
The Parallel Protocol Framework

by
Murray W. Goldberg
Gerald W. Neufeld

Mabo R. lto

Technical Report 92-16
August 1992

Department of Computer Science
University of British Columbia

Rm 333 - 6356 Agricultural Road
Vancouver, B.C.

CANADA V6T 1Z2

1

The Parallel Protocol Framework

By

Murray W. Goldberg, Gerald W. Neufeld, and Mabo R. Ito

University of British Columbia, Vancouver, British Columbia, Canada

Contents

1 Introduction

2

1.1 What Is a Protocol Framework?

1.2 Overview of Services Supported By PPF .

1.2.1 What Protocols Can Use the PPF Framework?

1.2.2 What Is The Form of Communication Between Layers?

1.2.3 What Is The Process Structure? . .

1.2.4 What Is The Basis For Parallelism?

PPF Details

2.1

2.2

Pthreads.

2.1.1 Thread Management

2.1.2 Thread Synchronization

2.1.3 Interprocess Communication

2.1.4 Memory Allocation .

2.1.5 Sleep

2.1.6 Elapsed Timers .

Internal Protocol Details .

2.2.1 Entity Identifier and Entity Variable Area .

2.2.2 Connection Control Blocks

2.2.3 Protocol State Tables . .

2.2.4 Connectionless Protocols

2.2.5 Summary

2.3 Inter-Layer Commurucation

2.3.1 Constructing and Examining Events

2

4

4

5

6

7

7

7

8

8

9

11

12

13

16

17

18

18

19

21

24

25

25

25

3

2.3.2 Protocol Boundaries 26

2.3.3 Boundary Routine Definition 27

2.3.4 Passing Events .. 28

2.3.5 State Consistency 30

2.3.6 Buffer Management 31

2.3.7 Multiplexing 32

2.3.8 Timer Events 33

2.3.9 Summary .. 34

2.4 Protocol Initialization 34

2.5 Tools For Parallelism . 37

2.5.1 Protocol Parallelism 37

2.5.2 Mutual Exclusion . 39

2.5.3 Event Ordering . 39

2.5.4 The Event Gate 40

2.5.5 Summary 0 I O • 47

1 INTRODUCTION 4

1 Introduction

1.1 What Is a Protocol Framework?

PPF (Parallel Protocol Framework), like most other protocol frameworks (eg. [HP88]),

defines an implementation and execution environment for communication protocols. There

are two parts to the service provided by the framework. The first part is a set of structural

guidelines which determine protocol implementation details. These are enforced1 through

written documentation and library modules. Common examples of structural guidelines

include the format of communication between protocol modules or layers, and the structure

of the protocol state machines. The second part of any protocol framework service is a set

of library routines to perform common protocol functions2 • These routines include buffer

management, timer management, and inter-layer communication primitives.

There are several advantages in using such a framework when implementing communi

cation protocols. One advantage is code reuse. As indicated, primitives are provided by the

framework for common protocol functions. The usual code-reuse arguments apply well to

communication protocols due to their complexity and performance sensitive nature. Proto

col implementation is faster because the common functions are provided by the framework.

Also, it is worthwhile to expend significant effort on library efficiency since the libraries

are used by several protocol implementations. A final advantage comes from the consistent

format imposed on the protocol implementation. Coding consistency enhances maintain

ability, readability and extensibility. A third advantage of using a well designed protocol

framework (somewhat related to the first advantage) is structural efficiency of the proto

col implementation. For example, most frameworks impose a certain method of inter-layer

communication. If the communication structure and primitives are designed to execute

efficiently, then the performance of the implementation benefits. Another advantage is pro

tocol portability. If the protocol implementation relies on the services of the framework and

avoids the O /S interface to the greatest extent possible, porting protocol implementations

is simplified. Optimally, once the framework is ported, protocol porting is free.

1 Actually, enforced is far too strong a word. It would be trivial (however counterproductive) to avoid the
libraries and circumvent the guidelines set out by any protocol framework.

2 There is significant overlap between the two parts of the framework service in that the library routines
help dictate protocol implementation conventions.

1 INTRODUCTION 5

PPF has been used to implement several protocol sets. These include a connection

oriented, full ISO stack [GNl92], and a light-weight, connectionless request/response proto

col [NG90].

1.2 Overview of Services Supported By PPF

The PPF framework contains several modules to guide the structuring and aid in the im

plementation of communication protocols. This section provides an overview of some of the

services offered by these modules.

PPF defines a technique for protocol parallelization and provides a set of routines to

support parallel protocol execution. These routines include mutual exclusion management

for critical sections, ordering mechanisms for protocols which expect implicit event order

ing, and sequence number generation routines to support the ordering mechanisms. These

guidelines and routines allow the parallel execution of normally serial protocols with mini

mal impact on the protocol implementation.

PPF provides guidelines and routines for inter-layer communication. It defines the

interfaces (called boundary routines) that must be provided by each layer so they may

receive events from other layers. PPF provides a routine (PostEvent()) which enables

one protocol entity to communicate with another protocol entity at any other layer. This

standardized interface makes it possible to interchange protocol entities at a particular layer

without having to alter the code in the neighbouring layers, provided that the exchanged

protocols provide the same interface and expect identical arguments.

PPF loosely defines a format for both entity and connection control blocks. An entity

control block (called an entity variable area or EVA) contains information particular to a

single protocol entity, including the protocol state machine and connection control blocks.

A connection control block defines the state of a single connection. This includes protocol

state information, option information, and a record of the connection identifiers of the

service user(s) and provider(s).

PPF provides a timer service. Timers can be started and stopped. Timer expiry notifi

cation is performed using RFPs inter-layer communication primitives.

PPF defines a buffer structure for protocol data units in the process of being encoded,

1 INTRODUCTION 6

Figure 1: PPF Supports a Hierarchical Graph of Protocols

and for received data in the process of being decoded. These common data structures

contribute to the uniformity of the inter-layer interface.

Part of the framework service is provided by the underlying user-level kernel called

Pthreads. Pthreads is a user-level kernel for use on multiprocessors. It provides an environ

ment suitable for running a group of parallel cooperating threads. Pthreads allows efficient

process creation and destruction, interprocess communication and memory allocation in a

preemptive parallel environment. Pthreads provides semaphores (as well as IPC) for appli

cation thread synchronization. It also provides a sleep facility and 0(1) memory allocation

and release routines. There are two levels of memory allocation. One is a general system

similar to Malloc() and Free(). The other is designed for efficient allocation, transfer, and

release of complex data structures.

1.2.1 What Protocols Can Use the PPF Framework?

PPF can be used to support a wide variety of protocols and protocol organizations. Both

connection-oriented and connection less protocols are supported. Protocol organizations

are not restricted to stacks. Instead, a. hierarchical graph of protocols is supported where

multiple protocol entities may exist at any layer. Figure 1 depicts this relationship.

1 INTRODUCTION 7

1.2.2 What Is The Form of Communication Between Layers?

Inter-layer communication follows Clark's structuring of protocols using upcalls [Cla85].

Each upcall (or downcall) communicates a protocol event between two protocol entities.

Upcalls reduce the total communication overhead between layers to that of a subroutine

call, plus a small number of computations.

To receive events, PPF requires that each protocol implementation present a set of six

boundary routines. Boundary routines are called when an event is to be delivered to the

protocol. Each boundary routine expects a different set of events.

The format of events is also dictated by PPF. Each event is made of two components; a

boundary type and an event type. Primitives are provided to compose and examine event

components.

1.2.3 What Is The Process Structure?

Protocols using the PPF framework use a process-per-packet approach to process structur

ing. A single process is capable of ascending or descending through the layers carrying a

single packet. This avoids expensive buffering and context switching between layers. De

pending on the nature of the desired application interface (synchronous or asynchronous) a

packet may never have to cross process boundaries.

1.2.4 What Is The Basis For Parallelism?

Protocols can be implemented to run in parallel using the PPF protocol framework. PPF

uses processor-per-packet parallelism. Here, each packet is assigned its own processor to

carry it through the protocol graph. Not all protocol processing activities, however, are

simple to parallelize.

Protocol processing for connection-oriented protocols (and some connection-less pro

tocols) can be roughly divided into two unequal parts: packet processing and connection

control block (CCB) manipulation [GNl92]. Packet processing involves external data rep

resentation conversion functions, checksum calculations, encryption and decryption, and

2 PPF DETAILS 8

encoding and decoding of packet headers. CCB manipulation includes state machine tran

sitions, enqueuing received segments, etc. In some implementations these parts are inter

twined, though our experience shows they are not difficult to isolate. The relative process

ing overhead of these two parts varies from protocol to protocol. For most protocols, CCB

manipulation for a single packet involves only a few lines of code to enqueue a segment, up

date sequence numbers or initiate an acknowledgement (often not even these a.re required).

Packet processing is normally more complex. Even for protocols with very simple protocol

data unit (PDU) formats, such as the network and transport layers, packet manipulation

is a significant proportion of the protocol code and execution overhead. At higher layers,

such as the presentation and application, packet processing overhead completely dominates

all other processing [CT90].

Fortunately, it is the packet processing stage of protocol processing that ~s easiest to

parallelize. Any number of packets may proceed through the packet processing stage of

a protocol (even within the same connection) in parallel without synchronization. Syn

chronization and ordering are only required for the comparably small CCB manipulation

stage. Depending on the number of processors available, this arrangement has been shown

to provide significant improvements in overall protocol performance [GN192]. The PPF

protocol framework provides mechanisms for incorporating such parallelism. Any protocol

whose CCB manipulation and packet processing stages can be identified and isolated in

the implementation are likely to benefit from this form of parallelism. Figure 2 shows a

parallel protocol graph organization. This figure depicts a simple, linear (ISO-like) protocol

stack organization. Note that CCB manipulation at each layer is protected by a mechanism

(called the event gate) and that multiple processes proceed in parallel through each protocol

layer (or entity).

2 PPF Details

2.1 Pthreads

Pthreads is a user-level kernel for multiprocessors. Its current platform is a shared memory,

four-processor rise-based computer running UNIX. It should be a relatively simple port to

other shared-memory multiprocessors running most any host operating system. Pthreads

provides thread (process) management, synchronization, and communication functions. It

2 PPF DETAILS 9

Prolocol stacll

:,::,;•' ::;::;.;;.;;.,:;.:·::,.:,: :,;:,,:,,;;;, ;

I~tlr1iE'' :.:::·I ,;,:,.,;,;j,;; ;,;1 :;,;; ::-:;r;··-- ···· ·
?!!ti. :;F'!,1:,;::: '.j:Jj:[. ~;r ::;;_; =-=t-:~:-:
"'•I''' ·•·.· ·-····· •,•·,·t_•· .,. ------------·-·---·

' :•::·:: _·;: ;-· ~i?~ ;-:;-i\:; j:/ ~:-: :!.!;;:···

:_;?· ;_·: /l//i)) ~-i:~::
... P~

Figure 2: Protocol Organization and Parallel Execution

also provides memory allocation services.

Threads are scheduled using a three priority, round-robin, preemptive scheduling al

gorithm. No thread is allowed to run if there are any· ready threads of higher priority.

Pthreads ready queues are shared by all processors. Therefore a ready thread is run by

the next available processor and a thread may migrate from processor to processor over its

lifetime. Threads run in parallel to the extent of the available processors.

2.1.1 Thread Management

A Pthreads application begins execution at the first statement of the routine mainp()3.

Mainp() is passed the environment arguments argc and argv. Mainp() is not a thread and

therefore most kernel calls which would be appropriate when called by a thread are not

appropriate when called from mainp(). The normal function of the mainp() routine is the

creation of some initialization threads.

Threads are created using the following call:

PID Create(void(•addr)(), int stksize, char •name, void •arg,

3 mainp{} in Pthreads is analagous to main{} for regular C applications.

'

2 PPF DETAILS 10

PPRIO prio, int level)

On success, Create() returns the identifier of the newly created ready thread. Failure,

for any reason, results in a return value of PNUL. The first parameter, addr, is a pointer

to the routine which acts as the entry point for the created thread. The stksize parameter

is the size, in bytes, of the new thread's stack. The stack requirements vary according to

the number and size of local variables and parameters, and well as the depth of subroutine

calls. A minimum requirement is generally about 3K bytes, though some threads require as

much as lOK bytes or more. The third parameter, name, points to a text string which acts

as a user supplied thread identifier. This string must be null terminated and currently has a

length restriction of 32 bytes including the null-terminator. Any number of threads may be

identified by the same name. The name is copied by the Create() routine and therefore the

memory containing this name may be released by the caller on return from Create(). The

fourth parameter, arg, is an argument (parameter) for the created thread. This argument

is passed transparently to the thread and may be of any (4 byte or smaller) type, although

it should be cast to a (void *) on call. The entry routine for the new thread receives this

argument as a parameter, or may instead not. declare any parameters if no creation-time

arguments are required. The fifth argument (prio) indicates the priority of the created

thread. The possible priorities are HIGH, NORM and LOW. The final argument indicates

whether the created thread is a system thread (SYS), or an application (USR) thread. The

only difference between the two is that Pthreads will exit when there are no more USR level

threads. Therefore, perpetual server threads should be created with level SYS.

Threads leave the system in one of three ways. The first possibility is for the thread to

"fall of the end" of (i.e. return from) the entry subroutine. The second possibility is for

the thread to call the Pexit() routine which causes the thread to leave the system at that

point. The final possibility is for a thread to be killed by some other thread using a call

to Kill(). Pexit() requires no parameters and returns no results. Kill() requires the thread

identifier as the argument and returns the same identifier on success or the value PNUL if

the thread to be killed does not exist. The headers for Pexit() and Kill() are as follows:

PIO Kill (PID pid)
void PexitO

Threads can be suspended and resumed using calls to Suspend() and Resume(). A thread

2 PPF DETAILS 11

can only suspend itself, and is suspended until resumed by some other thread. Suspend

requires no parameters and returns no value. Resume requires the identifier of the thread

to be resumed. The headers for Suspend() and Resume() are as follows:

void Suspend()
int Resume(PID pid)

Pthreads provides three routines to help in identifying threads. These are MyPid{),

NameToPid(), and PExists(). MyPid() requires no parameters and returns the identifier of

the calling thread. NameToPid() requires a null-terminated string as its single argument,

and searches the system for any thread whose name (see Create() arguments) matches the

given string. If such a thread is found, its identifier is returned, otherwise PNUL is returned.

If more than one thread exists with the same name, the identifier returned is arbitrarily

selected from the set of appropriate choices. PExists() takes a thread identifier as its only

argument and returns true or false (1 or 0) depending on whether there exists a thread with

the given identifier. The headers for these three routines are as follows:

PID MyPid()
PID NameToPid (char •name)
int PExists(PID pid)

2.1.2 Thread Synchronization

Pthreads provides four semaphore operations NewSem{), FreeSem(), P(), and V(). The

headers for these routines are as follows:

int NevSem(int value, int duration)
int FreeSem(int semNo)

int P(int semNo)

int V(int semNo)

NewSem() requires two arguments, value and duration, and returns the identifier of the

allocated semaphore (or -1 if no more semaphores are available). Value is the value to

which the new semaphore is to be initialized. Duration is optimization information which

indicates how long a thread would expect to be blocked on this semaphore. The possible

2 PPF DETAILS 12

values are SHORT (e.g. for protection of a very small critical section) or LONG (e.g. to

block a thread pending the availability of data). If in doubt, use LONG4 •

FreeSem() returns a previously allocated semaphore to the system. Its single argument

semNo is the identifier of the semaphore to be returned. FreeSem() returns O on success

and -1 on failure.

P() and V() implement the conventional semaphore primitives. Each require the single

parameter semNo to identify the synchronization semaphore. Both routines return O on

success or -1 on failure.

2.1.3 Interprocess Communication

Pthreads provides blocking Send()/Receive()/Reply() interprocess communication primi

tives [Che88]. A sending thread is blocked until the message has been received and a reply

has been made. A receiving thread is blocked until some other thread sends it a message.

Reply() is a non-blocking operation. There is also a non-blocking routine that allows a

thread to test whether it has a message waiting for it to receive. The subroutine headers

are as follows:

void •Send (PID to, void •msg, int •len)
void •Receive(PID •pid, int •len)
int Reply(PID sndr, void •msg, int len)
int MsgWaits()

Send() has three parameters. The first one, to is the identifier of the intended recipient.

The second parameter, msg, is a pointer to the message (any contiguous buffer). The final

parameter, /en is the length, in bytes, of the message. This parameter is a value/result

parameter. On call, this parameter contains the length of the sent message. On return, the

parameter contains the length of the replied message. Send() returns a pointer to the reply

message on success, or the value NOSUCHPROC on failure.

Receive() requires two result parameters. On return, the first parameter will contain

the identifier of the originator of the message. The second parameter (again, on return)

contains the length of the sent message. Receive() returns a pointer to the sent message.

4 In the current version of Pthrea.ds, the second parameter, duration, exists but is not used.

2 PPF DETAILS 13

Reply() requires two parameters. The first, sndr is the identifier of the reply destination

(i.e. the original sender). The second parameter, msg is a pointer to the reply message.

The final parameter is the length of the reply message. Reply() returns O on success or -1

on failure.

Msg Waits() requires no parameters and returns 1 if there are messages waiting to be

received by the calling thread, or O if no such messages currently exist.

2.1.4 Memory Allocation

Pthreads provides two memory allocation systems. These are the frame-based and general

systems.

The general system allocates memory using calls to Malloc(), Realloc(), and Free().

Memory allocated in this way is permanent is the sense that the memory can exist beyond

the lifetime of the allocating thread. Such memory remains allocated until it is explicitly

released using a call to Free(). Pthreads uses a very fast (0(1)) memory allocation scheme.

The headers for Malloc() and Free() are as follows:

void •Halloc(int size)
void •Realloc(void •ptr, int size)
void Free(void •mem)

Malloc() requires as its single parameter the size, in bytes, of the requested contiguous

memory segment. On success, Malloc() returns the address of the allocated segment. On

failure, NULL is returned.

Realloc(} expands or contracts a previously allocated memory segment by freeing the

initial segment and allocating a new one. It requires two parameters. The first is a pointer

to the existing memory segment. The second is the size of the desired segment. Realloc()

copies the contents of the existing segment to the new segment to the extent of the smaller

of the two. Realloc() returns a pointer to the new segment.

Free() returns a previously allocated segment to the system. The single parameter to

Free() is the address of the first byte of the segment to be returned. Free() returns no

values.

2 PPF DETAILS 14

The frame-based memory allocation system is designed for the management of complex

data structures. These data. structures a.re often composed of many individual segments.

This memory facility allows these individual segments to be managed and freed as a. group.

This facility also avoids the potential internal fragmentation and overhead problems asso

ciated with allocating a. large number of very small (1 + byte) segments.

Each thread has its own stack of memory frames. Each memory frame groups a set of

associated memory segments. A frame can be transferred from one thread to another, or

freed as a unit. Typically, all the segments that comprise a single data. structure would be

allocated on one frame. This entire data structure could then be transferred to another

thread or freed with single library calls. When a thread leaves the system, all the memory

on its frame stack is returned to the system. The headers of the subroutines which operate

on temporary memory are as follows:

void NewFrame 0
void FreeFrame()
void SwapFrame()
void •PopFrame()
void PushFrame(void •frame)
int TransferFMem(PID topid)
void •FMalloc(int size)
void •MallocFromFrame(void• frame, int size)
void FreeFMem()

NewFrame() requires no parameters and returns no result. It creates a new memory

frame and pushes it onto the calling thread's memory frame stack.

FreeFrame() also requires no parameters and returns no result. It frees all memory

associated with the calling thread's top memory frame, pops the frame and discards it.

SwapFrame() swaps the top two memory frames of the calling thread. If zero or one

frames exist for this thread then SwapFrame() has no effect.

Pop Frame() pops and returns a pointer to the top memory frame of the calling thread.

This routine should be used with caution, generally in conjunction with PushFrame(). The

reason for caution is that a memory frame which is not currently on any thread's memory

stack is essentially an orphan. This memory will not be returned to the system should its

creator or owner exit.

2 PPF DETAILS 15

PushFrame{) takes a pointer to a. frame and pushes it on the calling thread's memory

stack. The PopFrame() / PushFrame() pa.ir can be used to transfer per-thread (frame

based) memory from one thread to another, or to perform stack rearrangement functions.

Note that a memory frame cannot exist on more than one memory stack a.t a time. If an

application wishes to move the top memory frame from one thread to another, this may be

done using PopFrame(), PushFrame() and inter-process communication, but it is preferable

to use TransferTempMem() instead.

Transfer FM em() requires the single argument topid. This operation transfers the top

memory frame of the calling thread to the top of the memory stack of the thread identified

by topid. This routine avoids the time interval between a PopFrame() and a PushFrame()

when a memory frame does not belong to any thread. TransferTempMem() returns O on

success, or -1 on failure(eg. if an invalid argument is encountered).

FMalloc() takes an integer parameter size. This routine allocates memory from the

top memory frame of the calling thread. This memory cannot be released using Free().

Frame-based memory is returned to the system using Free Frame() (discussed previously)

or FreeFMem(). An important feature of FMalloc() is that if no memory frame currently

exists on the calling thread's memory stack, a new one is created and pushed automatically.

In this case, the allocated memory is taken from the new frame.

MallocFromFrame() perfroms the same task as FMalloc(), except in this case the frame

from which to allocate ther memory is specified. MallocFromFrame requires two parameters.

The first is a pointer to the frame from which to allocate memory. This pointer is obtained

by poping the top memory frame using a call to PopFrame(). The second parameter is the

size of the requred buffer. This routine can be useful when multiple data structures are

being allocated all at once. A small example follows where the application is constructing

three data structures, DSl, DS2, and DS3:

void •frame1, •frame2, •frame3;
struct whatever •DS1;
struct vhoknovs •DS2;
struct vhocares •DS3;

/• frame pointers

I• allocate and pop three nev frames, one for each data structure •I
NevFrameO;
frame1 = PopFrame();

2 PPF DETAILS

NevFrame();
frame2 = PopFrame();
NevFrame();
frame3 = PopFrame();

/• build the data structures •I
DS1 • (struct vhatever •) MallocFromFrame(frame1, sizeof(•DS1));
DS1->field1 = MallocFromFrame(frame1, 20);

DS2 • (struct vhoknovs •) MallocFromFrame(frame2, sizeof(•DS2));
DS2->field1 = MallqcFromFrame(frame2, 10);

DS3 = (struct vhocares •) MallocFromFrame(frame3, sizeof(•DS3));
DS3->field1 = MallocFromFrame(frame3, 15);

16

This code segments produces three composite data structures. The memory for each is

allocated on its own frame and is therefore disjoint. Each data structure can be passed to

another thread as a group, or freed using calls to PushFrame() and FreeFrame();

FreeFMem() returns no values and requires no parameters. It releases the calling

thread's frame-based memory (from all frames) to the system. This routine also pops

all memory frames from the calling thread leaving it with none.

2.1.5 Sleep

Pthreads allows threads to put themselves to sleep. It uses a hierarchical data structure for

sleeping threads which provides 0(1) timer manipulation (VL87]. Two routines are provided

for this service: Sleep(} and ReSleep(}. The headers for these routines are as follows:

int Sleep(int ticks)
int ReSleep(PID sleeper, int ticks)

Sleep() suspends the execution of the calling thread for a duration of ticks (the only

para.meter) clock ticks5 • The upper limit of ticks is 0xffff. Any thread wanting to sleep

5 A clock tick defines a time interval. The interval duration is a compile time configuration constant .

2 PPF DETAILS 17

longer tha.n this duration will have to make multiple calls to Sleep(). Sleep() returns O on

success a.nd -1 on failure (eg. if ticks is out of range).

ReSleep() adjusts the wakeup time of a currently sleeping thread. This is useful for timer

implementations where the sleeping thread is to be kept sleeping longer, or is to be awoken

at once. ReSleep() requires two parameters: sleeper and ticks. Sleeper is the identifier of

the sleeping thread whose waketime is to be altered. Ticks is the new sleep duration relative

to the time of the ReSleep() call. A ticks value of O has the effect of waking the thread

immediately. ReSleep() returns O on success and -1 on failure (eg. if the identified thread

is not found to be sleeping, or if ticks is out of range).

2.1.6 Elapsed Timers

Pthreads provides a timer service to time the interval between events. These timers (called

elapsed timers) are normally used for performance evaluation and are manipulated using

four routines whose headers are as follows:

int ResetETimer(int timer)
int StartETimer(int timer)
int GetETimer(int timer)
int StopETimer(int timer)

Each of these routines requires the timer identifier as the single argument. Timers are

numbered starting at zero. The number of timers is a configuration constant (currently set

at 32).

ResetETimer() stops the timer (if it was running), and resets the elapsed time to zero.

This is to be called before the timer is used. ResetETimer() returns O on success, or -1 if

the timer number is out of range.

StartETimer() starts the timer running. If the timer is already running when StartE

Timer() is called, the elapsed time is reset to begin counting again from zero. StartETimer()

returns O on success, or -1 if the timer number is out of range.

GetETimer() returns the amount of time that has elapsed (in terms of system clock

ticks - see Sleep()) over the most recently timed interval. If the timer is running, the value

2 PPF DETAILS 18

returned is the number of clock ticks that have occurred during the interval between the

most recent call to StartETimer() and this call to GetETimer(). If the timer is not currently

running, the value returned is the number of clock ticks that have occurred during the

interval between the most recent call to StartETimer() and the most recent (though later)

call to StopETimer(). The call to GetETimer() does not change the state of the timer (i.e.

noes not alter the time value, start the timer, or stop the timer). If the timer argument is

out of range, a -1 is returned.

StopETimer() stops the timer and returns the number of clock ticks during the interval

between this call and the most recent call to StartETimer(). This value may be retrieved

again using subsequent calls to GetETimer(). If the timer argument is out of range, or the

timer is not currently running, a -1 is returned.

A thread may also obtain the current value of the system clock using Time(). Time

returns the number of clock ticks since system startup. The header is as follows:

long Time()

2.2 Internal Protocol Details

PPF dictates implementation detail conventions that simplify protocol implementation and

readability. This section describes those conventions that apply within a single protocol

layer.

2.2.1 Entity Identifier and Entity Variable Area

Each protocol entity has an entity identifier and an entity variable area (EVA) associated

with it. The entity identifier is an integer which distinguishes this entity from all others

in the system. The identifiers are used by PPF as array indices and are therefore chosen

sequentially starting from zero. Examples of identifiers appropriate for an ISO stack are as

follows:

I• list of entities•/
#define PHYSICAL (ENTITY) 1
#define DATALINK (ENTITY) 2

/• physical entity
/• data link entity

2 PPF DETAILS 19

#define NETWORK (ENTITY) 3 I• network entity •I
#define TRANSPORT (ENTITY) 4 I• transport entity •I
#define SESSION (ENTITY) 5 I• session entity •I
#define PRESENTATION (ENTITY) 6 I• presentation entity •I
#define ACSE (ENTITY) 7 I• association control entity •I
#define ROSE (ENTITY) 8 I• remote operations entity •I
#define USER (ENTITY) 9 I• protocol user interface •I

The EVA is an implementor-defined data. structure which maintains the protocol entities

state. For most protocols, this state includes references to protocol state tables a.nd con

nection control blocks. Other, protocol-specific, information can also be held in the EVA.

An example of an entity variable area for a session entity is as follows:

typedef struct
{

int nevcidSem;/•semaphore for allocating connection identifiers•/
int numbccbs; /•total number of connection control blocks •I
SessCCB •ccbs;/•pointer to connection control blocks •/
int (•(statetab[NUMSTATES]))(); /• state table addresses •/
} SessEVA;

This (and most) EVAs are quite simple, containing only information pertaining to the

protocol entity as a whole. Figure 3 shows the organization of an entity variable area.

There are several advantages to grouping protocol information into this data structure.

First, all "global information" rega~ding a protocol entity can be found in a single location

rather than being dispersed throughout the code. Secondly, and more importantly, it is

possible that more than one protocol entity can make use of the same protocol implementa

tion, so long as each has its own EVA. For example, it would be possible to have a choice of

two session entities (perhaps with different state tables) within a protocol implementation.

Both entities would share a common EVA format (with different contents) and could make

use of the same supporting code.

2.2.2 Connection Control Blocks

Connection Control Blocks (CCBs) tend to be much more protocol-specific than EVAs.

Each CCB maintains state information for a single connection. Examples of information

2 PPF DETAILS 20

Entity
CCB for connection O Variable

Area CCB for connection 1

Miscellaneous CCB for connection 2
Fields Common
to Entire Protocol CCB for connection 3
Entity

l)
CCB for connection 4

Pointer to
CCB for connection 5 Connection -

Control Blocks
CCB for connection 6

Pointer to
protocol state '--... • • •
machine I'\

Code for Protocol State O

Code for Protocol State 1

Code for Protocol State 2

Code for Protocol State 3

Code for Protocol State 4

Code for Protocol State 5

•••

Figure 3: The Organization of an Entity Variable Area

2 PPF DETAILS 21

contained in a CCB includes connection state, maximum data transfer size, and connection

identifiers (and perhaps entities) of the associated service user and provider. Connection

control blocks may be allocated statically (using an array) or dynamically as needed. PPF

provides a skeleton subroutine which may be used to allocate CCBs dynamically, but any

reasonable allocation algorithm will suffice. An example of a TRANSPORT CCB [CCl89b]

follows (some fields have been removed for brevity):

typedef struct I• transport connection control block •I
{

BYTE state; I• current state for this connection •I
int tpdusize; I• agreed upon maximum tpdu size for this conn •I
int destref; I• peer connection number •I
int upcid; I• conn id of service user •I
int upentity; I• entity id of service user •I
int cid; I• connection identifier for this connection •I
int dncid; I• connection id of service provider •I
int dnentity; I• entity id of service provider •I
DATAHEADER •rdata; /• received data list (pending reassembly) •I
} TransCCB;

2.2.3 Protocol State Tables

Protocol state tables dictate protocol actions on the basis of received events. PPF state

tables are normally implemented as subroutines, one subroutine per protocol state. All

state subroutines have a common set of parameters. The header for each state is as follows:

stateName(CCBType •ccb, int cid, EVENT event, void •evpa, SEQNO seqNo)

The state subroutine is passed a reference to the appropriate connection control block,

the connection identifier for this connection, the event to act on, event-dependant param

eters, and an internal event sequence number (discussed in 2.5). Each state subroutine

normally consists of a switch statement with each case corresponding to a possible event

type. The following is an example of the data transfer state of a TRANSPORT entity

(again, edited for brevity):

2 PPF DETAILS

topen(TransCCB •tempccb,int cid,EVENT event,void •evpa,SEQNO seqHo)
{

switch (GETEVENTP(event))
{

case TDataReq: /• service user has data to send
{

create a data PDU and call PostEvent() to pass to the
NETWORK entity ...
}

break;

case DT: /• data received from service provider
{

if data is part of a segmented PDU, add to other
segments. If SDU is complete, use PostEvent to pass it
to SESSION entity ...
}

break;

case TDiscReq: /• SESSION would like connection closed •/
· {

close this transport connection and ask NETWORK entity
to close corresponding network connection (by passing
it a NDiscReq event using PostEvent()) ...
}

break;

case NDiscind: /• NETWORK would like connection closed •I
{

close this transport connection and ask the SESSION
entity to close its corresponding connection (by passing
it a TDiscind event using PostEvent()) ...
}

break;

case DR: I• peer TRANSPORT vould like connection closed•/
{

close this connection and ask the SESSION and NETWORK
entities to close their associated connection by issuing
NDiscReq and TDiscind events using PostEvent() ...
}

break;

22

2 PPF DETAILS

}

case ER: /• peer TRANSPORT is reporting an error
{

close this connection and ask the SESSION and NETWORK
entities to close their associated connection by issuing
NDiscReq and TDiscind ev~nts using PostEvent() ...
}

break;

default:/• unexpected event - abort connection

}

{

close this connection and ask the SESSION and NETWORK
entities to close their associated connection by issuing
NDiscReq and TDiscind events using PostEvent() ...
}

break;

23

State subroutine entry points are, by convention, stored in a array in the entity variable

area. Each state has an integer associated with it which serves as an index into this array.

This allows simple invocation of state subroutines and allows simple state transitions. As

an example, consider a TRANSPORT entity with five states. Each state would be assigned

an integer as follows:

/• transport protocol states•/
#define CLOSED 0
#define OPEN 1
#define WFCC 2

#define WFNC 3

#define WFTRESP 4

Each of these correspond to state subroutines with the following headers:

tclosed(TransCCB •tempccb, int cid, EVENT event, void •evpa, SEQNO seqNo)
topen(TransCCB •tempccb, int cid, EVENT event, void •evpa, SEQNO seqHo)
tvfcc(TransCCB •tempccb, int cid, EVENT event, void •evpa, SEQNO seqHo)

2 PPF DETAILS 24

tvfnc(TransCCB •tempccb. int cid. EVENT event, void •evpa. SEQNO seqNo)
tvftresp(TransCCB •tempccb, int cid, EVENT event. void •evpa, SEQNO seqNo)

The entry points to these subroutines are maintained in an array (which forms part of

the entity variable area) as shown by the following code segment.

/• load the state table vith addresses of the state routines•/
teva->statetab[CLOSED] = (int (•) 0) tclosed;
teva->statetab[OPEN] = (int (•)()) topen;
teva->statetab[WFCC] = (int (•) ()) tvfcc;
teva->statetab [WFNC] = (int (•) ()) tvfnc;
teva->statetab[WFTRESP] = (int (•)()) tvftresp;

Now, the simplicity of state transitions is illustrated by the following example:

tempccb->state = CLOSED;

States can be executed (by the boundary routines) as follows:

(•(EntVarArea->statetab[tempccb->state]))(tempccb, •cid.
event. evpa. seqNo);

This has proven to be an efficient, elegant, and easy to read arrangement for the main

tenance and execution of states and state tables.

2.2.4 Connectionless Protocols

Most of the discussion up to this point assumes connection-oriented protocols. PPF, how

ever, also supports connection-less protocols. Connection-less protocols come in several

varieties. Truely connection-less protocols maintain no per-connection state and require

little data structure (i.e. CCB) support. Other protocols implicitly establish connections,

without the exchange of specific connection management PDUs. The duration of these

implicit connections range from a single PDU transfer in each direction, to arbitrarily long

periods.

2 PPF DETAILS 25

Most protocols, regardless of the nature of their connections (or la.ck thereof), can make

use of PPF protocol support. Support in the form of entity variable areas, state tables,

buffer management, inter-layer communication, user-level kernel facilities, protocol event

management, timer facilities, and parallelism constructs are all useful.

2.2.5 Summary

Each protocol entity is defined by its entity variable area (EVA). Ea.ch entity is identified by

a unique integer called the entity identifier. The EVA contains entity-specific information

such as configuration information, connection control blocks (one per open connection), and

a reference to the protocol state machine.

2.3 Inter-Layer Communication

PPF protocol implementations structure inter-layer communication using upcalls. The

effect is a. non-buffered, procedure call interface between layers. Data in upcalls (and down

calls) is in the form of protocol events. This section describes events, and explores how

events are created, examined and passed between layers.

2.3.1 Constructing and Examining Events

An event is a unit of information passed to a protocol entity, usually from another protocol

entity. Events normally correspond to protocol events as described in protocol specifications.

Examples of events generated and received by an ISO Class O TRANSPORT entity include

TDTreq, TCONresp, ND/Sreq, and TD/Sind. PPF provides mechanisms for generating,

sending, and receiving events.

PPF events are composed of two parts, the event boundary and the event identifier.

Event boundaries consist of the following: CNTLUP, CNTLDN, DATA UP, DATADN, and

T /MEO UT. Any other event boundary is said to be of boundary otherwise. These bonda.ries

are discussed in section 2.3.2.

Events are composed and examined using the following PPF routines:

2 PPF DETAILS 26

• MAKEEVENT(boundary, id)

• GETBOUNDRY(event) /* get event boundary*/

• GETEVENTP(event) /* get event identifier * /

MAKEEVENT() takes an event boundary (one of those listed above) and an event

identifier (protocol defined) and creates a PPF event. The event id must be in the range 0

to 255 decimal. An PPF event of type EVENT is composed and returned.

The boundary of a PPF event can be examined using GETBOUNDRY(event). The

argument is of type EVENT. This routine returns the event boundary of the PPF event.

The event identifier of a PPF event can be examined using GETEVENTP(event). The

argument is of type EVENT. This routine returns the event identifier of the PPF event.

2.3.2 Protocol Boundaries

Protocol layers written for the PPF environment are structured to isolate and divide the

protocol interface into six parts (or some subset of these parts). Each of these parts is called

a protocol boundary. Each boundary is responsible for receiving and acting on a certain

subset of events. The six boundaries are as follows:

• Data Up

• Data Down

• Ctrl Up

• Ctr/ Down

• Timeout

• Otherwise

The Data Up boundary expects data events from the service provider. The only ap

propriate event for this interface is received data destined for this protocol entity. As an

example, a PRESENTATION [CCI87) entity would expect to receive either a SDTind,

(data) a SEXind (expedited data), or a STDind (typed data) at this boundary.

2 PPF DETAILS 27

The Data Down boundary expects data events from the service user. The only appropri

ate event at this boundary is a PDU for encapsulation and/or transmission. For example,

a SESSION [CCI89a] entity would expect to receive a SDTreq, a SEXreq, or a STDreq at

this boundary.

The Ctr/ Up boundary expects non-data, non-timer events from the service provider.

Examples of such events received by a. SESSION entity might be TDisclnd, TConnConf, or

TConnlnd.

The Ctrl Down boundary expects non-data, non-timer events from the service user.

For example, a TRANSPORT entity would expect to receive events such as TConnReq,

TConnResp, or TDiscReq through this boundary.

The Timeout boundary receives notification of timer expiries. Events arriving at this

boundary consist of a number identifying the expired timer.

Finally, the Otherwise boundary routine exists to receive events which do not conform

to any of the above categories. The most obvious example is an event to signal an error

condition.

2.3.3 Boundary Routine Definition

Each boundary routine for each protocol consists of a subroutine conforming to the following

header:

Boundary_Name(void •EntVarArea, int •cid, EVENT event,
void •evpa, SEQNO seqNo)

When a boundary routine is invoked it is passed a reference to the entity variable area, a

reference to the connection identifier, the event, the event par~meter area, and the internal

sequence number for the event. Each of these are discussed elsewhere in this paper. The

boundary routine performs some initial processing on the event and then passes it to the

protocol state machine. This initial processing might involve decoding a received data

PDU, or allocating a new connection control block as a result of a connection request. The

following is an example of a TRANSPORT entity data-up boundary routine.

2 PPF DETAILS 28

/• note: parts have been left out for brevity•/
TdataUp(TransEVA •vararea,int •cid,EVENT event,void •evpa,SEQNO seqNo)
{

}

TPDUINFO tpdu;
TransCCB •tempccb;

/• decode the PDU received into a structure of type TPDUINFO •/
decTPDU(ttpdu, (DATAHEADER •) evpa);

/• find the connection control block for this connection
tampccb = t(vararea->ccbs[•cid]);

/• nov that the received PDU is decoded, alter the event
/• to reflect the type of the decoded POU.
event• MAKEEVENT(GETBOUNDRY(event), tpdu.pdutype);

type•/
•I

/• call the appropriate state machine •/
(•(vararea->statetab[tempccb->state]))(tempccb,•cid,event,ttpdu,seqNo);

Notice that the state machine is passed the actual connection identifier rather than a

reference to it. Also, because the state machine operation concerns only this connection

(and not the entity as a whole) it is not passed a reference to the entity variable area.

2.3.4 Passing Events

Events are passed from one entity to another using the PostEvent() PPF library routine.

Events passed using this routine are delivered directly to the appropriate boundary rou

tine of the destination protocol entity (boundary routines are discussed in section 2.3.2).

PostEvent() provides a subroutine call-based form of communication (upcalls) between pro

tocol entities. There is no context switching or queueing performed as a result of posting an

event . The overhead imposed by one call to PostEvent() consists of two array indirections

(the call to PostEvent() itself is inline). The header for PostEvent() is as follows:

int PostEvent(ENTITY entity, int •conid, EVENT evID, void •epa, int sn)

2 PPF DETAILS 29

The first two parameters (entity and con id) identify the event's destination entity and

connection (section 2.4 discusses entity identifiers). By convention, the connection identifier

(cid) is that of the destination entity rather then the source entity. This implies that at some

point each connection must exchange cids with associated provider and user connections.

This is normally accomplished at connection establishment time. Here, for the call to

PostEvent(), the connection initiator will place the value of its own cid in the conid field.

The recipient of the event will record this value for future use, and before returning replace

the value with its own cid. This value is recorded by the connection initiator on return. It

is for this reason that conid is a reference parameter rather than a value parameter. This

exchange is illustrated by the following two code segments.

/• SESSION entity asking the TRANSPORT entity for a new connection •I
int dncid;

dncid = cid; I• cid is SESSIONs connection identifier•/
PostEvent(TRANSPORT, tdncid, HAKEEVENT(CNTLDN,RESERVECID), 0, O);
tempccb->dncid = dncid; /• TRANSPORT responded with new cid

/• this is the TRANSPORT control-down boundary routine •I
TctrlDn(TransEVA •vararea,int •cid,EVENT event,void •evpa,SEQNO seqNo)
{

TransCCB •tempccb;

/• special case as there is no assigned connection yet•/
I• Service user would like a connection established ... •/
if(GETEVENTP(event)== RESERVECID) /• reserve a connection id •/

{

}

int ncid;
ncid = nevtcid(vararea);
vararea->ccbs[ncid] .cid = ncid;
vararea~>ccbs[ncid] .upcid = •cid;
•cid = ncid;
}

•

I•
I•
I•
I•

allocate a nev connection •I
record allocated cid •I
record svc. users cid •I
pass svc. user TPORT. cid •I

2 PPF DETAILS 30

In the first code segment the SESSION entity posts the event using its own connection

identifier. When the call to PostEvent() returns the cid given by the TRANSPORT entity

is saved in the dncid field of the connection control block. In the second code segment the

TRANSPORT entity has received the event asking for a new connection. A new connection

is created (with a call to newtcid(}), the SESSION's connection identifier is saved in the

connection control block, and the newly created identifier is returned to the SESSION

entity. All subsequent downward events posted by this SESSION connection will use the

connection identifier provided by the TRANSPORT entity ..

The third parameter to PostEvent() is the event being transferred. This event is com

posed of a boundary and event type as discussed in 2.3.1.

The fourth parameter is the event parameter area. This is a pointer to any parameters

associated with this event. The contents of the event parameter area is dependant on the

event type. There are, however, conventions regarding the parameter area for certain event

types. These are discussed in 2.3.6.

The final parameter is the event's internal sequence number. This value is passed trans

parently to the destination entity and is described in 2.5.

2.3.5 State Consistency

Protocol implementors must keep state consistency issues in mind when posting events.

When an event is posted, the thread (process) carrying the event passes from the source

entity to the destination entity. Because PostEvent() is essentially a subroutine call, the

thread will eventually return from the destination entity (i.e. from the call to PostEvent()).

Protocol implementors should be cautious, however, in regard to protocol processing done

after return from PostEvent(). In fact, it is usually advisable that all protocol processing

be complete before the call to PostEvent(). The state of the entity must be consistent

(i.e. state transitions must be complete, lists must be consistent, etc.) before the call to

PostEvent().

The reason for ensuring state consistency is that it is possible that an upcall from some

layer N to some other layer N + I will produce an immediate down.call back to layer N. The

most obvious example of this is when layer N + I refuses a connection presented by layer

2 PPF DETAILS 31

N. Any code occuring after the call to PostEvent() in layer N will not have been executed

at the time that the downcall occurs. Layer N must be in a consistent state at the time of

PostEvent() in this case as it receives an event before its call to PostEvent() returns. Thus,

state consistency must be kept in mind when placing calls to PostEvent().

2.3.6 Buffer Management

PPF provides simple buffer management for protocol data. This includes data structures for

protocol data units (PDUs) being encoded for transmission, and for PDUs being decoded

after reception. Buffers are allocated and freed using threads memory allocations routines

as discussed in section 2.1.4.

Received data is managed using the DATAHEADER structure. Some of the fields of

this structure are shown below:

typedef struct dh /• this is the header that points to upgoing pdu's •I
{

int
BYTE
BYTE

datalen;
•data; I• pointer to data of concern
•mem; I• points to beginning of mem

/• for the data (for freeing)

for next layer•/
allocated •/

•I
struct dh •next; I• pointer for linked received frames •/
} DATAHEADER;

This structure may be augmented with other fields as required by the protocol set.

As data is passed from lower to upper layers, each layer "consumes" its PDU header by

advancing the data pointer and reducing the datalen field. The structure is then passed to

the service user. The mem pointer remains unchanged and points to the beginning of the

received data buffer. This field is used in the release of the buffer. These structures may

be linked for reassembly of segmented PDUs.

Data (PDUs) for transmission are passed downward using the PDUNODE structure.

Some of the fields of this structure are shown below:

typedef struct pdunode
{

/• the structure of an outgoing pdu -
/• each PDU is a list of these nodes

2 PPF DETAILS

int datalen;
BYTE •data;
struct pdunode
} PDUNODE;

/• length of pdu pointed to by data
I• portion of pdu for this layer

•next;/• pointer to next node inline

32

Normally, each protocol entity creates its header (or data) and prepends it to a list

of PDUNODE structures. The list is passed to the service provider where the process

is repeated until the constructed PDU is transmitted by the lowest layer. Being able to

prepend variable size buffures greatly simplifies the task of PDU construction. Normally, the

linked PDUNODEs are copied into a contiguous buffer at the lowest layer for transmission.

This is not necessary, however, if the 0/S or device interface supports gather-write.

2.3.7 Multiplexing

PPF's support for a protocol graph (rather than a simple stack) allows multiplexing. More

than one entity may exist at each layer. In this case, one protocol entity can make use of

more than one service provider, or may serve more than one service user. This raises several

issues.

First, each connection must maintain the entity and connection identifiers of all associ

ated service users and service providers. These values are required when posting an event

to an associated entity.

Second, there must be a mechanism for determining the destination entity for connection

management events. For example, if a connection request arrives at an entity which has

three service users, the choice of which service user to pass the event to must be made.

A similar situation occurs for downward connection establishment requests. The details of

how this choice is made are internal to the protocol. For example, the choice may be made

on the basis of quality-of-service requirements or (for ISO protocols), according to Service

Access Points.

Finally, for parallel implementations, each source of events destined for the same pro

tocol entity must use a seperate internal sequence number stream. This is discussed in

section 2.5.3.

2 PPF DETAILS 33

2.3.8 Timer Events

PPF provides a set of interval timers for protocol execution. A separate process (timer

Proc) is dedicated to timer management and the delivery of time-out · events. Timers are

manipulated by applications using the following four subroutines:

int NewTimerO
void FreeTimer (int tnumb)
int Sta.rtTimer (ENTITY entity, int tnumb, int seconds, int conn)
int StopTimer (int tnumb)

. NewTimer() allocates an interval timer to the caller. An integer timer identifier is

returned on success. If no more timers are available, a negative value is returned. The

number of timers is a PPF configuration constant.

Free Timer() returns a previously allocated interval timer to PPF. Tnumb (the only

parameter) is the timer identifier originally returned by New Timer().

StartTimer{) begins the timing of an interval. The first parameter is the identifier of

the entity to which the time-out event is to be directed. The second parameter is the timer

identifier a.s returned by NewTimer(). The third parameter is the interval time in seconds.

The fourth parameter is the identifier of the connection to which the time-out event is to be

directed. Time-out events are delivered using PostEvent to the time-out boundary. In this

case the event boundary is TIMEOUT, and the event type consists of the expired timer's

identifier.

StopTimer() cancels a timing in progress. It requires a single parameter identifying the

timer to be stopped. If the parameter identifies a valid timer, a zero is returned, otherwise

a negative value is returned.

An example of a time-out boundary routine is a.s follows:

Stimer(vararea, cid, event, evpa, seqNo)
SessEVA •vararea;
int •cid;
EVERT event;
void •evpa;

2 PPF DETAILS

SEQNO
{

seqNo; /• vill be NOSEQNO for timer indications•/

}

SessCCB •tempccb;

/• find the connection control block •I
tempccb • ~(vararea->ccbs[•cid]);

/• enter CCB manipulation space (described later) •/
EnterEventGate(tempccb->eventGate, seqlo);

/• massage event to be useful for state machine •/
event= MAKEEVENT(0, STIMER);

/• call the state machine •/
(•(vararea->statetab[tempccb->state]))(tempccb, •cid, event,

evpa, seqNo);

2.3.9 Summary

34

Communication between protocol entities takes the form of upcalls (essentially a subroutine

call without buffering). The unit of communication is the protocol event passed from one

entity to another. An event is composed of a boundary and a type. An entity receives events

using its boundary routines. Each entity has one boundary routine for each event boundary

type. The mechanism used to deliver an event to an entity is that of a procedure call

to the appropriate boundary. The boundary routine normally performs some initial event

processing and then calls the appropriate state machine subroutine. The boundary routine

is not called directly by the initiator of the event. Instead, the initiator calls PostEvent()

which, in turn, calls the appropriate boundary routine of the appropriate entity.

2'.4 Protocol Initialization

Every protocol entity ex~cutes some initialization code on startup, before connections may

be established or data transferred. This section outlines the initialization steps required by

PPF, and discusses how the initialization code can be executed.

Initialization tasks fall into two categories. The first is protocol-dependant initialization

2 PPF DETAILS 35

and the second is PPF-based initialization. Protocol-dependant initialization varies accord

ing to the protocol, though some activities are common to many protocols. For example,

all connection-oriented protocols must create and initialize a data structure to maintain

connection control blocks (CCBs). Another example of protocol-dependant initialization

is the creation of typical PDU headers to reduce PDU construction overhead during data

transfer.

PPF-based initialization consists of two tasks. The first task is the creation and initial

ization of the entity variable area (EVA). The purpose and format of an EVA is described

in section 2.2.1. Initialization consists of allocating memory for the EVA and initializing its

fields (eg. state table pointer array and connection control blocks).

The second task is the registration of the entities boundary routines. Boundary routines

are registered with PPF by each protocol entity using the following subroutine:

SetECBHode(entity, cu, cd, du, dd, to, ot, eva)
ENTITY entity;
int (•cu)(), (•cd)(), (•du)(), (•dd)(), (•to)(), (•ot)();
void •eva;

The first parameter, entity is the entity identifier of the calling entity. The next six

parameters are pointers to boundary routine entry points. They are (in order) control-up,

control-down, data-up, data-down, time-out, and otherwise. Each of these boundaries are

discussed in 2.~.2. The final parameter (eva) is a pointer to the entity variable area of

the calling entity. Once the boundary routines and entity variable areas of each entity are

registered, the framework is able to deliver events to the appropriate boundaries.

Both types of protocol initialization (protocol-dependant and PPF-based) should be

invoked as a result of a single subroutine. A call to this subroutine is then placed in the

framework routine InitProtos{). InitProtos() is called once on startup by the application

using the protocol service. An example of a TRANSPORT entity initialization routine is

as follows:

inittransport()
{

/• create the TRANSPORT entity variable area

2 PPF DETAILS

}

(•teva) = (TransEVA •) Malloc(sizeof(TransEVA));

/• create the initial set of connection control blocks •/
(•teva)->numbccbs = NUMBINITCCBS;
(•teva)->ccbs = (TransCCB •)

Malloc((•teva)->numbccbs • sizeof(TransCCB));

/• initialize all connections to closed •I
initTccbs(0, (•teva)->numbccbs - 1);

I• load the state table vith addresses of the state routines •I
(•teva)->statetab[OPEN] = (int (•) ()) topen;
(•teva)->statetab[CLOSED] = (int (•)()) tclosed;
(•teva)->statetab[RESERVEDCID] = (int (•)()) tclosed;
(•teva)->statetab[WFCC] = (int (•) ()) tvfcc;
(•teva)->statetab[WFNC] = (int (•)()) tvfnc;
(•teva)->statetab[WFTRESP] = (int (•)()) tvftresp;
(•teva)->statetab[RESERVED] = (int (•) ()) treserved;

/• register boundary routine addresses •/
/• note: that this entity has no time-out events and therefore•/
/• registers the "other.vise" routine as the time-out boundary. •I
SetECBNode(TRANSPORT, TctrlUp, TctrlDn, TdataUp, TdataDn,

Tothervise, Tothervise, (•teva));

/• nev semaphore to ensure mutual exclusion of ccb creation •/
(•teva)->nevcidSem = NevSem(1, SHORT);

initTccbs(first, last)
int first;/• start initializing at this ccb •I
int last; /• last ccb to initialize •/
{

int count;

for(count= first; count<• last; count++)
{

(•teva)->ccbs[count] .cid
(•teva)->ccbs[count].state
(•teva)->ccbs[count].rdata

= count; I• connection id•/
= CLOSED;/• proto state •/
= NULL; I• rec'd data •/

(•teva)->ccbs[count].memFrames • NULL; I• recv buffers •/
}

36

2 PPF DETAILS 37

}

2.5 Tools For Parallelism

2.5.1 Protocol Parallelism

As indicated in the introduction, protocol processing can be divided into two parts: packet

processing and connection control block (CCB) manipulation. Packet processing includes

external data representation conversion functions, checksum calculations, encryption and

decryption, and encoding and decoding of packet headers. CCB manipulation includes state

machine transitions, enqueuing received segments, etc. The majority of protocol processing

overhead is due to packet processing.

Significant parallelism at the packet level (one thread per packet) is possible with reason

able levels of synchronization and communication complexity. Packet processing does not

require access to shared data structures. Packets are generally context free in the sense that

state information and synchronization are not required for encoding and decoding; only the

packet is required for decoding and a reference to the packet contents for encoding. If only

one thread is responsible for the encoding or decoding of a single packet, then there is no

competition for these data structures. This makes packet processing an excellent candidate

for parallelization. CCB manipulation is more difficult using per-packet parallelism. In this

case more than one thread may be contending for access to shared data in the connection

control block. A simple example is that of enqueuing a segment of a multi-segment PDU.

If multiple segments are being enqueued in parallel, access to the list structure must be

controlled to maintain list integrity. Likewise, state examination and transitions must be

made in a consistent manner. It is therefore difficult to parallelize CCB manipulation.

In order to parallelize packet processing multiple threads can be created to "shepherd"

packets through the protocol graph. Each of these threads executes in a loop as illustrated

below:

PROCESS packetShepherd()
{

vhile(1)
{

block at 0/S interface avaiting a packet ...

2 PPF DETAILS

}

: I

I i -I •

T!
I f J ; • • •
I t~l_..
J i Await Paoket from MIWOr1c

Figure 4: The Packet Shepherd Loop: Await Packet, Process Packet

call PostEvent() to deliver packet to lovest protocol
entity ... (and continue processing packet up through
the graph until return)
}

38

Application processes operate in a similar fashion. An application downcall is made to

initiate data transfer. This thread proceeds through the layers using PostEvent() to execute

downcalls. Once the thread reaches down as far as necessary (usually after interacting

with the network device one or more times) it returns to the application. Figure 5 depicts

application threads and downcalls. Figure 4 depicts the actions of a packet shepherd process.

Two types of synchronization between these threads are required: mutual exclusion and

event ordering for the CCB manipulation stage.

2 PPF DETAILS

Procoool
Enllly

p.........,.
E"'ily

Proloool
Entily

SendPaolialOn
Netwol1c lntertaoe

Figure 5: Application Threads initiating Data Transfer Through Downcalls

2.5.2 Mutual Exclusion

39

PPF provides constructs for ensuring mutual exclusion of CCB manipulation. This mutual

exclusion is at the level of a single CCB. Since a CCB pertains to only one connection at a

single layer, competition for access to a CCB is restricted to CCB manipulation occurring

at the same layer for the same connection. No competition (other than that for shared

hardware resources) occurs across layer or connection boundaries.

2.5.3 Event Ordering

Parallel processing of events (eg. received packets) allows the possibility that events may

pass each other in the graph as they are being processed. This can cause a logically earlier

event to arrive at some layer after a logically later event. In order for correct event processing

the protocol machine must have knowledge of the logical order of received events. This is

accomplished using internal sequence numbers. These sequence numbers are internal in the

sense that they are private within a protocol implementation. They are an implementation

2 PPF DETAILS 40

feature, invisible from a functional point of view.

Internal sequence numbers are generated by all entities which generate events and are

associated one-to-one with these events. A sequence number stream is a monotonically

increasing-by-<?ne series. There is a separate sequence number stream for each event des

tination of each connection. For example, a session connection generates two independent

sequence number streams. One for events destined for the associated presentation connec

tion, and one for events destined for the associated transport connection. If one connection

multiplexes events onto several service providers, separate sequence number streams are

generated for each. The sequence number associated with each event determines its logical

position in the event sequence regardless of arrival order.

There are also events which have no place (or perhaps more accurately, have any place)

in the event stream. These are called unordered events. Unordered events are generally

asynchronous events such as timer expiry. These events are assigned a special null sequence

number indicating their unordered status.

2.5.4 The Event Gate

The event gate is a PPF module that controls the entry of threads into a connection's

CCB manipulation stage. It performs both mutual exclusion and event ordering. An event

arriving while the CCB manipulation stage is occupied is suspended and enqueued until the

stage is clear. Events are allowed access sequentially in order of internal sequence number.

An event arriving out of order is suspended until all intervening in-order events have passed

through the CCB manipulation stage. These events may arrive from more than one source.

For example, a connection receives events from at least its service user and service provider.

Therefore each event gate must keep track of the separate sequence number streams. If

more than one event is eligible to enter the CCB manipulation stage of a connection (these

would be events from separate streams) the choice of which is allowed in first is arbitrary.

The event gate also receives unordered events. These events are allowed in ahead of all

other waiting events as soon as the CCB manipulation stage is free.

There is one event gate for each connection active within each layer. PPF parallelism

structure requires no synchronization between separate connections, even at the same layer.

Synchronization is only required between threads entering the CCB manipulation stage for

2 PPF DETAILS 41

the same connection at the same layer. In order to make use of this synchronization tool,

it is necessary for the protocol implementor to separate the CCB manipulation stage from

the packet processing stage for each protocol entity. Experience shows that this is not a

difficult task. Figure 6 shows the division of tasks in a connection within a protocol entity

and the role of the event gate. Note that threads enter through the boundary routines,

proceed in parallel through the packet processing stage, and proceed one at a time through

the CCB manipulation stage.

The event gate module is composed of the following routines:

EVENTGATE •InitEventGate()
void FreeEventGate(EVENTGATE •gate)

void EnterEventGate(EVENTGATE •gate, int sequenceNumber)
void ExitEventGate(EVENTGATE •gate)

#define NOSEQNO OxOffffff
#define FIRSTSTREAM(X) ((X) << 28)

InitEventGate() creates, initializes, and returns a pointer to a new event gate. Each

connection of each protocol entity requires one event gate (assuming a parallel implementa

tion - as is assumed for the remainder of this section). Event gates can be created at startup

(when the CCBs are created), or dynamically (as connections are established). Each event

gate expects to receive events from multiple sources (called event streams). The maximum

number of streams is a configuration constant. Normally, an event gate will receive events

from two streams, the associated connections of the service provider and the service user.

Streams are numbered sequentially starting from zero. The protocol implementor must

ensure that sources of events destined for a particular event gate each have separate stream

identifiers. The convention for the simple case is that downward events are carried on

stream 1, upward events on stream 0.

FreeEventGate() returns a previously allocated event gate to PPF. The single parameter

is the pointer obtained from InitEventGate().

EnterEventGate() and ExitEventGate() calls surround an entities CCB manipulation

code. EnterEventGate() ensures mutual exclusion of the CCB manipulation code and also

sequences events according to its second parameter, sequenceNumber. ExitEventGate() is

2 PPF DETAILS 42

Downward Events
Protocol Entity

i900oda~Bautine. _ ___ _ _ ~

----- ~----. ----------j
Event Gal& allowa t - - I
·eventa t1rouc;i CC8 I I

CCB Man pu manlpiallon alage one I I
at a lime, and in order I I

I
'------------J
Boundary Routine

Ev.tt a. of sequence number I I

Evania proceed lhrough
packet proce.aeiog 81age
In parallel.

• • • I I
I I

Q>I I
.El I
'SI I
OJ I a:, I
~ I
{g1 I
CJ I
51 I

------------] -'
I
L __

aou ry Routine

Upward Events

I
I

Figure 6: The Division of a Protocol Entity Into CCB Manipulation and Packet Processing
Tasks

2 PPF DETAILS 43

called after the last line of CCB manipulation code. Both routines require the event gate

pointer as their first (and ExitEventGate()'s only) parameter. An example of the use of

these routines follows:

/• this is a transport boundary routine•/

TdataUp(vararea, cid, event, evpa, seqNo)
TransEVA •vararea;
int •cid;
EVENT event;
void •evpa;
SEQNO seqNo;
{

}

TPDUINFO tpdu;
TransCCB •tempccb;

/• first - the packet processing stage (PDU decoding in this case) •I
decTPDU(itpdu, (DATAHEADER •) evpa);

tempccb = t(vararea->ccbs[•cid]);

/• we are about to perform the CCB manipulation stage (i.e. state •/
/• table transitions and list manipulation). •/
EnterEventGate(tempccb->eventGate, seqNo);

/• make the event the type of received frame
event= MAKEEVENT(GETBOUNDRY(event), tpdu.pdutype);

/• call the appropriate state machine •/
(•(vararea->statetab[tempccb->state]))(tempccb,•cid,event,ttpdu,seqNo);

The thread processing this dataup event may continue on up the protocol graph. Ex

itEventGate() must be called immediately following the CCB manipulation performed on

behalf of this event. Care must be taken to he sure that all possible "exits" from this entity

are covered. One of the possible states called by the last statement of TdataUp() (shown

above) is presented below. Note how the final CCB manipulation statement in each case is

followed by a call to ExitEventGate().

2 PPF DETAILS

topen(TransCCB •tempccb, int cid, EVENT event, void •evpa, SEQNO seqNo)
{

switch (GETEVENTP(event))
{

case TDataReq:
{

int maxlen, dncid;
int numbPDUs;
SEQNO firstSeqNo;

maxlen
dncid
numbPDUs

= tempccb->tpdusize;
= tempccb->dncid;
= countsdata((PDUNODE •) evpa, mu:len);

firstSeqNo = tempccb->nextDnSeqNo;
tempccb->nextDnSeqNo += numbPDUs;

ExitEvQntGate(tempccb->eventGate);

I• construct the PDU and post it to the layer belov •/
sendTDT(evpa, mu:len, dncid, nlliDbPDUs, firstSeqNo);
}

break;

case DT:
{

TPDUINFO •tpdu;
DATAHEADER *dh, •nevdh;

tpdu = (TPDUINFO. *) evpa;

dh = tpdu->frameptr;

/• enqueue PDU (OK as we are protected by event gate)•/
addTdh(tempccb, dh);

if(tpdu->eot) /• if this packet is complete •I
{

/• the data and header are on the top mem frame•/
int upcid;

44

2 PPF DETAILS

}

}

else

int upSNo;

upcid
nevdh
upSNo

= tempccb->upcid;
= streamlist(tempccb);
= tempccb->nextUpSeqNo++;

ExitEventGate(tempccb->eventGate);

PostEvent(SESSION, tupcid, MAKEEVENT(DATAUP,TDataind),
nevdh, upSNo);

}

ExitEventGate(tempccb->eventGate);
}

break;

... code deleted for brevity ...

45

Notice, in the above example, that ExitEventGate() is called before the upcall or down

call (PostEvent() and sendTDT() [which calls PostEvent()], respectively) to the adjacent

protocol layer. If, instead, the call to ExitEventGate() was not made until sometime after

the upcall or downcall, the CCB manipulation stage would be locked until the upcall or

downcall returned. This could be a considerable duration as any amount of CCB manipula

tion and packet processing could be carried out in an arbitrary number of protocol entities

before control returns. Thus, ExitEventGate() is called after the last CCB manipulation

statement, but bef~>re control is passed to another protocol entity.

Generating sequence numbers is done using the NOSEQNO and FIRSTSTREAM(X)

macros. NOSEQNO is the non-sequence number. It is used for events which can take any

place in the sequence number stream. An example of such an event is a time-out event.

A normal sequence number stream is initiated using FIRSTSTREAM(). FIRSTSTREAM

takes a single parameter identifying the stream number (typically some small value such

as O, 1 or 2). It returns the first sequence number in that stream. Subsequent sequence

numbers are generated by incrementing the previous value. These must be generated in

2 PPF DETAILS 46

"protected" mode (i.e. within the area guarded by the event gate) in order to ensure that

the numbered sequence corresponds to the logical sequence. This usually involves code

similar to the following:

/• generate next sequence number in protected space•/
nevseqno = tempccb->nextUpSeqNo++;

/• leave the protected area (CCB manipulation area)•/
ExitEventGate(tampccb->eventGate);

/• post the event on to the next layer •/
PostEvent(NETWORK, tdncid, MAKEEVENT(CNTLDN, NConnReq),

cinfo->calledAddr->nAddress, nevseqno);

FIRSTSTREAM is normally called during CCB initialization as follows:

/• find a nev connection identifier and initialize the connection •I
int nevtcid()

{

/• make CCB creation mutually exclusive•/
P((•teva)->nevcidSem);

... find a nev CCB in the table ''ccbvec•• ...

/• nov that one is found - initialize the fields•/
ccbvec[tempcid].eventGate = InitEventGate();

/• generate first sequence number of stream O for events •/
/• generated by this connection going upvard. •/
ccbvec[tempcid].nextUpSeqNo = FIRSTSTREAM(O);

/• generate first sequence number of stream 1 for events •/
/• generated by this connection going dovnvard. •I
ccbvec[tempcid].nextDnSeqNo = FIRSTSTREAM(l);

/• set the connection state to some initial state•/
ccbvec[tempcid].state = RESERVEDCID;

V((•teva)->nevcidSem);

2 PPF DETAILS

return(tempcid);
}

2.5.5 Summary

47

There are two parts to protocol processing: CCB manipulation and packet processing.

Packet processing overhead dominates protocol processing. Packet processing can be exe

cuted in parallel (even within a single connection). CCB manipulation must be atomic and

synchronized. PPF provides the Event Gate mechanism to synchronize CCB manipulation

activities. It ensures that (in the presence of multiple processors) CCB manipulation is

atomic and that events are processed in their correct order.

References

[CCI87] CCITT. Presentation Protocol Specification for Open Systems Interconnection
for CCITT Applications, December 1987.

[CCI89a] CCITT. Session Protocol Specification for Open Systems Interconnection for
CCITT Applications. In Blue Book, Volume VIII - Fascicle VIII.5, 1989.

[CCI89b] CCITT. Transport Protocol Specification for Open Systems Interconnection for
CCITT Applications. In Blue Book, Volume VIII - Fascicle VIII.5, 1989.

[Che88] David R. Cheriton. The V Distributed System. Communications of the ACM,
31(3):315-333, March 1988.

[Cla85] David D. Clark. The structuring of systems using upcalls. In Proceedings of
the Tenth ACM Symposium on Operating Systems Principles, volume 19, pages
171-180, Cambridge, MA 02139, USA, December 1985. Laboratory for Computer
Science, Massachusetts Institute of Technology.

[CT90] David D. Clark and David L. Tennenhouse. Architectural considerations for a new
gen~ration of protocols. In ACM SIGCOMM 90, Communication Architectures
and Protocols, pages 20~209. Laboratory for Computer Science, M.I.T., 1990.

[GN192] Murray W. Goldberg, Gerald W. Neufeld, and Mabo R. Ito. A parallel approach
to osi connection-oriented protocols. In IFIP WG6.1/WG6.4 Third International
Workshop on Protocols for High-Speed Networks, Vancouver, British Columbia,
Canada, May 1992. University Of British Columbia.

2 PPF DETAILS 48

[HP88] Norman C. Hutchinson and Larry L. Peterson. Design of the x-kernel. In ACM
Sigcomm 1988 Symposium, pages 65-75. Computer Systems Laboratory, Stanford
University, August 1988.

[NG90] Gerald W. Neufeld a.nd Murray W. Goldberg. A request/response protocol for iso
remote operations. In IEEE Region 10 Conference on Computer and Communica
tion Systems, Vancouver, British Columbia, Canada, September 1990. University
Of British Columbia.

[VL87] George Varghese and Tony Lauck. Ha.shed and hlera.rchlcal wheels: Data struc
tures for the efficient implementation of a timer facility. A CM Operating Systems
Review, 21(5):25-38, November 1987.

