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Abstract 

We take a real-time embedded system to be the control system of a plant in an open environment, 

where the control is realized by computation in digital or analog form. The key characteristic of a 

real-time embedded system is that computation is interleaved or in parallel with actions of the plant 

and events in the environment. Various models for real-time embedded systems have been proposed in 

recent years, most of which are extensions of existing concurrency models with delays or time bounds on 

transitions. In this paper, we present a different approach to modeling real-time systems. We take the 

overall system as a dynamic system, in which time or event structures are considered as an intrinsic 

dimension. Our model, called the Constraint Net model (CN), is capable of expressing dynamic 

behaviors in real-time embedded systems. It captures the most general structure of dynamic systems 

so that systems with discrete as well as dense time and asynchronous as well as synchronous event 

structures can be modeled in a unified framework. It models the dynamics of the environment as well 

as the dynamics of the plant and the dynamics of the computation and control. It provides multiple 

levels of abstraction so that a system can be modeled and developed hierarchically. By explicitly 

representing locality, CN can be used to explore true concurrency in distributed systems. With its 

rigorous formalization, CN provides a programming semantics for the design of real-time embedded 

systems. It also serves as a foundation for specification, verification, analysis and simulation of the 

complete dynamic system. 
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1 Motivation and Introduction 

Real-time embedded systems are reactive as well as purposive systems, closely coupled with their plants 

and environments; they must deal with inconsistent, incomplete and delayed information from various 

sources. Such systems are usually complex, hierarchical and physically distributed. Design of control 

systems for plants with high degree of freedoms and multiple sensors has become a growing challenge. 

Work on real-time embedded systems is usually based on one of two frameworks [5]: semantic models 

or scheduling theory. Even though these two are closely related, in this paper we shall concentrate on 

formal semantic models, as well as specification and verification of the overall system. 

Much work has been done on introducing real-time concepts into formal models in recent years. 

The real-time representation follows one of two approaches. The first is to define events or transitions 

on time, i.e. each event or transition is associated with a non-negative real number, and delays 

or durations are also represented by non-negative real numbers. For example, Merritt et. al. [8] 

augmented the input-output automaton model with a notion of time that allows reasoning about 

timed behaviors. Various extensions of Timed CCS (Calculus of Communicating Systems) have been 

developed to model the relative speed of processes [9] and asynchronous behaviors. Timed CSP 

(Communicating Sequential Processes) was based on failure/stability models [11]. The Timed Petri 

Net model [2] was introduced to specify and verify real-time systems. In all of these models, either 

time or delay is augmented with transitions, events or processes. The second approach is to define 

time on events, i.e. defining time instants on a pair of adjacent events [5], such that the structure of 

time instants is isomorphic to the set of non-negative real numbers. 

Our philosophy for developing the Constraint Net model ( CN) is: instead of adding a model of 

time onto an existing model of concurrency, a model of dynamic systems should be developed in the 

first place [10]. The traditional model of dense (resp. discrete) time dynamic systems is a set of 

differential (resp. difference) algebraic equations. However, most advanced control systems nowadays 

are developed as distributed and asynchronous processes in digital computer networks, in addition to 

analog circuits. There is a strong need to generalize the model of dynamic systems so that multiple 

time structures and multiple data types can be represented in a unified framework and the dynamic 

interactions between various components can be analyzed. The major influences on the Constraint 

Net model are the Operator Net model and the Temporal Automaton model. 
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The Operator Net model [1], abstracted from Lucid [13) or the dataflow model, is defined on 

continuous algebras using fixpoint theory. The most attractive feature of this model is its independence 

of any particular algebra. Given a continuous algebra which specifies data types and basic operations, 

a sequence (continuous) algebra is obtained on which an operator net can be defined. This idea is 

incorporated into the development of the Constraint Net model (CN). LUSTRE [3], a development 

based on Lucid, is a real-time programming language, in which sequences are interpreted as time steps. 

In addition, LUSTRE introduces synchronous clocks, so that any expression is evaluated at its clock's 

sampling rate. 

The Temporal Automaton model [7] is a step towards modeling causal functions in multiple time 

domains. The Temporal Automaton model provides explicit representation of process time, symmetric 

representation of a machine and its environment, aggregation of individual machines to form a machine 

at a coarser level of granularity. However, there remain untackled problems in modeling continuous 

change and event control. 

As in the Operator Net model, CN is defined on continuous algebras using fixpoint theory. Like 

LUSTRE, CN introduces reference time structures and clocks, but the reference time may be dense 

and the clocks are asynchronous [12]. As in the Temporal Automaton model, transductions are 

introduced as an abstraction of causal functions, but the definition of transductions is generalized to 

include continuous and event-driven transitions. In our definition, a transduction is a state-determined 

transformational process from a tuple of inputs to an output. Furthermore, environments and machines 

are represented in a unified frameworlc. Like both operator nets and temporal automata, constraint 

nets provide composite structure and multiple levels of abstraction. Unlike both operator nets and 

temporal automata, constraint nets introduce "locations" so that distributed memories are explicitly 

modeled. In contrast to most concurrency models which are inherently non-deterministic, CN is a 

deterministic model, while non-determinism can be modeled by open constraint nets. In summary, 

the major contributions of the Constraint Net model are: (1) by introducing asynchronous clocks, CN 

models various time structures and coordination among components with different time structures; (2) 

developed on abstract algebras, CN supports abstract data types and functions; (3) with a rigorous 

formalization, CN provides a programming semantics for the design of real-time embedded systems; 

( 4) by modeling plants and environments as well as control, CN serves as a foundation for specification, 
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verification, analysis and simulation of the complete dynamic system. 

This paper is organized as follows. Section 2 presents the syntax of constraint nets and a running 

example that is used throughout the paper. Section 3 reviews the preliminaries on E-algebras and 

E-domains. Section 4 introduces the algebraic formalization of dynamics. Section 5 gives the se

mantics using fixpoint theory of continuous algebras. Section 6 discusses behavioral specification and 

verification of constraint nets. Section 7 concludes this paper and proposes future research directions. 

2 The Structure of Constraint Nets 

In this section, we present the syntax of constraint nets and characterize the composite structure and 

modularity of the model. 

2.1 Syntax 

A constraint net is a triple CN = (Le, Td, Cn}, where Le is a set of locations, each of which is 

associated with a sort; Td is a set of transductions, each of which is associated with a tuple of input 

ports and an output port, of certain sorts; Cn is a set of directed connections between locations and 

ports of transductions of the same sort. Clocks are a special kind of location and events can be 

generated by transductions. Topologically, a constraint net is a bipartite graph where locations are 

represented by circles, transductions are represented by boxes and connections are represented by arcs, 

each from a port of a transduction to a location or vice versa, with the restriction that (1) there is at 

most one connection pointing to each location, (2) each port of a transduction connects to a unique 

location and (3) no location is isolated. A location is an input iff there is no connection pointing to 

it and it is an output otherwise. For a constraint net CN, the set of input locations is denoted by 

I(CN), the set of output locations is denoted by O(CN). A constraint net is closed iff there are no 

input locations and it is open otherwise. 

Example 2.1 An asynchronous event controller {12} is designed to coordinate asynchronous events in 
\ 

a distributed system. Consider a simple 1-buffered producer-consumer (synchronized communication) 

problem. On request, the producer will produce a product when the old product is consumed and the 

consumer will consume a product when there is a new product. In Figure 1, we use clock Cl to control 

the producer and clock C2 to control the consumer. Rl is an input event location for requesting a new 
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product. R2 is an input event location for requesting the use of the product. Two negated Muller-C 

elements (NCs) are used to synchronize events. It is an open system since Rl and R2 are input 

locations. Cl generates a new event iJJ there is a request event at Rl and the buffer is empty. C2 

generates a new event iff there is a request event at R2 and the buffer is full. There is only one buffer 

in this example; however, this structure can be extended to any number of buffers. 

1---➔l producer 

Figure 1: The constraint net for a event controller (where o denotes the second input port of NC) 

2.2 Modules 

A module is a pair (CN, 0) where CN is a constraint net and 0 ~ 0(CN) is a subset of the 

output locations of CN; 0 and I(CN) define the interface of the module. Complex modules can be 

hierarchically constructed from simple ones. 

There are several operations that can be applied to modules to obtain a new module. The first is 

composition, which combines two modules into one whose interface is the union of the two interfaces. 

The second is coalescence, which coalesces a group of locations in the interface of a module, with the 

restriction that at most one of the locations is an output location, into an individual location. The 

third is hiding, which deletes a set of output locations from the interface. 

• composition: Let CNi = (Lei, Tdi, Cni) and CN2 = (Le2, Td2, Cn2) where Lein Le2 = 0 and 

Tdi n Td2 = 0, then (CNi, 01) II (CN2, 02) =def (CN, 0) where CN = (Lei U Le2, Td1 U 

Td2, Cn1 U Cn2) and 0 = 01 U 02. 
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• coalescence: Let E be an equivalence relation on the set of locations of the interface of a constraint 

net such that (1) all the locations in the same equivalence class have the same sort and (2) there 

is at most one output location in each equivalence class; then, (CN,O)/E =def (CN',O} where 

CN' = (Le/ E, Td, Cn/ E}, Le/ E and Cn/ E denote the corresponding quotients and E is the 

extension of E, E =EU { (l, l)ll E Lc\(I(CN) U O)}. 

• hiding: (CN,0)\0' =def (CN,O\O'). 

3 Preliminaries: E-Algebras and E-Domains 

We briefly recall in this s(;lction some mathematical preliminaries about partially ordered sets, contin

uous functions and fixpoint theory, essentially summarized from [4) with some extensions. 

• E-algebra: E = (S, F) is a signature where S is a set of sorts and F is a set of function 

symbols such that F is equipped with a mapping type: F -+ S* x S. A E-algebra A is a 

pair ({Aa}aeS, {/A}feF} with a nonempty carrier set A8 for each s E Sand a total function 

JA: A81 X ... X A8 ,. -+ A., for each f: s1, ... , Sn-+ s E F. 

• partial order: (A, $A) is a partial order. The product of two partial orders is a partial order 

defined as: (a1, a2) $A (ai, a2) iff a1 $A1 ai and a2 $A2 a2. The set of functions, whose range 

is a partial order, is a partial order defined as: for two functions Ji, h with the same domain 

X and range A, Ji $x,A h iff Vx E X, Ji (x) ~A h(x ). The least element in A, if it exists, is 

denoted by .1.A, A fiat partial order, written A, is a set A augmented with a least element l., 

such that a ~A a' implies a= a' or a =.1.. 

• complete partial order: Let D be a subset of A and VA D be the least upper bound (lub) of D 

in A, when it exists. Dis a directed subset of A iff it is nonempty and for every pair of elements 

di, d2 in D the set { d1, d2} has an upper bound which is also in D. The partial order (A, ~A) 

is a complete partial order (cpo) iff: (1) it contains a least element l.A and (2) every directed 

subset of A has a lub in A. 

• continuous function: Let (A, ~A), (A', ~A,} be two cpos and f : A-+ A' be a function. Then 

/ is continuous iff for every directed set D ~ A, (1) J(D) = {f(d)ld E D} is directed and (2) 
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f(VA D) = VA, f(D). It is easy to see that continuous functions are closed under composition. 

An element a EA is a fixpoint off iff a= f(a). The least fixpoint off is denoted by µ.f. 

Proposition 3.1 [4] If f: A - A is a continuous function on a cpo A, f has a least fixpoint. 

By extending this proposition, with the same proof structure, we have: 

Proposition 3.2 If f : / x X - X is a continuous function, then there exists a unique continuous 

function µ.f: J - X, such that for all i EI, (µ.f)(i) is the least fixpoint of )..x.f(i, x). 

• compactness: Let A be a cpo. An element a E A is compact iff given D, a directed subset of A, 

whenever a $A VA D, there exists some d E D such that a $A d. A is an algebraic cpo iff for 

every a in A, a = VA { did $A a, d is compact}. It is easy to show that (1) any flat partial order 

is an algebraic cpo, (2) the product of two algebraic cpos is an algebraic cpo, and (3) the set of 

all functions whose range is an algebraic cpo is an algebraic cpo. 

• E-domain: Let Ebe a signature which contains a distinguished nullary function symbol 0., for 

each sorts. A E-domain is a triple ({A.,}.,es, {$AJseS, {!A}JeF} where ({A.,}.,es, {$AJ.,es} 

is an S-sorted algebraic cpo, JA is continuous for each f E F and n: is 1-A.. A E-domain 

homomorphism h : A - B, where A and B are two E-domains, is a family of continuous 

mappings {h., : A., - B.,}.,es such that for each f : s1, ... , Sn - s E F and each a1 E 

A.,n ... , an E A.,,., h.,(JA(a1, ... , an))= f B(h., 1 (a1), ... , h.,,. (an)). It is a E-domain isomorphism 

if it has an inverse. 

• completion: If (A, $A} be a partial order, a mapping in: A - 2A is defined as in(a) = {xix $A 

a}. The completion of A is A00 =def ({in(a)la E A}, ~). Completions of sets have good 

properties. 

Proposition 3.3 If (A, $A} has a least element, then A00 is an algebraic cpo and every element of 

A 00 is compact. 
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4 An Algebraic Theory of Dynamics 

In this section, we start to define the semantics of locations and transductions of constraint nets, first 

by introducing time or event structures, and then by developing an algebraic theory of dynamics. 

4.1 Time Structures and Dynamic Systems 

Generalizing (7), we define a time structure as a pair (T, m) where (T, ~T) with .lr as the least 

element is a total order, and m: T 00 
- n,+ is a measurement function, where T 00 is the completion 

of T and n,+ is the set of non-negative real numbers with the normal ordering, which satisfies (1) 

m(.1700) = 0 and (2) if t1 C t2, then m(t1) < m(t2). For a time structure (T, m), T 00 is called the 

time domain. We use the time dom-ain T 00 instead of T because it has better mathematical properties: 

for all t E T 00
, the unique predecessor pre(t) can be defined: 

{ 
.1700 if t =.1700 

pre(t) =def V{t'lt' E T 00 ,t' Ct} otherwise 

It is easy to show that for all t E T 00
, pre(t) E T 00 and if t ,-f.1700, then pre(t) Ct. A time structure 

(T, m) may be related to another time structure (T,., mr) by a reference time mapping h where (1) 

h : T 00 
- T,.00 is a continuous function and strictly monotonic, i.e. t C t' implies h(t) C h(t') and (2) 

the least element is preserved, i.e. h(.1700) =.17,.00, T,. is a reference time of T, and Tis a sampled 

time of T,.. Tis accurate w.r.t. T,. iff Vt E T 00
, m(t) = mr(h(t)). 

A variable trace is a mapping from a time domain to a variable domain which is an algebraic cpo, 

vj : T 00 
- A. vj is nonintermittent iff vj(t) =.lA implies Vt' :) t, vj(t') =.LA and it is intermittent 

otherwise. A location in constraint nets denotes a variable trace and a clock denotes a nonintermittent 

trace. A total variable is the set of all variable traces, and a nonintermittent variable is the set of all 

nonintermittent variable traces. A variable is either a total or a nonintermittent variable. 

Proposition 4.1 A variable is an algebraic cpo. 

A transduction is a mapping from a tuple of input variables to an output variable, F7o,7i, ... ,T,. 

V#i1 x ... x v#,_n - V#ci° where V#;; is a variable with time structure 'Ji and variable domain Ai, which 

satisfies the causal relationship between its inputs and the output, i.e. if the inputs are the same up 

to a certain time point, the outputs will be the same up to that time. Formally, if T,. is a reference 
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time structure for all 1i with the reference mapping hi, then for any pair of input variables v, v', and 

to E 7'o00
: ViVti, hi(ti) ~ ho(to)-+ Vi(ti) = vHti) implies 

Fro,7i, .. ,,Tn (vi, ... ' Vn)(to) = Fro,7i, ... ,Tn (v~' ... 'v~)(to) 

For example, integration is a transduction. We will see that any finite automata defines a transduc

tion from input variables to state variables. Clearly, transductions are closed under composition. A 

transduction is continuous if it is a continuous function. A transduction is a transliteration if it is a 

pointwise extension of some function f. Formally, the transliteration fTo,7i, ... ,Tn : Vi x ... x Vn-+ Vo, 

It is easy to see that the following proposition holds. 

Proposition 4.2 If f is a continuous function, then fTo,7i, ... ,T,. is a continuous transduction. 

The following concepts are defined in order to relate variables and transductions with different 

time structures. If v is a variable trace with time structure T, and T,. is a reference time structure of 

T, then the interpolated variable trace of v onto T,. is a variable trace v, v =def idr,.,T( v) where id is an 

identity function. Similarly, if v is a variable trace with time structure T,., the sampled variable trace of 

v onto Tis a variable '.Q, '.Q =def id7,r,.(v). If FT is a transduction whose variables have the same time 

structure, the interpolated transduction from T to T,. is defined as F7(v1, ... , vn) =def F7(v1, ... , vn). 

Similarly, the sampled transduction from T,. to T can be defined as Fr,. (vi, ... , vn) =def Fr,. (Vi", ... , v;). 

Since identity functions are continuous, we have the following proposition. 

Proposition 4.3 If Fr is a continuous transduction, then Fr and Fr are continuous transductions. 

4.2 Unit delays and transducers 

We shall see that composition of unit delays and transliterations can define complex transductions. 

Let v; be a variable. A unit delay is a transduction from v; to v;. Formally, let init E A be the 

output value at the start time point, a unit delay in the time structure Tis: 

A . . { init if t =l.roo 
8r(imt)(v) =def >.t. (p (t)) th . v re o erw1se 
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Proposition 4.4 Unit delays are continuous transductions. 

A state transducer is a quadruple (J, Q, qo, /) where I, the set of inputs, and Q, the set of states, 

are algebraic cpos, qo E Q is the initial state and / : I x Q - Q, the state transition function, 

is c~ntinuous. A state transducer is finite iff IQI is finite. A state transducer defines a continuous 

transduction from input variables to state variables. Formally, let T be a time structure: 

Proposition 4.5 A state transducer (I, Q, qo, /) defines a transduction from V.} to V$. 

Proof: Let fr be the pointwise extension of f, fr : V.} x V$ - V$. We have, 

Sr is a continuous transduction since both fr and 6~(qo) are continuous transductions. According 

to Proposition 3.2 there is a continuous function which is the least fixpoint of Sr, µ.Sr: V.} - V$, 

Clearly µ.Sr is a transduction. D 

Let B = {O, 1, .l} be a flat cpo. An event transduction is a transduction whose output is a 

nonintermittent variable with domain isomorphic to B. 

Example 4.1 The negated Muller-C element used in Example 2.1 is the basic "and" logic element in 

event synchronization {12]. A negated Muller-C element is a state transducer: (B x B, B, O, /) where 

{ 

.l if q =.L or i1 =.l. or i2 =.l. 
f ( (it, i2), q) =def i1 it -::/: i2 

q otherwise 

So this defines an event transduction NC : VJ x V/ - Vj, given any time structure T. 

A transducer is a tuple (I, Q, qo, f, 0, / 0
) where (I, Q, qo, /) is a state transducer, 0, the set of 

outputs, is an algebraic cpo and J0 
: J X Q - 0, the output function, is continuous. A transducer 

defines a continuous transduction from input variables to output variables, for any given time structure 

T. Formally, Fr: v.} - v~, Fr= AVi.f!f(vi, (µ.Sr)(vi)). 

4.3 Clock traces and E-dynamics 

Let Ab be any continuous boolean algebra (ternary algebra) with its carrier set isomorphic to B. A clock 

trace is a nonintermittent variable trace c::, which generates an accurate sampled time structure Tc of 
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c(t) 

Figure 2: A clock trace: each dot depicts a time point of Tc, Tc ~ T,. 

T,.. Formally, Tc~ T,. is defined as: Tc =def {.l7;.} U {t E T,.lc(in(t)) #.lA6 , c(in(t)) =/: c(pre(in(t)))}, 

1.e. each transition defines a time point (see Figure 2), and "Vt E: Tc, mc(in(t)) = m(in(t)). Clock 

traces can be produced by event transductions. 

A clock variable C7;. is the set of all clock traces on reference time structure T,.. Let F7c : Vl --+ V£ 
be a transduction with time structure Tc produced by clock trace c. We define a transduction with a 

clock variable on the reference time structure T,. as Ff,. : C7;. x V,l --+ V£, 

pc (c v·) = >-.t. { F7c(vi)(t) if c(t) #.lA6 

T,. ' ' def .lo otherwise 

Proposition 4.6 If F7c is a continuous transduction, then Ff,. is a continuous transduction. 

Proof: It is easy to see that Ff,. is both left and right continuous if F7c is continuous, therefore it is 

continuous [4]. D 

Finally, with preliminaries established, we can characterize the domain structure for constraint 

nets. A E-dynamics is defined on a E-domain and a reference time structure. Let E = (S, F} be a 

signature and b E S be a sort denoting boolean. If A is a E-domain, a E:..dynamics V(T,., A) is a triple 

(V, 5 v, .r) where 

• V = {V#,.•} ses U C7;. where. V#,.• is a total variable and C7;. is a clock variable; 

• 5v= {5yA• }seS is the set of partial orders on variables, v1 5vA• v2 iff "r/t E T,., v1 (t) 5A. v2(t); 
~ ~ 

• .r = .1"7;. U .rf,. where .1"7,. = {J#,.}teF U {8t"(init)hes,initeA. is the set of transliterations and 

unit delays and .rf,. = { Fe IF E .1"7;.} is the set of transductions with clock variables. 

Theorem 4.1 Given a E-dynamics V(T,., A) consisting of a triple (V, 5v, .r} then (1) (V, 5v) is a 

multi-sorted algebraic c:po, and (2) each transduction in .r is continuous. 
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5 The Semantics of Constraint Nets 

Now we present a denotational semantics for constraint nets based on fixpoint theory. Let V(T,., A) 

be a E-dynamics consisting of a triple (V, :$v, :F) and CN be a constraint net consisting of a triple 

(Le, Td, Cn). Semantically, each location in Le with sort s denotes a variable trace v E V#,.• and 

each clock denotes a clock trace c E Cr,.. Each transduction in Td is a composition of transductions 

in :F with the same time structure (with at most one clock variable). Each connection relates an 

input/output variable of a transduction with a location. Therefore, the semantic representation of a 

constraint net is a set of equations, where each left-hand side is an individual output location and 

each right-hand side is an expression composed of transductions and locations: o = Fr,. (i, o) where o 
is the tuple of output locations, i is the tuple of input locations and Fr,. is the tuple of transductions. 

Since each transduction is continuous, Fr,. is a continuous transduction from Vix V0 to V0 • According 

to Proposition 3.2 (fixpoint theory), there is a continuous function µ.Fr,. which is the least fixpoint 

of this equation. We call o = µ.Fr,. (i) the set of semantic equations of the constraint net, where 

µ.Fr,. is a tuple of continuous transductions. The semantics of a constraint net CN, [CN], is defined 

as: [CN](ok) = µ.Fr,.k. Note that [CN] also denotes the trajectory of the dynamic system being 

modeled. 

Example 5.1 Consider the subnet in Figure 1 consisting of locations Rl, R2, Cl and C2, and the 

two negated Muller-C elements. We have 

Cl= NC(Rl, C2), C2 = NC(Cl, R2) (1) 

The semantic equations of this subnet are Cl = cl(Rl, R2), C2 = c2(Rl, R2) where (cl, c2) is the 

fixpoint of Equation 1. 

For a complex system with many components, the semantics of the whole system can be obtained 

by the semantics of its components. 

• composition: If (CN, 0} = (CN1, 01} II (CN2, 02}, then [CND is obtained as follows: if 1 E 

0(CN1), then [CN](l) =def [CN1](1); if l E 0(CN2), then [CN](l) =def [CN2](l). 

• coalescence: If (CN, 0} = (CN', 0)/ E, then [CN] is obtained as follows: let o = F(i) be the set 

of semantic equations of C N', the set of equations for C N is: o = F([i]) where [i]k = [ik] denotes 
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the quotient from the equivalence relation of E. If µ.F is the least fixpoint of the equations, 

then [CND(ok) = µ.Fk. 

Example 5.2 Consider again the net in Figure 1. Let B = producer(Clock) be the semantic equation 

for "producer". By coalescing Clock with Cl we have 

B = producer(Cl), Cl= cl(Rl, R2) 

And the semantic equations for this subnet are: B = producer(cl(Rl, R2)), Cl= cl(Rl, R2). 

6 Behavioral Specification and Verification 

We discuss in this section the behavioral specification and verification of constraint nets. Let E = 
(S, F) be the signature of a constraint net. There may be another signature E+ = (S+, F+) which is 

an augmented signature of E, i.e. S ~ s+ and F ~ p+. Intuitively, s+ may include qualitative or 

more abstract data types of S, and p+ may include the functions that relate sorts in S with those in 

s+. 

There are various levels of specifications for constraint nets: 

• algebraic specification: a set of equalities and/or inequalities between terms in E+-algebra, 

• implementation specification: the set of equations of a constraint net in E-dynamics, 

• requirement specification: the set of relations between input and output locations in E+-dynamics; 

usually, the requirement specification is more abstract than the implementation specification. 

Temporal logic has been used as a specification and verification tool for concurrent programs [6]. 

A temporal logic on E-algebras is developed for our purposes. A temporal formula is built from 

elementary formulas using boolean operators and temporal operators: 

p = p I -,p I Pi --+ P2 I DP I ◊ p I O p I P1 u P2 

A frame :Fr is a pair (A, J) where A is a E-domain, I is an interpretation which maps each predicate 

p in P to true or false, given the values of its arguments. A model M is a triple (:Fr, T,., a) where 

:Fr is a frame, T,. is a reference time, a is a mapping from locations to variable traces. Let Ft be the 

relation between model M and formula P at time point t E T/0
: 
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• M Ftp: p[u(l)(t)/l, u(l)(pre(t))/pre(l)); 

• M Ft DP : 'vt' 2 t, M Ft' P; 

• M Ft ◊ P : 3t' 2 t, M Ft' P; 

• M Ft OP: 'vt' E succ(t), M Ft' P; 

• M F P1 U P2 : 3t', t' 2 t and M Ft' P2 and 'vt", t ~ t" C t', M Ft" P1. 

MF P iff M Fl.r.oo P. 
r 

The logical specification is a powerful language for specify various qualitative behaviors of a real

time embedded system. Some important properties of systems are: 

1. asymptotic stability: if P is a stable property, ◊DP; 

2. persistence: if P is a goal to be tracked, D◊ P; 

3. safety: if Pis a dangerous behavior, D(--,P); 

4. response: if Eis an event specification, R is an response specification, D(E -t ◊R); 

5. progress: if Ei is an event, Riis a possible response of Ei, D(E1 /\ ... /\En -t R1 V ... V Rn)-

Verification is a process of demonstrating that the implementation specification implies the re

quirement specification. There are two approaches; both can be used in our framework. The first is 

model checking. Let C N be a constraint net with semantic equation o = F(i), and n( 0, I) be the 

requirement specification. CN satisfies n, written CNF n, iff 'vi, n(F(i), i). The second is theorem 

proving. Let I be the implementation specification and n be the requirement specification, then show 

that 1-I-. n. 

Example 6.1 Consider the asynchronous event controller in Figure 1. The algebraic specification 

includes the specification of boolean algebra. The implementation specification, written in temporal 

logic formula is: 

(Cl= 0) f\ D(Rl = C2 -t Q(Cl = pre(Cl)) f\ D(Rl :/: C2-. Q(Cl = pre(Rl)) 
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(C2 = 0) /\ D(Cl = R2 - Q(C2 = pre(C2)) f\ D(Cl =/= R2 - 0(C2 = pre(Cl)) 

Let e(x), where x is a clock, denote x =,= pre(x), i.e. an event occurs at x, and ne(x) denote the 

number of events that have occurred at x. The requirement specification is: 

• safety property: the size of the buffer is one, i.e. S = □(0 $ ne(Cl) - ne(C2) $ 1) 

• response: a request will be handled as soon as possible, i.e. 

n1 = D(e(Rl) - (Q(e(Cl)) V D(e(C2) - Qe(Cl)))) 

n2 = D(e(R2) - (Q(e(C2)) V D(e(Cl) - Qe(C2)))) 

However, in order to satisfy this specification, the following interface protocol must be satisfied: 

• initialization: Io = (Rl = 0) A (R2 = 1) 

• synchronization: Rl shall not create another request until Cl generates an event, R2 shall not 

create another request until C2 generates an event, i.e. 

£ = D(e(Rl) - Rl-=/: Cl) f\ □(e(R2) - R2 = C2) 

As a result the requirement specification for an asynchronous event controller is: Io A e - SA n1 A n2. 
And we can prove that the implementation specification implies the requirement specification. 

7 Conclusion and Future Work 

We have presented a semantic model, Constraint Nets, for real-time embedded systems based on 

algebraic theory. With its rigorous formalization, the Constraint Net model serves as a foundation for 

specification, verification, analysis and simulation of the complete dynamic system. We have been able 

to model robotic behaviors with constraint nets which are simulated by logical concurrent objects [14]. 

We plan to develop further a visual programming and simulation environment, known as ALERTS (A 

Laboratory for Embedded Real-Time Systems), based on the Constraint Net model. Using ALERTS, 

a system can be designed hierarchically, and simulated or verified incrementally. 
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