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Abstract 

The plethora of approaches to planning and action in robotic sys­
tems calls for a unified framework onto which vte can map various 
systems and compare their structure and performance. We propose 
such a thinking framework which allows us to examine these systems 
in a uniform way and discuss their adequacy for robotic problems. 
The inclusion of an environment specification in problem specifica­
tions is proposed as a means of clarifying a robot's abilities and cre­
ating a notion of context. Robotic systems are described as a set of 
< information-source; computation> strategies combined with a set of 
actuators. 
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1 Motivation 

The need for a general framework for discussing a broad class of robotic 
systems may seem obscure to many readers. Why write down a scheme 
which seems obvious? One reason is that when we survey the field of robotics 
and planning we see a huge variety of proposed and implemented systems, 
all making different claims about their structure and performance [2] [8] 
[9]. How can we compare such systems and their claims without at least a 
common language for describing them? For example how do we compare the 
navigational abilities of a mail delivery robot, which follows a tape on the 
floor, and a small, autonomous mobile robot which navigates to arbitrary 
positions via arbitrary paths? 

One can only speculate why such a scheme for description and compar­
ison of robotic systems has not been promoted in the past. Perhaps recent 
improvements in the performance and availability of both computing devices 
and actuators has allowed us to build more sophisticated integrated systems 
and hence made comparisons more critical. Perhaps as a natural course our 
methods have evolved to the point where we are ready, and indeed need, 
to discuss the overall performance of a system, rather than particular algo­
rithms within it. There have been attempts recently to set up design criteria 
for intelligent robotic systems [l]. These may help us to build future systems 
but it is not clear that they help us explain and compare existing systems. 

Defining what constitutes an "intelligent system" is at best subjective. 
For the purposes of our discussion we will refer to intelligent robotic systems 
in the very general sense of a system which autonomously achieves specific 
goals in a specific environment. One might argue that a more flexible sys­
tem, which can achieve a greater number goals under a greater variety of 
environmental conditions, is more "intelligent" than say, a simple dedicated 
controller, but this sort of philosophical argument is not our purpose here. 

What then are the requirements for such a framework? In the first place 
the framework must be general enough to include the multitude of devices 
and architectures which already exist in the robotics community. Our goal 
is to look at what is fundamental about robotic problems by using common 
terms to discuss all systems from the most simple to the most complex. After 
all, as we have seen in recent years, sometimes the simplest systems are the 
most effective [2]. 

Another quality we want to be able to capture in our description is that 
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of parallelism, or at least modularity. Distributed systems seem inevitable in 
the computing world, but more specifically for robotic problems we can think 
of action as a mechanical computation distributed over compute devices, 
sensors and actuators. There seems to be an inherently distributed quality 
to robotic systems. 

Finally we conjecture that context is a crucial aspect of tractable reason­
ing and action. We intend to define our framework in such a way that the 
context _of a problem or computation is made explicit. 

1.1 Classes of Robotic Systems 

We will lump the vast number of robotic systems that exist into three broad 
categories: traditional planners, reactive or behavioral systems and robotics 
and control applications. For our purposes these are the disparate sorts 
of systems we want to discuss and compare, and hence those which our 
framework should accommodate. 

In the realm of intelligent robotics there currently exist two general ap­
proaches to generating action sequences: "traditional planning" techniques 
and reactive or behavioral systems. Most current planning (top down) sys­
tems stop short of connecting their primitives to devices acting in the world. 
When they do so they often suffer from the effects of uncertainty in the real 
world, not accounted for by their models [2]. On the other hand, those who 
work on behavioral (bottom up) approaches to activity have often avoided 
complex tasks, which necessarily entail "reasoning", in favour of enumerating 
all possible eventualities and predefining responses. The result is that any 
relatively complex state space is prohibitive in terms of storage and precom­
putation or design time [12] [4]. 

In the robotics and control community various systems have been devel­
oped in a more conservative, incremental way than many of the AI systems 
mentioned above. Goals such as robot design, kinematics, dynamics and more 
recently obstacle avoidance, grasping, manipulation and assembly planning 
have been built up in turn to produce more and more sophisticated systems. 
Generally speaking the robotics community has done a better job at mod­
elling and overcoming the uncertainty inherent in real action systems, than 
the AI community. Still there is no single task planning methodology which 
is accepted here, and approaches abound for more restricted goals such as 
obstacle avoidance and grasping. 
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2 A Framework 

2.1 Problems and Tasks 

If we want to characterize autonomous robotics it is important to clarify 
somewhat what exactly the issues are. One persistent difficulty in the field 
has been that although many systems have been built we have no way to 
compare their performance or rriethods. A possible solution is to compare 
systems by their sets of abilities. In other words compare what tasks they 
can achieve giveri their particular assumptions about the world. 

For the purposes of this discussion, we will assume that tasks have an 
inherent precision and complexity. Generally a task requires certain physical 
differences between the goal state and the world state to be resolved to a 
level within some specified tolerance. Specified or constrained techniques 
or operations for resolution of these differences may also form part of the 
task requirements, and the whole process is limited by the available world 
effectors and environmental factors. We will refer to this as a robotic problem 
and describe it as a <.task;environment> pair. 

The inclusion of the environment in the problem specification is an im­
portant extension to the usual discussion of robot tasks. There are two im­
portant reasons for this inclusion: first the difficulty and nature of a task are 
greatly affected by the constraints imposed by the environment in which it 
is to be performed. For example navigation in the open countryside is vastly 
different from navigation within a robotics lab. Second, by associating task 
and environment we generate a notion of context. 

2.2 Information 

In recent years there has been hot dispute between proponents of traditional 
and reactive systems, often in regard to where and how models or sensor 
observations of the world are used. In fact planning and reactive control are 
both computations on simplified models and they both work as long as the 
model and computation are adequate to produce or approximate the desired 
results. 

Let us propose sensing and modelling as a continuum where if we had 
a perfect suite of sensors, or a perfect model of the world, we would be 
able to plan and act successfully in that world. Naturally in most instances 
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robotic systems fall somewhere along this continuum where imperfect learned 
or programmed models are compensated for by observations from some im­
perfect set of sensors, or vice versa. In other words sensing and modelling 
are in some sense complementary, so that the computational time and space 
required for each can be traded off. Thus, for a particular task requiring 
information about particular aspects of the environment, those aspects may 
be sensed, or predicted via a model, or in the usual case, some combination of 
the two. For the purposes of this document we will refer to combined sensing 
and modelling resources as · an information source. This promotes the view, 
similar to the control and behaviorist communities, that instead of inserting 
sensor operations, we should make them integral to our computations. In 
other words, representation cannot usefully be separated from computation. 

In reality even the simplest controller uses a model of the system it con­
trols, for example the threshold value determining whether an automatic 
street lamp goes on or off. Models are in a sense more powerful than sen­
sor information because they allow prediction or 'future sensing'. Further a 
pure sensor generates only raw measurements from the world, without the 
interpretation possible from models or memory retaining a history of events. 
The above tradeoff does not reflect this aspect of information extending into 
the past or future. The issue of prediction is particularly important in more 
complicated goal directed sequences of robot actions where prediction of 
sensory consequences becomes essential in order to recognize progress, 
success or failure for a particular task. Prediction also allows the agent to 
select among courses of action based on aspects of their outcome. 

We conjecture that there is information inherent for a robotic problem, in 
other words to successfully solve a robotic problem certain information is re­
quired to specific precision in order to adequately compute the result. Which 
information sources provide this fundamental information is a separate de­
sign issue. Mackworth [10] discusses adequacy crit da for visual knowl dg 
r presentation but s ks more gen rality than our goal of having informa­
tion sour e <l~d.icated to particula,r computations. Some issues worth noting 
however are soundness and completeness, with respect to the task in our 
case, and efficiency and acquisition issues. 
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Figure 1: Strategy module 

2.3 Strategies 

Knowledge representation, despite the fact that it is often referred to as a 
separate discipline, is inherently tied to the types of computations performed 
by the system of which it is a part. Thus the nature of its information sources 
determines the types of computations or reasoning an agent can perform and 
hence the sequences of actions it generates. For the most part only a fraction 
of the information present in the environment will be sensed or modelled, for 
example our mail deli very robot may only sense a tape on the floor, but since 
this model is sufficient to the robot's navigation task, it can be the entire 
"world model". 

The question then becomes, can we classify information sources and com­
putations according to the types of tasks they can achieve? Such a classifica­
tion might clarify the capabilities of particular robotic systems and indicate 
how such capabilities could be extended to match some desired task. We 
will call these <information-source, computation> pairs strategies. Grouping 
information and computation in this way potentially gives us a notion of a 
"procedural primitive" which helps us address the "how" of describing robot 
activity, as opposed to state representations [7, p. 451]. 
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2.4 Robotic Systems 

A further issue in the representation and control of action are the actuators 
and other physical elements available to the system. Obviously sophisticated 
information and computation can still only generate the actions of which the 
actuators are capable and hence all tasks will be fundamentally limited by 
the physical properties of these devices (speed, dexterity, accuracy). 

A set of strategies within a system addressing various aspects of a problem 
or set of problems must all share real system resources such as sensors and 
actuators. We shall refer to the pair of sets <strategies,actuators> as a robotic 
system. This separation is useful since it clarifies the need for infrastructure 
and resource allocation among strategies at the level of robotic systems. It 
also allows us to discuss systems such as reasoners which do not use actuators 
(null actuators), within the same framework. 

It is always important to keep in mind the abilities of the robot, for 
example in a simple robotic hand-eye system we must keep in mind that our 
system is disabled by human and animal standards in having one eye, one 
arm, one finger and a thumb, and doubtless a poorly organized brain. Our 
framework allows us to speak about a robotic system's abilities in terms of 
classes of environments in which it can perform particular tasks, and classes 
of tasks it can perform in particular environments. On this basis we will seek 
to compare such systems. 

3 Discussion 

3.1 Uncertainty and Action 

One of the key criticisms of traditional planning systems is their adoption 
of the Omniscient Fortune Teller Assumption [11], basically the assumption 
that every event in the world can be predicted and accounted for. In the real 
world robotic systems spend most of their time simply trying to overcome 
deleterious of uncertainty, both regarding their own knowledge and action 
and the behavior of the environment. In fact in many low level task planning 
systems there are two aspects to action primitives - those motions necessary 
to achieve the task given perfect information, robot and computation, and 
those computations necessary to reduce uncertainty in these aspects of the 
system to within task tolerances. 
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computation 

actuators 
(the robot) 

Figure 2: The three sources of uncertainty which most robotic systems use 
most of their resources to overcome: the robot (actuators), the 
environmental information and the algorithms or computations 
applied. 

Naturally these uncertainty issues have not gone unnoticed in the robotics 
community[5][2][3, p. 524]. For our discussion we will assume three potential 
error sources: 

1. uncertainty in actuation 

2. uncertainty in information 

3. uncertainty in computation 

In other words: What I do may be inaccurate, What I know may be inaccu­
rate and How I do it may be inaccurate. In our framework the uncertainty in 
information and computation arise from the set of strategies and the infras­
tructure which connects them. As illustrated in figure 2 these three systems 
compensate for and complement each other. For example Erdmann's [5] 
randomized search strategy ( computation) compensates for inadequacies in 
sensors and actuators in the peg-in-hole problem. Similarly, a robot assem­
bling an object in a highly engineered environment has sufficient actuator 
accuracy and virtually complete knowledge of the world and hence can use 
almost no computation - ie. replay a recorded assembly sequence. 
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These three basic components, given a < task; environment > pair, are 
the basic sources of error or inaccuracy in the the performance of the robotic 
system. The proficiency of each can be traded off against the others to achieve 
some level of system adequacy or ability, which can then be compared to the 
task adequacy requirements . . Thus, to include a task in the abilities of a 
robotic system : 

system adequacy > task adequacy 

3.1.1 Learning How 

A robotic system can only deal with a genuinely unknown/unpredictable en­
vironment by exploring and learning about it [6]. With this in mind, the 
robots Brooks presents as operating in unstructured and unpredictable envi­
ronments actually have very strong assumptions about the presence of walls 
etc because these features of the environment are highly predictable [2]. To 
be successful, every agent must "learn" from observation of the environment, 
whether this takes the form of statistically setting simple thresholds, as with 
adaptive controllers, or some more sophisticated mechanism. 

Our proposed framework allows us to discuss learning by reversing the 
question we asked above. Instead of attempting to design a system which 
meets the adequacy requirements of some robotic problem, we ask, given a 
particular robotic system, what robotic problems can it learn to solve? 

3.2 Describing Systems 

How do the three classes of robotic systems we have discussed so far, tra­
ditional planning, reactive systems and various autonomous control applica­
tions, map to the framework described above? For traditional AI systems, a 
relatively high level activity such as planning is assumed to have more prim­
itive layers beneath it [6], in our paradigm these might be control strategies, 
sensing strategies and so forth. If a planner were to interact directly with ac­
tuators however, it would be a single monolithic strategy, performing a single 
type of computation on a single (large) model information source, which is 
assumed to be perfect. 

Reactive systems fall naturally onto our discussion framework since they 
are, by design, modular. In the simplest case each finite state machine or sim-
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ple controller in the system is a strategy using a set of encoded assumptions 
plus some sensors as its information source. 

Robot applications are difficult to describe in general terms because they 
take so many forms, although individually they can be mapped to our frame­
work. Typically modern robotic systems have standard inverse kinematic and 
dynamic systems which could be considered strategies, using perhaps a geo­
metric or dynamic robot arm model and joint angle encoders as their infor­
mation sources. Other aspects of these systems, such as obstacle avoidance, 
navigation, peg in hole assembly etc, could be considered other strategies 
within the system, each using some form of model and some subset of the 
available sensors. 

3.2.1 Comparison 

Let us return to our example of the mail robot and the autonomous mobile 
robot ( augmented toy truck) from section 1. We will assume the mail robot 
has a single strategy with a sensor which locates the magnetic tape and a 
controller which then computes the forward motion of the cart. For the 
truck we will assume an external camera determines its position and internal 
computations allow it to determine the desired direction of travel based on 
this current location. Internal controllers, along with motor speed and wheel 
angle sensors are required to generate the desired motion. Thus the truck has 
two strategies one (navigation) computing where to go based on the external 
camera plus some model, and one ( control) computing how to go there based 
on internal sensors and models. 

If our problem is to navigate along the tape path of the mail robot in a 
lighted lab, both robots are perfectly capable of performing the task. If we 
now change the environmental specification so that the lab is in darkness, 
the camera can no longer be used for navigation by the truck, and the truck 
system fails. The mail robot can still sense its tape in the dark, and so 
will succeed where the truck failed. Of course if the goal is to navigate, in 
the lighted lab, to any location off the tape the truck will succeed and the 
mail cart will fail. If the lights are off, both systems fail. For this simplified 
example then we have outlined the ability sets of the two systems. They 
overlap only in the case where they follow the tape in the lighted lab, but 
interestingly they each possess abilities that the other lacks despite the fact 
that the truck may seem more sophisticated than the mail cart. 
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3.3 Robotic Problems and Systems 

Naturally if we want to examine the adequacy requirements of robotic prob­
lems versus robotic systems we will have to look at how we can describe tasks 
and environments and thus clarify their requirements. We must distinguish 
problem specification and system specification. Are problem specifications 
necessarily system dependent in the sense that we must be given particu­
lar physical devices such as sensors and actuators before we can describe 
the physical transformations we are interested in? No doubt the engineers 
designing manufacturing systems, · and using various sequences of devices to 
automate tasks designed for humans, can verify that there are many ways to 
achieve the same physical goals. For problem specifications then we have to 
find some way of describing tasks without presuming some specific physical 
devices. 

For designing a robotic system for a particular problem, the question 
becomes what sensors and actuators, in combination with which models and 
computations, generate the desired action? We have proposed strategies as 
<information-sourcej computation> pairs which work together to compute 
some aspect of a task, but as yet we have no insight into how these aspects 
are determined. 

Typically when d~signing algorithms to solve problems the computing 
community assumes a serial computing machine, or mor l' · cently a limited 
variety of MIMD and SIMD parallel computers [2). With robotic tasks using 
sensors and actuators we have barely begun to evaluate how to distribute 
essentially probabilistic mechanical computations over the bewildering range 
of physical devices available. 

3.3.1 Intelligence is Infrastructure 

Once we have various primitives and build them into strategies, what then? 
Some form of infrastructure is required to allow the robotic system to work 
together as a coordinated whole. 

The structure of the robotic systems we have proposed here is designed as 
a distributed set of strategies calling on a limited set of hardware (computer, 
actuator, sensor) resources. We have paid very little attention to how various 
parts of a whole intelligent system interact. Ad-hoc approaches abound but 
their limitations only serve to strengthen the argument that not only what 
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but how we put together components of our system, unquestionably affects 
their performance. Obviously no module is an island and we are obliged to 
consider how best to combine these aspects of intelligent activity. 

There seems to be a general assumption in AI that there are low level 
action/reflex layers and high level reasoning/planning layers. The problem 
is that these layers have rarely been implemented in a single unified system. 
Planning systems stop at the top and reactive systems stop at the bottom. 
What is needed is an organized, coherent infrastructure which is not only 
comprehensible, but will scale up. 

Developing a loose characterization of the components of a robotic system 
does not answer the many questions that arise regarding how strategies are 
designed and composed into an overall system or how, when and what they 
communicate with each other. The framework we present is only a rough 
first stab ~t discussing these issues. 

4 Conclusions? 

In the preceding notes we have proposed the need for a uniform description 
for robotic systems in order to clarify and compare the performance of such 
systems. We have also proposed the need to explicitly specify the environ­
ment along with the task for a robotic problem, in order clarify its context. 

The framework put forward combines sensor and modelling resources into 
a unit called an information source. These units are then combined in strate­
gies, or <information-source; computation> units with the claim that repre­
sentation and computation are interdependent. Finally a robotic system is 
composed of a set of strategies combined with a set of actuators. 

We present three basic sources of uncertainty in robotic systems: in­
formation, actuation and computation. The uncertainty arising from these 
sources defines the competence level of the system. If we then examine cer­
tain tasks to be performed in environments of various complexities, we can 
evaluate the adequacy of the robotic system for a particular robotic prob­
lem or < task; environment> pair. The issues of how to precisely describe 
robotic systems and problems and. enumerate their adequacy criteria are un­
der investigation. 
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