NLPQL [19] is used to find the minima of 1.p(R) 
and 'lj;(R). NLPQL can be used to solve optimization problems with constraints, opfoniza­
tion problems with simple bounds, or unconstrained optimization problems. It requires an 
estimate of the gradient of the objective function. Here, the gradients of the objective func­
tions , tp(R) and 1/J ( R) ar , estimated by simple forwaTCl di$ r u iug. Conv rgence is a hi ved 
either when the Kuhn-Tu k r conditions (see (20] pag , 51) are sat isfied to wi t hin a sµ .cified 
accuracy or when the objective functions are not improved significanlJy given that the con­
straints are satisfied to within the specified accuracy. NLPQL does not guarantee that the 
minima found are global. But, in this application, the true minima are known. Therefore, 
the validity of the minima found by the subroutine is established. 

In the experiments, ti1e optimization process was executed 256 times, each time corre­
sponding to a different initial guess for object rotation. A very large bound was given to 
NLPQL to effectively make a constrained optimization into an unconstrained optimization. 
All the initial guesses converged to points with the same minimum values of 1.p( R) or ·</;( R) 
and with the same object attitudes. Thus, for the object tested, E3 ,5 ,9 , the method is robust 
with respect to the initial guess. 

The position of the sensed object is established manually for each experiment. The true 
rotation of the object with respect to its standard attitude also is estimated manually. The 
estimated rotation is used as a rough measure of accuracy to evaluate the rotation found by 
the optimization process. A way to visualize the optimization result is to superimpose the 
rotated model onto the image of the object. As examples, the results of the two optimizations 
each with initial guess (0.1,0.2,0.3) are shown in Figure 6 and Figure 7, respectively. In the 
figures, the black and white shows the silhouette of the object and the wire frame shape in 
gray is the rotated model projected onto the image plane. 

Since the three axes of the ellipsoid, E3 ,5,9 , all are different, it has few symmetries. 
Therefore, it is possible to evaluate the optimization results by comparing rotation matrices. 
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(a) initial guess. (b) 3rd iteration . 

{ c) 4th iter~tion. (d) 6th iteration . 

( e) 9th iteration . (f) final result. 

Figure 6: Results of real data experiments using the support function and the first curvature 
function. 



(a) initial guess. (b) 1st iteration . 

(c) 2nd iteration . ( d) 3rd iteration. 

(e) 4th iteration. (f) final result. 

Figure 7: Results of real data experiments using the support function and the second cur­
vature function. 
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The estimated a priori rotation matrix for the ellipsoid imaged in Figure 4 is 

[ 

0 -0.4627155767 -0.8865067936 l 
0 0.886,5067936 -0.4627155767 
1 0 0 

The rotation estimated by optimizing cp( R) is the matrix 

[ 

0.0591327494 -0.5181631311 -0.8532351889 l 
0.0264112871 0.8552437408 -0.5175524972 
0.9979006773 0.0080692626 0.0642582690 

or this matrix multiplied on the right by a matrix corresponding to a reflection about one 
or more axis. These matrices all define the same attitude since the ellipsoid is symmetric 
about each coordinate axis in its standard attitude. The estimated a priori rotation matrix 
for the ellipsoid imaged in Figure 5 is 

[ 

0 -0.3701448041 
0 0.9289740707 
1 0 

-0.9289740707 l 
-0.3701448041 

0 

The rotation estimated by optimizing 'lj;( R) is the matrix 

[

-0.0371509607 -0.2698579447 -0.9621831926 l 
0.0206643797 0.9624345419 -0.2707263137 
0.9990959863 -0.0299406615 -0.0301789208 

or, as before, this matrix multiplied on the right by a matrix corresponding to a reflection 
about one or more axis. 

5 Conclusions 

The desirable property that all orientation-based representations share is that the object 
and the representation rotate together. This makes an orientation-based representation 
well-suited to the task of attitude determination. Photometric stereo provides dense, local 
estimates of both surface orientation and surface curvature. Imaging from an unknown 
viewpoint determines a visible hemisphere of the representation. For smooth, strictly convex 
objects, matching the visible hemisphere to the full spherical model can be formulated as a 
single, uniform optimization process. Within this framework, depth need not be represented 
explicitly. . 

The method transforms the 3-D attitude determination problem for smooth, strictly 
convex objects into an optimization problem for which standard numerical solutions exist. An 
important additional property of the optimization is the fact that the value of the extremurn 
is known a priori. Thus, one can always assess the validity of the solution found by the 
optimization. 

The algorithm demonstrated here explicitly assumes that the object surface is smooth 
and strictly convex, thus ensuring that the Gauss map is one-to-one. The theorems on mixed 
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volume apply to a.II onvex bodies. A (technically) differ ut treatm ot is requ.ired to d .v lop 
algorithms for conv x objects with developab l · or planar surfa .s. It should be noted, 
however, that the support function need not treat smooth objects and polytopes differently. 
The support function is defined for all points on the unit sphere regardless whether the 
object is smooth, a polytop or a ·ombination. This is one of the reasons conj dm d for its 
success in polyb dral shape match:i11g [5). 

Good matching results have been obtained. Precise determination of ac ·uracy and ro­
bustness requires more quantitative work. Accuracy assessment must take into account 
sensor calibration, a priori determination of the "correct" attitude of the presented object 
and uncertainty in the "shape-from" method used to acquire the raw orientation and curva­
ture data. Based on the experimental work performed to date, the overall accuracy of the 
method is consistent with what one can expect, given th se oti1er factors. It would be helpful 
to agree upon a metric for rotation space to quantify differences between the correct and 
the estimated object attitude. The method is robust because it is a true 3-D method that 
employs dense surface data, not just data from 2-D contours or other sparse sets of features. 
Indeed, for the test object, E3 ,5 ,9 , 2-D contours alone do not determine 3-D attitude. 

An obvious question is, "Which works best, the first or the second curvature function'?". 
Experiments using purely synthesized data suggest that attitude determination using the 
first curvature function is slightly more accurate. This probably is related to nothing more 
than the observation that, all else equal, there is less uncertainty in the sum of two numbers 
than there is in their product. This observation is merely anecdotal since, of course, one also 
needs to take into account properties of the particular numerical optimization routines used. 
Theory suo-gests a possible advantag to using the sec ud curvatur fun tion when aualysis 
is c.:ou:fine J to the visible hemispher s2-. In th is .ase 1/;( R) may l .tter approximat . the 
ratio of the true mixed volumes required than does r.p( R). However, experiments to date on 
both real and synthetic data do not distinguish between r.p( R) and 7/;( R) either in terms of 
accuracy or robustness. 

In the implementation described, optimization proceeds using a large number of initial 
guesses. The correct attitude is found even when there is no a priori knowledge of object 
attitude. At the same time, optimization benefits from a good initial guess. This suggests 
that the approach also is well-suited to motion tracking and navigation tasks where the 
solution at one time can be used as the initial guess for the solution at the next sample time. 
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