
Starshaped Sets, the Radial Function 
and 3-D Attitude Determination 

Ying Li Robert J. Woodham 

Technical Report 92-27 
October 1992 

Laboratory for Computational Intelligence 
Department of Computer Science 

The University of British Columbia 
Vancouver, B. C. V6T 1Z2 

Canada 





Abstract 

Attitude characterizes the three rotational degrees of freedom between the coordinate 
system of a known object and that of a vi wer. Orientation-based representations record 
3-D surface properties as a function of position on the unit sphere. The domain of the 
repr sentation is the entire sphere. Imaging from a single viewpoint typically determin s a 
hemisphere of the representation. Matching the visible region to the full spherical model for 
a known object estimates 3-D attitude. 

The radial function is used to define a new orientation-based representation of shape. 
The radial function is well-defined for a class of sets called starshaped in mathematics. A 
starshaped set contains at least one interior point from which all boundary points are visible. 
The radial function records the distance from the origin of the coordinate system to each 
boundary point. The novel contribution of this paper is to extend previous mathematical 
results on the matching problem for convex objects to starshaped objects. These results 
then allow one to transform the attitude determination problem for starshaped sets into an 
optimization problem for which standard numerical solutions exist. Numerical optimization 
determines the 3-D rotation that brings a sensed surface into correspondence with a known 
model. 

The required surface data can be obtained, for example, from laser range finding or 
from shape-from-shading. A proof-of-concept system has been implemented and experiments 
conducted on real objects using surface data derived from photometric stereo. 

Keywords: shape1 orientation-based representation, attitude determination, starshaped 
set convexity, radial function, range data, photometric stereo 
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1 Introduction 

D nse r presentations of surface shape supp rt r cognition lo alization and insp ction tasks. 
R cognj tion determines obje t identity. Localization sp ifi s th thre . translational and th 
thr ,e rotational degr es of £re <lorn of the bje t in space, as is ne essary, for exampl , t 
direct a robot arm to grasp the object. Inspection v rifi s the swlab.ility of th bj ct for a 
particular task and typically T quires careful att ution to surfac detail. Dense r pr senta
tions of surface shape can b obtain d from laser ranging, shap -from-shading or photom tric 
stereo. 

Attitude characterizes the three rotational cl .gr of fre .dom betw .. n the oord'inate 
system of a known obj t and that of a vi wer. On approa b that has proven us ful for both 
r gnit io □ and attitude determ.inatjon is t r present 3-D surfac properties as a function 
f position on the unit sphere. These representations are termed 01·ie.ntation-bas d be ·a.us 

one associates ea h point on the spher with the unit vector from the center of the sphere 
to that point. Orientation-based representations differ in the way the mapping between 
surfa points and points on the sphere is establish d. One way is via th Gauss map. Tbe 
Gauss map takes each surface point to the point on th sph re orr ,sponding t the normal 
to the tangent plan at that point. Figur la illustrat s th Gauss map. Math ma.tics 
defines many r presentations based on the auss map. Sev ral have be n use I. in computer 
vision including: 1) the Extended Gaussian Image (E 11) defin d a.s Lb " r ipro al of t h 
Gaussian urvature [1]; 2) the support function defined as distatl e from aIJ origin to th . 
tangent plane [2]; and 3) th first and se and urvatur functions d fin d respe tiv ly as 
the sum of tbe prin ipal radii of curvature and the pr du t of the prin ipal radii of urvatlil'e 
[3] 1 . The EGL Las b en used for both recognition and attitude d t rmination [4, r.: 61 3]. 
The SL\pport function appeal's expli cit ly ju two of the methods used [6 :3]. 0th r lo al 

uTvatw·e repres ntations that an asily b fit to this• ori ntat i n-bas d framework in lud 
the Gaussian and the mean curvature, popular.ized by B sl and Jain [7, 8], and Ko nderink's 
urvedness and shape index [9]. The Gauss map is unique for 01.1vex objects. It has prov .n 

diffi<:ult to extend representations bas d on the Gauss map beyond the convex case sine ·, 
in gen ral, the Gauss map is many-to- ne. Approaches have been described to d ornpose 
nou-conv x surfaces into regions for which the Gauss map is unique and to augment the 
information recorded to handle the many-to-one nature of the mapping [10, 11]. 

One an go beyond convexity by choosing a differ nt way to establish the mapping 
between surfa · point and point on the sphere. L t the origin be in. the interior of the 
object. Without loss of gen rality, assum that th size of the obj tis larg nough so that 
the sphere fits entirely with.in th object. The mapping betw en surfac point and the sphere 
is obtained as the intersection of the ray to the point with tb sphere. Call this ma1 thf 
dilation map. Figur lb illustrates th dilation map. Unfortunately, in general, the djlatioo 
map is uot unique ither. But, for a suitable hoi · of origin, it is uniqu when the o j t is 
what in mathematics is ailed a, starshaped set [12, 13]. A set, S, is starshap d if an d only 
if there exists at least one point in S that "sees" every other point in S. Two points in S 

1Thus, for smooth objects, the EGI and the second curvature function are equivalent. 
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(a) Gauss map (b) dilation map 

Figure 1: Maps between surface points and points on the sphere, illustrated in 2-D. 

"see" each other if and only if the line joining the two points lies entirely within S. 
The radial function is the distance from the origin to the point. The radial function 

for 2-D sets has been used to recognize objects based on their 2-D bounding contours [14]. 
The radial function also has been used in a medical application to fit the shape of a heart 
to a 3-D spherical harmonic model (15]. For a suitable choice of origin, the radial function 
defines a new orientation-based representation since the radial function can be considered 
a function of points on the sphere under the dilation map. This is the representation used 
here for attitude determination. The novel contribution is to extend previous mathematical 
results on the matching problem for convex objects to starshaped objects. These results 
then allow one to transform the attitude determination problem for starshaped sets into an 
optimization problem for which standard numerical solutions exist. Numerical optimization 
determines the 3-D rotation that brings a sensed surface into correspondence with a known 
model. 

Section 2 formalizes the necessary mathematical results concerning the radial function 
and starshaped sets. Section 3 defines the attitude determination problem and shows how 
it can be transformed into an optimization problem for which standard numerical solutions 
exist. Section 4 describes the implementation and presents some experimental results. The 
experiments test numerical solutions for three cases: 1) attitude determination when both 
the model and sensed surface are given in known analytic form; 2) attitude determination 
when the sensed surface, then the model and then both are discretized versions of a known 
analytic form; and 3) attitude determination with sensed data obtained, via photometric 
stereo, from real objects and model data given in known analytic form. Cases 1 and 2 
represent simulation studies that were essential to software development, error analysis and 
tests of robustness. They are not reported in detail here. Instead, Section 4 describes the 
case 3 results on real objects. Section 5 summarizes the results. 
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2 The Radial Function 

It is convenient to define the radial function first for arbitrary non-zero points x E R3 and 
then to specialize the definjtion to points on the (unit) spher . Lutwak [16] de:fioes the radial 
function for convex bod:i s. Here Lutwak's original definition is xtend 1, with u chang , 
to starshaped sets. 

Definition 2.1 The radial function of a starshaped set, S, in R3 is defined as 

p(S;x) ~sup{,\> 0j ,\x ES}, for x E R3, x-=/- 0 

The radial function of a starshaped set does depend on the choice of origin in the 
ordinate system. If the origin is not interior to the set, 1 , th .. n the radial function is not 

d fin d for very point x E R3 . The radial function is well-defined for compact starshaped 
sets when the origin is inside the kernel of the starshaped set2

• When S is a compact 
starshaped set in R3 with origin, 0, in the interior of its kernel, the radial function is 

p(S; x) = 11exll/llxll' for XE R3
, X -=I- 0 (2) 

-where ex is the (unique) point of intersection of the ray Ox with the boundary of S. 
If the radial function of S is p(S; x ), then that of ,\S is ,\p(S; x ), ,\ > 0. Also, the 

rad:ial function is positiv ]y homogeneous of degree minus on witb r SJ ect to :r;. That i. 
p(S; A ·) = ½p(S'; x ), ,\ > 0. Thus, representing the radial function over the unit sph re 
is sufficient to determin the fun tion over th whole spac , R 3

. Figure 2 sbows a 2-U 
starsbap d s t and its radial fun tion lefin cl for points, ( u, v ), on the unit ircle. The 
analyti . xpr ss ions b tw n the dash d lines define the radial function for points on the 
unit ir ]e, u2 + v2 = 1 in the orr spending regjon. 

For a giv n ch ic of origin, tb radial functi n is uniqu for ompact starshap d s ts. 
That is, if S1, S2 are nonempty compact starshap d sets in R3 such that p( \· x) = p(S2; x) 
for f'V ry x E R3

, then S1 = S2 • Thus, a c mpact starshaped set 8 · au b chara terized by 
its radial function as { x I p(S; x) 2: 1 }. For non-starshap d s ts uniquen s is no long · r 
guaranteed. Figure 3( a) shows a 2-D non-starshaped set that has the same radial fu11dion 
as th 2-D starshaped set shown in Figure 3 (b). 

Th dista.nc fun tion defined for onvex bodies by Minlwwski (Bonues •11-Feu h l [17] 
pag 2:3) is the reciprocal of th radial functjou of the conv x body. Val ntin • [13] xtended 
the definition f distance fun tion to starshaped sets and prov d that a starshaped s , t is 
convex if and only if its distance function is cm v x (Val ntine [13], page :32). Th raclial 
function and its reciprocal, the distan e functiou, b th a.re shape repres ntation · weU-:mit d 
to starsliaped s .ts. 

Th important property that the radial function shares with other orientation-based 
representations is that it rotates in the same way as the object rotates. That is, 

p(R(S); x) = p(S; R- 1 (x)), (3) 
2The kernel of a starshaped set, S, is the set of all points x E S such that every point of S can be seen 

by x. The kernel is a convex set. 
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Figure 2: A 2-D starshaped set and its radial function, defined for points, ( u, v), on the unit 
circle. 

where R is a rotation. This is the property that makes it possible to use the radial function 
to solve the 3-D attitude determination problem. 

A quantity that is associated with compact starshaped sets is the dual mixed volume. 
It combines radial functions and serves as a similarity measurement in attitude determina
tion. The following definition and theorem again are obtained by extending the results of 
Lutwak [16] from onvex objects to starshaped sets. Lu·twak's definition of the dual mixed 
volume can be appLi d to starshaped sets, without change. 

Definition 2.2 Let S2 denote the unit sphere in R3 • Let S1 , S2 , S3 be c mpact starshaped 
sets in R3 with the origin in the interior of their kernels. The dual mixed vo lum of S1 , S2 , S3 

is defined as 
~ I::, 1 / 
V(S1,S2,S3) = J ls

2 
p(S1;x)p(S2;x)p(S3;x)dx. 

Similarly, Lutwak's inequality for the dual mixed volume follows, without change. 

Theorem 2.1 Let S1 , S2 , S3 be compact starshaped sets in R3 with the origin in the interior 
of their kernels. 

~3 ~ ' ~ ~ 
V (S1, S2, S3) :S V(S1, S1, S1)V(S2, S2, S2)V(S3, S3, S3), 

with equality if and only if S1, S2, S3 are all dilations of each other (with the origin as the 
center of dilation). 

Lutwak's proof for onvex bodies uses Holder's inequality for integrals (see Hardy [18] 
pag l t10). The essential requirem nt is that p(S;; x), i = 1, 2, 3, be non-negative, not iden
ti cally zero and measura.b l on S 2

• The radial function, p(S; x), of a compact starshaped 
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( a) non-starshaped (b) starshaped 

Figure 3: A non-starshaped set that has the same radial function as a starshaped set. 

set, S, with the origin in the interior of its kernel, satisfies these conditions. Thus Lutwak's 
proof applies to starshaped sets too. 

3 Solutions to the Attitude Determination Problem 

Definition 3.1 The attitude determination problem is defined as finding a rotation R such 
that R(S) = S', where Sis a model, S' is a measured object that is obtained by an unknown 
rotation from S. 

Let S1 and S2 be two compact starshaped sets in R3 with the origin in the interiors of 
their kernels. Then Definition 2.2 and Theorem 2.1 give 

wi t h equau ty jf and only if S'1 , S2 a.re clilatio11s of each other (with the origin as the center 
f dilation). This m a.ns that among all st arshaped sets 81 of t;he same dual mixed volume 

V(S1.,S, ,S1) those that are dil ations of 5'2 yield the maxj mumof V(S'i,82,82 ). 

Define 1 (R) , a fun tion of rotation R, by 

(4) 

Then 
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Note that V(R(S1), R(S1), R(S1)) does not depend on R, that is, 

V(R(S1), R(S1), R(S1)) = V(S1, Si, S1) , 

due to the rotation property (3) of the radial function. Then by Theorem 2.1 x(R), as a 
function of R, reaches maximum if and only if R(S1) = >-.S2 , for some ).. > 0. By Defi
nition 3.1, the problem of attitude determination can be solved if and only if a maximal 
point of x(R) can be found. The maximal point is a solution to the attitude determination 

problem. The global maximum of x(R) is ~V(S1 , S1 , S1 )V2 (S2 , S2 , S2). By the if-and-only-if 
condition in Theorem 2.1, the global maximum is unique, modulo any rotational symmetries 
that S1 possesses. 

Rotation can be represented as the triple ( ¢>, 0, !1) where this is taken to mean counter
clockwise rotation by angle !1 around unit vector (sincpcos0, sinc/>sin0, cos¢>). When R is 
represented this way, the function x(R) becomes x( ¢>, 0, !1), a function of three variables 
that has domain R3

• The problem of attitude determination then becomes the following 
optimization problem: 

max1m1ze: x( ¢>, 0, !1) , ( ¢>, 0, !1) E R3 
• 

Since the objective function of this optimization problem is periodic and bounded, a solution 
to the optimization problem necessarily exists. 

This approach described so far assumes that the radial function of both objects is known 
over the whole unit sphere. When p(S2 ; x) is known only at points clustered in one region 
of the unit sphere, the objective function, x(R), defined in Equation (4), may not be appro
priate. For example, when p(S2 ; x) is obtained from sensed data from a single viewpoint, 
the points at which the radial function is known will be at most a hemisphere. An altered 
objective function is defined to solve the attitude determination problem when the radial 
function is known only on a portion of the sphere. 

Let V denote the smallest union of spherical polytopes3 in S2 that contains all the points 
X on S2 where p(S2; X) is available. Again, by Holder's inequality, 

1 2 

iv p(R(S1); x)p2(S2 ; x)dx ~ [iv p3(R(S1); x)dxr [iv p3(S2; x)dxr , (5) 

with equality if and only if p(R(S1); x) and p(S2 ; x) are proportional to each other over V. 
Simply subslitutjng V for S2 in Equation (4), however, is not sufficient sin the r.igbt side 
of (5) now depends on R (when V is not equal to S2). Define a new objective function as 

x(R) = ! . fvp(R(St); x)p2(S2; x}dx . 
3 Uv p3(R(S1); x)dx]3 

(6) 

3 A spherical polytope is the intersection of a finite number of closed hemispheres which is not empty and 
contains no pairs of antipodal points of S 2 • 
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z z 

Figure 4: Two 2-D starshaped sets that match when viewed in the positive z direction but 
that do not match over the whole unit circle. 

Holder's inequality implies that x(R) achieves a maximum if and only if R(S1 ) and S2 are 
2 

dilations of each other over V. The maximal value is½ Uvp3(S2;x)dx]3. Tbu. , the part of 
the object wh re the radja.l function is s us cl is matched to the model by maximizing x(R). 

Strictly speaking, this does not solve the attitude determination problem, as defined in 
Definition 3.1, since part of the object is not seen and therefore may not be matched correctly. 
It does solve the attitude determination problem correctly to the extent possible, given the 
data available. Figure 4 depicts two 2-D starshaped figures that match when viewed in the 
positive z direction but that do not match over the whole unit circle. 

4 Experiments 

Experim nts were cond11 tecl on two real starshap d bjects t dem t)strate th - f asibility 
of the approach. The obj cts are ni knamed the 'peanut' aud th °'pillow' , re-spe tively. 
The radial functions of the two objects, defined for points n t h unit sph re with standar I 
spherical coordinates ( </>, 0), are the following spherical harmonics: 

peanut 

pillow 

p( </>, 0) = 1 + 3cos2( </>) , 

p( </>, 0) = 4 + 3sin(20)sin 2( </>) . 

(7) 
(8) 

The parametric equations of the object surface, given in terms of the radial function, p( </>, 0), 
and parameters <p and 0 are 

x p(</>, 0)sin</>cos0 , 

y p( </>, 0)sin</;sin0 , 

z - p( </>, 0)cos¢; . 

The peanut is a solid of revolution. A side view sketch is shown in Figure 5. Three side views 
of the pillow are shown in Figure 6. The two objects were custom fabricated from numerical 
data sampled from their radial functions. The objects are made of polyvinylchlorid and 
were machined by an automated, numerically controlled milling machine. A third object, a 
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Figure 5: Experimental shape: the peanut. It is a solid of revolution. 

sphere, was machined from the same material to serve as a calibration object for photometric 
stereo. 

Photometric stereo was used to obtain surface data [19]. Three images of each object 
are taken under three different lighting conditions with the same imaging geometry. The 
images are shown in Figure 7 and Figure 8 respectively for the peanut and the pillow. 
Photometric stereo uses reflectance data obtained from the calibration sphere to determine 
surface gradient information at each visible point. The relative height of each surface point 
was obtained by reconstructing depth from gradient using the method of Harris [20]. Finally, 
the radial function was computed as the distance from a fixed point inside the kernel of the 
object to each visible surface point. The radial function does depend on the choice of this 
fixed point. By convention, the origin of the object coordinate system is taken to be the 
center of gravity of the object, whenever possible. 

Since surface data are acquired from a single viewpoint, the radial function is not known 
over the entire sphere. Thus the objective function x(R), defined in Equation (6), is used 
instead of x(R), defined in Equation ( 4). 

Let S1 be either the peanut or the pillow in a standard attitude, S2 = Ro(St), where R0 

is a fixed but unknown rotation. One can think of S1 as the model and S2 as the object. 

Let s2 - denote the set of all points x on S2 such that the intersection of the ray Ch and the 
object surface is a point visible to the camera. Then the objective function, x(R), defined 
by Equation (6), is 

x(R) = ! . fs2- p(R(S1);x)p2(Ro(S1);x)dx. 

3 [!s2- p3 (R(S1 ); x )dx]3 
(9) 

The function p(R(S1 ); x) = p(S1 ; R-1 (x)) is known for both the peanut and the pillow from 
Equations (7) and ( 8). The function p( Ro( S1 ); x) is estimated for all surface points visible to 
the camera. The rotation, Ro, is estimated by maximizing x(R). (For comparison to ground 
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( a) top view (b) front view ( c) side view 

Figure 6: Experimental shape: the pillow. 

truth, Ro also is determined a priori as part of the experimental setup). 
By the rotation property (3) of the radial function, 

(10) 

Suppose the viewpoint is in the positive z direction and suppose s2- is the hemisphere 
corresponding to z < 0. Then, the surface integral (10) can be transformed into a volume 
integral: 

l JI Jt1r p(S1;R-1(x(</J,0)))p2(Ro(S1);x(<f>,0))sin<f>d0d</> 
x(R) = - · 2 

1 , (11) 
3 [I; Jt1r p3 (S1 ; R-1(x(</>, 0)))sin</>d0d<f>] 3 

where x(</>,0) = (sin</Jcos0,sin</>sin0,cos</>). 
The numerical integration routine QBOlAD from Harw 11 [21] i:,; u · .. cl t al ulate t he 

2-D integral (11). The interpolation routine of R oka [22, 23J is used t int 1·polat values 
of p(Ro(S\ ); x) over s2

-, as required. The result letennin · a. C1 ftin tiou from an in gular 
distribution of data samples on th sphere. 

A regular tessellation of the sphere is used when a radial function is discretized from 
a known analytic form. The tessellation used is based on a geodesic dome built from an 
icosahedron with a desired frequency [24]. Figure 9 shows the 8-frequency geodesic dome. 
It has 642 vertices, 1920 arcs, and 1280 facets. 

The nonlinear programming subroutine NLPQL [25] is used to find the maxima of x(R). 
NLPQL can be used to solve optimization problems with constraints, optimization problems 
with simple bounds, or unconstrained optimization problems. It requires an estimate of the 
gradi nt of the objective function. Here, the gradient of the obj tive fun t jon, x.(R), is 
est.imaLed by simple forward diiferen ing. Conv ·rg n ·e is achieved ith "r when the Kuhn
Tucker conditions ( see [26] page 51) are satisfied to within a specified accuracy or when 
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(a) first light source (b) second light source 

( c) third light source 

Figure 7: Images of peanut under three light sources. 
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(a) first light source (b) second light source 

( c) third light source 

Figure 8: Images of pillow under three light sources. 
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Figure 9: An 8-frequency geodesic dome. 

the objective function is not improved significantly given that the constraints are satisfied 
to within the specified accuracy. NLPQL does not guarantee that the maximum found is 
global. But, in this application, the global maximum of x(R) is known. Therefore, it is 
known whether the maximum found by the subroutine is the global maximum. 

In the experiments, the optimization process was executed 256 times, each time corre
sponding to a different initial guess for object rotation. A very large bound was given to 
NLPQL to effectively make a constrained optimization into an unconstrained optimization. 
For both the peanut and the pillow, all the initial guesses converged to points with the same 
maxiumum value of x(R) and with the same object attitude. Thus, for the objects tested, 
the method is robust with respect to the initial guess. 

The position of the sensed object is established manually for each experiment. The true 
rotation of the object with respect to its standard attitude also is estimated manually. The 
estimated rotation is used as a rough measure of accuracy to evaluate the rotation found by 
the optimization process. A way to visualize the optimization result is to superimpose the 
rotated model onto the image of the object. 

When an object is highly symmetric, like the peanut, it is difficult to evaluate the 
optimization results by comparing rotation matrices because different matrices correspond 
to the identical object attitude. The optimization process for the peanut with initial guess 
(0.1, 0.2, 0.3) in radians is shown in Figure 10. In the figures, the black and white shows the 
silhouette of the object and the wire frame shape in gray is the rotated model. 

When an object has few symmetries, like the pillow, it is possible to evaluate the opti
mization results by comparing rotation matrices. The estimated a priori rotation matrix for 
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the pillow imaged in Figure 8 is 

[

-0.5074229658 
0.5418144635 

-0.670044044 7 

-0.5061199538 0.6973983984 l 
0.4419270649 0.7149388481 
0. 7406369305 0.0499791693 

The rotation matrices estimated by optimization are either 

or 

[ 

-0.5419370962 
0.5313071435 

-0.6511658031 

-0.4890334995 0.6834840307 l 
0.4307655958 0. 7294886712 
0. 7584 769202 0.0263791359 

[

-0.4890250728 -0.5419388271 -0.6834886874 l 
0.4308033845 0.5312805744 -0.7294857062 . 
0.7584608902 -0.6511860404 -0.0263404405 

(12) 

(13) 

(14) 

Matrix (14) is equal to matrix (13) multiplied by a rotation of 180 degree around direction 
(1, 1, 0). They define the same attitud since the pillow as imaged in Figure 8 is symmetric 
about the lined termined by the origin and the direction (1, 1, 0). The optimization process 
for the pillow with initial guess (0.1,0.2,0.3) in radians is shown in Figure 11. 

5 Conclusions 

Orientation-based representations are a compact description of 3-D object shape. A desirable 
property that all orientation-based representations share is that the object and the repre
sentation rotate together. This makes an orientation-based representation well-suited to the 
task of attitude determination. Dense surface data measured from an unknown viewpoint 
determines a visible hemisphere of the representation. Matching the visible hemisphere to 
the full spherical model can be formulated as a single, uniform optimization process. In 
particular, one does not need multiple viewpoint dependent representations of a modeled 
object. 

A new orientation-based representation has been introduced based on the radial function 
and the dilation map. A method that uses this representation to determine 3-D attitude has 
been theoretically justified and empirically demonstrated for the class of objects known as 
(compact) starshaped sets. Starshaped sets are described in the mathematical literature and 
have been used before in computational geometry to study problems of visibility. Starshaped 
objects appear here as a useful generalization of convexity that extends, in a principled way, 
previous work on shape matching. 

The method transforms the attitude determination problem for starshaped sets into an 
optimization problem for which standard numerical solutions exist. An important additional 
property of the optimization is the fact that the value of the extremum is known a priori. 
Thus, one can always assess the validity of the solution found by the optimization. 

The treatment given here for orientation-based representations implicitly assumes that 
the object surface is smooth (i.e., C2). Curvature-based representations under the Gauss 
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(a) initial guess. (b) 3rd iteration. 

(c) 5th iteration. ( d) 7th iteration. 

(e) 8th iteration . (f) final result . 

Figure 10: Results of real data 3-D attitude determination for the peanut using its radial 
function. 
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(a) initial guess. (b) 3rd iteration . 

(c) 6th iteration. ( d) 7th iteration. 

( e) 9th iteration. (f) final result . 

Figure 11: Results of real data 3-D attitude determination for the pillow using its radial 
function. 
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map require a (technically) different treatment for the case of polyhedra. For example, the 
second area function, which is the analog of the EGI for polyhedra, is defined only for a 
discrete set of orientations, one for each face of the polyhedron. With the radial function, 
one need not treat smooth objects and polytopes differently. The radial function is defined 
for all points on the unit sphere regardless whether the object is smooth, a polytope or a 
combination 4. 

Good matching results have been obtained. Precise determination of accuracy and 
robustness requires more quantitative work. Accuracy assessment must take into account 
sensor calibration, a priori determination of the "correct" attitude of the presented object 
and uncertainty in the "shape-from" method used to acquire the raw surface data. Based on 
the experimental work performed to date, the overall accuracy of the method is consistent 
with the best one can expect, given these other factors. It would be helpful to agree upon 
a metric for rotation space to quantify differences between the correct and the estimated 
object attitude. 

The method is robust because it is a true 3-D method that employs dense surface data, 
not just data from 2-D contours or other sparse sets of features. The radial function does, 
of course, depend on the choice of coordinate system origin. For most object shapes, the 
radial function will not change significantly for (slight) changes in the location of the origin. 
Intuitively, this suggests that the method is stable with respect to choice of origin, provided 
the origin is within the kernel of the starshaped set. Experiments on synthetic data support 
this intuition. The method maintains accuracy and robustness with respect to the choice of 
coordinate system origin. 

The approach is intended for recognition, localization and inspection tasks using dense 
surface data that can be obtained from laser ranging, shape-from-shading or photometric 
stereo. The work here used data obtained from photometric stereo. It would be useful 
to experiment with other sources of dense surface data. In the implementation described, 
optimization proceeds using a large number of initial guesses. The correct attitude is found 
even when there is no a priori knowledge of object attitude. At the same time, optimization 
benefits from a good initial guess. This suggests that the approach also is well-suited to 
motion tracking and navigation tasks where the solution at time t can be used as the initial 
guess at time t + f}_t_ 
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