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Abstract: Fredman and Knuth have treated certain recurrences, such as M(O) = 1 and 

M(n + 1) = min (o:M(k) + /3M(n - k)), 
o::;k::;n 

where min( a:, /3) > 1, by means of auxiliary recurrences such as 

h( ) { o, if O =:; x < 1; 
x = l+h(x/o:)+h(x//3), ifl=:;x<oo. 

The asymptotic behavior of h( x) as x ~ oo with a: and /3 fixed depends on whether 

log a:/ log /3 is rational or irrational. The solution of Fredman and Knuth used analytic 

methods in both cases, and used in particular the Wiener-Ikehara Tauberian theorem in 

the irrational case. We show that a more explicit solutions to these recurrences can be 

obtained by entirely elementary methods, based on a geometric interpretation of h( x) 
as a sum of binomial coefficients over a triangular subregion of Pascal's triangle. Apart 

from Stirling's formula, we need in the irrational case only the Kronecker-Wey! theorem 

(which can itself be proved by elementary methods), to the effect that if ,{J is irrational, the 

fractional parts of the sequence ,{), 2,{), 3,{), .•. are uniformly distributed in the unit interval. 

* This research was partially supported by an NSERC Operating Grant and an ASI 

Fellowship Award. 





1. Introduction 

The analysis of algorithms and data structures, as well as of constructions for systems 

such as sorting and switching networks, often leads to recurrences. Because recursive 

algorithms, data structures and constructions often involve choices that should be made 

in an optimal way, the recurrences often involve minimization. In their paper "Recurrence 

Relations Based on Minimization", Fredman and Knuth [FK] treat a large number of 

related recurrences by a combination of combinatorial and analytic methods. The goal 

of the present paper is to show how in many cases it is possible to replace the analytic 

component of their solutions with elementary arguments. (Here the terms "analytic" and 

"elementary" are used in accordance with the practice in number theory: "analytic" refers 

to methods based on properties of analytic functions of a complex variable, especially 

residues or integral transforms, while "elementary" refers to the absence of such methods. 

In particular, "elementary" does not refer to either simplicity or brevity.) As a bonus, we 

shall see that our analysis leads to a more explicit and informative solution in some cases. 

A preliminary version of our results appears as [P]. 

Of the recurrences treated by Fredman and Knuth, the one which best illustrates our 

contribution is M(O) = 1 and 

M(n + 1) = min (aM(k) + (3M(n - k)), 
O~k~n 

(1.1) 

where a and /3 are fixed parameters with min(a,,8) > 1. (This is the case "g(n) = Sno" 

dealt with in their Section 6.) By straightforward and elementary arguments, Fredman 

and Knuth reduce the study of (1.1) to that of the function h defined by 

h( ) { o, if O ~ x < 1, 
x = 1 + h(x/a) + h(x/(3), if 1 ~ x < oo. (1.2) 

The analysis of Fredman and Knuth proceeds by considering the integral transform 

K(s) = f'X) h(t) dt 
11 ts+l 

of h, which with the aid of (1.2) can be shown to be K( s) = 1/ s(l - a-s - (3- 8
). This 

function is analytic in the open half-plane Re(s) > 1 , where, is the unique real solution 

to 

(1.3) 
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Furthermore, K(s) has a simple pole at s = , with residue C = 1/(a--Yloga'Y + 
13--r log /3-Y)), as is easily calculated. This pole will ultimately give rise to a factor C x 'Y in 

the asymptotic behavior of h( x). 

The behavior of K(s) on the remainder of the critical line Re(s) = , depends on 

whether log a/ log /3 is rational or irrational. If this quotient is irrational, the pole as = , 
is the only one on the critical line, and a Tauberian theorem due to Wiener, Ikehara and 

Landau (Lemma 4.3 in Fredman and Knuth) leads to the conclusion that 

h(x) ~ Cx-Y (1.4) 

in this case. If the quotient log a/ log /3 is rational, K( s) has additional poles periodically 

disposed along the critical line. Application of Cauchy's residue theorem leads to the · 

conclusion that 

h(x) ~ D(x)x-Y (1.5) 

in this case, where D( x) is a periodic function of log x whose period is determined by the 

spacing between poles along the critical line, and whose Fourier coefficients are determined 

by the residues at those poles. 

In this paper we shall derive (1.4) and (1.5) in an elementary fashion. This new 

derivation has the merit of giving a simple explicit formula for the function D(x) in (1.5). 

We shall also want the solution to the related recurrence 

{ 
0 if O ·:5 x < l, 

h'(x) = 1'+ ah(x/a) + /3h(x//3), if 1 :5 x < oo. (1.6) 

By analogous elementary methods, we shall show that 

(1.7) 

where C' = 1/(a--Yloga-r+l + 13--r1ogf3-Y+1 )) in the irrational case, and 

. (1.8) 

where D' ( x) is periodic function of log x which will be determined explitily in the rational 

case. 

Fredman and Knuth showed that (1.4) implies that 

M(n) ~ Axi+1h, 
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where A is an explicitly determined constant in the irrational case. We shall show that 

(1.5) and (1.8) together imply 

M(n) ~ B(n)n1+1h, (1.10) 

where B(n) is an explicitly determined periodic function of log n in the rational case. (Once 

the form of the functions D(x) and D'(x) are explicitly know, it is possible to go back and 

derive these results by extending the analysis of Fredman and Knuth. This would involve 

showing that certain Fourier series converge to certain periodic functions. But since there 

is no general procedure for identifying a function from its Fourier series, it does not appear 

to be possible to extend the analysis of Fredman and Knuth without knowing what D( x) 
and D' ( x) are by some other method.) 

2. The Rational Case 

Our analysis begins with the observation that h( x) is the number of words over the 

alphabet { a, ,B} for which the product of the letters is at most x. Indeed, if O:::; x < l, then 

h( x) = 0 and there are no such words (provided that, as usual, we interpret the product 

with no factors as unity). If 1:::; x < oo, then h(x) = 1 + h(x/a) + h(x/,8), and any word 

for which the product of the letters is at most x must be either be empty ( and there is 

1 such word) or consist of an a followed by a word for which the product of the letters 

is at most x/a (and there are h(x/a) such words), or consist of an ,8 followed by a word 

for which the product of the letters is at most x/,8 (and there are h(x/,8) such words). 

Since there are exactly (i~j) words that contain i a's and j ,B's, we have established the 

following explicit formula for h(x ): 

(2.1) 

Taking logarithms in the constraint of the summation, we see that h( x) may be inter­

preted as the sum of the binomial coefficients (i1j) in Pascal's triangle over the triangular 

subregion bounded by the inequalities i ~ 0, j > 0 and 

i log a + j log ,8 =::; log x. (2.2) 

Suppose that loga/log,B is the rational number p/q, where p and q are positive 

integers such that gcd(p, q) = 1. Then log013 a= p/(p + q), log013 ,8 = q/(p + q), and if we 
set 
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then (2.2) becomes 

pi+ qj S logex. 

Since p, q, i and j are integers, we see that h(x) remains constant as x increases except 

when loge x passes through an integer k, when it jwnps by 

(2.3) 

We.shall see below that S(k) has the asymptotic formula 

S(k) ~ (Clog a) ak, (2.4) 

where 
a = e'Y = ( a(3)'Yf (p+q). 

If we set S*(l) = I:o::;k9 S(k), it follows that 

S* ( l) ~ (Ca log o-) u 
1 

• 
o--1 

This formula gives the asymptotic value S*(l) of h(x) when x is a "magic" number of 

the form x = /. The asymptotic formula for arbitrary x follows from this and the fact 

that h( x) remains constant between magic values of x. If we write loge x = l + >., where 

l = lloge x J ( the integral part of log
0 

x) and ,\ = {log0 x} ( the fractional part of loge x ), 

then 

where 

h( x) ~ (Ca log a) o-
1 

a-1 
(Cal-,\ log a) o-1+,\ 

~ er- 1 
~ P( {loge x}) x 'Y, 

C 1-,\ 1 
P(>.) = a og a. 

O" - 1 

This establishes (1.5) with D(x) = P({logex}), which is periodic in logx (with period 

log (!), as claimed. 

It remains to establish (2.4). The major steps of the derivation are as follows. First, 

we approximate the binomial coefficients (i~i) = ( i + j)!/i!j ! in (2.3) by applying Stirling's 

formula to their constituent factorials. If we separate the approximation into algebraically 

varying factors and exponentially varying factors, we see that the exponentially varying 
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factors impart to the summand a peaking reminiscent of the central limit theorem: the 

greatest contribution to the sum comes when i and j are in the fixed ratio a--r / 13--r. This 

variation allows the terms of the sum not near the peak to be neglected. The resulting 

truncated sum is then estimated by an integral; the error in this estimation is at most the 

total variation of the summand, which is ( since the summand is unimodal) is at most· twice 

the largest term. The resulting integral can be transformed into the well known integral 

J~;: e-Y
2 

dy = 1r
112 by adjoining negligible tails. The result is (2.4). 

Successive values of i and j differ by q and p, respectively; it will be convenient to have 

an 'index whose successive values differ by 1. Thus we introduce the index m satisfying 

i = qm, j = k/q-pm, i + j = k/q - (p - q)m. 

This index assumes values that are not necessarily integers, but are congruent to 1/q 

modulo 1. 

Lemma 2.1: 

where 

E(µ) = F(G(µ)), F(v) - H(v) 
-pv+q(l -v)' 

q2µ 
G(µ) - ---- H(v) = -v log v - (l - v) log(l - v). 

- 1 - (p - q)qµ' 

Proof: The estimate 

( i+j) ( (1 1)) (i+j)l/
2 

. . ( i ) i = 1 + 0 i + J 21rij exp( i + J )H i + j 

is an immediate consequence of Stirling's formula 

( see Knuth [Kl], Section 1.2.11 ). Define v such that 

j=(l-v)(i+j), k = (pv + q(l - v))(i + j). 

Then 

( . + ') ( (1 1)) ( · + ") 
1

/

2 

( · ) ii J = l+O 7 +·1 ;1ri; expkF i~j . 
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Define µ such that 

m=µk. 

Then 11 and µ are related by 

q2µ 
11------

- 1 - (p - q )q µ ' 
11 

µ = q2 + (v - q)q11· 

This yields the assertion of the lemma. 6. 

Lemma 2.2: The function F(11) assumes its unique maximum (for O ~ 11 ~ 1) at 

At this point 

F(N) = log a, F'(N) = 0, F"(N) = 1 

N(l - N)l:l.' 

where 

l:l. = pN + q(l - N) 

and the primes indicate differentiation. Accordingly, E(µ) assumes its maximum at 

N 
M=-, 

qA 

and at this point 

E(M) = log a, E'(M) = 0, "( ·) l:l,3 
E M = N(l-N)' 

Proof: We shall let H(O) _ H(l) _ O; this makes H(11), and therefore also F(11), continuous 

on the closed interval O ~ 11 ~ 1. These functions are in fact analytic in the open interval 

0 < 11 < 1, and thus F(11) can assume its maximum only where its first derivative vanishes 

or at an endpoint. We compute the first derivatives 

H'(11) = log(l - 11) - log 11, 

F'( ) = _ H(11) H'(11) 11 - 2+-----
(pv+q(l -11)) p11+q(l-v) 

Equating F'(11) to O leads to the equation 

(p11 + q(l - 11))H'(11) = (p - q)H(11). 
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This has the unique solution v = N, where 

so that 

This gives 

F(N) = logo-, 

which is obviously larger than F(v) at either of the endpoints. We compute the second 

derivatives 

H"(v) . - 1 
, 

v(l - v) 

F
"( ) _ 2H(v)(p - q) 2 

_ 2H'(v)(p - q) H"(v) 
V - 3 2+ ( ) (pv + q(l - v)) (pv + q(l - v)) pv + q 1 - v 

Since the first two terms of F"(v) are a multiple of F'(v), they vanish at v = N, leaving 

"( ) 1 
F N = - N(l - N)~ 

This derivation can be carried over to E(µ), E'(µ) and E"(µ) through the derivative 

q2 2 
G'(µ) = 2 = (pv + q(l - v)) 

(1 + (p - q)gµ) 

and the chain rule. 6. 

Lemma 2.9: 

= ( ((logk)a/2)) uk 
1 + 0 p/2 ~. 

Proof: The major steps of the derivation are as follows. The central peaking of the sum­

mand will be exploited, allowing the tails of the summation to be neglected. The decau­

dated sum can be simplified, since the algebraically varying factors behave like constants in 

the remaining range of summation. The resulting sum will be estimated with an integral, 

to which the tails previously removed will be restored. The recaudated integral can be 

evaluated by standard methods. 
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Our. sum is 

m 

where 

( (1 1)) (i+j) 1
/

2 
m 

Wm = 1 + 0 i + J 21rij exp kE ( k) . 
Since E(µ) is analytic ·at µ = M, it can be expanded in a Taylor series about this point. 

The result is 

where 

E(µ) = logo- - (µ - M)2 /62 + O((µ - M)3), 

= (2N(l - N)) 112 

8 .6,3 

We shall break our sum into three parts, 

where 

=Mk_ (6N(l - N)k log k) 
112 

a .6,3 ' 

b = Mk (6N(l - N)k log k) 
112 

+ .6,3 

To estimate the sum over m < a, we observe that it comprises 0( k) terms, each of 

which is at most Wa, We have E(a/k) = logo- - 3(logk/k) + O((logk/k)312 ) (by the 

Taylor expansion). Thus 

and so 

Similarly, 

and thus 

(2.5) 
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For any term in the sum over a :s; m :s; b, 

from which it follows that 

i = ~ ( 1+ O ( ('
0! k )" 

2

)) , 

j = (1 -t)k ( 1 + O ( ('o! k) 1/

2

)) , 

and 

i + j = ! (1+0 ( ('o:k)"')). 
Thus 

Wm= (1+ 0 ((lo!,t2

)) c,rkN~ -N))"2 

o-'Vm, 

where 

and therefore 

_ ( ((log k)3/2)) ( ~ 3 )
1

/
2 

k L Wm - 1 + 0 k1/2 21rkN(l - N) a L Vm, 
a=s;m9 a=s;m=s;b 

(2.6) 

Now, 

(2.7) 

since the total variation of the integrand in 0(1). We shall express our integral as the sum 

of three integrals: 

l b la l+oo 1+00 Vx dx = - Vx dx + Vx dx - Vx dx. 
a -oo -oo a 

Integration by parts gives 
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Similarly 

and thus 

(2.8) 

Using the transformation 

and the well known integral 

j
+oo 

-oo exp -y2 dy = 7r1/2' 

we obtain 

j +oo (21rkN(l - N)) 112 

Vx dx = . Ll3 
-oo 

Working backwards through (2.8), (2. 7), (2.6) and (2.5) yields the assertion of the lemma. 
£j_ 

The formula ( 2 .4) follows from Lemma 2. 3, since C log a = 1 / Ll. 

We should mention her:e that the special cases p = q = 1, where S( k) = 2k, and 

p = 1, q = 2, where S(k) = Fk+l ~ ¢i+1 /./5 (in which Fn is then-th Fibonacci number; 

see Knuth [Kl], Section 1.2.8, Equation (15) and Exercise 16) are well known, and the 

analysis just given can be regarded as a generalization of these cases. Furthermore, that 

a = 2 and a = </> are algebraic in the examples just cited is not accidental: the rationality 

of log a/ log f3 = p / q implies that a--r and ()--Y are roots of the polynomials ( 1 - z )P = zq 

and zP = (1 - z)q, respectively, whence a= ( af3)"Y/(p+q) is algebraic. 

In Section 4 we shall also want the solution to the recurrence (1.6) for h'(x) in the 

rational case. Let us call the product of the letters in a word over the alphabet { a, /3} the 

weight of the word. Then h' ( x) is the sum of the weights of all words whose weight is at 

· most x, and thus we have the explicit formula 

The treatment of this sum is completely analgous to that of (2.1); the result is 
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where 
Cl l-A 1 

P' ( >.) = r og r , 
r - 1 

in which 
T = l)-y+l = (a,8)<-r+I)/(p+q). 

This establishes (1.8) with D'(x) = P'({log 11 x}). 

3. The Irrational Case 

When log a/ log ,8 is irrational the analysis of the preceding section is not applicable, 

for as x increases new binomial coefficients enter the sum one by one, rather than in the 

regularly spaced platoons of the rational case. Furthermore, the order of their entry is very 

irregular, with small coefficients near the axes being interspersed with large ones near the 

main diagonal. The analysis of this section is based on a regularity of averages amid this 

irregularity of detail, as expressed by the "ergodicity of an irrational rotation of the circle". 

We shall use in particular the Kronecker-Weyl theorem, to the effect that if{) is irrational, 

then the fractional parts of the sequence {), 2{), 3{), ... are uniformly distributed in the unit 

interval. (This theorem as stated was proved by Weyl [Wl); Kronecker [K2) proved that if 

{) is irrational, then the fractional parts of the sequence '19, 2'19, 3'19, ... are dense in the unit 

interval.) Weyl's orginal proof (which is probably still the simplest proof) of this theorem 

was based on Fourier series, which by some tastes might not be accepted as elementary. 

A subsequent proof based on continued fractions (see Nivin [N], Chapter 6, Section 3) is 

incontestably elementary, however. 

We shall say that a subset 3 of the unit interval is an "interval modulo l" of it is 

the image modulo 1 of an interval. (Thus (0, l/2) U (1 - l/2, 1) is an interval modulo 1 of 

length e.) The Kronecker-Wey! theorem asserts the following. 

Let '19 be irrational. For every O < l < 1 and O < rJ < 1, there exists a natural number 

t such that, if 3 is an interval modulo 1 of length l and T is any set of t consecutive 

integers, then at least (1 - rJ)lt and at most (1 + rJ)lt of the integers i in Tare such that 

{i"9} falls in 3. (This theorem is often stated in the special case in which T = {1, ... , t}, 

but shifting T to T + u is equivalent to shifting 3 to 3 - u"9 modulo 1, so the special case 

implies the general.) 

Let c > 0 be fixed. Define the function he'( x) by 

(3.1) 
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Taking logarithms in the constraint of the summation, we see that hi!:( x) may be inter­

preted as the sum of the binomial coefficient over the trapezoidal region bounded by the 

inequalities i 2:: 0, j > 0 and 

log x - c < i log a + j log ,8 ~ log x. (3.2) 

We shall see below that he( x) satisfies the asymptotic inequalities 

(3.3) 

as x--+ oo withe fixed. (Here J(x) :S g(x) means that limsupx__.00 f(x)/g(x) ~ 1.) If we 

set l = llogx/eJ + 1, then xe-le < 1, so we have 

It follows that 

h(x) = L he(xe-ke). 
o:s;k9 

Since this holds for every e > 0, we may let c tend to O and obtain (1.4). 

It remains to establish (3.3). The proof follows the same general lines as that for 

(2.4), but is complicated by the fact that the lattice points (i,j) are not equally spaced in 

the trapezoid (3.2) as they were along the boundary of the triangle (2.2). Our salvation 

comes from the Kroneckei:-Weyl theorem, which shows that though they are not "equally 

spaced", they are "uniformly distributed". This will allow the trapezoid (3.2) to be broken 

into pieces, each of which is sufficiently large that it contains a number of lattice points 

approximately proportional to its area, yet sufficiently small that the binomial coefficients 

associated with these lattice points are approximately equal. 

Suppose that e < log ,8 and set {) = log a/ log ,8, so that {) is irrational. Let us 

say that a natural number i is "lucky" if there exists a j such that i and j satisfy the 

inequalities (3.2). Clearly there exists such a j if and only if { i{)} falls in the interval 

( (log x - e) / log ,8, log x / log ,8] . ( Since the length of this interval is e / log ,8 < l, it contains 

either no integers or one integer.) By the Kronecker-Wey! theorem, with l = e/ log ,8 and 

1J = c, we may choose t such that among any t consecutive natural numbers, there are 

(1 ± e)et/log,B lucky values of i. 

For lucky i, we shall regard j as a function of i. We shall abbreviate i log a + j log ,8 
by k ( which is not necessarily an integer). We shall abbreviate log x by l ( which is not 

necessarily an integer), and l - k by>. (so that O ~ ,\ ~ e). 
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Since we no longer have the parameters p and q, we shall use log a and log f3 in their 

stead. Thus we introduce m satisfying 

i = mlog/3, j = ( l - ,\) / log f3 - m log a, i + j = (l - ,\)/ log f3 - m(log a - log (3). 

Let us say that a value of m is "lucky" if it corresponds to a lucky value of i. Henceforth, 

we shall take m to range over lucky values, and regard i, j, k and ,\ as functions of m for 

these lucky values. 

By analogy with Lemma 2.1, we have 

where 

E(µ) = F(G(µ)), F 
11 

_ H(v) 
( ) - v log a + ( 1 - 11) log f3 ' 

G - µ(log /3)2 
(µ) - 1 - (log a - log /3 ) log f3 ' H ( v) = -v log v - ( 1 - v) log( 1 - v). 

By analogy with Lemma 2.2, the function F(v) assumes its unique maximum (for O ~ v ~ 
1) at 

N - ~--r -u , 

At this point 

F(N) = ,, F'(N) = 0, 

where 

~ = Nloga + (1- N)log/3. 

Accordingly, E(µ) assumes its maximum at 

N 
M = ~log/3' 

and at this point 

E(M) = ,, E'(M) = 0, "( ) ~ 3 
E M = N(l-N)' 

We now seek the analog of Lemma 2.3, which is 
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Lemma 9.1: 

In this lemma and all that follows, the constants implicit in terms of the form 0( ... ) may 

depend one. 

Proof: Since 1 - e ~ k ~ l and E(µ) ~ 1 , we have 

Thus it will suffice to prove 

(
l O ((log 1)

3
1

2 
)) (1 - c:)c:x1 < 

+ [1/2 ~ -

( ( 
1 1 ) ) ( i + j ) l /Z m L l + 0 i + J 27rij exp IE ( k) 

m 

Choose t using the Kronecker-Weyl theorem so that, for any interval of length e / log /3 
modulo 1, among any t consecutive integers i, there are between (1 - e )et/ log /3 and 

(l+e)et/log/3 such that {i19} falls in the given interval modulo 1. Set L = (tlog/3)/2. Set 

and set 

q = rQ2~L1, 
so that (2q + l)L is the smallest odd multiple of L that is not less than Q. 

Our sum is 

m 
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where 

( (1 1)) ( · + ')
1

/

2 

Wm = 1 + 0 i + J ~1ri~ exp lE ( 7) . 
Since E(µ) is analytic at µ = M, it can be expanded in a Taylor series about this point. 

The result is 

where 

E(µ) = -y - (µ - M) 2 /82 + O((µ - M)3), 

= (2N(l - N)) 112 

8 ~3 

We shall break our sum into three parts, 

where 
a = Ml - (2q + 1 )L, 

b = Ml + (2q + 1 )L. 

We shall need the following approximation property of E(µ ). If m is of the form 

m =Ml+ O((llogl)1l 2
), 

then (since lk - ll ::; c:) we have 

Furthermore, since E'(µ) = O(Iµ - Ml) in a fixed neighborhood of M, we have 

To estimate the sum over m < a, we observe that it comprises 0(1) terms, each of 

which is at most Wa, We have E(a/k) = E(a/l)+O((log 1)112 /1 312
) (by the approximation 

property with m = a) and E(a/l) = ,-3(logl/l) + O((logl/1)312
) (by the Taylor series 

expansion). Thus 

and so 

15 



Similarly, 

and thus 
(3.5) 

For any term in the sum over a~ m < b, 

from which it follows that 

i = :
1 (1+0 ( c0n''')), 

j = (1 -:)l ( 1 + O ( (107 I) 
11
')) , 

and 

[ ( ((1 [) 1

/

2

)) i + j = ~ 1 + 0 °f . 
Thus 

( (
(log/)3/2)) ( ~ )1/2 

Wm= l + 0 p/2 21rlN(l - N) x,Vm, 

where 

and therefore 

To estimate this sum, we divide the interval [a, b) into 2q + 1 intervals, each of length 

2L: 

where Ir = [Ml+ (2r - 1 )L, Ml+ (2r + 1 )L) is the half-open interval of length 2L centered 

at Cr= Ml+ 2rL. 
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We shall need the following approximation property of Vm. If m and care each of the 

form 

m, c =Ml+ O((llog 1)112
), 

and Im - cl ~ L, then we have 

Furthermore, since d'!n log Vm = 0(1µ - Ml) in a fixed neighborhood of M, we have 

( (
(logl)

1
/

2
)) 

Vm = Ve 1 + 0 p/2 • 

Using this approximation property, we may replace the summand V m by the constant 

½r in the inner sum over m E Ir, so that 

( ( 
(log [)

1
12

)) L Vm = 1 + 0 [S/Z Ver L 1. 
mE4 mE4 

By the Kronecker-Wey} Theorem, we have 

(1 - e)e2L:::; L 1 :::; (1 + e)e2L 
mElr 

for each r, since the lucky values of m in Ir correspond to lucky values of i in an interval 

of length t. Thus we have 

(3.7) 

The sum :E~q::;r::;q Ver may now be approximated by an integral, extended to an 

infinite range of integration, and evaluated by an appropriate substitution, all as in the 

proof of Lemma 2.3. The result is 

Working backwards through (3.7), (3.d6) and (3.5) yields (3.4). 6. 

The formula (3.3) follows from Lemma 3.1, since C, = 1/D.. We observe that the 

same method works to establish the asymptotic formula ( 1. 7) for h' ( x) in the irrational 

case. 
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Though we have derived (1.4) and (1.5) by parallel arguments, there is an important 

difference between these derivations. We could have done the analysis in Section 2 to 

obtain an O-estimate for the error in (1.5); the most straightforward way of doing this 

yields a factor of (1+0 ((log log x )312 (log x )-112)). No such sharpening is possible for (1.4), 

however, since the Kronecker-Weyl theorem, in the form we have cited, give no estimate 

for the rate of convergence to the uniform distribution. The same phenomenon arises for 

the analytic proof using the Wiener-Ikehara theorem, for while convergence follows from 

the behavior of K( s) on the critical line and the right half-plane it bounds, the rate of 

convergence depends on how closely the poles in the left half-plane approach the critical 

line as their imaginary parts grow (see [W2], [I], [L]). With either method, the missing 

information depends on how well the irrational number log a/ log (3 can be approximated 

by rational numbers as the denominators of these rational numbers grow. This is the crux 

of the difference: all rational numbers are alike, but each irrational number is irrational in 

its own way. 

Since we have not made any quantitative hypothesis concerning the irrationality of 

log a/ log (3, we cannot expect to draw any conclusion about the rate of approach in ( 1 .4). 

If however we assume that I log a/ log (3 - p / q I is bounded away from 0 by a function of q, 

the elementary method used here ( as well as the analytic method used by Fredman and 

Knuth) can be adapted to yield an explicit O-estimate in (1.4). 

4. Conclusion 

After deriving (1.4) and (1.5) in a new way, and obtaining explicit descriptions of the 

functions D(x) and D'(x) appearing in (1.5) and (1.8), we shall exhibit in this section the 

consequences of these explicit descriptions for the original recurrence (1.1). 

Fredman and Knuth show, by elementary arguments, that 

M(n) = 1 +(a+ (3 - l)W(n), (4.1) 

where W(n) is the sum of the weights of then words having _the smallest weights. By the 

definitions of h(x) and h'(x), we have W(h(x)) = h'(x). Let us assume that loga/log/3 is 

rational. Recall that a value of x is "magic" if x = e' for some natural number l. We have 

D(x) = P(O) and P'(x) = P'(O) for all magic values of x, and the asymptotic formulas 

h(x) ~ P(O) x-r (4.2) 
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and 

h'(x) ~ P'(O)x-Y+1
, (4.3) 

valid for magic values of x. 

Let us say that a value of n is "magic" if n = h( x) for some magic value of x. Then 

( 4.2) and ( 4.3) yields the asymptotic formula 

( )

Hl/-y 

W(n) ~ P'(O) P~O) , (4.4) 

valid for magic values of n. 

To extend (4.4) to arbitrary values of n, we observe that as n increases between magic 

values, W(n) increases by the addition of equal weights. Thus the formula for arbitrary n 
is obtained by linearly interpolating between the values given by ( 4.4) for magic values of 

n. This gives 

W(n) ~ P'(O)Q ( {10g. (P~o))}) (p~o)) Hlh, 

where Q(,\) = (1 - ,\ + ,\7)7-\ which establishes (1.10) with 

which is periodic in log n (with period log a), as claimed. 
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