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Abstract 

The work presented in this report is based on the observation that if a viewing 
camera is appropriately mounted on a vehicle which moves on a planar horizontal 
surface parallel to the instantaneous direction of translation, then the optical flow 
obtained from the moving camera depends on two parameters only; the angular ve
locity around an axis orthogonal to the planar surface and the ratio between the 
viewed depth and the translational speed (i.e., generalized time-to-collision). Ele
mentary error analysis shows that the angular velocity can be robustly estimated 
by averaging the horizontal component of the optical flow along the vertical line 
through the center of the image. Once the angular velocity has been recovered, the 
generalized time-to-collision, which measures depth in time units, can be computed 
from one component only of the optical flow. It is found that the accuracy of depth 
estimation from the vertical component of the optical flow is more accurate, increases 
with the distance from the horizontal line through the center of the image, and is 
almost independent of the angular velocity. Therefore, in the case of planar motion, 
the computation of the two-dimensional (2D) optical flow over the entire 2D image 
plane is hardly necessary. A number of experiments on synthetic and real images 
support the presented analysis. Since the precision with which the viewing camera 
is positioned on the moving vehicle is not critical, it is concluded that the proposed 
method is likely to be very useful in applications like autonomous robot navigation. 

1On leave from Istituto di Cibernetica e Biofisica - CNR, Via Dodecaneso 33, Genova, Italy. 
2On leave from Dipartimento di Fisica, Universita di Genova, Via Dodecaneso 33, Genova, Italy. 
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1 Introduction 

In many dynamical applications, like autonomous robot navigation and car driving, 
useful visual information can be obtained from a camera mounted on the mobile ve
hicle. The vehicle motion throughout the surrounding environment produces spatial 
and temporal changes in the viewed image which can be used for the reconstruction 
of both the vehicle motion and the three-dimensional (3D) structure of the scene in 
various ways [1-10]. Many of the proposed techniques consist of two steps. In the 
first step, the optical flow, that is, the apparent motion of the image brightness pat
tern on the image plane, is computed. In the second step, the equations which relate 
optical flow to the viewed motion and structure are solved. Both of these steps are 
computationally rather expensive and their implementation in real systems seems to 
require the use of special hardware. 

The key point of the paper is the observation that, if the motion of the vehi
cle is restricted on a planar surface, the optical flow equations can be drastically 
simplified. It is first shown that if the image plane of the camera mounted on the 
vehicle is orthogonal to the planar surface and the optical axis is parallel to the 
instantaneous direction of translation, then the angular velocity is the only motion 
parameter which is left to be computed. The optical flow equations become linear 
and the viewed motion and structure can be easily reconstructed. An elementary er
ror analysis shows that the angular velocity can be optimally recovered from only the 
horizontal component of optical flow along the vertical line which goes through the 
optical center of the image plane. Once the angular velocity has been determined, 
depth can be estimated by means of one component only of the optical flow. The 
vertical component of the optical flow is found to be better suited than the horizon
tal component. Since one-dimensional (ID) optical flow computed over lines of the 
image plane provides reliable information on the viewed motion and structure, the 
computation of the full 2D optical flow over the entire image plane is unnecessary 
and conventional hardware may be sufficient to develop a simple optical flow based 
module for planar passive navigation. 

The report is organized as follows. In section 2 the geometry of the problem is 
described. Section 3 discusses how to compute motion and structure parameters from 
the simplified optical flow equations. In Section 4 experimental results on synthetic 
data and real images are presented. Finally, Section 5 summarizes the obtained 
results. 

2 Planar navigation 

In this section the general problem of passive navigation is restricted to the case in 
which the viewing system moves on a planar surface. No assumption is made on the 
spatial structure of the viewed scene, and the motion is otherwise arbitrary. 

Let us first establish some basic notations. Let S denote the viewing system which 
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moves throughout a static environment and (X, Y, Z) the coordinates of a point P 
in a system of orthogonal axes X, Y and Z attached to S. Let 0, the origin of the 
system, be the center of projection and f the focal length. If the normal vector of 
the imaige plane is parallel to t he Z-axis, then x = f X/Z, y = JY/Z, and z = J are 
the coordinates of p, the perspective projection of Pin the image plan with respect 
to 0. 

Ideally, the optical flow at p can be thought of as the perspective projection 
onto the image plane of the 3D velocity field V at P. In the case of arbitrary rigid 
motion, V can be described in terms of T = (Tx, Tv, Tz) and O = (Ox, Ov, Oz), the 
translational and angular velocity between S and the environment respectively. The 
components u and v of the optical flow along the X- and Y-axis can then be written 
as [1] 

u -
Txf - Tzx (x2 + f2)0v - y(xnx + fOz) 

z ' + f (1) 

V = Tv f - Tzy (y2 + f2)Dx - x(yOv + JDz) 
z f 

In this general setting, the problem of recovering the viewed motion and structure 
from optical flow at n points can be stated as the problem of solving n pairs of 
equations like Eqs. 1 in 6 + n unknowns, that is, the six motion parameters, Tx, 
Ty, Tz, Dx, Oy, and Oz, and the depth Z at each of then points. This problem is 
clearly nonlinear and, independent of the employed method, reliable solutions seem 
to require the integration of optical flow estimates from rather different locations 
[10,11]. 

If the motion of S is restricted to a planar surface 7r the optical flow equations 
can be greatly simplified. The hypothesis of planar motion is clearly relevant to 
many natural and cultural scenarios. Two further assumptions will be needed: (i) 
the image plane of the viewing system is orthogonal to 1r, and (ii) the optical axis is 
parallel to the instantaneous dir ctjon of translation. 

Before commenting on the meaning of (i) and {ii), let us first look at their impact 
on the optical flow equations. Since the motjon is constrained to the planar surface 1r, 

the angular velocity n is completely described by a vector in the direction orthogonal 
to 1r.. By virtue of (i), this direction is parallel to the Y-axis and n can be simply 
written as 

n = (o,n,o). (2) 

The translational component of motion, T, by means of (ii), lies entirely along 
the Z-axis, or 

T = (0,0,T). (3) 

The substitution of the expressions 2 and 3 into Eqs. 1, if r = -Z/T, yields 
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u Of + X ( ~ x + ~) (4) 

V = y(~x+~) 

which, in matrix notation, can be written as 

with 

M = ( f + x2 
/ f x) 

xy/f Y 

Eqs. 4 must be compared with Eqs. 1. In the case of Eqs. 1, the problem was 
nonlinear and consisted of 2n equations in 6 + n unknowns. Instead, in the case of 
Eqs. 4, the problem is linear and consists of 2 equations in 2 unknowns, n and 1/r. 
Note that r, the time required to cover the distance Z at the speed ITI, reflects the 
well known ambiguity between absolute distance and speed of a viewed point and 
can be thought of as the depth Z in time units. In what follows we will refer tor as 
the generalized time-to-collision. -Since the translational parameter is hidden in the 
denominator of r, n remains the only motion parameter to be computed. 

The analysis of the existence and uniqueness of the solution to Eqs. 4 is ele
mentary. With the exception of the points for which !Ml, the determinant of M, 
vanishes, Eqs. 4 can always be solved to uniquely determine the viewed motion and 
structure. The solution takes the form 

n= uy-vx 
(5) 

fy 

and 

1 f2v - x(uy - vx) 
(6) 

T f2y 

Since IMI = fy, it follows that Eqs. 4 cannot be solved at the points with y = 0, 
that is, on the horizontal line lh which goes through the optical center. 

Finally, let us comment on the constraints (i) and (ii) which, in addition to the 
hypothesis of planar motion, underlie the presented analysis. First the constraints 
(i) and (ii) can be thought of as defining a reference frame in which the problems 
of motion and structure recovery in the case of planar motion can be uncoupled and 
stated with a minimal number of unknowns. Interestingly, the constraints (i) and 
(ii) are naturally met by a viewing camera mounted in the standard upright position 
on a mobile vehicle. Independent of the trajectory of the vehicle, the image plane of 
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the camera is orthogonal to the ground plane and the direction of gaze is parallel to 
the instantaneous direction of translation. Let us now discuss in some detail the use 
of Eqs. 5 and 6 for the computation of motion and structure. 

3 ID optical flow 

In this Section the stability of the computation of the viewed motion and structure 
from Eqs. 5 and 6 is studied. In agreement with the simple camera model described 
in section 2, the errors on the horizontal and vertical optical flow components are 
assumed to be equal and constant over the image plane. Let us first consider the 
estimation of n from Eq. 5. 

3.1 Angular velocity 

By differentiating Eq. 5, if D.u and D.v are the errors in the computation of u and v, 
the error D.0 on the angular velocity can be written as 

(7) 

From Eq. 7 it can be concluded that D.0 is minimum at the points with x = 0, that 
is, the points which lie on the vertical line lv through the center of projection. For 
x = 0, Eq. 5 reads 

u 
0=-

f 
(8) 

from which it follows that u is constant over lv. From Eq. 8 it can easily be seen that 
in order to optimally estimate the angular velocity it is sufficient (a).to compute the 
horizontal component of the optical flow along the vertical line lv and (b) to estimate 
n as 

(9) 

where < u > is the average of u along lv. It is remarkable that the very simple 
Eq. 9 is true for arbitrary (planar) motion and independent of the 3D structure of 
the scene. 

3.2 3D structure 

Let us now look at the estimate of the 3D structure of the viewed scene by means 
of Eq.6. By substituting the expression for n of Eq.5 into Eq.6, the equation for the 
generalized time-to-collision T reads 
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1 V X - = - - -n 
T Y J 

(10) 

Therefore, once the angular velocity has been recovered, the 3D structure of t1:ie scene 
can be reconstructed by computing only the vertical component of optical flow. As 
Eq. 10 indicates, for S1 = 0, all the structure information on the viewed scene is in 
the ratio v/y. In the presence of rotation, v changes an amount qual to xyO/ J (see 
Eq.4), and the second term in the right-hand-side of Eq. 10 comp nsates exactly for 
that change. For most typical values of J and T =/= 0, the term jxS1/ JI is usually 
much smaller than lv/yj. This agrees with the intuitive fact that a rotation around 
a vertical axis has a small ( and purely perspective) effect on the vertical component 
of the apparent motion. 

The stability analysis of Eq. 10 is straightforward. By differentiating Eq. 10, the 
error on the inverse of the estimated generalized time-to-collision, ~(1/T), is 

(11) 

Thus, the larger the distance from the horizontal line lh (i.e., the larger y), the 
smaller the error on the depth computed from Eq. 10. From Eq. 11 it follows that 
the error increases with !xi, but since lv/yj is usually much larger than jxS1/ JI this 
dependence should be hardly noticeable. In section 4 these predictions will be checked 
on synthetic and real data. 

3.3 Symmetry breaking 

The previous analysis has shown that, in the case of planar navigation, the two 
components of the optical flow and the horizontal and vertical directions of the image 
plane are not symmetric. This somewhat surprising result has a simple explanation. 
Clearly, the a priori symmetry between the horizontal and vertical direction is broken 
by the assumption of planar motion and by the particular positioning of the viewing 
camera on the moving vehicle. The first asymmetric finding is that Eqs. 1 cannot 
be solved along the horizontal line lh of the image plane. The second asymmetric 
result is that the horizontal component of the optical flow is better suited than the 
vertical component for the computation of the angular velocity. Let us now show 
that the two components of the optical flow cannot be equivalently used for depth 
estimation. Let us substitute Eq.5 in Eq. 6 and write 1/T as a function of S1 and u. 
After simple calculations, it is easy to obtain 

(12) 

Eq. 12 is only superficially similar to Eq. 10. Since a rotation around a vertical axis 
has a large effect on the horizontal component of the apparent motion, the second 
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term on the right-hand-side of Eq. 12 is now also important. The stability analysis 
of Eq. 12 yields 

(13) 

From Eq. 13 it follows that the accuracy in the reconstruction of the 3D structure 
on the horizontal component of the optical flow depends rather critically from the 
horizontal location of the image point (the error is unbounded for x --+ 0). Since the 
vertical location is also critical ( the optical flow equations cannot be solved along 
h), the use of the horizontal component of the optical flow for depth estimation is 
unlikely to be effective. Let us now corroborate the analysis presented in this section 
by means of some experimental results. 

4 Experimental results 

In this section the stability analysis of the previous section is first tested on synthet
ically generated flows corrupted by noise. Then, results of experiments on sequences 
of real images are reported and discussed. 

4.1 Synthetic data 

Let us first study the effect of the uncertainty in the knowledge of the geometry of 
the problem. The previous analysis was based on some structural assumptions on the 
planarity of the observed motion, position of the viewing camera with respect to the 
environment and, knowledge of a few intrinsic parameters of the camera (like focal 
length and location of the optical center). In practice, the observed motion is not 
exactly planar and the position of the viewing camera and the values of the intrinsic 
parameters are not known precisely. Therefore, it is useful to study the robustness 
with which Eq. 8 and 10 can be solved in the presence of noise and uncertainty 
in the intrinsic parameters. The two optical flows of Figure la and b have been 
synthetically produced by simulating the motion of a slanted planar surface which is 
moving toward the image plane. The image plane is assumed to be 256 x 256 pixels 
and the focal length 500 pixels. In both cases the planar surface is translating along 
the Z-axis with T = lcm/ sec. Since the distance between the planar surface and 
the image plane, in the same units, is 50cm, we have that r = 50sec. Figure la 
depicts the case of pure translation. To better simulate motion in the real world 
small amounts of angular velocity were added along the X- and Y-axis (.02°/sec and 
.03° / sec respectively). This is the reason why the focus of expansion in Figure la 
is not exactly in the center of the optical flow. In Figure lb the planar surface is 
also rotating with n = .3° / sec. In this case noisy motion was simulated by adding 
a small component of angular velocity around the X-axis (.02° /sec). Finally, both 
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True values 0 (x = 0) 0 (x = 2) 0 (x = 4) 0 (x = 8) 

.03 deg/frame .0297 ± .0001 .0327 ± .0001 .0350 ± .0001 .0404 ± .0002 
.3 deg/frame .299 ± .001 .303± .001 .305 ± .001 .311 ± .001 

Table 1: Stability of the estimation of the angular velocity by means of Eq. 9. The 
first and second row refer to the optical flow of Figure la and b respectively. The 
first column reproduces the true values of n, the second the estimates obtained by 
using the vertical line which goes exactly through the center of the image plane, 
while the third, fourth, and fifth columns the results which were obtained by using 
a vertical line 2, 4, and 8 pixels away from the true vertical line respectively. The 
angular velocity is averaged over 256 estimates because the noise added to the flow 
is uncorrelated. 

the flows were corrupted by additive random noise (see the legend of Figure 1 for 
details). 

In Figure le and d the 3D reconstruction obtained over the horizontal line drawn 
in Figs. la and bis shown. The filled circles reproduce the depth estimates obtained 
through Eq. 10 from the vertical component of optical flow, while the open triangles 
the estimates obtained through Eq. 12 from the horizontal component of optical flow. 
In both cases the angular velocity was computed from the vertical line 2 pixels away 
from lv, Notice that the results displayed in Figure le and d are in very good agree
ment with the theoretical analysis of the previous section. While the depth estimates 
from the vertical component of the optical flow are almost independent of both the 
angular velocity and the horizontal location of the image point, the accuracy in the 
depth estimates from the horizontal component is much lower, becomes meaningless 
in the proximity of x = 0, and decreases noticeably when n increases. 

Table 1 shows the stability of the estimation of n computed from Eq. 9 under the 
assumption that the location of the optical center is known within a certain margin 
of error. The first and second row of Table 1 correspond to the case of Figure la 
and b respectively. The first column of Table 1 reproduces the true values, while the 
second column shows the estimates of O obtained from lv, the vertical line which goes 
exactly through the center of the image plane. The third, fourth, and fifth columns 
contain the results obtained from a vertical line which is 2, 4, and 8 pixels away from 
lv respectively (the values in the third column were used in the examples of Figure 1). 
From Table 1 it can easily be seen that the estimation of the angular velocity which 
can be obtained from Eq. 9 is rather stable, accurate, and nearly independent of the 
amount of rotational component. Equivalent results were obtained in many other 
similar experiments. 
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Figure 1: Depth estimates from noise corrupted synthetic data. (a) and ( b) Synthet
ically generated optical flows which reproduce the motion of a slanted planar surface 
which is moving toward the image plane. See the text for numerical details. The flow 
vectors, which were corrupted by zero mean white Gaussian noise with standard de
viation equal to 10% of the maximum value, are subsampled for better visualization. 
( c) Top view of the subsampled 3D reconstruction obtained by computing depth by 
means of Eq. 10 (filled circles) and Eq. 12 (open triangles) along the line of (a) and 
(b) respectively. The slanted straight lines mark the true location of the moving 
plane. The mean of the relative errors in the reconstruction of depth were fv = .10 
and fu = .59 for the estimates obtained from the vertical and horizontal component 
respectively for ( c), and fv = .12 and fu = .84 for ( d). The estimates of the angular 
velocity which were used are shown in the third row of Table 1. 
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4.2 Real images 

Let us now present an experiment on a sequence of real images. Figure 2a shows 
a frame of a sequence of 17 frames in which the viewing camera is translating and 
rotating toward the viewed scene on a rail. The camera motion was controlled by 
a linear stepping motor and the motion parameters were n = 0.05° / frame and 
T = 5.08cm/ frame. The scene consists of a piece of furniture on the left part of the 
image, a table in the bottom and bottom-right part, and a wall in the background. 
The sharp depth discontinuity between the wall and the piece of furniture was nearly 
2.9m, while the distance between the wall and the camera, at the first frame of 
the sequence, was nearly 7 .Sm. The presented experiment may appear deceptively 
simple. In fact, in a sufficiently small time interval, due to the constraint of planar 
motion and the particular position of the viewing camera on the moving vehicle, the 
experiment describes a typical motion. 

Figure 2b show the optical flow associated with the third frame of the sequence 
and computed according to the algorithm described in [12]. Table 2 shows the 
angular velocity estimated over the sequence by means of Eq. 8 and assuming the 
optical center in the image center. As it can easily be seen from Table 2 the estimates 
are consistently very good throughout the entire sequence. Since the method runs at 
a few hertzs on a SPARC workstation ( computation of the horizontal component of 
the optical flow over the vertical axis included), it is possible to measure the amount 
of the observed rotation, or control the heading of a mobile vehicle without the need 
of dedicated hardware. 

Figure 2c and d show the 3D reconstructions which were obtained by using the 
vertical component v of the optical flow along the two horizontal lines superimposed 
to the flow of Figure 2b at the third and tenth frame respectively. Correctly, the 
depth discontinuity is detected at the lower horizontal lines (filled circles) but not 
at the higher horizontal lines ( open circles). Similar estimates were obtained with 
the remaining frames. Qualitatively, the results are in very good agreement with the 
distances directly measured in the scene. Quantitatively, the depth estimate is not 
always accurate mainly because the method which has been used for the computation 
of optical flow does not perform equally well over different ranges of image motion 
and texture. Similar results have been obtained in two other image sequences of 
comparable structural complexity. 

5 Conclusion 

In this report, the problem of passive navigation has been restricted to a particular 
but interesting case. A simple analysis h~s shown that if the moving vehicle is 
moving on a planar surface, an appropriate positioning of the viewing camera with 
respect to the vehicle makes it possible to recover all the relevant visual information 
by computing 1D optical flow. Apart from the assumption of planar motion, the 
presented analysis was not based on further hypotheses on the viewed motion, nor on 



(a) (b) 

(c) (d) 

- 7.65 m 
. . .. • .. . .. • • • I • • • • 

·· \:· · - 4.90 m •• .. 'I •• • 

-"'! .. , · - 4.75 m 

image plane image plane 

Figure 2: The recovery of motion and structure from real images. (a) One frame of a 
sequenc in which the viewing camera was translating along th - optical axis and ro
tating around a vertical axis orthogonal to the ground plane. The motion parameters 
were T = (0, 0, 5.08)cm/ frame and n = (0 , .05, 0) 0 

/ frame. The sequence consisted 
of 17 frames grabbed by means of a Panasonjc BL202 camera and a Datacube Djgi
max board. Each image consists of 480 x 512 pixels. The focal length was 745 pixels. 
The background wall was at 7 .Sm from the camera and the piece of furniture to the 
left was 4.9m at the beginning of the sequence. (b) The subsampled opt.ical flow rel
ative to the frame of (a) computed accorcling to th algorithm described in [12]. (c) 
Top view of the subsampled 3D reconstruction of (a) from the vertical component v 
of the optical flow of the third frame of the sequence along the lower line of (b) (filled 
circles) and the upper line of (b) (open circles). (d) Top view of the subsampled 3D 
reconstruction of (a) from the vertical component v of the optical flow of the tenth 
frame of the sequence along the same lines of ( c). The angular velocity estimates are 
shown in Table 2. 
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frame n [ deg/frame] 

3 .0494 ± .0003 
4 .0490 ± .0002 
5 .0493 ± .0003 
6 .0500 ± .0003 
7 .0502 ± .0002 
8 .0494 ± .0002 
9 .0497 ± .0002 
10 .0481 ± .0002 
11 .0501 ± .0001 
12 .0497 ± .0002 
13 .0494 ± .0001 
14 .04 79 ± .0001 
15 .0508 ± .0001 

Table 2: Estimates of the angular velocity over the sequence of Figure 2. Even if the 
optical flow was computed at each point of the image plane, the angular velocity was 
estimated by averaging the horizontal component of the flow at only 20 locations 
equally spaced along the vertical line lv, A finer sampling would not improve the 
accuracy because the flow estimates are spatially correlated (12]. The errors are the 
standard errors in the assumption that the 20 flow estimates are uncorrelated. 
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the 3D structure of the viewed scene. Experiments on synthetic data and sequences of 
real images indicate that ID optical flow (13] can be used effectively for the recovery of 
the viewed motion and structure. The horizontal component of the optical flow along 
the vertical line through the center of the image is well-suited for the estimation of 
the angular velocity, while the vertical component of the optical flow is better suited 
for the estimation of the generalized time-to-collision, i.e., the ratio between the 
viewed depth and the translational speed. Therefore, in the case of planar motion, 
the computation of the 2D optical flow over the entire image plane can be probably 
avoided and it should be possible to develop a simple optical flow based method for 
passive navigation on conventional hardware. 
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