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Abstract 

In this paper we consider the mun rical solution of initial value delay-differential
algebraic equations (DDAEs) of retarded and neutral types, with a structure corre
sponding to that of Hessenberg DAEs. W give ~onditions under which the DDAE 
is well-conditioned, and show how th DDAE is related to an underlying retarded or 
neutral delay-ODE (DODE). We present convergence results for linear multistep and 
Runge-Kutta methods applied to DDAEs of index 1 and 2, and show how higher
index Hessenberg DDAEs can be formulated in a stable way as index-2 Hessenberg 
DDAEs. 

•The work of this author was partially supported under NSERC Canada Grant OGP 0004306. 
fThe work of this author was partially supported by ARO, contract number DAAL03-89-C-0038 

with the University of Minnesota Army High Performance Computing Research Center, and by 
ARO contract number DAAL03-92-G-0247, DOE contract number DE-FG02-92ER25130 and NIST 
contract number 60NANB2D1272, 

1 



1 Introduction 

R~cently there has been much work on the numerical solution of systems of differential
algebraic equations (DAEs) (9], (16]. These systems, which are given most generally 
as F( t, y, y') = 0, arise in a wide variety of scientific and engineering applications in
cluding circuit analysis, computer-aided design and real-time simulation of mechanical 
( multi body) systems, power systems, chemical process simulation, optimal control, 
etc. In some situations, for example in real-time simulation, where time delays can 
be introduced by the computer time needed to compute an output after the input 
has been sampled, and where additional delays can be introduced by the operator
in-the loop [13], differential equations with delays must be included in the model. 
Delays arise also in circuit simulation and power systems, due for example to inter
connects for computer chips [18] and transmission lines (20], and in chemical process 
simulation when modeling pipe flow [21]. Although there is an extensive literature 
on the mathematical structure of delay-ODEs (see [8] for an introduction) and on 
numerical methods for some of these systems ( a brief introduction is given in [15]), 
we are aware of very little work on the structure of singular (DAE) systems with 
delays (10, 11, 12], and of virtually no work on the numerical solution of these sys
tems. Delay-DAE (DDAE) systems arise when DAE systems from circuits or power 
systems or mechanical or chemical systems are subject to delays. It is the purpose 
of this work to study the conditioning of some of these systems and their numerical 
solution. 

The index of a DAE is a measure of the degree of singularity of the system and 
is widely regarded also as an indication of certain difficulties for numerical ODE sys
tems [9]. DAEs of higher-index {index > 1) are in a sense ill-posed. Fortunately, most 
DAEs arising in applications are in semi-explicit form, which allows more opportu
nity for developing general-purpose methods, and many are in the further restricted 
Hessenberg form 1 [9]. Still, even in this restricted form DAEs of index ~ 2 present 
many challenges to designers of numerical methods [9]. The index-one semi-explicit 
DAE is given by 

x' J(x,y) 

0 - g(x,y) 

where t is nonsingular. 

The index-2 Hessenberg DAE is given by 

x' = f(x, y) 

(I.la) 

(I.lb) 

(1.2a) 

1 An alternative for the name Hessenberg form is a pure form of a certain index: such a DAE 
contains no subsystems of a lower index with respect to the algebraic variables. 
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0 g(x) 

where~* is nonsingular. 

The Hessenberg index-3 DAE is given by 

where ah£1l.§.1 is nonsingular. 
8:r: 8y 8z 

y' - f(x, Y, z) 
x' - g(x, y) 

0 - h(x) 

(1.2b) 

(1.3a) 

(1.3b) 

(1.3c) 

Semi-explicit index-one systems arise in a wide variety of applications including 
most circuit analysis and power systems problems. Some examples of Hessenberg 
index-two systems are modeling of incompressible fluids (following spatial discretiza
tion), and some index-2 formulations of mechanical systems (3]. Hessenberg index-3 
DAEs arise in the simulation of mechanjcal systems and in optimal control. For a 
variety of reasons, systems of index-3 and higher have proven to be very difficult to 
solve numerically [9], and much recent work has focused instead on reformulating 
these systems as index-2 or lower. Hence for our numerical results we will focus on 
delay-DAEs of index one and two in pure (Hessenberg) form. 

A great deal is known about the structure of delay-ODEs [8], [17]. These systems 
are classified by t hefr type. For a scalar delay-ODE (DODE) 

ax'(t - 1) + bx'(t) + cx(t - 1) + dx(t) = f(t) 

the system is of retarded type if a = 0, b =/- 0, of neutral type if a =f 0, b =/- 0, and of 
advanced type if a=/- 0, b = 0 and d =f 0. One of the important attributes of the type 
is that it classifies how DODEs propagate discontinuities to future delay-intervals 
(assuming an initial value problem) . Discontin uities in retarded systems becom 
smoot her in each successive interval, whereas discontinuities in advanced systems 
become less smooth in each successive interval. Discontinuities in neutral systems are 
carried into successive delay intervals with the same degree of smoothness. Hence, 
we wish to study separately DDAEs which are equivalent to retarded and neutral 
DODEs, but to avoid altogether those which lead to DODEs of advanced type. 

In this paper we study delay-DAEs (DDAE) of retarded type which are extensions 
of Hessenberg form. These DDAE systems are given by 2 

x' = J(x,x(t-1),y,y(t-1)) (1.4a) 

2We use an autonomous form for the nonlinear systems considered, without loss .of generality, 
simply to keep the notation concise. 
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0 - g(x,x(t-1),y), 

( where ~ is nonsingular) for index-one, 

x' - f(x,x(t-1),y) 

0 = g(x), 

(where ~* is nonsingular) for index-two and 

y' - f(x,x(t-1),y,y(t-1),z) 
x' f(x,x(t-1),y) 
0 - h(x), 

(1.4b) 

(1.5a) 

(1.5b) 

(1.6a) 

(1.6b) 

(1.6c) 

(where :;~Mis nonsingular) for index-three. The delays are allowed only in certain 
variables as described above, because allowing delays in the other variables/equations 
leads to equations of neutral or advanced type (see Appendix A). For some interesting 
examples of DDAEs, and how some DDAEs which "look like" they should be of 
retarded type but are actually neutral or advanced-type, see Campbell [11]. 

We further consider cases where gin (1.4b) is allowed to depend on y(t - 1) and 
where g in (1.5b) is allowed to depend on x( t -1 ). These extensions lead to equations 
of a neutral type, as explained in Appendix A. 

In this paper we investigate the conditioning and convergence of numerical meth
ods for initial-value problems for retarded Hessenberg DDAEs (1.4), (1.5), (1.6) and 
their extensions to neutral cases. In Section 2 we define a delay-essential-underlying
ODE (DEUODE) for the DDAE and show that the DDAE is well-conditioned when 
the DEUODE is stable. In Section 3 we investigate the convergence and order for 
numerical methods such as backward differentiation formulae (BDF) and projected 
implicit Runge-Kutta (PIRK) [2] applied to index-one and index-two retarded and 
neutral Hessenberg DDAEs. In Section 4 we show how to reformulate a higher-index 
Hessenberg DDAE so that the numerical method is stable for well-conditioned prob
lems. 

2 Conditioning for higher-index delay-DAE 

In this section we first consider the DDAE of order m 

x(m) = f(z(~(t)), z(x(t - 1)), y) (2.la) 
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0 - g(x) (2.lb) 

where f: U1-+ ½, 9: U2-+ ½, U1 ~ nmn11; X nmn:r; X nny, ½_ ~ nnz, U2 ~ nnz, 
½ ~ nny, 

(2.2a) 

(2.2b) 

and 9xfy is assumed to be nonsingular for all t, 0 :St :S ti, This system has index-(m+ 
1) (ignoring the delay-terms) and includes the Hessenberg index-2 and an important 
subset of the higher-index Hessenberg delay-DAEs from Sectjon 1. The delay, or 
lag, has been normalized to 1, which can be done without loss of generality for any 
constant (positive) delay. We assume that the functions f. and g are sufficiently 
smooth, and that the initial values for x on [-1,0] are given such that x<m) exists on 
[o,t1]. 

Standard arguments using Newton's method and the Newton-Kantorovich Theo
rem apply here as in [2], so we concentrate on the linear (or linearized) case 

m m 

x(m) - L AjZj + L Djzj(t - 1) +By+ q 
j=l j=l 

0 - Cx+r 

(2.3a) 

(2.3b) 

where Aj, B and C are smooth functions oft, 0 :S t :S t 1 , A;(t) E R'1"',xn:s: B(t) E 
Rn,,,xny, C(t) E RnyXny, ny :S nx , Dj(t) E Rnrrx n,. and CB is nonsingular for ~ach 
t. AU of these matrix functions, together with their derivatives up to order m, are 
assumed to be uniformly bounded in norm by a constant of moderate size. The 
inhomogeneities q(t) E Rn:r and r(t) E Rny are assumed to be m-times differentiable. 
Above and henceforth, when we omit the argument of a function it is understood to 
bet (so delay arguments are always specified). 

Now, to derive a stabiljty result for this system note that, as in [2], there exists 
a smooth, bounded matrix function R(t) E R(n,.-ny)Xnz whose linearly independent, 
normalized rows form a basis for the null space of BT ( R can be taken to be orthonor
mal). Thus, for each t, 0 :St :S t1, 

RB=O (2.4) 
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We assume that there exists a constant I<1 of moderate size such that 

(2.5) 

uniformly int, and obtain (Lemma 2.1 in (2]) that there is a constant /(2 of moderate 
size such that 

(2.6) 

The constant I<2 depends, in addition to K1, also on IIBII, IICII and IIRII- Let 1(3 be 
such that 

j = 0,1, ... ,m 

Define new variables 
u=Rx, O$t$t1 

Then, using (2.3b), the inverse transformation is given by 

x = ( ~ )-I ( }!r ) = Su - Fr 

where S(t) E nnxX(nx-n!I) satisfies 

RS= I, 

and 

CS= 0 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

By our assumptions and (2.6) this mapping is well-conditioned. Both Sand Fare 
smooth and bounded. The first m derivatives of Sand Fare bounded by a constant 
involving /{2 and /(3 • Taking m derivatives of (2.8) and multiplying (2.3) by R yields 

u<m) = (Rx)(m) = t [RAj + (.: ) R(m-j+I)l Zj + f RDjZj(t - l) + Rq (2.12) 
J=l J l J=l 

Further, using m-1 derivatives of (2.9) we obtain the delay-essential underlying ODE 
(DEUODE) 

u(m) f [RAj + (.: ) R(m-i+l)l [(Su)(j-l) - (Fr)(j-t)] 
J=l J l 

m 

+ L RDj [(Su)(j-l)(t - l) - (Fr)(j-t)(t - 1)] + Rq (2.13) 
j=l 

For a unique solution of (2.3) one needs to impose m(nx - ny) initial conditions 
on u and its derivatives, on the interval (-1, 0). Assuming that B, C and r can be 
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defined on (-1, OJ and that the original initial conditions on z, z(t) = /3(t) on [-1, O], 
satisfies the constraint 

0 = C(t)x(t) + r(t) 

and its m - 1 derivatives on (-1, OJ ( this is a consistency requirement on the initial 
conditions), we can obtain u and its derivatives by differentiating (2.8). If the delay
ODE (2.13) is stable 3 then a similar conclusion holds for the DDAE. We obtain the 
following theorem: 

Theorem 2.1 Let the DDAE (2.3} have smooth, bounded coefficients, and assume 
that (2.5) holds and that the underlying problem for (2.13} is stable. Then there is a 
constant K of moderate size such that 4 

llzll < K (11qll + 1 llrU>11 + 11/311) 

IIYII < K (11q ll + t. llru> 11 + 11/311) 

(2.14a) 

(2.14b) 

Proof: The proof is similar to .that of Theorem 2.1 m (3], and can therefore be 
omitted here. 

Remark 

The DEUODE (2.13) is non-unique. For any nonsingular, smooth, bounded trans
'formation T(t) E n,(nx-ny)x(n.,-n11 ), the transformed R(t) given by 

R+-TR (2.15) 

still satisfies (2.4), (2.6) and (2. 7). Hence R is unique only up to such a transformation 
and, correspondingly, so is the DEUODE. However, a transformation of the variables 
u in (2.8) corresponding to (2.15) does not alter the boundedness (or lack thereof) 

3 For these purposes, the DODE is said to be stable, or well-conditioned, if the solution can be 
bounded by a constant of moderate size times the norm of the right-hand side. For ODEs, the 
means for making this bound is the Green's function. For DODEs, the analogous bound is obtained. 
by representing the solution in terms of an integral of a matrix function which satisfies an adjoint 
equation, times the right hand side (see e.g. [8], Chapter 10). If the adjoint function can be bounded 
by a constant of moderate size, then the DODE is well conditioned. 

4Throughout this paper we use the following notation: Let I· I be the Euclidean vector norm. For 
a matrix A we denote the induced matrix norm by IIAI I- For a function u(t), 0 $ t $ t1, we denote 
the corresponding max function norm by !lull := max{lu(t)I, 0 $ t $ti} . 

7 



of the adjoint function, and hence the stability properties are properly reflected in 
Theorem 2.1. 

Turning to the delay-index-one system 

x' 

0 

f(x, x(t - 1), y, y(t - 1)) 
g(x,x(t- l),y,y(t-1)), 

(2.16a) 

(2.16b) 

the assumption that gy is nonsingular allows one to solve the constraint equations 
(2.16b) for y(t) (using the implicit function theorem), yielding 

y(t) = g(x(t), x(t - 1), y(t - 1)) (2.17) 

If y(t - 1) does not appear in (2.16b), and therefore not in (2.17) either, then 
substituting (2.17) into (2.16a) we obtain the delay-ODE 

x' = f (x, x(t - 1),g (x, x(t -1)) ,9 (x(t -1), x(t - 2))) (2.18) 

Thus, the DDAE is stable if the DODE (2.18) is stable. Note that if all the delay terms 
are present in this retarded DODE, then the initial conditions need to be defined for 
x on [-2,0]. 

In the more general case, (2.17) represents a recursion for y. Solving this recur
sion and substituting into (2.16a) we obtain a delay-ODE which now has the delays 
1, 2, ... ,j for j $ t < j + 1. Again the DDAE is stable if the DODE is stable, but 
now no smoothing of boundary discontinuities occurs - the DODE is of a neutral 
type. The well-conditioning of the DDAE in this case depends on the stability of 
the recursion (2.17) and on the number of delay-intervals. For additional details, see 
Appendix A. 

Finally, consider the following extension of (2.3) to neutral cases for m = 1, 

x' 

0 

Ax + Dx( t - 1) + By + q 

Cx + Ex(t - 1) + r 

(2.19a) 

(2.19b) 

(see Appendix A). We still have (2.4) - (2.8) holding, but now the inverse transfor
mation (2.9) is replaced by 

x=Su-FEx(t-1)-Fr (2.20) 

This is a recursion for x in terms of u, much as (2.17) was a recursion for y in terms of 
x. (Note that in both of these neutral cases, ny additional initial interval conditions 
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are needed: in case of (2.17) on y, and here on all of x.) The obtained DEUODE for 
u is a delay ODE of neutral type, involving many retarded delays. If it is stable, and 
if the back-transformation recursion (2.20) is well-conditioned, then Theorem 2.1 still 
holds. 

3 Convergence of numerical methods fqr retarded 
and neutral DDAEs 

In this section we investigate numerical methods such as BDF and (projected) implicit 
Runge-Kutta applied to Hessenberg index-1 and index-2 DDAEs of retarded and 
neutral type. 

3.1 BDF 

3. 1. 1 Index-one 

Consider the index-1 semi-explicit retarded DDAE, 

x' 

0 

f (x, x(t - 1), y, y(t - 1)) 
g (x, x(t - l), y) 

(3.la) 
(3.lb) 

where t is n onsingular. We assume that the system (3.1) is well-conditioned. Recall 
that the underlying DODE is given by (2.18). We wish to discretize (3.1) using a 
BDF scheme of order k, 1 ~ k ~ 6, denoted BDF(k). The approximate solution 
thus obtained at a sequence of mesh points with a maximum step size h is denoted 
xh, Yh• For the retarded values of x and perhaps y which may not fall on previous 
mesh points, we use local interpolants c.px and c.pY. Assume that these interpolants 
are of order k,, i.e., llc.pxv - vii = 0(hk;), llc.pYv - vii = 0(hk;) for any sufficiently 
smooth v(t), and use the shorthand c.px for c.pxxh and c.pY for c.pYYh• We suppose that 
x E CP[O, t1], y E CP[O, t1] and x(P+l) exists and is bounded on [O, t1]. 

·Theorem 3.1 Consider the k th -order BDF method applied to the index-1 semi-explicit 
retarded DDAE {3.1), where x(tn - 1), y(tn - 1) are approximated by k!h-order lo
cal interpolants of xh, Yh satisfying ki ~ k, and using k starting values accurate to 
0( hmin(p,k)). Then this method converges to 0( hmin(p,k)) . Furthermore, if the delayed 
values of y are computed, instead of by an interpolant through y, by solving the con
straint equation {3.1 b) for delayed values of y in terms of delayed values of x and its 
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interpolant, then the numerical solution of the DDAE coincides with the solution by 
BDF of the u_nderlying DODE (2.18). 

Proof: The solution to (3.1) by BDF(k) satisfies 

PXn 
h 

0 -

f(xn,t.px(tn -1),Yn,'PY(tn -1)) 

g(xn,t.px(tn -1),Yn) 

(3.2a) 

(3.2b) 

It is obvious that the approximate solution exists, for h sufficiently small, for both 
options of dealing with y. 

The 'furthermore' part of the theorem is immediate: if y(tn -1) is approximated, 
instead of directly by an interpolant, by requiring that the constraint be satisfied, 

(3.3) 

then solving for y(tn - 1) in (3.3) and substituting into (3.2), we obtain exactly 
BDF(k) applied to the underlying DODE (2.18). 

If we run a separate interpolant through y, the true solution satisfies 

y(tn),t.pYy(tn·-1) + O(hmin(p,k))) + O(hmin(p,k)) 

0 - g (x(tn),t.pxx(tn -:--1) + O(hmin(p,k)),y(tn)) 

(3.4a) 

(3.4b) 

Subtracting (3.4) from (3.2) and letting e~ = Xn - x(tn), e~ = Yn - y(tn), we 
obtain 

h 
(3.5a) 

+Fft.pYeY(tn - 1) + O(hmin(p,k)) + 'T/1 

0 - G~e~ + Gft.pxex(tn - 1) +age~+ O(hmin(p,k)) + 'T/2 (3.5b) 

h F.x ~ px ----2.L F.Y ~ pY ---21.._ t d h' h were o = 8x(t)' 1 = 8x(t-l )' o = 8y(t)' 1 = 8y(t-t)' e c., an 'T/1, 'T/2 are ig er 
order terms in e~, e~, etc. Solving in (3.5b) for e~, we obtain 



At the delayed time tn - 1, the interpolant of eY satisfies 

where{) is a local approximation operator, accurate to O(hmin(p,k)) at least. Note that 
{) first passes an interpolant through values of eY at mesh points close to tn - 1. For 
each of these values, the expression (3.6) at previous mesh points is further used. 

Substituting (3.6) and (3. 7) into (3.5a), we obtain 

pe~ 

h 
Fte~ + F{t.pxex(tn - 1) 

-FJ'(G~t1 (G~e~ + Gfcpxex(tn - 1)) 
-FfrJ(ex(tn - 1), ez(tn - 2)) 

+O(hmin(p,k)) + 0(1J1) + 0(1J2) (3.8) 

Thus the method approximates x locally to O(hmin(p+l ,k+t)). By zero-s'tability of 
BDF (k ::; 6), (3.8) approximates x globally to O(hmin(v,k)). Using (3.6) gives also the 
desired result for y. □ 

Remark 

The proof applies also to any zero-stable linear multistep method of order k using 
local kth order interp9lants, where the constraints are enforced at every step, using 
(3.2b ). 

We can prove a similar result for semi-explicit neutral index-one systems, 

x' - f(x,x(t-1),y,y(t-1)) 

0 - g(x,x(t-1),y,y(t-1)) 

We assume that the system (3.9) is well-conditioned. 

(3.9a) 

(3.9b) 

Corollary 3.1 Consider the kth -order BDF method applied to the index-1 semi
explicit neutral DDAE {3.9), where x(tn -1), y(tn -1) are approximated by kfh-order 
local interpolants of xh, Yh satisfying ki ~ k, and using k starting values accurate to 
O(hmin(p,k)). Then this method converges to O(hmin(p,k)). 

Proof: The proof follows almost exactly the proof of Theorem 3.1. In place of (3.6) 
we have a recursion for e~ which is stable whenever the DDAE is stable. Solving 
this recursion for e~ and substituting into the equivalent of (3.5a) yields a recursion 
which is similar to (3.8) except that it involves past values of ex at all the previous 
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delay-intervals. Since this recursion is the solution by BDF of the linearized DODE, 
it is stable and the result follows. D 

• As in the retarded case, the proof applies also to any zero-stable multistep 
method of order k using local kth order interpolants, where the constraints are 
enforced at every step, as in (3.9b ). 

• We have assumed here that the number of delay-intervals is kept fixed while 
the number of mesh points grows. 

3.1.2 Index-two 

We consider retarded Hessenberg index-two DDAEs, 

x' - J(x,x(t-l),y) 

0 - g(x) 

(3.10a) 

(3.10b) 

where tU is nonsingttlar. We discretize this using a BDF(k) scheme with a local 
interpolant r.p for the delay values in x. As before we assume that the interpolant 
order satisfies ki 2: k, and denote r.pxh by r.px. We assume that x E CP[O, t1] and that 
x(P+I) exists and is bounded on [O, t1]-

Theorem 3.2 The BDF(k) method applied to retarded Hessenberg index-2 DAE sys
tems (3.10), with the interpolant r.p used to approximate the delayed values of x, 
·converges to 0( hmin(p,k)). 

Proof: The BDF(k) method applied to (3.10) reads 

f (xn,'Px(tn - l);Yn) 

g(xn) 

(3.lla) 

(3.llb) 

Assuming that the initial conditions are consistent and that the starting values for 
BDF are accurate, the approximate solution clearly exists for h > 0 sufficiently small. 
The true solution satisfies 

- f (x(tn),r.px(tn -1) + O(hmin(p,k)),y(tn)) + O(hmin(p,k)) (3.12a) 

0 - g(x(tn)) (3.12b) 
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Subtracting (3.12) from (3.11) and letting e! = Xn - x(tn), e~ = Yn - y(tn), we find 

h 
0 -

(3.13a) 

(3.13b) 

where 7]1, 7]2 are higher order terms in e3
\ eY. Analogously to the derivation of 

the DEUODE, let Rn be such that RnFJ (x(tn), y(tn)) = 0. Define Un = Rnxn, 
u(tn) = Rnx(tn)· Thus e~ = Rne!. Using (3.13b), we have also e~ = Sne~+0(1J2), for 

( 
R )-1 Go =(SF). 

Multiplying (3.13a) by Rn and changing variables to e~, we obtain 

k 

k 

RnAnSne~ + (R~Sn + 0(h)) L iaie~-i 
i=l 

+ (RnDnS(tn - 1) + 0(h)) cpe11 (tn - 1) 
+0(hmin(p,k)) + 0(1J1) + 0(1J2) (3.14) 

Noting that I:iaix( tn-d = x( tn) + 0( hk) because ai are the BDF( k )-coefficients (in 
i=I 

contrast to Theorem 3.1, here we are using the fact that the formula is BDF), we see 
that (3.14) is a zero-stable kth-order discretization of the DODE 

(3.15) 

which is the same as the error equation which is obtained by solving the DEUODE 
directly by BDF. 

We have assumed that this delay-EUODE is well-conditioned and that its values 
on the initial delay-interval are 0( hmin(p,k)). Hence its true solution is 0( hmin(p,k)). 

Thus, its numerical solution by (3.14) is 0(hmin(p,k)). Note that for moderate stepsizes, 
stability depends on the size of the term R'S, as in the (non-delay) DAE case [3]. We 
will see in Section 4 how to formulate the DDAE system so that this term is not large. 
Finally, nonlinear convergence follows by arguments similar to the BDF analysis in 
[9]. D 

Now, consider the class of neutral index-two systems given by 

x' 

0 

f(x, x(t - 1), y) 
g(x, x(t - 1)) 

13 

(3.16a) 

(3.16b) 



Corollary 3.2 The BDF method applied to the class of neutral Hessenberg index-2 
DDAE systems (3.16), with the interpolant c.p used to approximate the delayed values 
of x, converges to O(hmin(p,k)). 

Proof: The proof follows exactly along the lines of the proof of Theorem 3.2. In 
place of the back-transformation e~ = Sne~ + 0(772 ) we have instead the recursion 
corresponding to (2.20), which is solved for x in terms of u. □ 

3.2 Runge-Kutta methods 

3.2.1 Index-one 

We are again considering the index-one retarded DDAE 

x' 

0 

f (x, x(t - 1), y, y(t - 1)) 

g(x,x(t-l),y) 

(3.17a) 

(3.17b) 

where 8g/8y is nonsingular, and we again assume that x E CP[0, t1] and x(P+l) exists 
and is bounded on [O, t1], · 

Define the s-stage implicit Runge-Kutta method as in [9], applied to (3.17) by 

0 i = 1,2, ... ,s 

where 
8 

xi = Xn-I + h L aijx; 
j=l 

(3.18a) 

(3.18b) 

(3.19) 

and the interpolaQ.ts c.px and c.pY have the properties as described in Section 3.1.1. They 
are given, for example, by continuous embedded formulas of order ki ( see for instance 
[15], Section 11.5) at the past times, and depend on past intermediate solution and 
derivative approximations for x and past intermediate solution approximations for y. 

The numerical solution is advanced by 

8 

Xn - Xn-I + h Lbix: 
i=I 

14 

(3.20a) 

(3.20b) 



We note that in the (non-delay) DAE case, these methods are equivalent to solving 
the underlying ODE directly. Hence, they retain for the DAE all the properties they 
possess for ODEs such as order, stability, etc. 

However, for DODEs the order of these methods often reduces (even when the 
solution is smooth, say p 2:'.: kd) from the (nonstiff, superconvergence) ODE order 
O(hkJ) to O(hk.+i ), where ks is the stage order of the method, ks s; kd. A proof is 
given in Appendix B (cf. [7, 6)). This is in contrast to BDF schemes, which have no 
extra accuracy to lose so no order reduction occurs. For instance, in cas of a Radau 
formula, which corresponds to Radau collocation, th order may in general drop from 
kd = 2s - 1 to ks+ 1 = s + 1 (except for the backward Euler case, s = 1, for which 
the order remains kd = ks = 1). 

For the special case of piecewise polynomial collocation ( cf. [2]), it is natural to use 
the same piecewise polynomial solution as the interpolant <p at retarded arguments. 
This in itself does not improve the loss of accuracy due to order reduction, unless 
the step sizes are chosen as follows: Assuming that t J = J is an integer (i.e. there is 
an integral number of delay intervals), use the same sequence of steps in each delay 
interval (j -1,j], j = 1, ... , J, with the last step ending at the point j. (Making the 
delay interval ends part of the global mesh is a good idea anyway, because there is 
a possibility for a lower solution discontinuity there.) We call a mesh so constructed 
7r*. 

Theorem 3.3 Given an s-stage Runge-Kutta method {3.18)-(3.20) applied to the 
index-1 semi-explicit retarded DDAE {3.17}, with a stage order ks, an ODE order 
kd 2:'.: ks and an interpolation order ki 2:'.: ks, the following hold: 

1. The method is convergent and globally accur~te to order min(p, ks+ l, kd)-

2. If the delayed-values of y are computed by solving the constraint equation (3.17b) 
for y in terms of delayed-values of x and its delayed-approximation, then the 
numerical solution coincides with the solution by the delay-Runge-Kutta method 
of the underlying DODE {2.18). 

3. Furthermore, if a mesh 1r* is used, if x( kd) exists on the subintervals of 1r*, and 
if the delayed x-values are computed using corresponding values of Xi at the 
appropriate lagged mesh subinterval, then the method converges to order kd. 

Proof: For the first claim, we outline the proof which is a straightforward extension 
to the delay case of known DAE results (see for example [2]). Subtract from (3.18) 
and (3.19) the corresponding expression for Ef' in terms of e!_1 . Substitute this into 
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the error equation corresponding to (3.20), to obtain the recurrence which propagates 
the error in x. Note that this recurrence agrees with the recurrence which propagates 
the errors for the delay-RI( method applied to the delay-underlying-ODE (2.18), up 
to terms of order O(hmin(p+I,k,+z,kd+1)) + O(hmin(p+l ,ki+1l) . 

The second claim follows directly, as in the BDF case. 

The last claim is obtained from a corresponding result for DODEs (see Appendix 
B). The DODE for x is written as an ODE for the variables x = (x1, x2 , ••• , XJ ), 
where 

X1 ( T) - x(r) 

Xz(T) - x(r + 1) 

X3(T) x(T +2) 

XJ(T) x(r+J-1) (3.21) 

0 ~ T ~ 1. Given the mesh 1r*, the application of the Runge-Kutta method to the 
DODE involves no interpolation and coincides with the same scheme applied to the 
ODE for (3.21 ). The convergence results for the ODE are therefore inherited by the 
method for the DDAE. o 

The results extend immediately to the neutral index-1 systems (3.9). 

Corollary 3.3 Given an s-stage Runge-Kutta method (3.18)-(3.20} applied to the 
index-1 semi-explicit neutral DDAE (3.9), with a stage order ks, an ODE order kd ~ 
ks and an interpolation order ki ~ ks, the following hold: 

1. The method is convergent and globally accurate to order min(p, ks+ 1, kd)-

2. If a mesh 1r* is used, if x(kd) exists on the subintervals of 1r*, and if the delayed 
x-values are computed using corresponding values of Xi at the appropriate lagged 
mesh subinterval, then the method converges to order kd. 

Proof: The proof follows directly along the lines of the proof of The9rem 3.3, with 
the extra delay terms handled similarly to the proof of Corollary 3.1. D 

3.2.2 Index-two 

Here we consider the projected implicit RK methods (PIRK) [2] applied to the re
tarded index-two Hessenberg DDAE 

x' = J(x,x(t-1),y) 

16 

(3.22a) 



0 - g(x) (3.22b) 

where ~~ is nonsingular. As before, we assume that x E CP[O, ti] and x(P+I) exists 
and is bounded on [O, t1]-

The PIRK method applied to (3.22) is given by 

f(Xi, cpx(ti - 1), ~) 

0 g(Xi), i = 1, 2, ... , s 

with the intermediate values Xi defined by 

s 

xi = Xn-1 + h L aijx; 
j=l 

and the solution advanced by 

s 

Xn-1 + h L bix: + G(xn)An 
i=l 

0 

(3.23a) 

(3.23b) 

(3.24) 

(3.25a) 

(3.25b) 

Again, we assume that cpx ( ti - l) is a ki-th order approximation to x ( ti - l), usually a 
continuous embedded formula which makes use of intermediate solution and derivative 
approximations which were computed near ti - 1, and use the shorthand cpx for cpxh, 
Then we have 

Theorem 3.4 Given a well-conditioned, retarded Hessenberg index-2 system (3.22) 
to be solved by the delay-P[RJ( method (3.23)-(3.25) where the delay-values in x are 
approximated locally to O(hk;), ki ~ ks, then 

1. The method converges with global order min(p, ks + 1, kd). 

2. The method is stable, with a moderate stability constant, provided that the 
DEUODE has a moderate stability constant, and the inverse transformation 
(2.20} is well-conditioned. 

3. Suppose the DDAE (3.22) is linear in y, the Runge-Kutta matrix (aiiH,i=l is in

vertible, and the method coefficients satisfy the conditions B( kd) : I::t1 bic7-1 = 
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k 

½fork= l, .. ,,kd, C(q): Lj=t aiic;-1 = =f; fork= l, ... ,q and i = l, ... ,s, 
and D(r) : Li=t bic7-1aii = ¥(1 - cj) for k = l, ... , r and j = 1, ... , s. Let 
kd ::; 2q + 1 and kd ::; q + r + l. If a mesh 7r* is used, if x(kd) exists on the 
subintervals of 7r•, and if the delayed x-values are computed using corresponding 
values of Xi at the appropriate lagged mesh subinterval, then the method con
verges to order kd, (We note that this gives superconvergence order for many 
methods, including collocation methods). 

Proof: The proof follows exactly along the lines of the proof of Theorem 3.1 in 
[2]. The delay forms are handled similarly to Theorem 3.2 of this paper. The extra 
accuracy with the special mesh is shown as in Theorem 3.3, with the DAE order-kd 
(superconvergence) results imported from [2] and [19]. D 

Remarks 

• Note that under the conditions when the construction of the mesh 7r* is possible 
there is an option of transforming the delay-DAE to a boundary value DAE, 
along the lines of (3.21). The order reduction arising for DODEs can then be 
avoided. (For a complete set of order conditions for the DAE, see [16].) But 
the size of the obtained DAE system grows with J and can be very large. This 
is particularly detrimental for IRK methods, the very ones whose high order is 
restored by this technique. The special mesh construction described above is 
often preferable. 

• Recall that a DODE, and therefore also a DDAE, can often have discontinuous 
derivatives at multiples j of the delay, even if the initial data and the functions 
in the DDAE definition are all smooth. For the DDAEs considered here which 
lead to retarded DODEs, a discontinuity in x'(O) leads to no worse than a 
discontinuity in x(j)(j-1) (or in x(j)(2j-2), in case that x(t-2) appears in 
(2.18)). Still, the global smoothness assumption suggests a possibly very low 
convergence rate pin Theorems 3.1-3.4. 

Fortunately, the situation can be improved, at least for the Runge-Kutta schemes, 
if a mesh which includes all of the first p ( or 2p) delay interval ends is used. 
That is so because if x E C[O, t1] then the degree p in the global smoothness 
assumption may refer to all points other than mesh points. (This is clearly true 
for a mesh 7r*, following the argument of conversion to ODE presented in the 
proof of Theorem 3.3 and in Appendix B. For the more general case, a standard 
finite-element-type argument is applied.) For a BDF( k) scheme the situation 
is somewhat more complicated, and a restart may be necessary for each of the 
first k (or 2k) delay-intervals. Alternatively for BDF(k), a lower order BDF 
( with smaller stepsize) may be used until the solution is sufficiently continuous. 
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The results of Theorem 3.4 can be extended for the class of neutral Hessenberg 
index-2 systems (3.16). The PIRK method is extended in an obvious way, where 
(3.23b) and (3.25b) are replaced by O = g(Xi,i.px(ti -1)) and O = g(xn,i.px(tn -1)), 
respectively. 

Corollary 3.4 Given a well-conditioned, neutral H essenberg index-2 system {3.16) 
to be solved by the delay-PJRJ( method (3.23)-(3.25) extended as described above, 
where the delay-values in x are approximated locally to 0( h k;), ki 2 ks, then 

1. The method converges with global order min(p, ks+ 1, kd), 

2. The method is stable, with a moderate stability constant, provided that the 
DEUODE has a moderate stability constant. 

3. Under the conditions of The~rem 3.4, part 3, if a mesh ·1r* is used, if x(kd) 

exists on the subintervals of 1r*, and if the delayed x-values are computed using 
corresponding values of Xi at the appropriate lagged mesh subinterval, then the 
method converges to order kd. 

Proof: The proof follows exactly along the lines of the proof of Theorem 3.4. The 
back-transformation is handled similarly to Theorem 3.2. □ 

We close this section with a numerical example. 

Example 

The following is a nonlinear, semi-explicit DDAE of index at most 2 

x' 1 
I 

X2 

x' 3 

0 

-
-

(1 + x2 - sin t)y +cost - (x 2(t - 8) - sin(t - 8)) 2 

cost+ x 2 (t - 8) - sin(t - 8) 
Y + (x2(t - 8) - sin(t - 8))2 

(x1 - sin t)(y - et) 

where 8 is a · (positive, possibly time-dependent) given delay. For the initial data 

there are two isolated, smooth solutions. 

• One solution is 

x1 = sin t + (et - 1), x 2 = sin t, x3 = et, y = et 

The linearized problem about the exact solution has index 1, so this 1s an 
instance of (3.17). 
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• The other solution is 

x 1 = sin t, x2 = sin t, X3 = 1, y = 0 

The linearized problem about the exact solution has index 2, as in (3.22). But 
elsewhere, the index may still be 1, so we implemented a program which adap
tively decides whether to project as in (3.25) or not ("not" means taking An = 0 
in (3.25a) ). 

In Table 3.1 we record maximum errors over O ~ t ~ 1 when running with Gauss
Legendre Runge-Kutta (i.e. collocation at Gaussian points). From Theorems 3.3 and 
3.4 we expect the errors to be O(h8+1), unless a mesh 71'"' (and in the index-2 case, a 
projected method) are used, in which case the order improves to O(h28

) errors in x 

at mesh points. 

The notation used in Table 3.1 is as follows: b denotes the delay: all results are 
for a uniform step size h chosen so that with b = .2 we have a mesh 7r"' whereas with 
8 = .21 we do not; 'sln' denotes the exact solution being approximated (this depends 
on the chosen value for approximating y(0)); errx denotes the maximum error over 
all components of x at mesh points jh, 0 ~ j ~ 1/h; ergx is likewise the "global" 
error on [O, 1] obtained using the collocation interpolant; ergy is the "global" error in 
y (the error in y at mesh points is not significantly different, unless an a-posteriori 
improvement is used for the index-I case). 

errx er x erg 
e- e- e-

.21 1 .025 1 . 72e-4 .16e-3 .34e-1 
.2 1 .1 3 .78e-11 .87e-8 .28e~5 

.21 1 .1 3 .78e-10 .87e-8 .28e-5 
.2 2 .025 1 no .66e-4 .66e-4 .52e-4 

.21 2 .025 1 no .66e-4 .66e-4 .52e-2 
.2 2 .025 1 yes .22e-4 .13e-3 .52e-2 
.21 2 .025 1 yes .22e-4 .13e-3 .52e-2 
.2 2 .1 3 no .55e-8 .55e-8 .67e-6 

.21 2 .1 3 no .55e-8 .55e-8 .67e-6 
.2 2 .1 3 yes .78e~ll .lle-7 .19e-5 

.21 2 .1 3 yes .78e-10 .lle-7 .19e-5 

Table 3.1: Maximum solution errors 

The results recorded in Table 3.1 tend to confirm the higher order convergence 
estimates claimed in Part 3 of Theorems 3.3 and 3.4. The error at mesh points is 
larger for the case b = .21 (also for 8 = .2t2 which we tried as well), than for b = .2. 
For the general case (h = .21 and other values of 8 which we tried) it appears that 
the estimates in those theorems are somewhat pessimistic for this example. Note, 
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however, that we have chosen a smooth exact solution: in cases when the solution is 
less smooth at points jb (for a constant b), it makes a big difference if such points 
are part of the mesh or not. D 

4 Higher-index DDAEs 

Although there are convergence theorems for some higher-index non-delay DAE using 
methods like BDF [9] and certain Runge-I utta. [16], in the cont.ext of app lication to 
a wide variety of practical problems we cannot in general recommend t he use of 
numerical ODE methods for solving higher-index (index ~ 3) DAEs directly. This 
is true even without the introduction of delays. For non-delay DAEs, much recent 
work has therefore been direct d at lower-index formulations of the problem which 
preserve the stability and which lead to a robust and efficient numerical solution. 

In [3], a wide variety of formulations were investigated for the (non-delay) high
index Hessenberg D AEs, and a class of promising formulations called projected in
variants were proposed. Recall the matrix R'S which appears in the error recurrence 
for BDF in Theorem 3.2, equation (3.14) (it also appears in the Runge-Kutta error 
recurrences in the proof of Theorem 3.4). This matrix multiplies explicit terms in 
the error recurrence. Thus, there can be a problem with numerical stability (i.e. 
where the stepsize needs to be r stricted to maintain stability) if the matrix R'S is 
large in norm. T he projected invariants methods were int roduced to overcome that 
problem by projecting orthogonal1y onto the constraint manifold to control the size of 
R'S . Essentially, the problem is not only formulated into one of index-2 but also th 
resulting formulation is nicely conditioned in cases where the ODE is stable on th 
manifold even if it is not very stable nearby. Here we show how to formulate higher
index, higher-order Hessenberg DDAEs via projected invariants to index-2 systems 
for which good numerical stability can be attained. 

Starting with the index-(m + 1), order m retarded DDAE (2.1) which we rewrite 
here, 

0 

f (z(x(t)), z(x(t ~ 1)), y) 
g(x) 

( 4.la) 

(4.lb) 

if preservation of the higher-order form ( 4.1) is not a consideration, the projected 
invariants form can be obtained by first differentiating the constraint ( 4.1 b) m times. 
Together with (4.la), this gives y as a function of z(x(t)) and z(x(t -1)). Plugging 
y back into (4.la) yields the DODE 

x(m) = J (z(x(t)), z(x(t - 1))) (4.2) 
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for which (4.lb) and its first m - 1 derivatives form an invariant manifold. Now 
the original constraint can be reintroduced via an additional Langrange multiplierµ. 
Rewriting ( 4.2) in first order form leads to a retarded Hessenberg index-2 system 

x~ 
x' 2 

0 

J (z(x(t)), z (x(t - 1))) 
g(x1) (4.3) 

This system is equivalent to (it has the same analytic and also numerical solutions 
when using compatible discretizations), and is usually written as, 

I 
X1 X2 +GTµ 

x' 2 X3 

x' m f (z(x(t)), z (x(t - 1)), y) 
0 (m)( ) g X1, ... ,Xm 
0 g(x1) ( 4.4) 

Additional derivatives of the original constraint can be enforced similarly, see [3], [4]. 
If it is important to preserve the higher-order structure, then a trick introduced in [4] 
can be used to produce such a stable formulation, which is given by 

x(m) 

¢' 
0 

0 

-

-

f ( x + <P, x', ... , x<m-l), (x + cp )(t - 1 ), x', ... , x<m-I)(t - 1 ), y) 
-GTµ 

g(m)(x + <P, x', ... , x(m)) 

g(x+<P) (4.5) 

with ¢ = 0 an [-1,0]. This system has the true solution ¢ = 0, µ = 0. 

Stable index-2 formulations for neutral Hessenberg systems which are the higher
index generalizations of the form (3.16) are defined similarly. 

Finally, we note that there are a wide variety of formulations which have been 
proposed for handling high-index DAEs [3], and most extend easily to retarded Hes
senberg DDAEs. In particular, any DAE stabilization method which can be viewed as 
a stabilization of an invariant manifold for an ODE [5] can be immediately extended 
to a stabilization method of the invariant manifold based on ( 4.1 b) and its derivatives 
for the DODE ( 4.2). 
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Appendices 

A DDAE classification 

Campbell [10, 11] notes that retarded-looking DDAEs may in fact be "hiding" DODEs 
of advanced, or neutral type. Here we consider classification of such DDAEs in 
Hessenberg form, arriving at the class restrictions utilized in Sections 1 and 2. 

Consider first the index-I system (1.4), reproduced here, for O $ t $ J, with Jan 
integer: 

x' - f(x,x(t-l),y,y(t-l)) 
0 - g(x,x(t-l),y), 

where t is nonsingular. From ( 1 b) we can write, in principle, 

y(t) = g(x(t), x(t - 1)) 

(la) 

(lb) 

(2) 

i.e., y(t) can be expressed as a function of x at t and t - l. Applying (2) also for 
y(t - 1) and substituting into (la), we obtain the retarded DODE 

x' = f(x,x(t- l),g(x,x(t- l)),g(x(t- l),x(t- 2))) (3) 

which has two delay arguments ( these may be more genuinely different if the delay size 
is a function oft), due to the appearance of y(t - 1) in (la). We may now apply the 
theory for retarded DODEs to (3) and expect, under certain reasonable conditions, 
that the initial value DDAE problem for x be well-posed and that a discontinuity in 
x'(O), say, be propagated into a discontinuity in xU+l)(j), 0 $ j $ J, in case of only 
one delay. (The smoothing is twice as slow in case of two delays.) 

Next, consider including dependence on y( t-1) in. (1 b ). For notational simplicity, 
assume that some linearization has been applied, and consider 

y = g(x, x(t - 1)) + Dy(t - 1) (4) 

(i.e. D ::;:: -g;;1gy(t-I))· Differentiating ( 4) we see that, in fact, we have to deal with 
a DODE of a neutral type for y. Indeed, to remove y, as was done when arriving at 
( 3), we now have to propagate the recursion in ( 4) back from t to t - v - l, for v the 
integral part oft. This gives 

V 

y(t) = [II'.:=0 D(t - j)]y(t ~ v - 1) + I)II~-:,~D(t - j)]g(x(t - l), x(t - l - 1)) (5) 
l=O 
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When this expression is substituted into (la), the obtained retarded DODE has j 
delays for j - 1 ::; t < j, and this corresponds to a DODE of a neutral type. In 
particular, a discontinuity in x'(0) propagates as a discontinuity in x'(j), 0 ::; j ::; J, 
so there is neither smoothing not anti-smoothing by the inverse DODE operator. 
Note also that initial values must be given here ( on an interval in t ::;; 0) both for 
x and for y. The well-conditioning of the problem depends on the sum in (5). If 
IIDII < 1 (uniformly) then that sum may not explode even as the number J of delay 
intervals increases. 

Consider now an index-2 DDAE in Hessenberg form. We may view ( 4) with y 
replaced by e,y, and let e -+ 0. From the limit expression in (5) it is then clear that 
we must require D = 0. Otherwise, a DODE of advanced type is obtained. In order 
to avoid DODEs of advanced type we therefore restrict ourselves to a DDAE of the 
form 

x' 

0 

f(x,x(t- l),y,y(t- l)) 

g(x, x(t - 1)) 
(6a) 

(6b) 

where ~,U is nonsingular. Differentiating (6b) and substituting (6a) for x'(t) and 
x'(t - 1), we obtain 

0 = 9xf(x, x(t - 1), y, y(t - 1)) + 9x(t-1}f(x(t - 1), x(t - 2), y(t - 1), y(t - 2)) (7) 

This allows us to express 

y(t) = g(x(t), x(t - 1), x(t - 2), y(t - 1), y(t - 2))) (8) 

and propagate this back in time, essentially as in .(5). The underlying DODE is of 
a neutral type. Note that if y(t - 1) does not appear in (6a) then y(t - 2) does not 
appear i~ (8). 

To obtain a truely retarded index-2 DDAE in Hessenberg form, we must therefore 
restrict the form of the DDAE under consideration to 

x' - f(x,x(t-l),y) 
0 g(x) 

(9a) 

(9b) 

Now a differentiation and substitution as in (7), (8), yields the simpler expression (2), 
and when this gets substituted into (9a) we obtain a retarded DODE. 
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B Collocation result for delay-ODEs 

Here we prove a convergence result similar to thos~ in Theorems 3.3 and 3.4 for 
a DODE of retarded or neutral type. The statement of the problem is somewhat 
more general and the proof is different from those in [7, 6]. We consider an s-stage 
piecewise polynomial collocation method (ks= s) with ODE order kd, applied to the 
linear DODE of retarded or neutral type 

J 

x' LAix(t-j) + q, (la) 
j=O 

x(t) - f3(t) -l<t~O (lb) 

where the matrices Aj{t) E n_nzxnz satisfy Aj(t) = 0 for t < j - 1, and q = q(t). 

An extension of the analysis to nonlinear problems follows standard lines. Simi
larly, an extension to non-collocation Runge-Kutta methods is possible (cf. [16]). An 
extension to boundary value DOD Es also follows immediately from the arguments be
low. For simplicity of exposition, we assume a uniform step size h = J / N, although a 
mesh 7r with no relative stepsize restrictions whatsoever may be used ( cf. [1]). If there 
is an integer µ such that hµ = I then the mesh includes the delay interval ends, and 
is denoted 1r*. We also assume for now that the problem (1) has a sufficiently smooth 
solution, because the modification of our results for a lower smoothness is standard. 
Let tnj = tn-1 + hcj, 1 ~ j ~ s, be the collocation points in [tn-1, tn] ( Cj = r:,:=l ,aj1, 
to recall). The collocation solution x'll"(t) is a continuous function on [-1, J] which 
reduces on each element [tn-t, tn] to a polynomial of degree at most s, and satisfies 
(the initial conditions and) (1) at the collocation points. Therefore, the error 

e(t) = x'll"(t) - x(t) 

satisfies homogeneous initial conditions and 

J 

e' I: Aie(t - j) + d, 0 < t < J 
j=O 

0, 1 ~ j ~ s, 1 ~ n ~ N 

(2) 

(3a) 

(3b) 

The assumption of well-conditioning of (1) implies, for h sufficiently small, stability 
of the collocation approximation and the basic error estimate 

llellLoo[O,J] = O(h9
) 

Using this in (3) then yields at collocation points e'(tni) = O(h8
), and since x'II" is a 

piecewise polynomial of degree < s, we have at all points other than mesh points ( cf. 
[1]), 

1$j$s (4) 
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The quest is now to obtain a sharper estimate on e(t). 

Consider the conversion of ( 1) to an ODE system for x = ( x1 , x2 , ••• , x J), where 

x1 (r) x(r) 
x2(r) x(r+l) 
x3 (r) x(r+2) 

(5) 

0 ~ T ~ l. Similarly, let qj(T) = q(r + j - 1) and A1j = A,(r + j - 1), j = 1, ... , J. 
We have from (1), for 1 ~ j ~ J, 

j-1 

x3 = L A1jXj-l + qj + Ajj,B(r - 1), (6) 
l=O 

This is.an ODE system of size Jnx, for which we have the boundary conditions Xj(0) = 
Xj-i(l), j = 2, ... , J and x1 (0) = ,8(0). We obtain a well-conditioned boundary 
value ODE according to our assumptions, and thus there exists a nicely bounded 
Green's function G( T, a-) E 'R/n., xJn.,. If we now define X1r, d and e as relating to the 
collocation solution X1r and the errors d and e, respectively, in precisely the same way 
as x relates to x, we obtain 

(7) 

Now, if the mesh has the special structure 1r* then d( Tnj) = 0, where Tnj = 
tnj, n = l, ... , µ, are the collocation points in T. In this case the ODE collocation 
theory immediately applies, and we obtain ( cf. [1]) 

llellLoo[O,J] 
le(tn)I 

For a general mesh, let us write 

0( hmin(s+l,kd)) 

O(hkd), 0 ~ n ~ N 
(Sa) 

(Sb) 

where each Gj is a block of nx columns of the Green's function G. We can then write 
(7) as 

(9) 
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For each j in this expression (9) we now write the integral as a sum of its components 
according to the mesh, 

(10) 

where t{, tt ... , t1-v; are part of the given mesh 1r in the j - th delay interval. 

The integrals in (10) are of two types. The first group includes possibly the first, 
possibly th last, and the interval where r - j + l is. For each of these we cannot 
use orthogonality (the first and last integrals are not over a full mesh element, and 
where r- j + l is there is no smoothness in Gj), so each contributes an error O(h8+1 ). 

For the other integrals in (10), we have that d(tn1) = 0, I = l, ... , s, and we may 
use orthogonality. Thus, these integrals ar each O(hkd+l ), as in the ODE collocation 
theory. Summing up, we have 

Substituting this in (9), we obtain 

(11) 

Thus, the general order of convergence for the ODE case is recovered, as in (8a), even 
for a general mesh, but the superconvergence result (8b) is not. 

Note that we have assumed here that the number of delay intervals J is kept 
fixed while the number of mesh points grows. In case that J ~ N, say, a different, 
additional analysis is needed. The first question is then how G depends on J, but we 
do not pursue this question further here. 
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