
Constraint Nets: A Semantic Model for
Real-Time Embedded Systems

by
Ying Zhang

and
Alan K. Mackworth

Technical Report 92-10
May 1992

Department of Computer Science
University of British Columbia

Rm 333 - 6356 Agricultural Road
Vancouver, B.C.

CANADA V6T 1Z2

Constraint Nets: A Semantic Model for Real-Time Embedded Systems

by
Ying Zhang and Alan K. Mackworth

Technical Report 92-10
May 1992

Depart~ent of Computer Science
The University of British Columbia

Vancouver, B. C. V6T 1Z2
Canada

email: zhang@cs.ubc.ca, mack@cs.ubc.ca

@1992 Ying Zhang and Alan K. Mackworth

..

Constraint Nets: A Semantic Model for Real-Time Embedded
Systems

Ying Zhang and Alan K. Mackworth

Department of Computer Science
University of British Columbia

Vancouver, B.C., Canada
E-mail: zhang@cs.ubc.ca, mack@cs.ubc.ca

phone: (604)822-3731

Abstract

We take a real-time embedded system to be the control system of a plant in an open environment,

where the control is realized by computation in digital or analog form. The key characteristic of a

real-time embedded system is that computation is interleaved or in parallel with actions of the plant

and events in the environment. Various models for real-time embedded systems have been proposed in

recent years, most of which are extensions of existing concurrency models with delays or time bounds on

transitions. In this paper, we present a different approach to modeling real-time systems. We take the

overall system as a dynamic system, in which time or event structures are considered as an intrinsic

dimension. Our model, called the Constraint Net model (CN), is capable of expressing dynamic

behaviors in real-time embedded systems. It captures the most general structure of dynamic systems

so that systems with discrete as well as dense time and asynchronous as well as synchronous event

structures can be modeled in a unified framework. It models the dynamics of the environment as well

as the dynamics of the plant and the dynamics of the computation and control. It provides multiple

levels of abstraction so that a system can be modeled and developed hierarchically. By explicitly

representing locality, CN can be used to explore true concurrency in distributed systems. With its

rigorous formalization, CN provides a programming semantics for the design of real-time embedded

systems. It also serves as a foundation for specification, verification, analysis and simulation of the

complete dynamic system.

1

1 Motivation and Introduction

Real-time embedded systems are reactive as well as purposive systems, closely coupled with their plants

and environments; they must deal with inconsistent, incomplete and delayed information from various

sources. Such systems are usually complex, hierarchical and physically distributed. Design of control

systems for plants with high degree of freedoms and multiple sensors has become a growing challenge.

Work on real-time embedded systems is usually based on one of two frameworks [5]: semantic models

or scheduling theory. Even though these two are closely related, in this paper we shall concentrate on

formal semantic models, as well as specification and verification of the overall system.

Much work has been done on introducing real-time concepts into formal models in recent years.

The real-time representation follows one of two approaches. The first is to define events or transitions

on time, i.e. each event or transition is associated with a non-negative real number, and delays

or durations are also represented by non-negative real numbers. For example, Merritt et. al. [8]

augmented the input-output automaton model with a notion of time that allows reasoning about

timed behaviors. Various extensions of Timed CCS (Calculus of Communicating Systems) have been

developed to model the relative speed of processes [9] and asynchronous behaviors. Timed CSP

(Communicating Sequential Processes) was based on failure/stability models [11]. The Timed Petri

Net model [2] was introduced to specify and verify real-time systems. In all of these models, either

time or delay is augmented with transitions, events or processes. The second approach is to define

time on events, i.e. defining time instants on a pair of adjacent events [5], such that the structure of

time instants is isomorphic to the set of non-negative real numbers.

Our philosophy for developing the Constraint Net model (CN) is: instead of adding a model of

time onto an existing model of concurrency, a model of dynamic systems should be developed in the

first place [10]. The traditional model of dense (resp. discrete) time dynamic systems is a set of

differential (resp. difference) algebraic equations. However, most advanced control systems nowadays

are developed as distributed and asynchronous processes in digital computer networks, in addition to

analog circuits. There is a strong need to generalize the model of dynamic systems so that multiple

time structures and multiple data types can be represented in a unified framework and the dynamic

interactions between various components can be analyzed. The major influences on the Constraint

Net model are the Operator Net model and the Temporal Automaton model.

2

The Operator Net model [1], abstracted from Lucid [13) or the dataflow model, is defined on

continuous algebras using fixpoint theory. The most attractive feature of this model is its independence

of any particular algebra. Given a continuous algebra which specifies data types and basic operations,

a sequence (continuous) algebra is obtained on which an operator net can be defined. This idea is

incorporated into the development of the Constraint Net model (CN). LUSTRE [3], a development

based on Lucid, is a real-time programming language, in which sequences are interpreted as time steps.

In addition, LUSTRE introduces synchronous clocks, so that any expression is evaluated at its clock's

sampling rate.

The Temporal Automaton model [7] is a step towards modeling causal functions in multiple time

domains. The Temporal Automaton model provides explicit representation of process time, symmetric

representation of a machine and its environment, aggregation of individual machines to form a machine

at a coarser level of granularity. However, there remain untackled problems in modeling continuous

change and event control.

As in the Operator Net model, CN is defined on continuous algebras using fixpoint theory. Like

LUSTRE, CN introduces reference time structures and clocks, but the reference time may be dense

and the clocks are asynchronous [12]. As in the Temporal Automaton model, transductions are

introduced as an abstraction of causal functions, but the definition of transductions is generalized to

include continuous and event-driven transitions. In our definition, a transduction is a state-determined

transformational process from a tuple of inputs to an output. Furthermore, environments and machines

are represented in a unified frameworlc. Like both operator nets and temporal automata, constraint

nets provide composite structure and multiple levels of abstraction. Unlike both operator nets and

temporal automata, constraint nets introduce "locations" so that distributed memories are explicitly

modeled. In contrast to most concurrency models which are inherently non-deterministic, CN is a

deterministic model, while non-determinism can be modeled by open constraint nets. In summary,

the major contributions of the Constraint Net model are: (1) by introducing asynchronous clocks, CN

models various time structures and coordination among components with different time structures; (2)

developed on abstract algebras, CN supports abstract data types and functions; (3) with a rigorous

formalization, CN provides a programming semantics for the design of real-time embedded systems;

(4) by modeling plants and environments as well as control, CN serves as a foundation for specification,

3

,.

verification, analysis and simulation of the complete dynamic system.

This paper is organized as follows. Section 2 presents the syntax of constraint nets and a running

example that is used throughout the paper. Section 3 reviews the preliminaries on E-algebras and

E-domains. Section 4 introduces the algebraic formalization of dynamics. Section 5 gives the se­

mantics using fixpoint theory of continuous algebras. Section 6 discusses behavioral specification and

verification of constraint nets. Section 7 concludes this paper and proposes future research directions.

2 The Structure of Constraint Nets

In this section, we present the syntax of constraint nets and characterize the composite structure and

modularity of the model.

2.1 Syntax

A constraint net is a triple CN = (Le, Td, Cn}, where Le is a set of locations, each of which is

associated with a sort; Td is a set of transductions, each of which is associated with a tuple of input

ports and an output port, of certain sorts; Cn is a set of directed connections between locations and

ports of transductions of the same sort. Clocks are a special kind of location and events can be

generated by transductions. Topologically, a constraint net is a bipartite graph where locations are

represented by circles, transductions are represented by boxes and connections are represented by arcs,

each from a port of a transduction to a location or vice versa, with the restriction that (1) there is at

most one connection pointing to each location, (2) each port of a transduction connects to a unique

location and (3) no location is isolated. A location is an input iff there is no connection pointing to

it and it is an output otherwise. For a constraint net CN, the set of input locations is denoted by

I(CN), the set of output locations is denoted by O(CN). A constraint net is closed iff there are no

input locations and it is open otherwise.

Example 2.1 An asynchronous event controller {12} is designed to coordinate asynchronous events in
\

a distributed system. Consider a simple 1-buffered producer-consumer (synchronized communication)

problem. On request, the producer will produce a product when the old product is consumed and the

consumer will consume a product when there is a new product. In Figure 1, we use clock Cl to control

the producer and clock C2 to control the consumer. Rl is an input event location for requesting a new

4

product. R2 is an input event location for requesting the use of the product. Two negated Muller-C

elements (NCs) are used to synchronize events. It is an open system since Rl and R2 are input

locations. Cl generates a new event iJJ there is a request event at Rl and the buffer is empty. C2

generates a new event iff there is a request event at R2 and the buffer is full. There is only one buffer

in this example; however, this structure can be extended to any number of buffers.

1---➔l producer

Figure 1: The constraint net for a event controller (where o denotes the second input port of NC)

2.2 Modules

A module is a pair (CN, 0) where CN is a constraint net and 0 ~ 0(CN) is a subset of the

output locations of CN; 0 and I(CN) define the interface of the module. Complex modules can be

hierarchically constructed from simple ones.

There are several operations that can be applied to modules to obtain a new module. The first is

composition, which combines two modules into one whose interface is the union of the two interfaces.

The second is coalescence, which coalesces a group of locations in the interface of a module, with the

restriction that at most one of the locations is an output location, into an individual location. The

third is hiding, which deletes a set of output locations from the interface.

• composition: Let CNi = (Lei, Tdi, Cni) and CN2 = (Le2, Td2, Cn2) where Lein Le2 = 0 and

Tdi n Td2 = 0, then (CNi, 01) II (CN2, 02) =def (CN, 0) where CN = (Lei U Le2, Td1 U

Td2, Cn1 U Cn2) and 0 = 01 U 02.

5

• coalescence: Let E be an equivalence relation on the set of locations of the interface of a constraint

net such that (1) all the locations in the same equivalence class have the same sort and (2) there

is at most one output location in each equivalence class; then, (CN,O)/E =def (CN',O} where

CN' = (Le/ E, Td, Cn/ E}, Le/ E and Cn/ E denote the corresponding quotients and E is the

extension of E, E =EU { (l, l)ll E Lc\(I(CN) U O)}.

• hiding: (CN,0)\0' =def (CN,O\O').

3 Preliminaries: E-Algebras and E-Domains

We briefly recall in this s(;lction some mathematical preliminaries about partially ordered sets, contin­

uous functions and fixpoint theory, essentially summarized from [4) with some extensions.

• E-algebra: E = (S, F) is a signature where S is a set of sorts and F is a set of function

symbols such that F is equipped with a mapping type: F -+ S* x S. A E-algebra A is a

pair ({Aa}aeS, {/A}feF} with a nonempty carrier set A8 for each s E Sand a total function

JA: A81 X ... X A8 ,. -+ A., for each f: s1, ... , Sn-+ s E F.

• partial order: (A, $A) is a partial order. The product of two partial orders is a partial order

defined as: (a1, a2) $A (ai, a2) iff a1 $A1 ai and a2 $A2 a2. The set of functions, whose range

is a partial order, is a partial order defined as: for two functions Ji, h with the same domain

X and range A, Ji $x,A h iff Vx E X, Ji (x) ~A h(x). The least element in A, if it exists, is

denoted by .1.A, A fiat partial order, written A, is a set A augmented with a least element l.,

such that a ~A a' implies a= a' or a =.1..

• complete partial order: Let D be a subset of A and VA D be the least upper bound (lub) of D

in A, when it exists. Dis a directed subset of A iff it is nonempty and for every pair of elements

di, d2 in D the set { d1, d2} has an upper bound which is also in D. The partial order (A, ~A)

is a complete partial order (cpo) iff: (1) it contains a least element l.A and (2) every directed

subset of A has a lub in A.

• continuous function: Let (A, ~A), (A', ~A,} be two cpos and f : A-+ A' be a function. Then

/ is continuous iff for every directed set D ~ A, (1) J(D) = {f(d)ld E D} is directed and (2)

6

f(VA D) = VA, f(D). It is easy to see that continuous functions are closed under composition.

An element a EA is a fixpoint off iff a= f(a). The least fixpoint off is denoted by µ.f.

Proposition 3.1 [4] If f: A - A is a continuous function on a cpo A, f has a least fixpoint.

By extending this proposition, with the same proof structure, we have:

Proposition 3.2 If f : / x X - X is a continuous function, then there exists a unique continuous

function µ.f: J - X, such that for all i EI, (µ.f)(i) is the least fixpoint of)..x.f(i, x).

• compactness: Let A be a cpo. An element a E A is compact iff given D, a directed subset of A,

whenever a $A VA D, there exists some d E D such that a $A d. A is an algebraic cpo iff for

every a in A, a = VA { did $A a, d is compact}. It is easy to show that (1) any flat partial order

is an algebraic cpo, (2) the product of two algebraic cpos is an algebraic cpo, and (3) the set of

all functions whose range is an algebraic cpo is an algebraic cpo.

• E-domain: Let Ebe a signature which contains a distinguished nullary function symbol 0., for

each sorts. A E-domain is a triple ({A.,}.,es, {$AJseS, {!A}JeF} where ({A.,}.,es, {$AJ.,es}

is an S-sorted algebraic cpo, JA is continuous for each f E F and n: is 1-A.. A E-domain

homomorphism h : A - B, where A and B are two E-domains, is a family of continuous

mappings {h., : A., - B.,}.,es such that for each f : s1, ... , Sn - s E F and each a1 E

A.,n ... , an E A.,,., h.,(JA(a1, ... , an))= f B(h., 1 (a1), ... , h.,,. (an)). It is a E-domain isomorphism

if it has an inverse.

• completion: If (A, $A} be a partial order, a mapping in: A - 2A is defined as in(a) = {xix $A

a}. The completion of A is A00 =def ({in(a)la E A}, ~). Completions of sets have good

properties.

Proposition 3.3 If (A, $A} has a least element, then A00 is an algebraic cpo and every element of

A 00 is compact.

7

4 An Algebraic Theory of Dynamics

In this section, we start to define the semantics of locations and transductions of constraint nets, first

by introducing time or event structures, and then by developing an algebraic theory of dynamics.

4.1 Time Structures and Dynamic Systems

Generalizing (7), we define a time structure as a pair (T, m) where (T, ~T) with .lr as the least

element is a total order, and m: T 00
- n,+ is a measurement function, where T 00 is the completion

of T and n,+ is the set of non-negative real numbers with the normal ordering, which satisfies (1)

m(.1700) = 0 and (2) if t1 C t2, then m(t1) < m(t2). For a time structure (T, m), T 00 is called the

time domain. We use the time dom-ain T 00 instead of T because it has better mathematical properties:

for all t E T 00
, the unique predecessor pre(t) can be defined:

{
.1700 if t =.1700

pre(t) =def V{t'lt' E T 00 ,t' Ct} otherwise

It is easy to show that for all t E T 00
, pre(t) E T 00 and if t ,-f.1700, then pre(t) Ct. A time structure

(T, m) may be related to another time structure (T,., mr) by a reference time mapping h where (1)

h : T 00
- T,.00 is a continuous function and strictly monotonic, i.e. t C t' implies h(t) C h(t') and (2)

the least element is preserved, i.e. h(.1700) =.17,.00, T,. is a reference time of T, and Tis a sampled

time of T,.. Tis accurate w.r.t. T,. iff Vt E T 00
, m(t) = mr(h(t)).

A variable trace is a mapping from a time domain to a variable domain which is an algebraic cpo,

vj : T 00
- A. vj is nonintermittent iff vj(t) =.lA implies Vt' :) t, vj(t') =.LA and it is intermittent

otherwise. A location in constraint nets denotes a variable trace and a clock denotes a nonintermittent

trace. A total variable is the set of all variable traces, and a nonintermittent variable is the set of all

nonintermittent variable traces. A variable is either a total or a nonintermittent variable.

Proposition 4.1 A variable is an algebraic cpo.

A transduction is a mapping from a tuple of input variables to an output variable, F7o,7i, ... ,T,.

V#i1 x ... x v#,_n - V#ci° where V#;; is a variable with time structure 'Ji and variable domain Ai, which

satisfies the causal relationship between its inputs and the output, i.e. if the inputs are the same up

to a certain time point, the outputs will be the same up to that time. Formally, if T,. is a reference

8

time structure for all 1i with the reference mapping hi, then for any pair of input variables v, v', and

to E 7'o00
: ViVti, hi(ti) ~ ho(to)-+ Vi(ti) = vHti) implies

Fro,7i, .. ,,Tn (vi, ... ' Vn)(to) = Fro,7i, ... ,Tn (v~' ... 'v~)(to)

For example, integration is a transduction. We will see that any finite automata defines a transduc­

tion from input variables to state variables. Clearly, transductions are closed under composition. A

transduction is continuous if it is a continuous function. A transduction is a transliteration if it is a

pointwise extension of some function f. Formally, the transliteration fTo,7i, ... ,Tn : Vi x ... x Vn-+ Vo,

It is easy to see that the following proposition holds.

Proposition 4.2 If f is a continuous function, then fTo,7i, ... ,T,. is a continuous transduction.

The following concepts are defined in order to relate variables and transductions with different

time structures. If v is a variable trace with time structure T, and T,. is a reference time structure of

T, then the interpolated variable trace of v onto T,. is a variable trace v, v =def idr,.,T(v) where id is an

identity function. Similarly, if v is a variable trace with time structure T,., the sampled variable trace of

v onto Tis a variable '.Q, '.Q =def id7,r,.(v). If FT is a transduction whose variables have the same time

structure, the interpolated transduction from T to T,. is defined as F7(v1, ... , vn) =def F7(v1, ... , vn).

Similarly, the sampled transduction from T,. to T can be defined as Fr,. (vi, ... , vn) =def Fr,. (Vi", ... , v;).

Since identity functions are continuous, we have the following proposition.

Proposition 4.3 If Fr is a continuous transduction, then Fr and Fr are continuous transductions.

4.2 Unit delays and transducers

We shall see that composition of unit delays and transliterations can define complex transductions.

Let v; be a variable. A unit delay is a transduction from v; to v;. Formally, let init E A be the

output value at the start time point, a unit delay in the time structure Tis:

A . . { init if t =l.roo
8r(imt)(v) =def >.t. (p (t)) th . v re o erw1se

9

Proposition 4.4 Unit delays are continuous transductions.

A state transducer is a quadruple (J, Q, qo, /) where I, the set of inputs, and Q, the set of states,

are algebraic cpos, qo E Q is the initial state and / : I x Q - Q, the state transition function,

is c~ntinuous. A state transducer is finite iff IQI is finite. A state transducer defines a continuous

transduction from input variables to state variables. Formally, let T be a time structure:

Proposition 4.5 A state transducer (I, Q, qo, /) defines a transduction from V.} to V$.

Proof: Let fr be the pointwise extension of f, fr : V.} x V$ - V$. We have,

Sr is a continuous transduction since both fr and 6~(qo) are continuous transductions. According

to Proposition 3.2 there is a continuous function which is the least fixpoint of Sr, µ.Sr: V.} - V$,

Clearly µ.Sr is a transduction. D

Let B = {O, 1, .l} be a flat cpo. An event transduction is a transduction whose output is a

nonintermittent variable with domain isomorphic to B.

Example 4.1 The negated Muller-C element used in Example 2.1 is the basic "and" logic element in

event synchronization {12]. A negated Muller-C element is a state transducer: (B x B, B, O, /) where

{

.l if q =.L or i1 =.l. or i2 =.l.
f ((it, i2), q) =def i1 it -::/: i2

q otherwise

So this defines an event transduction NC : VJ x V/ - Vj, given any time structure T.

A transducer is a tuple (I, Q, qo, f, 0, / 0
) where (I, Q, qo, /) is a state transducer, 0, the set of

outputs, is an algebraic cpo and J0
: J X Q - 0, the output function, is continuous. A transducer

defines a continuous transduction from input variables to output variables, for any given time structure

T. Formally, Fr: v.} - v~, Fr= AVi.f!f(vi, (µ.Sr)(vi)).

4.3 Clock traces and E-dynamics

Let Ab be any continuous boolean algebra (ternary algebra) with its carrier set isomorphic to B. A clock

trace is a nonintermittent variable trace c::, which generates an accurate sampled time structure Tc of

10

c(t)

Figure 2: A clock trace: each dot depicts a time point of Tc, Tc ~ T,.

T,.. Formally, Tc~ T,. is defined as: Tc =def {.l7;.} U {t E T,.lc(in(t)) #.lA6 , c(in(t)) =/: c(pre(in(t)))},

1.e. each transition defines a time point (see Figure 2), and "Vt E: Tc, mc(in(t)) = m(in(t)). Clock

traces can be produced by event transductions.

A clock variable C7;. is the set of all clock traces on reference time structure T,.. Let F7c : Vl --+ V£
be a transduction with time structure Tc produced by clock trace c. We define a transduction with a

clock variable on the reference time structure T,. as Ff,. : C7;. x V,l --+ V£,

pc (c v·) = >-.t. { F7c(vi)(t) if c(t) #.lA6

T,. ' ' def .lo otherwise

Proposition 4.6 If F7c is a continuous transduction, then Ff,. is a continuous transduction.

Proof: It is easy to see that Ff,. is both left and right continuous if F7c is continuous, therefore it is

continuous [4]. D

Finally, with preliminaries established, we can characterize the domain structure for constraint

nets. A E-dynamics is defined on a E-domain and a reference time structure. Let E = (S, F} be a

signature and b E S be a sort denoting boolean. If A is a E-domain, a E:..dynamics V(T,., A) is a triple

(V, 5 v, .r) where

• V = {V#,.•} ses U C7;. where. V#,.• is a total variable and C7;. is a clock variable;

• 5v= {5yA• }seS is the set of partial orders on variables, v1 5vA• v2 iff "r/t E T,., v1 (t) 5A. v2(t);
~ ~

• .r = .1"7;. U .rf,. where .1"7,. = {J#,.}teF U {8t"(init)hes,initeA. is the set of transliterations and

unit delays and .rf,. = { Fe IF E .1"7;.} is the set of transductions with clock variables.

Theorem 4.1 Given a E-dynamics V(T,., A) consisting of a triple (V, 5v, .r} then (1) (V, 5v) is a

multi-sorted algebraic c:po, and (2) each transduction in .r is continuous.

11

5 The Semantics of Constraint Nets

Now we present a denotational semantics for constraint nets based on fixpoint theory. Let V(T,., A)

be a E-dynamics consisting of a triple (V, :$v, :F) and CN be a constraint net consisting of a triple

(Le, Td, Cn). Semantically, each location in Le with sort s denotes a variable trace v E V#,.• and

each clock denotes a clock trace c E Cr,.. Each transduction in Td is a composition of transductions

in :F with the same time structure (with at most one clock variable). Each connection relates an

input/output variable of a transduction with a location. Therefore, the semantic representation of a

constraint net is a set of equations, where each left-hand side is an individual output location and

each right-hand side is an expression composed of transductions and locations: o = Fr,. (i, o) where o
is the tuple of output locations, i is the tuple of input locations and Fr,. is the tuple of transductions.

Since each transduction is continuous, Fr,. is a continuous transduction from Vix V0 to V0 • According

to Proposition 3.2 (fixpoint theory), there is a continuous function µ.Fr,. which is the least fixpoint

of this equation. We call o = µ.Fr,. (i) the set of semantic equations of the constraint net, where

µ.Fr,. is a tuple of continuous transductions. The semantics of a constraint net CN, [CN], is defined

as: [CN](ok) = µ.Fr,.k. Note that [CN] also denotes the trajectory of the dynamic system being

modeled.

Example 5.1 Consider the subnet in Figure 1 consisting of locations Rl, R2, Cl and C2, and the

two negated Muller-C elements. We have

Cl= NC(Rl, C2), C2 = NC(Cl, R2) (1)

The semantic equations of this subnet are Cl = cl(Rl, R2), C2 = c2(Rl, R2) where (cl, c2) is the

fixpoint of Equation 1.

For a complex system with many components, the semantics of the whole system can be obtained

by the semantics of its components.

• composition: If (CN, 0} = (CN1, 01} II (CN2, 02}, then [CND is obtained as follows: if 1 E

0(CN1), then [CN](l) =def [CN1](1); if l E 0(CN2), then [CN](l) =def [CN2](l).

• coalescence: If (CN, 0} = (CN', 0)/ E, then [CN] is obtained as follows: let o = F(i) be the set

of semantic equations of C N', the set of equations for C N is: o = F([i]) where [i]k = [ik] denotes

12

the quotient from the equivalence relation of E. If µ.F is the least fixpoint of the equations,

then [CND(ok) = µ.Fk.

Example 5.2 Consider again the net in Figure 1. Let B = producer(Clock) be the semantic equation

for "producer". By coalescing Clock with Cl we have

B = producer(Cl), Cl= cl(Rl, R2)

And the semantic equations for this subnet are: B = producer(cl(Rl, R2)), Cl= cl(Rl, R2).

6 Behavioral Specification and Verification

We discuss in this section the behavioral specification and verification of constraint nets. Let E =
(S, F) be the signature of a constraint net. There may be another signature E+ = (S+, F+) which is

an augmented signature of E, i.e. S ~ s+ and F ~ p+. Intuitively, s+ may include qualitative or

more abstract data types of S, and p+ may include the functions that relate sorts in S with those in

s+.

There are various levels of specifications for constraint nets:

• algebraic specification: a set of equalities and/or inequalities between terms in E+-algebra,

• implementation specification: the set of equations of a constraint net in E-dynamics,

• requirement specification: the set of relations between input and output locations in E+-dynamics;

usually, the requirement specification is more abstract than the implementation specification.

Temporal logic has been used as a specification and verification tool for concurrent programs [6].

A temporal logic on E-algebras is developed for our purposes. A temporal formula is built from

elementary formulas using boolean operators and temporal operators:

p = p I -,p I Pi --+ P2 I DP I ◊ p I O p I P1 u P2

A frame :Fr is a pair (A, J) where A is a E-domain, I is an interpretation which maps each predicate

p in P to true or false, given the values of its arguments. A model M is a triple (:Fr, T,., a) where

:Fr is a frame, T,. is a reference time, a is a mapping from locations to variable traces. Let Ft be the

relation between model M and formula P at time point t E T/0
:

13

• M Ftp: p[u(l)(t)/l, u(l)(pre(t))/pre(l));

• M Ft DP : 'vt' 2 t, M Ft' P;

• M Ft ◊ P : 3t' 2 t, M Ft' P;

• M Ft OP: 'vt' E succ(t), M Ft' P;

• M F P1 U P2 : 3t', t' 2 t and M Ft' P2 and 'vt", t ~ t" C t', M Ft" P1.

MF P iff M Fl.r.oo P.
r

The logical specification is a powerful language for specify various qualitative behaviors of a real­

time embedded system. Some important properties of systems are:

1. asymptotic stability: if P is a stable property, ◊DP;

2. persistence: if P is a goal to be tracked, D◊ P;

3. safety: if Pis a dangerous behavior, D(--,P);

4. response: if Eis an event specification, R is an response specification, D(E -t ◊R);

5. progress: if Ei is an event, Riis a possible response of Ei, D(E1 /\ ... /\En -t R1 V ... V Rn)-

Verification is a process of demonstrating that the implementation specification implies the re­

quirement specification. There are two approaches; both can be used in our framework. The first is

model checking. Let C N be a constraint net with semantic equation o = F(i), and n(0, I) be the

requirement specification. CN satisfies n, written CNF n, iff 'vi, n(F(i), i). The second is theorem

proving. Let I be the implementation specification and n be the requirement specification, then show

that 1-I-. n.

Example 6.1 Consider the asynchronous event controller in Figure 1. The algebraic specification

includes the specification of boolean algebra. The implementation specification, written in temporal

logic formula is:

(Cl= 0) f\ D(Rl = C2 -t Q(Cl = pre(Cl)) f\ D(Rl :/: C2-. Q(Cl = pre(Rl))

14

(C2 = 0) /\ D(Cl = R2 - Q(C2 = pre(C2)) f\ D(Cl =/= R2 - 0(C2 = pre(Cl))

Let e(x), where x is a clock, denote x =,= pre(x), i.e. an event occurs at x, and ne(x) denote the

number of events that have occurred at x. The requirement specification is:

• safety property: the size of the buffer is one, i.e. S = □(0 $ ne(Cl) - ne(C2) $ 1)

• response: a request will be handled as soon as possible, i.e.

n1 = D(e(Rl) - (Q(e(Cl)) V D(e(C2) - Qe(Cl))))

n2 = D(e(R2) - (Q(e(C2)) V D(e(Cl) - Qe(C2))))

However, in order to satisfy this specification, the following interface protocol must be satisfied:

• initialization: Io = (Rl = 0) A (R2 = 1)

• synchronization: Rl shall not create another request until Cl generates an event, R2 shall not

create another request until C2 generates an event, i.e.

£ = D(e(Rl) - Rl-=/: Cl) f\ □(e(R2) - R2 = C2)

As a result the requirement specification for an asynchronous event controller is: Io A e - SA n1 A n2.
And we can prove that the implementation specification implies the requirement specification.

7 Conclusion and Future Work

We have presented a semantic model, Constraint Nets, for real-time embedded systems based on

algebraic theory. With its rigorous formalization, the Constraint Net model serves as a foundation for

specification, verification, analysis and simulation of the complete dynamic system. We have been able

to model robotic behaviors with constraint nets which are simulated by logical concurrent objects [14].

We plan to develop further a visual programming and simulation environment, known as ALERTS (A

Laboratory for Embedded Real-Time Systems), based on the Constraint Net model. Using ALERTS,

a system can be designed hierarchically, and simulated or verified incrementally.

15

References

[1) E.A. Ashcroft. Dataflow and eduction: Data-driven and demand-driven distributed computation.
In J. W. deBakker, W.P. deRoever, and G. Rozenberg, editors, Current Trends in Concm-rency,
number 224 in Lecture Notes on Computer Science. Springer-Verlag, 1986.

[2) B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using time
petri nets. IEEE Transactions on Software Engineering, 17(3), March 1991.

[3] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A declarative language for pro­
gramming synchronous systems. In A CM Proceeding of Principles of Programming Languages,
1987.

[4] M. Hennessy. Algebraic Theory of Processes. The MIT Press, 1988.

[5] M. Joseph. Time and real-time in programs. In C.E. Veni Madhavan, editor, Foundations of Soft­
ware Technology and Theoretical Computer Science, number 405 in Lecture Notes on Computer
Science, pages 312 - 324. Springer-Verlag, 1989.

[6] L. Lamport. The temporal logic of actions. Technical Report 79, Digital Systems Research Center,
Palo Alto, California, December 1991.

[7] J. Lavigon and Y. Shoham. Temporal automata. Technical Report STAN-CS-90-1325, Robotics
Laboratory, Computer Science Department, Stanford University, Stanford, CA 94305, 1990.

[8] M. Merritt, F. Modugno, and M.R. Tuttle. Time-constrained automata. In J.C.M. Baeten and
J.F. Groote, editors, CONCUR-91, number 527 in Lecture Notes on Computer Science, pages 393
- 407. Springer-Verlag, 1991.

[9] F. Moller and C. Tofts. A temporal calculus of communicating systems. In J.C.M. Baeten and
J.W. Klop, editors, CONCUR-90, number 458 in Lecture Notes on Computer Science, pages 401
- 415. Springer-Verlag, 1990.

[10) C.A. Petri. "Forgotten topics" of net theory. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Applications and Relationships to Other Models of Concurrency, number 255
in Lecture Notes on Computer Science, pages 500 - 514. Springer-Verlag, 1986.

[11] G.M. Reed and W. Roscoe. A timed model for communicating sequential processes. In Laurent
Kott, editor, Automata, languages and programming, number 226 in Lecture Notes on Computer
Science, pages 314 - 323. Springer-Verlag, 1986.

[12] I.E. Sutherland. Micropipeline. Communication of ACM, 32(6), June 1989.

[13] W.W. Wadge and E.A. Ashcroft. Lucid, the dataftow programming language. Academic Press,
1985.

[14] Y. Zhang and A.K. Mackworth. Modeling behavioral dynamics in discrete robotic systems with
logical concurrent objects. In S.G. Tzafestas and J.C. Gentina, editors, Robotics and Flexible
Manufacturing Systems. Elsevier Science Publishers B.V., 1992. (in press).

16

