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1. Introduction 

The word "network" is used in many senses. Samuel Johnson's definition ("Anything 

reticulated or decussated, at equal distances, with interstices between the intersections 

... ") is famous as an example of his style, but is little help to us. Other, more specialized 

definitions occur in operations research, circuit theory, logical design, and artificial intel­

legence. Our present interest, however, is with networks as mediators of communication. 

For this purpose it is satisfactory to model them as a species of directed graph, whence 

the following definition. 

An n-network is a directed acyclic graph in which there are n distinguished vertices 

x1 , .•. , Xn with in-degree O called inputs and n distinguished vertices y1 , ... , Yn with out­

degree O called outputs. Vertices that are neither inputs nor outputs are called links. 

The results of this paper all fit within the following framework. We define a "connec­

tivity property" of networks, and then seek the smallest n-network (that is, then-network 

with the smallest possible number of edges) having the given connectivity property. The 

minimum possible number of edges is of course a function of n ( and perhaps other param­

eters involved in the connectivity property), and we shall be more interested in the order 

of growth of this function (to within constant factors) than in its numerical value for any 

particular value of n. 

The terms "rearrangeable" and "circuit-switching" in the title refer to aspects of the 

connectivity properties we shall study, which all take the following form. We delineate 

a set of "tasks" for a network, where each task constitutes a set of "requests" to join 

certain inputs to certain outputs. We then ask that for each such task there be a set of 

vertex~disjoint paths that satisfy all of the requests in that task. 

The term "circuit-switching" refers to the requirement that the paths fulfilling a given 

task must be disjoint, so that different requests are fulfilled by different parts of the net­

work. (This may be contrasted with "packet-switching", where different requests may be 

fulfilled by the same part of the network at different times.) The term "rearrangeable" 

refers to the fact that the set of paths may depend on the entire task, so that the change 

of a single request in a task might occasion the rearrangement of all the paths. (This may 

be contrasted with "non-blocking" operation, where it must be possible to satisfy new 

requests without disturbing the paths that satisfy old ones.) 
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2. Connectors 

A connection n-assignment is a sequence v = (v1, ... , vn) such that (1) Vi E {O, ... , n} 

for all 1 ::; i ::; n, and (2) for 1 ::; u ::; n, Vi = u for at most one 1 ::; i ::; n. Say that two 

connection n-assignments v and w are similar if { v1, •.. , Vn} = { w1, .•• , Wn}. 

Let v and w be connection n-assignments, and let N be an n-network. We shall say 

that N realizes the pair ( v, w) if there exists a set P of vertex-disjoint paths from inputs 

to outputs in N such that (1) Xi is the origin of a path in P if and only if Vi > 0, (2) 

Yi is the destination of a path in P if and only if Wj > 0, and (3) if there is a path from 

Xi to Yi in P, then Vi = Wj. We may think of the non-zero elements of an assignment as 

"requests" of n different types, with zero elements indicating the absence of a request. A 

network then realizes a pair of assignments if it can "match" each input request with an 

output request of the same type. 

Throughout this paper we shall assume that n, and later certain other parameters, 

are integral powers of 2, so that a proof "by induction on n" will typically proceed from 

n to 2n, rather than from n ton+ l. This fits well with our interest in orders of growth 

to within constant factors, and it will significantly simplify some of our proofs. Let c( n) 
denote the minimum possible number of edges in an n-connector. 

Theorem 2.1: We have c( n) ::; 4n log2 n. 

Proof: We shall describe a recursive construction for an n-connector C( n ). For the basis 

of the recursion, we take C(2) to be a complete bipartite graph with 2 inputs and 2 

outputs. For the recursive step, we describe how to construct a (2n )-connector from 2 

disjoint n-connectors and 8n additional edges. We will then have c(2) ::; 4 together with 

the recurrence 

c(2n) ::; 2c( n) + 8n, 

from which it follows by induction that c(n)::; 4nlog2 n. 

The recursive construction for C(2n) is as follows. We take four disjoint sets each 

containing 2n vertices: the inputs {1, ... , 2n }, the links {1, ... , 2r1.} and {1, ... , 2n }, and 

the outputs {I, ... , 2n }. For r E {1, ... , n }, we install a complete bipartite graph ( called an 

input node) from {r, ... , n+r} to {r, ... , n+r }, and a complete bipartite graph (called an 

output node) from {r, ... , n + r} to {r, ... , n + r }. We also install a copy of C( n) ( called 

the lower subnetwork) from {l, ... , n} to {1, ... , ri}, and a copy of C(n) (called the upper 

subnetwork) from {n+l, ... , 2r1.} to {n+l, ... , 2n}. 

To see that the resulting network is a (2n )-connector, we consider a pair ( v, w) of con­

nection (2n )-assignments. We may assume without loss of generality that { v1 , ••• , v 2n} = 
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{ w 1 , ••• , w2n} = {1, ... , 2n }, since we can always add additional requests, then delete the 

resulting paths from the realization. We shall construct a bipartite graph from the n input 

nodes to the n output nodes by adding an arc from input node p to output node q for 

each request to connect an input of p ( that is, p or n + p) to an output of q ( that is, q 
or n + q). Every node in the resulting bipartite graph has degree 2; thus the arcs may be 

assigned 2 colors ( say, red and blue) in such a way that every node meets one arc of each 

color. The problem of constructing 2n vertex-disjoint paths in C(2n) can now be reduced 

to that of constructing n vertex-disjoint paths in each copy of C(n) by routing the requests 

corresponding to red arcs through the lower subnetwork, and those corresponding to blue 

arcs through the upper subnetwork. 6. 

The ideas underlying this proof of Theorem 2.1 were known to D. Slepian in 1952; 

they did not appear in print, however, until 1962, when the history of the problem was 

traced by Benes [B]. By then they had been rediscovered at least twice, and they have 

continued to be rediscovered from time to time over the subsequent decades. 

Theorem 2.2: For n 2:'.: 4, we have c(n) 2:'.: (n/4)log2 n. 

Proof: In a network with c edges, there can be at most 2c distinct sets of vertex-disjoint 

paths. Since there must be such a set for each of then! one-to-one correspondences between 

the n inputs an n outputs, we must have 2c 2:'.: n!. Assuming that n 2:'.: 4 is an integral 

power of 2, and noting that the n/2 largest factors in n! are each at least n/2, we obtain 

c 2:'.: log2 (n!) 2:'.: (n/2) log2 (n/2) 2:'.: (n/4) log2 n. 6. 

The idea behind this proof is due to Shannon [S]. 

3. Superconcentrators 

A superconcentration n-assignment is a sequence v = (v1 , ••• , vn) such that Vi E 

{0, 1} for all 1 ~ i ~ n. Say that two superconcentration n-assignments are similar if 

I:1=::;i=::;n V1 = I:1=::;j:::;n Wj, 

Let v and w be superconcentration n-assignments, and let N be an n-network. We 

shall say that N realizes the pair ( v, w) if there exists a set P of vertex-disjoint paths 

from inputs to outputs in N such that (1) Xi is the origin of a path in P if and only if 

Vi > 0, and (2) Yi is the destination of a path in P if and only if Wj > 0. We may think of 

the non-zero elements of an assignment as "requests" of a single type, with zero elements 

indicating the absence of a request. A network then realizes a pair of assignments if it can 

"match" each input request with an output request. 

Let s( n) denote the minimum possible number of edges in an n-superconcentrator. 
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Theorem 9.1: We have s( n) ~ 90n. 

For the proof of this theorem, we shall need an auxiliary notion. Consider a bipartite 

n-network N, that is, an n-network in which there are no links, so that every edge is 

directed from an input to an output. For set X of inputs, we define the set N(X) to be the 

set of outputs y such that, for some input x E X, there is an edge from x toy. We shall say 

that N is an n-expander if, for every X with #(X) ~ n/3, we have #(N(X)) ~ 2#(X)+l. 

(Many different definitions of "expander" appear in the literature; the one given here caters 

to the proof of Theorem 3.1, but is similar in spirit .to all the others.) Let e(n) denote the 

minimum possible number of edges in an n-expander. 

Proposition 9.2: We have e(n) ~ 15n. 

Proof: We take N to have inputs A = {l, ... , n} and outputs B = {I, ... , n}. If 1r is a 

permutation of the set { 1, ... , n}, the set { ( i, 1r( i)) : 1 ~ i ~ n} will be called the graph 

of 1r. We let the edges E of N be the union of the 15 graphs of 15 independent uniformly 

distributed random permutations of {1, ... , n }. The bipartite n-network N clearly has at 

most 15n edges. We shall show that it is an n-expander with probability strictly greater 

than 0. 

If N is not an n-expander, then there exists kin the range 1 ~ k ~ n/3, X ~ A with 

#(X) = k and Y ~ B with #(Y) = 2k such that each of the 15k edges that meets a vertex 

in X also meets a vertex in Y. There are (;) ways to choose X with #(X) = k and (2nk) 

ways to choose Y with #(Y) = 2k, and for each such pair of choices, the probability that 

each edge that meets X also meets Y is ( (2
;) / (Z) )1 5

. Thus the probability that N is 

not an n-expander is at most 

and it will suffice to show that the sum S is strictly less than 1. 

Since G~) ~ (;) 2 , we have 

and since (2;) ~ 22k, this becomes 

s ~ L 26k 

15:k'S::n/3 
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Furthermore, we have (2[) / (Z) = 2k(2k-l)··•(k+l)/n(n-1)· ·•(n-k+l) ~ (2k/n)k, 

and thus 

Since 2k/n ~ 2/3, we have 

s~ L 26k(2k/n)12k_ 
1'5,_k-5,_n/3 

s ~ L 26k (2/3)12k' 
1'5,k-5,.n/3 

and since 218 /312 < 1/2, we have 

s < I: (112) < 1, 
1'5,_k'5,n/3 

which completes the proof. ~ 

Proof of Theorem 9.1: We shall describe a recursive construction for an n-super­

concentrator S(n). For the basis of the recursion, we take S(n) to be a complete bi­

partite graph if n ~ 16. For the recursive step, we describe how to construct a (2n )­

superconcentrator from an n-superconcentrator, a (2n)-expander, and four copies of an 

n-expander. We will then have s(n) ~ 16n for n ~ 16, together with the recurrence 

s(2n) ~ s(n) + e(2n) + 4e(n) 

~ s(n) + 90n, 

from which it follows by induction that s(n) < 90n. 

The recursive construction for S( n) is as follows. We take four disjoint sets of 

vertices: the inputs {1, ... , 2n }, the links {1, ... , n} and {1, ... , n}, and the outputs 

{I, ... , 2n }. We install a (2n )-expander from {1, ... , 2n} to {I, ... , 2n }, and four copies 

of an n-expander: from {1, ... , n} to {1, ... , n}, from { n + l, ... , 2n} to {1, ... , n}, from 

{I, ... , n} to {1, ... , n}, and from { n + l, ... , 2n} to {l, ... , n}. Finally, we install an 

n-superconcentrator from {1, ... , n} to {1, ... , n}. 

To see that the resulting network is a (2n )-superconcentrator, we consider a pair 

( v, w) of similar superconcentration (2n )-assignments. To find a set of vertex-disjoint 

paths satisfying these requests, we shall first find as many direct paths as possible through 

the (2n )-expander. There will remain a pair ( v', w') of similar superconcentration (2n )­

assignments corresponding to requests that were not satisfied in this way. We shall show 

below that at most 2 l n /3 J + 1 such requests remain. We shall then find as large a matching 

as possible between inputs r with v~ = l and distinct links in {1, ... , n}, through the two 

n-expanders joining these sets. We shall show below that this matching accomodates all 
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the remaining requests. Similarly, we shall find a matching between outputs r such that 

w} = land distinct links in {1, ... , n}. The remainders of the paths satisfying the requests 

of v', w') are then furnished by the n-superconcentrator. 

To see that at most 2ln/3J + 1 requests remain in (v',w'), we consider any maximal 

pair ( v', w') of similar superconcentration (2n )- assignments with the property that no edge 

of the (2n )-expander joins a requesting input of v' to a requesting output of w'. Suppose 

that there are more than 2 l n /3 J + 1 requesting inputs in v'. Since l 2n /3 J ::; 2 l n /3 J + 1, we 

can find a set X of comprising exactly l2n/3J requesting inputs in v'. Since l2n/3J ::; 2n/3, 

these inputs are joined by edges of the (2n)-expander to at least 2l2n/3J + 1 of the 2n 

outputs. This leaves at most 2n - (2l2n/3J + 1) ::; 2ln/3J + 1 outputs that include the 

requesting outputs in w'. 

To see that all of the requesting inputs in v' can be matched to distinct links in 

{1, ... , n}, we use the marriage theorem, whereby it suffices to show that, for every k ::; 

2 l n /3 J + 1, every set of k requesting inputs in v' is joined by edges in the two n-expanders 

(the upper and lower n-expanders) to at least k distinct links. Of k such requesting 

inputs, we may assume without loss of generality that at least l k /2 J belong to the upper 

n-expander. Since lk/2J ::; ln/3J ::; n/3, these lk/2J inputs are joined by edges in the 

upper n-expander to at least 2 l k /2 J + 1 2::: k distinct links. 6 

The idea behind the proof of Proposition 3.2 is due to Pinsker [Pl]. The result of 

Theorem 3.1 is due to Valiant [V]; the outline of the proof we have given is due to Pippenger 

[P2]. 

4. Subconnectors 

An n-assignment is a sequence v = ( v1 , ... , vn) such that Vi E {O, ... , n} for all 

1 ::; i ::; n. Let v and w be n-assignments, and let N be an n-network. We shall say that 

N realizes the pair ( v, w) if there exists a set P of vertex disjoint paths from inputs to 

outputs in N such that (1) Xi is the origin of a path in P if and only if Vi > 0, (2) Yi is the 

destination of a path in P if and only if w; > 0, and (3) if there is a path from Xi to Yi in 

P, then Vi= w;. We may think of the non-zero elements of an assignment as "requests" of 

n different types, with zero elements indicating the absence of a request. A network then 

realizes a pair of assignments if it can "match" each input request with an output request 

of the same type. 

Let J( u, v) = #( { i : u = vi}) denote the number of requests of type u in v. Say 

that requests v and w are similar if J( u, v) = J( u, w) for all 1 ::; u ::; n. If a pair ( v, w) 
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is realized by some network, then v and w must be similar. We shall be interested in 

networks for which the converse ( or limited versions of it) holds. 

An assignment v has average m if v1 + · · · + Vn $ mn. (We are departing from normal 

usage, which would describe such an assignment as having average at most m.) An m­

average n-subconnector is an n-network that realizes every pair of similar n-assignments 

with average m. 

We shall assume henceforth that m as well as n is an integral power of 2. Let h( n, m) 

denote the minimum possible number of edges in an m-average n-subconnector. 

Theorem 4, 1: We have h(n, m) $ 1456n logi32m)). 

To prove Theorem 4.1 it will be convenient to have a somewhat less flexible network 

available as a building block. 

An assignment v has maximum m if Vi $ m for every 1 $ i $ n. (We are again de­

parting from normal usage, which would describe such an assignment as having maximum 

at most m.) An m-maximum n-subconnector is an n-network that realizes every pair of 

similar n-assignments with maximum m. 

Let g(n, m) denote the minimum possible number of edges m an m-max1mum n­

subconnector. 

Theorem 4,2: We have g(n,m) $ 728nlog2(4m). 

We shall prove Theorem 4.2 later. For now let us see how to use it to prove Theorem 

4.1. 

Proof of Theorem 4.1: We shall describe a recursive construction for an m-average n­

subconnector H ( n, m ). For the basis of the recursion, we take H ( n, n) to be then-connector 

C(n). For the recursive step, we describe how to construct an m-average (2n)-subconnector 

from a (2m )-maximum (2n )-subconnector, a (2m )-average n-subconnector, two copies of 

an n-superconcentrator, and 2n additional edges. We then have h(n,n) $ c(n) $ 4nlog2 n 

from Theorem 2.1 and 

h(2n, m) < h(n, 2m) + g(2n, 2m) + 2s(n) + 2n 

h(n,2m) + 1456nlog2(8m) + 182n 

h(n, 2m) + 1456n log2 (16m) 

from Theorems 4.2 and 3.1. It follows by induction that h(n,m) ~ 1456nlog2 (32m). 

The recursive construction for H(2n, m) is as follows. We take four disjoint sets 

of vertices: the inputs {l, ... ,2n}, the links {l, ... ,ri} and {l, ... ,n}, and the out­

puts {I, ... , 2n }. We install a (2m)-maximum (2n)-subconnector from {1, ... , 2n} to 
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{I, ... , 2n }, n edges from {1, ... , n} to {1, ... , n}, n edges from {I, ... , n} to {1, ... , n}, 
and two copies of an n-superconcentrator: from { n + 1, ... , 2n} to {1, ... , n}, and from 

{ n + 1, ... , 2n} to {l, ... , n}. Finally, we install a (2m )-average n-subconnector from 

{1, ... , n} to {1, ... , n}. 

To see that the resulting network is a m-average (2n )-subconnector, consider a pair 

( v, w) of similar m-average (2n )-assignments. We observe that at most one-half of the 

requests ( that is, at most n) can have types that exceed twice the average type ( that is, 

m ). These requests form a pair of similar (2m )-average n-assignments, for which paths will 

be found through the (2m )-average n-subconnector; the others form a pair of similar (2m )­

maximum (2n )-assignments, for which paths will be found through the (2m )-maximum n­
subconnector. It remains to show how the requests with types exceeding m can be joined 

to distinct links in {1, ... , n} and {1, ... , n}. For this, it suffices first to join requests at 

inputs in {1, ... , n} and outputs in {I, ... , n} through the 2n additional edges, then to 

join the remaining requests through the two n-superconcentrators. 6. 

To prove Theorem 4.2 it will be convenient to have a still less flexible network available 

as a building block. 

We shall say that an assignment v is smooth if J( u, v) is an integral power of 2 

whenever u > 0 and J( u, v) > 0. An m-maximum n-infraconnector is an n-network that 

realizes every pair of similar smooth n-assignments with maximum m. 

Let f(n, m) denote the minimum possible number of edges in an m-maximum n­

infraconnector. 

Theorem 4.9: We have f(n,m) ~ 364nlog2(2m). 

We shall prove Theorem 4.3 later. For now let us see how to use it to prove Theorem 

4.2. 

Proof of Theorem 4. 2: We shall describe a recursive construction for an m-max1mwn 

n-subconnector G(n,m). For the basis of the recursion, we take G(n,n) to be then­

connector C( n ). For the recursive step, we describe how to construct an m-maximum (2n )­

subconnector from an m-maximum (2n)-infraconnector, an m-maximum n-subconnector, 

two copies of an n-superconcentrator, and 2n additional edges. We then have g( n, n) ~ 
c( n) ~ 4n log2 n from Theorem 2.1 and 

g(2n,m) ~ g(n,m) + J(2n,m) + 2s(n) + 2n 

g(n,m)) + 728nlog2 (2m) + 182n 

g(n,m)) + 728nlog2(4m) 
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from Theorems 4.2 and 3.1. It follows by induction that g(n, m) ~ 728nlog2 (4m). 

The recursive construction for G(2n, m) is as follows. We take four disjoint sets 

of vertices: the inputs {1, ... , 2n }, the links {1, ... , n} and {l, ... , n}, and the out­

puts {I, ... ,2n}. We install an m-maximum (2n)-infraconnector from {1, ... ,2n} to 

{I, ... ' 2n }, n edges from {1,". 'n} to {1, ... 'n}, n edges from {I, ... ' n} to {l, ... 'n}, 
and two copies of an n-superconcentrator: from {n + 1, ... , 2n} to {1, ... , n}, and from 

{n+l, ... ,2n} to {l, ... ,n}. Finally, we install an m-maximum n-subconnector from 

{1, ... , n} to {I, ... , n}. 

To see that the resulting network is a m-maximum (2n )-subconnector, we observe 

that a pair ( v, w) of similar m-maximum (2n )-assignments can be split into a pair of 

similar smooth m-maximum (2n )-assignments together with a pair ( v', w') of similar m­

maximum (2n )-assignments in which there are at most n requests. (The largest integral 

power of 2 not exceeding l is at least l/2, which leaves at most l/2 requests for (v',w').) 
The smooth m-maximum (2n )-assignments can be routed through the (2n )-infraconnector, 

while the remaining requests ( v', w') can be routed through the additional edges, the n­

superconcentrators, and the n-subconnector, as in the proof of Theorem 4.1. ~ 

For the proof of Theorem 4.3 we shall need the following intuitively obvious lemma. 

Lemma 4.4: Let 2/t ~ 2>-1 ~ • • • ~ 2>-1 ~ 1 be integral powers of 2 in non-increasing order 

with 2>-1 + • • • + 2>-1 > 21t. Let s be the smallest index such that 2>-1 + • • • + 2>-, ~ 2/t. Then 

2>-1 + ... + 2>-, = 2/t. 

Proof: Ifs = l the lemma is obvious, so suppose that s ~ 1. Then 2>-1 + • · · + 2>-,- 1 < 2it. 

Let .6. = 2/t - (2>-1 + , , , + 2>-•- 1 ). Since 2/t ~ 2>-1 ~ • • • ~ 2>-1 ~ 1, 2>-• divides each of 

2\ 2>-1 + • • • + 2>-•- 1 , and there fore also divides .6.. Since .6. ~ 1, this implies s>-• ~ .6., 

which yields the conclusion of the lemma . .6. 

Proof of Theorem 4- 9: We shall describe a recursive construction for an m-maximum 

n-infraconnector F( n, m ). For the bases of the recursion, we take F( n, n) to be the n­

connector C( n ), and take F( n, l) to be the n-superconcentrator S( n ). For the recursive 

step, we describe how to construct a (2m )-maximum (2n )-infraconnector from a (2m )­

maximum n-infraconnector, an m-maximum n-infraconnector, four sets of n additional 

edges, and four copies of an n-superconcentrator. We then have f( n, n) ~ c( n) ~ 4n log2 n 

from Theorem 2.1, f(n, 1) ~ s(n) ~ 90n from Theorem 3.1, and 

f(2n, 2m) ~ f(n, 2m) + f(n, m) + 4s(n) + 4n 

~ f(n, 2m) + f(n, m) + 364n 

9 



from Theorem 3.1. It follows by induction that f(n,m) :S 364nlog2 (2m). 

The recursive construction for F(2n, 2m) is as follows. We take four disjoint sets 

each containing 2n vertices: the inputs {1, ... , 2n }, the links {l, ... , 2ri} and {l, ... , 2n }, 

and the outputs {I, ... , 2n }. We install four sets of n additional edges: from {1, ... , n} to 

{l, ... , n}, from {n + 1, ... , 2n} to {n+l, ... , 2ri}, from {l, ... , n} to {I, ... , n}, and from 

{ ri'"+' 1, ... , ~} to { n + l, ... , 2n}. We install four n-superconcentrators: from { 1, ... , n} 

to {n+l, ... , 2ri}, from {n + 1, ... , 2n} to {l, ... , n}, from {l, ... , n} to {n + 1, ... , 2n}, 

and from {n+l, ... ,2n} to {I, ... ,n}. Finally, we install a (2m)-maximum n-

infraconnector from {l, ... , n} to {l, ... , n}, and an m-maximum n-infraconnector from 

{n+l, ... , 2ri} to {n + 1, ... , 2n}. 

To see that the resulting network is a (2m)-maximum (2n)-infraconnector, it suffices 

to show that a pair of similar smooth (2m )-maximum (2n )-assignments can be split into 

a pair of similar smooth (2m )-maximum (2n )-assignments with at most n requests and a 

pair of similar smooth m-maximum (2n )-assignments with at most n requests. The first 

pair can then be routed through the (2m )-maximum n-infraconnector, and the second pair 

through them-maximum n-infraconnector, in each case as in the proof of Theorem 4.2. 

To exhibit the split in question, we simply consider the types in non-increasing order 

according to the number of requests, considering all requests of a given type together, and 

making the split at the first moment at which we have either considered at least m types 

or considered at least n requests. If we split at a moment when we have considered at 

least m types, then at the first such moment we have considered exactly m types, and at 

most n requests. If we split at a moment when we have considered at least n requests, 

then Lemma 4.4 guarantees that at the first such moment we will have considered exactly 

n requests, and at most m requests. In either case we obtain the desired split. D. 

The problems dealt with in this section were proposed by C. J. Smyth. 

5. Conclusion 

We have discussed several types of rearrangeable circuit-switching networks, always 

with "network" in its sense of "acyclic directed graph". There are numerous variants of 

the problems discussed here in which additional restrictions are imposed on the graphs. 

One may, for example, restrict the lengths of paths from inputs to outputs, or require the 

graph to be planar. Much of the literature on the first type of restriction is surveyed in 

the review paper by Pippenger [P3]. 
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A planar n-superconcentrator can be implemented as a simple n-by-n "grid" with 

O(n2
) edges. Lipton and Tarjan [LT] showed, using their "planar separator theorem", 

that O(n2 ) edges are necessary in a planar n-superconcentrator. 

For a planar n-connector, Cutler and Shiloach [CS] gave a construction (again based 

on a grid) using O(n3 ) edges, and Klawe and Leighton [KL] showed that O(n3
) edges are 

necessary (their proof uses the planar separator theorem, and expanders as well). 

The simplest conjecture that agrees with these results at the "endpoints" m = 1 and 

m = n seems to be that, for a planar m-average ( or m-maximum) n-subconnector, 0( n2m) 

edges are necessary and sufficient. Is this true? 
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