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ABSTRACT

Aconputer vision systemhas been devel oped for real -tine notion tracking of 3-D
objects, including those wth variable internal parameters. Ths systemprovides
for the integrated treatnent of natching and neasurenent errors that arise dur-
ing motion tracking. These tvo sources of error have very different distributions
and are best handled by separate conputational necham sns. These errors can

be treated in an integrated way by using the conputation of variance in predicted
feature neasurenents to determne the probahility of correctness for each potential
nmatching featwre. In return, a best-first search procedure uses these probabilities
to find consistent sets of matches, whichelimnates the need to treat outliers dur-
ing the anal ysis of measurenent errors. The nost reliable initial natches are used
to reduce the paraneter variance on further iterations, mmnimzing the anount of
search required for natching nore anbi guous features. These nethods allowfor
much larger frane-to-frane notions than nost previous approaches. The resul t-
ing systemcan robustly track nodel s w th nany degrees of freedomwiile rummi ng

on relativel y inexpensive hardware. These sane techn ques can be used to speed
veri fication duri ng nodel - based recogni t1 on.



Introduction

With recent inprovenents in nodel-based vision al gorithms and conputer hard

vare perfornance, 1t wll soon be possible to buildlow cost, high-reliability systens
for nodel - based notion tracking. Suchsystems can be expected to open up a w de

range of applications inrobotics by provi ding nachi nes wth real - tine 1nf ornmation
about their enviroment. This paper describes ammber of techni ques for efficiently
nat chi ng paraneterized 3- Dnodel s to 1mage features. 'The natchi ng nethods are

robust wth respect to mssing and anbi guous features as vell as measurenent
errors. Theintial applicationisinasystemfor real -tine notiontracking of articu
lated 3-Dobjects. Wth the future addi tion of anindexi ng conponent, these sane
techni ques can be used as a conponent of general nodel -based recogni tion as vell

as notion tracki ng.

There are tw types of errors that nust be accommtedfor during the recogm tion
process: matching errors and mneasurenent errors. Fach type of error has very
diflerent characteristics andis best handl ed by separate conput ational nechamni sns.

In the past, nost nodel -based vision systens have been designed to mmi mze the
influence of one of these classes of error, but there has beenlittle work on nethods
for simul taneously accounting for both. This paper describes sone nethods for the
integrated treatnent of natchi ng and neasurenent errors. Inparticul ar, allovance
for matching errors inproves the estimation for unknown nodel parameters by
renoving outliers, vhile accurate conputation of variance in neasurenents can be
used to limt the anount of search during natching.

Mtching errors occur due to the mslabeling of 1nage features that allows
incorrect 1nage features to be brought into correspondence w th nodel features. 2
correct and incorrect matches are typically independent features of the scene, the
locationof anincorrect natchdoes not provi de any useful 1nfornationregarding the
location of the correct match. The standard nethod for handling natching errors
in nodel -based vision is to performa search, in which different conbinations of
potential matches are indivi dually eval uated for consistency (Books 1981; Grinson
& Lozano-Pérez 1987). The drawback of this approachis its conputational cost,
whi ch grovs exponentially as l arger subsets of features are considered. Hovever, this
cost can be mni mzed through the probabilistic selection of the natches that are
nmost likel ytobe correct. 2 reliable verificationof anoverdetermnedinterpretation
allows the search to termnate vhen a correct set of matches 1s found, the average
searchtine 1s mni mzed by performng the searchin decreasing order of probahility
of correctness.

Masurenents of the locations of correctly natched features have a very dif-
ferent distribution of errors. 'These errors are nost easily modeled as having a
Gaussian distribution, which can be represented wth a nean and variance. The
individual feature errors can be used to conpute the vari ances and covari ances for
all nodel parameters. The residual of the data fitting can be used to eval uate the
consistency of matches. 'The optinal estimation of nodel paraneters fromimnitial
mat ches provides informationfor the probahilistic eval uation of the correctness of
later natches, thereby mm mzing natchi ng errors as vell as neasurenent errors.



Previ ous approaches

Mst previous vork on nodel - based motion tracki ng has assuned that velocity or
acceleration is slowrelative to the frequency of image acqusition, allowng each
feature to be trackedaccording toits spatiotenporal contimity. VMen the location
of features in each newfrane can be accurately predicted fromprevious franes,
there is little or no anbi guty in matching. By using the averaging properties of
overdetermned systens, it 1s possible to tolerate occasional incorrect natches as
long as the errors are limted in size by a small search wndow so such systens
can achi eve reliable perfornmance for frane-to-frane notion of up to several pixels.
One of the earliest systems for 3- Dnodel - based notion tracki ng was reported by
Cemmery (1982), which tracked Sobel edges within a 5-pixel range of predicted
edges. 'The prediction included velocity extrapol ation and filtering. In separate
vork, (emmery (1981) also examned the probabilistic eval uationof feature natches
to anodel. Vrghese et al. (1988; 1990) describe a systemfor real-tine tracking of
rigid 3-Dobjects, based onthe assunptionthat features are spatiotenporally dense
(i.e., nove less then one pixel fromfrane to frane). Bay (1990) has devel oped a
systemthat individually tracks eachinage edge over short distances and uses the
motion of these individual edges to solve for conbi ned object motion. Rerhaps the
nost dranatic demonstration of the approach of using spatiotenporal contimaty

is the vork of D ckmamms & Gaefe (1988) on the use of Kalnan filtering as a
franevork for the real-tine control of vehicles and aircraft fromnoving inage
sequences. I has denonstrated the ability to drive a van on normal roads at
speeds up to 100 kindhour by tracki ng the road boundaries with sets of correl ation-
type feature detectors. Another exanple of the application of Ialnan filtering to
notion tracking is described by Wet al. (1989).

The systemdescri bedinthi s paper i ncorporates a searchprocess toallowfor the
possibility of errors infeature matching, in addition to using detailed propagation
of error bounds in feature neasurenents. 'The iterative natchi ng procedure allows
the nost reliable natches to inprove the probability of correctly natching other
features. These nethods all owthe range of notionfromfrane tofrane to be greatly
increased w thout 1oss of reliabilityand with onl y nodest increases in conput ation.
& such, it dravs on vork in nodel-based recognition (Love 1985, 1987), which
can be seen as the limting condition vhen there are no bounds on motion from
frane to frane. The major difference i1s that tracking begins its search froma
predi cted location vhile recogni tion requires a nore poverful indexing nethod to
generate natchi ng hypot heses frominage features in any location. Previous work
on matching for recognition has placed much less enphasis on the propagation
of paraneter variance estimates during nodel verification. Fach task can benefit
fromboth nat chi ng techm ques, so there wll no doubt be an eventual nerging of
systens for recogni tion and tracking. Thonpson &Mindy (1988) describe the use
of motion prediction to constrain a different type of recognition al gorithm based
on the clustering of vertex matches in an affie transformspace. An approach to
motion tracki ng using a Fbugh transformspace around the current object position
is described by Stephens (1990).



Mbdel i ng of neasurenent errors

The search process to be described later is used to elimnate incorrect natches
(outliers) fromthe solutionset. Therefore, it is reasonable to base the quantitative
paraneter sol ving on the assunption of nornally distributed neasurenent errors.
The paraneters that must be sol vedfor incl ude the orientationand positionof each
object as well as the position of any articul ated object conponents.

A mmber of previous motion tracking systens have used a Ialman fil ter to
snooth these parameter estinates over tine across a mmber of image franes.
This is appropriate in applications such as aeronautics, where it is possible to put
precise limts on the range of accelerations that can be expected. Tbvever, in
typical robotics applications there are fewuseful limts on expected accel erations
(e.g., vhen objects are bunped or collide), so that the snoothing perforned by
the Ial nan fil ter wvoul d be either msleading or ineffective. For exanple, velocity
snoothi ng woul d cause an object dropped on a table to “bounce” into the table
before recovering. Gven the overconstrained infornation usually available from
each image frane, 1t is possible to replace the Ialnan filter wth a nore efftient
formof velocity prediction and stahilizationwth prior variances. The stabilization
is inportant during early stages of matching vhen only a fewfeatures are a part of
the solution, andit is useful for estinmating the imtial probahbility of correctness for
each potential feature natch.

T performa least-squares fit to the data for the non-1inear wmknown param
eters, ve use the CGauss- Newon nethod augnented by stabilization wth prior
variances. Fachiteration of the Guss-Newton nethod sol ves the foll owng matrix

wl= o]

vhere X is the unknown vector of corrections to be nade to each paraneter, e is
the vector of errors betveen natched image features and nodel predictions, and

J i1s the Jacobian matrix of errors wth respect to paraneters. Wis a di agonal
vel ghting natrix used to stabilize the solution, in vhich each veight is inversely
proportional to the prior standard deviation, o ;, expected for paraneter ¢:

equation:

1
Wi = —

i

This systemis mm mzed by sol ving the correspondi ng nornal equations:

W e = bl [

(ITT+WTW)x =J Te. (1)

Since Wis a diagonal nmatrix, W TW is also diagonal but wth each el enent on
the diagonal squared. This neans that stabilization can be acconplished by first

Wi chmltiplies out to
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formng J TJ and then addi ng small mmbers to the diagonal. This nethod al nost
al vays converges to the accuracy limts of the data wthin one or tvo iterations
for the notion tracking problem as the imtial parameter estinates are quite good.
Ril details on the devel opnent of the above solution and stabilization nethods
have been gi venin an earlier paper (Lowe 1991).

If the mmber of error neasurenents derivedfromthe data, m, is greater than

the mmher of paraneters, n, we can estimate the variance, & 2, inthe data from

the size of the residual:
2 _ [Ix—e|?
 m—n

If o 1s much greater than the standard devi ation of the neasurenent errors in the
data, thenit is likely that the systemcontains at 1east one incorrect match so ve
abandon this branch of the search tree. Qherwse, this branch contimes to be
expl ored and newnat ches are attenpted until no nore can be found.

Followng eachiterationof data fitting, the covari ance matrix, P, for the nodel
paraneters is gi ven by the inverse of the matrixonthe left-hand side of equation 1:

P= (JTI4+W TW)

Thi s can be conputed effti entl y as a by- product of the least-squares sol ution. Then
the variance in each future predicted neasurenent can be conputed fromthis
covariance mtrix:

S=APA T (2)

vhere each rowof Agives the derivatives of a predicted neasurenent wth respect
to each of the nodel paraneters. For natching nodel lines, ve are interested in
the vari ance perpendi cul ar and parallel to each endpoint of eachvisible nodel edge
as vell as the variance in orientation of each nodel edge. 'The variance of each
predi cted neasurenent 1s gi ven by the corresponding di agonal elenent of S. Note
that 1t is not necessary to conpute the off di agonal el enents of S, whi ch otherw se
vould be a large and expensi ve natrix to conpute.

Therefore, we have conpl eted the circle, inwhi chnewnatches constrai n nodel
paraneters, which in turn constrain the predictions for future matches. Afew
correct imtial natches can greatly reduce the variance of further pred ctions and
of ten elimnate further search, as shownin the final exanpl es.

Mt chi ng wi th m ni nal search

Robust natchi ng can be achi eved by searching for sets of matchinginage segnents

that are consistent wth a projection of the object using a single set of paraneter
values. % there are usually nany nore matches than are needed to sol ve for the
nodel paraneters, the final solution is overconstrained and it is wnlikely that a
fal se set of matches will closely fit the nodel. Hovever, the search process itself is
conput ational 1 y expensive, asit is necessary to conpute updated nodel paraneters

to check each conbi nation of natching segnents. This search process is mni mzed

S
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Figure 1: The probabili ty distributionis illustrated for a measurenent, f, of a predicted
nmodel feature, a. This is conpared to the uniform background distribution of other
features;, bwhi ch could gi ve rise to false nntches.

by using a best-first search, starting with those matches that are nost likely to be
correct and using those to constrainthe expectedlocations of other matches. Inthis
vay, the nost reliable matches in eachimage are used to increase the probabilities
of correctly natchi ng nore anbi guous features, whichinnany cases can elimnate
backtracki ng al together. Because the final identificationis overdetermned and can
be reliably verified, the search can termmnate once a validset of natches have been
found.

Therefore, an inportant aspect of mimimzing search during matching is to
accuratel y estinate the probability that each potentially natching inage feature
nat ches sone correspondi ng nodel feature. These probabilities can be determned
using Bayesian decision theory (Dida &Hart 1973) as a function of a vector f of
feature neaswrenents rel ating each pair of nodel and inage featwres. Let a rep
resent an inage feature that arose fromthe projection of a correspondi ng nodel
feature, andlet b,1 < i < n, represent all other (incorrectly matching) inage fea-
tures. Inthe absence of other information, the incorrectly natchi ng i nage features
are nodel ed as arising froma um formbackground di stribution. Then ve can use
Buyes rul e to conpute the probability that a particul ar feature neasurenent vector
f arose froma nodel feature rather than the set of background features:

Plajt - FEl 0O

_ P(f | a)P(a)
P(f [a)P(a) 452, P(£ D) P(bi)




This probability calculation is illustrated in Hgure 1 for the case of a one-
di nensional feature neasurenent, f. W assune a Caussian probability distribu
tionfor the nodel feature and a um formbackground density for the other features.
For a particular feature neasurenent, f ', the probability that the feature arose
fromthe nodel 1s gi ven by

Palf)= 1 (3)
p+q
where p and ¢ are the values of the probahbility distributions at f ', as shown in
H gure 1.

The particul ar feature neasurenents that are used for natchingline segnents
are the perpend cul ar di stance of the center of the 1 mage segnent fromthe projected
model segnent and the angul ar di flerence inorientationof the segnents. Therefore,
1t 1s necessary to determune the probability distributions for nodel and background
features as a function of this tvwo-dinensional space of neasurenents.

Let = be the perpendicular distance of an image segnent fromits correctly
natchi ng nodel segrent and y be the angul ar difference in orientation. For the
sake of effti ency, ve assune that these neasurenents are independent. Therefore,
the tvo-dinensional probability distributionfor these variables is

pla, y) = Ol e )]

2n0 L0y
vhere o , and o, are obtai ned fromthe square roots of the correspond ng di agonal
elenents of the matrix S in equation 2.

W assune that the backeround distribution of other (incorrectly natching)
1nage segnents is wiformwith respect to location and orientation W can cal cu
late the densityof this umformdi stributionby di vi dingthe total mmber of segnents
in the inage by the area that the features can occupy in the feature neasurenent
space. It wouldbe possible to use a local neasure of feature density around each
potential natch, although this is not done in the current inplenentation. So far,
ve have consideredonl y the perpendi cul ar di stance of aninage segnent froma pro-
jected nodel segnent. Fbvever, 1t is al so necessary that the 1nage segnent overlap
the nodel segrnent in the direction parallel to its length. A the inage segnent
could be partially detected for any interval along its length, this is better nodel ed
as a uni forminterval probability distribution rather than a Guwssian distribution,
vhichis vhy it is not includedin the mil tivariate nornal distribution above. The
predi cted nodel segrent is extended in length to include the uncertainty in its
endpoi nt positions, giving a total lengthm Aninage segnent of length s can have
its mdpoint fall anyvhere within an interval of length m—s. If the inage con
tains N line segnents, then the background summed probability density function
of line segnents over all orientations and mdpoint positions neeting the overlap
constraint is the wi formval ve (independent of = and y)

N(m—s)

1= Twh
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vhere w and h are the wdth and height of the inage, or the area over which N
vas determned. The factor 7 in the denomnator arises because this is the range
of orientations for nondirectedline segnents.

The probability of correctness of each match depends on the rel ative sizes of p
and ¢, as inequation 3. 'Therefore, matching segnents are eval uated nore hi ghl y
1f they have a small angul ar difference and perpendi cul ar di stance fromthe nodel
prediction, if their lengths closely agree wth the prediction, and if the predicted
variance of each neasurenent is small. These criteria seemto capture the nost
rel evant properties useful for correctly natching line segnents.

Best-first search

The probahility of correctness for each potential natch between the nodel predic-
tions and inage features is used to guide a best-first search process. Fach node of
this search tree requires performng a least-squares solutionfor all nodel parane-
ters, whichis a relatively expensive operation. Therefore, it is inportant to select
an optinal ordering for the searchto mmmze the possibility of backtracking, and
to also select enough matches at each node to constrain the paraneters in lover
nodes and lead to a qui ck acceptance or rejection.

The top-1evel nodes of the searchtree make use of enough natches to constrain
at least the mmber of degrees of freedomin the current nodel. For the exanple
shomnin this paper, the nodel has 7 degrees of freedomso at least 4 1ine segnent
natches are selected (each line segnent match constrains 2 degrees of freedonj.
This muber of natches are selected froma ranked list of the best natches, and
other matches are added wth decreasing probability as long as the product of
probabilities renains above 0.9. The stahilizedleast-squares solutionis carriedout,
and the residual is checked as described earlier. If this match is rejected, then
at least one of the segnents in the match set must be in error. 'The probahility
of correctness for each segnent matchis reduced by 1/n in the rejected set of n
mat ches, and the best-first search proceeds to formmnewsearch sets based on these
updated probabilities. In general, the reduction in probahilities for the previous
mat ches w1l cause other natches to be considered, but afurther checkis perforned
to see that no newset contains a conplete rejected set fromsone previ ous node of
the search tree.

In practice, backtracking is usually avoided by this conservative approach of
selecting only a fewof the nost reliable matches and using these to constrain the
locations of further matches. However, there wll always be sone probahbility of
naki ng mstaken nat ches that 1ead the paraneter sol utionavay fromits true val ve,
so the ahility to backtrack adds substantially to the systems robustness.

Afurther nethod that is used to all owfor sudden wmexpected notion of the
object is to increase the search range vhen the systemis wnable to find the object.
The search range is determmned by the prior variances attached to each object
paraneter before processing eachnewimage. If the rankedlist of potential natches
for this 1nage contains too fewcand dates, then the paraneter ranges are doubl ed



and a search is nade for newmatches. Ths doubling can be perforned up to 2
tines, leading to a large search region vhen necessary in order to find an object
that cammot be found1ocally.

Real-tine 1ine detection

Util recently, the najor conputational bottleneck for motion tracking has been
the large mmber of conputations required for lowlevel inage anal ysis. Tbvever,
a mmber of vendors nowoffer 1nexpensive systens for performng a range of dig-
ital 1nage-level operations at video rates. Inthis vork, ve have used a Ditacube
MxM deo 20 board that perforns 8x8 convol utions on 512x512 inages at up to

60 franes per second (performng up to 1 hillion & bit miltiplications per second).
W use an 8x8 convol ution kernel that i1s a Laplacian of CGaussian operator wth
o =1.2, for use in Mrr-Hldreth (1980) edge detection

Grrently, the output of the 1nage processing operations must be transferred
over a bus interface to the host computer (a Sun SPARGtation 2) for hi gher-1evel
processing. This sinple inage transfer and edge linking are currently the najor
conputational bottlenecks, but they are mmimzed by only transferring a region
around the expected location of the object as conputed fromthe previous 1nage.
Thi s neans that processingis sonevhat slover for large, nearby objects as conpared
to smaller, nore distant ones.

The convol ved inage regionis scamned to detect zero-crossing locations vhere
there is a change of sign betveen adjacent pixels. 'The approxinate gradient at
the zero crossing is conputed by taking the difference of nei ghboring pixels across
the zero crossing. 'These edge pixels are linked into lists on the basis of local &
nei ghbor comectivity. A the sane tine, Gumy (1986) hysteresis thresholding is
perforned using a hi gh and lowthreshol d on gradient. The resulting lists of con
nected edge points are segnentedinto strai ght 1ine segnents using a scal e-1nvari ant
recursive subdi vision al gorithmdescribed in an earlier paper (Love 1987). Al of
these operations can be perforned very efftiently even on a serial nachine; how
ever, the reliahbility and accuracy of this feature detection coul d be inproved wth
the availability of mere conputing resources.

In order to nake subsequent feature matching as effiient as possible, all of
the line segnents are indexed into a three-dinensional array on the basis of 2-D
positionof the mdpoint and orientation Subsequent attenpts to natchfeatures at
a particul ar range of positions andorientations need to examne onl y those segnents
that are indexed in the snmall subset of the array locations that intersect these
bounds.

Inplenentationresults

AT steps of edge detection, natching, convergence and verification can be done in
under 0.3 seconds on the systemdescribed above. In nost cases, the probabilistic
natchi ng criteriaselect correct natches on the first attenpt and do not require any



further search. Indifliult cases, searchis termnated after exploring 5 branches of
the search tree so that the next image in the sequence can be processed w thout
signi ficant del ay.

Whave tested thi s systemon thousands of 1nages by hol di ng the object nodel
infront of the canera and slowy movingit. The systemdi splays the edges of the
object at the current cal cul ated1ocation superi nposed on the canerainage. These
edges are shown in yell owvhen the object has been correctly verified and in red
vhen the object camnot be matched. % the current conputational resources limt
processing to 3 to 5 franes per second and a limted searchrange, i1t 1s necessary to
move the object qute slowty. Fovever, the tracking is quite robust and contimes
even vhen up to half or nore of the edges are occluded. The systemperforns vell
over a wde range of 11ghting conditions and w th conpl ex backgrounds contai mi ng
nany fal se edges.

K gures 2-7 showan exanpl e of thi s process for one 1 mage of a notionsequence.

H gure 2 shows the 1nput 11mage froma ({Dcarera. The object is afile boxwtha
hingedlid, so that there are 7 unknown paraneters that must be sol ved for. Parts

of the box are occluded by the author’s hands, there are nmany reflections from
the object’s surface, and the backgroundis cluttered. The line segnents extracted
fromthis inage and the intial estimate for the position of the object conputed
by vel ocity extrapol ation fromthe previous two inages are shomin figure 3. Ths
exanpl e is for anobject that is relativel yfar fromits predictedposition. A so shown
as heavy lines are the best matches to inage 1ine segnents which are selected on
this iteration. In the background, the light gray shading indicates the wion of
all regions wthin 2 standard deviations of the predicted nodel edges (there is no
display of the variance in edge orientation, whichis also computed). Subsequent
iterations are showin figures 4 to 6. The rapidreductionin the size of the shaded
regi ons 1 ndi cates howt he reductioninvari ance resul ting fromearlier matches greatly
reduces the subsequent search space. Ths “locking on” phenonenonis the result

of the overconstrained nature of the nodel -based vision probl emand is vhat leads

to high reliahility and efftiency. The shaded gray regions also illustrate that the
variance is far fromun formfor diferent parts of the object, neaning that sinpler
strategies for reducing the search range are wlikely to vork as vell. A can be
seen fromfioure 7, the fnal conputed paraneters are quite accurate due to the
overconstrai ned data and the least-squares fit. Al steps of matchinginthese figures
requires about 0.1 seconds on a Sun SPARGtation 2 (not including line segnent
extraction).

(bncl usions and future directions

Thi s paper describes an approach to nodel - based nat chi ng that provi des for both
reliability and effii ency by i ntegrating the treatnent of natchi ng and neasurenent
errors. There is arole for both general tree searchand for error estination
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Fi gure 2: The original i nage froma moti on sequence of a file box with a hi nged 1id.

Figure 3: Line segrments extracted fromthe i nage are shown wi th the nodel superim
posedfromits initial estinated vi ewpoi nt. The shaded area shows the uni on of the regions
of uncertaintyfor feature locations. Initial natchedinage segnents are shown wi th heavy

l1nes.
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shown wi th heavy 11 nes.

shown foll owi ng the first iterati on of natchi ng and
gnents are

Fi gure 4: The position of the nodel is
determ nation. Further matchedinnge se

paraneter

determ natl on.

conditeration of paraneter

Fi gure 5: The nodel follow ng the se
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Fi gure 6: The nodel is shownfollow ng the third and final iteration of parameter deter-
m nation. The region of uncertainty around each nodel edge i s nowvery snall.

Fi gure 7: The nodel is superinposed on the original inage fromits final viewpoint.
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This approach has been inplenented in a functionng systemthat can ro-
bustly track objects at the rate of 3 to 5 frames per second. Wth noderate in-
creases 1n conputer speeds—as are al ready available wthlow cost parallel systens
of mecroprocessors—sucha systemcoul d be used to track objects at 30 or 60 franes
per second and provi de real -tine visual input for robots. Tacking mul tiple objects
voul d require at nost a linear increase in conputer speeds. Wth yet faster pro-
cessing, 1t wouldbe possible to track flexible objects wthlarge mmbers of internal
paraneters.

Minportant future directionfor this workis toincorporate the capability for
general object recognition (Love 1987). Recognition voul d nake use of all of the
conponents describedinthis paper, but woul d needin addi tion anindexing system
fromi mage feature groupi ngs to potential object natches. The addition of feature
groupi ng techn ques voul d al so be very useful for the notion tracking problem as
hi gher-1level groupings are far less likel y to be incorrectl y natched thanisol ated1ine
segnents. 'The result vould be the integration of recognition and tracking, which
are sinply diflerent ends of a conti mumrepresenting the degree of prior knovt edge
regarding the locations of objects in aninage.
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