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Abstract 

Visual fl.ow analysis from image sequences can be viewed as detection and 

retrieval of echoes or repeated patterns in two dimensional signals. In this paper 

we introduce a new methodology for optical flow analysis based on the cepstral 

filtering method. Cepstral filtering is a non-linear adaptive correlation technique 

used extensively in phoneme chunking and echo removal in speech understand­

ing and signal processing. Different cepstral methodologies, in particular power 

cepstrum, are reviewed and more efficient variations for real image analysis are 

discussed. 

Power cepstrum is extended to multiframe analysis. A correlative cepstral 

technique, cepsCorr, is developed; cepsCorr significantly increases the signal 

to noise ratio, virtually eliminates errors, and provides a predictive or multi­

e\'idence approach to visual motion analysis. 





1 Introduction 

In biological and computational vision, time-varying image analysis plays a significant 

role in segmentation of the scene, encoding 3D information, egomotion estimation, 

object tracking, determination of focus of attention, and estimation of time of colli­

sion [Nak85]. As a result, a number of different methodologies for motion analysis 

have been developed, including gradient based approaches [HS81], correlation match­

ing schemes [Ana89, LBP88, BLP89, Fua91], spatio-temporal analysis [AB85), token 

matching techniques [MU81] and velocity selective mechanisms [Hee87]. In this paper 

we introduce a new approach based on the detection and retrieval of echoes from two 

dimensional signals over time. 

A sequence of images over time can be viewed as spatial and temporal echoes. For 

instance, given two images of a stationary scene the later image can be viewed as a 

temporal echo of the first. By analogy, visual motion can be viewed as recognition and 

determination of spatial echo from one frame to the next. Therefore while a stationary 

scene has a zero interval for its spatial echo, simple translation of the scene ( due to 

lateral motion of the camera) generates a constant spatial echo period across the image 

plane. 

Bogert, Healy and Tukey (BHT62] first introduced cepstral filtering and the que­

frency approach for estimating the arrival time of the echo of a complex signal. The 

cepstrum of a complex signal was first introduced as the power spectrum of the loga­

rithm of the power spectrum of the signal. Oppenheim [05S68] developed the complex 

cepstrum of the signal for detection and removal of echoes, multiplicative filters, predic­

tive deconvolution and inverse filtering of signals. Polydoros et al (PAF79] introduced 

differential cepstrum as a shift invariant complex cepstrum. 

Yeshurun and Schwartz (YS89] proposed cepstral filtering for binocular stereo based 

on the existence of ocular dominance columns in the primary visual cortex; De Yoe and 

Van Essen [DESS] describe the existence of specialized neurophysiological channels 

based on the magnocellular cells which carry both stereo and motion information to 

the middle temporal area. From a computational point of view, there is obviously a . 

great deal of similarity between analysis of motion and stereopsis [Hor86]. 

In the next section we provide a detailed overview of the power cepstrum technique 

and a brief review of variations to this approach. In Section 3 we introduce modifica-
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tions to the traditional power cepstrum and differential cepstrum schemes to enhance 

both their computational and their analytical performaiice for the detection of the 

echo arrival period. Section 4 presents the results of applying different cepstral filter­

ing techniques to motion sequences. In Section 5 we introduce cepsCorr, a correlative 

cepstral technique that eliminates possible ambiguities from cepstral analysis and has 

a high signal to noise ratio [Pra78], in comparison with standard correlation methods. 

In summary, we modify power cepstral and differential cepstral methods to increase 

efficiency and improve the signal to noise ratio. We show how to perform multiframe 

cepstral analysis. Finally, and most importantly, we develop cepsCorr, which signifi­

cantly increases the signal to noise ratio, and virtually eliminates errors. 

2 Cepstral Filtering: Themes, Variations and 

Mathematical Preliminaries 

In this section we will provide a mathematically descriptive explanation of power cep­

stral filtering, and a brief review of variations that have been introduced over time, 

leading to the differential cepstrum analysis. For simplicity the majority of the mathe­

matical derivations and explanatory formulas are provided for one dimensional signals, 

which are easily generalizable to images or higher dimensional signals. 

2.1 Power Cepstrum 

Power cepstrum has historically been defined as the power spectrum of the logarithm 

of the power spectrum of a signal. Given a signal h(x) comprised of an original input 

s(x) and its echo delayed by r: 

h(x) = s(x) + s(x - r) 

one can simply construct the Fourier transform of the signal: 

F{h(x)} = F{s(x) + s(x - r)} 

- S(J)(l + e-21r,,,.f) 

Taking the logarithm of the magnitude of this complex function: 

(2) 

log(ll'H(f)II) = log(IIS(J)II) + log(l + cos(21rr f)) + constant (3) 
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Figure 1: Cepstral analysis of synthetic motion (x,y) displacement is (7,3). The origin 

of the cepstrum is located at the middle of the top row of the lower portion of the 

figure. 

one observes that log(l + cos(2,rr f)) can be expressed as: 

00 
( 1 t cos" ( 7r f T) L -'------'----

n=l n 
(4) 

The logarithm operation transforms the power spectrum of the signal into the logarithm 

of the power spectrum of the original input and a residual summation of decreasing 

cosines generated due to the presence of the delayed replica. Figure 1 shows the power 

cepstrum of an image and its spatially transformed temporal echo for a simulated 

motion field of three rows down and seven columns to the right. As expected from the 

second power spectrum, the cepstrum result is a symmetric function. The location of 

the two peaks from the center line and the edges of the resulting figure indicate the 

amount of the horizontal and the vertical motion. 

It is important to note that the echo arrival time, T, is contained in the above 

summation. To extract this interval, traditionally, a second power spectrum has been 

applied, which in turn transforms the cosine series into 

00 
( 1 t L - t5(x - nr) 

n=l n 
(5) 
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which is a ripple of decreasing Kroenecker deltas with periodicity T. The peaks in the 

cepstrum in Figure 1 reflect the a.mount of motion between successive frames. 

Cepstral analysis behaves as a deconvolving operation - i.e., if two functions are 

combined by convolution (for example, the input to a filter and the impulse response 

of a filter), the cepstrum of the resulting signal is equal to the sum of the cepstra of the 

convolved functions. In fact the echo of a signal is nothing more than convolution of the 

original signal with a delayed impulse function. Consequently, cepstral filtering can be 

a powerful technique for dealing with problems involving convolution, deconvolution, 

and separation of signals. Oppenheim, Shafer and Stockham [OSS68] introduced the 

complex cepstrum, the inverse z transform of the complex logarithm of the z transform 

of the signal: 

h(x) = z-1 {Iog(Z{h(x)})} 

which soon became widely used, especially in speech research, for predictive deconvo­

lution, removal of echoes and inverse filtering. 

Given a signal s(x) and its echo s(x + r): 

H(z) = log(H(z)) 

= log(S(z)) + log(l + z-1') 

= S(z)+ f: (-1)" z-nT 
n=l n 

Taking the inverse z transform, we have: 

~ 00 (-1)" 
h(x) = s(x) + I:--8(x - nr) 

n=l n 

(6) 

(7) 

Using the proper comb function with periodicity T, one can remove the effects of the 

echo and reconstruct the original signal through inverse filtering. 

Complex cepstrum analysis soon found other applications in image processing, such 

as testing the stability of 2D recursive filters [Dud77]. 

2.2 Phase Cepstrum 

At this point we investigate the mathematical relationship between power and complex 

cepstrum [SC75] [CSK77]. Evaluating Eq. 7 on the unit circle (z = e2
1r

1f) (i.e. , Fourier 
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transform) one can derive: 

H(J) = log(S(f)) + log(l + e21r,f-r ) 

= 11S(!)II + z phase(S(J)) 
1 +2 log(2 + 2 cos 2,r fr) 

_ 1 ( sin21rfr ) 
+ztan ---- - -

1 + cos 2,r Jr 
(8) 

The first and third term above are part of the familiar power cepstrum technique. 

Moreover, note that the fourth term of the above equation, which is part of the imag­

inary portion of the signal, also contains the echo arrival time of the signal, T. The 

inverse transform of this imaginary portion, commonly called the phase cepstrum, also 

yields peaks at multiples of the echo arrival time in much the same way that power 

cepstrum does. 

Unfortunately, however, phase cepstrum, like other phase correlation techniques 

[KH75] is highly susceptible to noise, and like the complex cepstrum can suffer from 

possible errors caused by phase unwrapping. It is included here primarily for the sake 

of completeness. 

2 .3 Differential Cepstrum 

If we attempt to use the complex cepstrum the ambiguity of phase introduces an 

immediate dilemma, namely the output of the system, s(x), will no longer be unique. 

This should be inherently obvious since the logarithm of a complex signal, G, is another 

complex signal, G', in which the real part of G' is the logarithm of the amplitude of 

G, and its imaginary part is the phase of the input signal G. But since the complex 

cepstrum of an image involves the inverse z transform of the complex logarithm of 

its :: transform, the phase of the complex logarithm should be made continuous and 

periodic, in both dimensions µ and 11. 

One dimensional phase unwrapping algorithms to disambiguate the phase [Tri77] 

can be ~xtended to two dimensional signals. In fact , Dudgeon derived two methods 

for calculating the complex cepstrum of two dimensional signals: using the phase un­

wrapping of complex logarithm, and the recursion relation for minimum phase signals 

[Dud77]. The phase perplexities, however, greatly reduce the signal to noise ratio and 
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add additional computational costs. Moreover, almost from the start when complex 

cepstrum was introduced by Oppenheim as a homomorphic filter for image reconstruc­

tion! the derivative of the complex log was used in the analysis. 

Noting this, Polydoros, Au and Fam (PAF79] used the logarithmic derivative rather 

than the plain logarithm of the complex signal for analysis. This technique, named 

differential cepstrum, like its predecessors, still transforms a convolution: 

into an addition: 

(9) 

But, additionally, since the derivative of the logarithm is the derivative of the signal 

divided by the signal itself, the differential logarithm is also scale invariant. 

Polydoros et al also showed that differential cepstrum is also shift invariant; that a 

delay of the total input sequence does not affect the differential cepstrum except for the 

first sample~ which is indeed a measure of the delay; and thaL aside from side-stepping 

the phase ambiguities, differential cepstrum also provides greater computational effi­

ciency ewer the complex cepstrum analysis. 

Looking at a signal and its echo (Eq. 1 ), and using the Fourier transform, the 

logarithmic derivative becomes: 

fiS(f) 

S(f) 

21rzre-21r,-r f 

1 + e-2nrf 

= Sd(J) - 1rzr - 1rr tan( 1rr !) (10) 

The echo arrival time, r, is again encoded as a parameter to the tan function and it 

can be retrieved using the inverse Fourier transform, producing a rippling effect with 

spatial periodicity T. 

Raghuramireddy and Unbehauen [RU85] provided a simple extension of the one 

dimensional differential cepstrum to images. This is the sum of the logarithmic deriva­

tives along both axes: 

(11) 
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It is important to note however, that if Fourier transform ~s used, this definition elim­

inates the conjugate symmetry which results from the transformation of real images. 

Consequently, the inverse Fourier transform of this logarithmic derivative of the Fourier 

transform of an image, unlike the power or complex cepstrum, does not result in a real 

signal. Moreover, if the direction of motion is known a priori, then the directional 

derivation can improve the signal to noise ratio of the resulting signal. 

3 Improvements to Classical Formulation: 

Cepscos and DiffcepsSin 

In Eqs. 3 and 4, the presence of echo in a signal manifests itself as log( 1 + cos(21rr f)) 

which is a even real Junction; the additional log(IIS(f)II), therefore, reduces the signal 

to noise ratio of the complex cepstrum. Lee, Mitra and Krile [LMK89] provide modi­

fications to the power cepstrum that eliminates the cepstrum of the echoless signal. 

Moreover, since we are primarily interested in the effects of log( 1 + cos( 21rr J) ), 
it seems natural to use the real part of the Fourier transform of the logarithm of 

the power spectrum of a signal and its echo, instead of the power spectrum of the 

logarithm of its power spectrum. This modification eliminates the effects of the odd 

parts of the log(IIS(f)II ), and reduces the computational overhead of calculating the 

power spectrum from the Fourier transform. Astute readers will note that even though 

this modification enhances the signal to noise ratio of complex signals and their echoes, 

for an image consisting of real values, the power spectrum, and therefore its logarithm, 

is also an even real function. Thus, even though the new power cepstrum theoretically 

should not produce different results for real signals, it does increase the computational 

efficiency and reduce the noise caused by numerical errors. 

The reduction in computation time of Cepscos is two fold. Firstly, the second 

Fourier transform is replaced by the calculation of the discrete cosine transform [Rao90]. 

Secondly, the calculation of the power spectrum from the Fourier transform (i.e., two 

multiplications, an addition and a square root) is replaced by an absolute value. 

Using the same methodology, one finds even greater improvements for the differ­

ential cepstrum technique. A closer look at Eq. 10 immediately reveals that greater 

efficiency and accuracy could be achieved through the use of imaginary portion of the 
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inverse Fourier transform of the real part of the logarithmic derivative of the Fourier 

transform of the signal and its echo. This is equivalent to calculating the Sine transform 

of the real portion of the logarithmic derivative. 

To distinguish more clearly between the the traditional power and differential cep­

strum, and our modified methodologies, we named our techniques Cepscos and Diff­

cepsSin respectively. 

4 Results and Comparative Analysis With 

Standard Techniques 

In this section, we present the results of application of cepstral filtering to both syn­

thetic and genuine motion fields. Our main objective is to provide practical examples 

of the applications, as wells as the limitations, of these schemes. Furthermore, the 

relationship between cepstral filtering and other more traditional approaches to opti­

cal flow analysis is discussed, and its strengths and weaknesses with respect to these 

techniques is examined. 

4.1 Applications 

The following examples provide the results of applying differential and power cepstrum 

techniques to synthetic and actual motion fields. Figure 1 provides an example of the 

application of power cepstrum to a synthetic motion field of dx = 7 and dy = 3. 

Similar to Yeshurun and Schwartz's approach [YS89], the two frames are placed ad­

jacent to one another, rather than generated by simple addition. Unlike their work, 

however, our choice was not motivated by the neurophysiological construction of the 

ocular dominance columns, but by practical signal processing considerations. Although 

this format of processing increases the computational cost of the Fourier transforms 

involved, it also increases the resulting signal to noise ratio by moving the cepstral 

peak away from the corners of the image, and thus reducing the deterioration of the 

signal by aliasing frequencies. 

Consequently the image and its temporal echo will have the form: 

h(x, y) = s(x, y) + s(x - w - dx, y - dy) 
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(a) (b) 

Figure 2: ( a) Differential cepstrum of synthetic motion. (b) Differential sine cepstral 

analysis of synthetic motion. Note the improved signal to noise ratio in (b) 

and its cepstrum: 
00 

h(x, y) = s(x, y) + L 8(w ± ndx, ±ndy) 
n=l 

where w is the w'idth of each spatial window. The peak signal will occur in the cepstral 

plane, between columns w/2 and 3w/2. Figure 1 shows an example of the cepstral peak 

and its accurate detectability, with dx being measured from the center, and dy from 

the horizontal edges. 1 

Figure 2 shows the same signal analysis utilizing the differential cepstrum and dif­

ferential sine cepstrum filters. 2 The differential sine cepstrum technique is much more 

effective in motion detection than the traditional differential cepstrum, and computa­

tionally less expensive than the power cepstrum. However, our experience has shown 

that the computational efficiency achieved by differential sine cepstrum does not bal­

ance the reduction in the signal to noise ratio relative to power cepstrum. 

Figure 3 shows the result of the power cepstrum on a natural outdoor scene; the 

1 The corner regions of the cepstral image are inconsequential to the cepstral peak detection, and 

were therefore reduced to zero to increase the scaling of the cepstral peak in the image. 
2 In these figures the absolute value of the signal rather than the actual signal is displayed. Unlike 

the power cepstrum, for the differential cepstrum, the location of the signal is not detected merely by 

its spatial location, but also by the sign of the peak. 
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Figure 3: Cepstral analysis of a natural scene 

two symetric peaks are located at the correct motion. Figure 4 shows the optical flow 

field of selected points due to self motion, calculated using power cepstral filtering. 

Note that, as expected, the motion of distant objects is less than the apparent motion 

of objects close to the moving observer. 

The gray arrows show where the DC component of the cepstrum had to be taken 

into account. These are generally in the areas of low contrast or areas of close approx­

imation to the occluding motion boundaries; more will be said on this in 4.3. 

4.2 Multiframe analysis 

Modeling motion as spatial and temporal echoes naturally suggests extension of cep­

stral techniques to multiple frame analysis. A simple mathematical derivation for 

constant velocity, or accelerating motion, shows that the resulting signals are simply 

the sum of individual echoes between every pair of frames. In the case of constant 

velocity, the magnitude of echo between successive frames indeed diminis.hes. This is 

primarily due to cancellation from positive and negative terms in the Fourier series 

expansion of the resulting geometric series. However, the echoes have a systematic ar­

rangement across multiple frames and that regularity can be used to improve detection 

of constant velocity over several frames. 
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Figure 4: The optical flow field resulting from egomotion 

Figure 5 shows the multi-ceps analysis of a simulated motion: the sequence of 

images creates an input to the cepstral filter. As the (symmetric) echoes indicate, the 

third frame has a motion of three pixels in the horizontal and vertical direction with 

respect to the first frame. And the second figure has moved one pixel horizontally and 

one pixel vertically with respet to the first. The last echo is the result of the motion of 

the last frame with respect to the second frame ( two pixels horizontally and two pixels 

vertically), displaying an acceleration in the direction of motion. 
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Figure 5: Multi-frame optical flow field analysis utilizing cepstrum 

4.3 Analysis of Results and Comparative Study with 

Standard Techniques 

At this point it is necessary to discuss the limitations of cepstrurn techniques and 

compare them to other standard computational approaches as well as psychophysical 

results of human motion analysis. 

An obvious question to raise is the size of the cepstral window. Similar to correlation 

analysis, this size depends on the image content and the magnitude of the motion field. 

The size of the window is the size of some appropriate image subsection ( depending on 

image content) plus margins that are equal in width to the magnitude of the expected 

maximum motion. By now it should be apparent that the cepstral peak occurs in the 

middle section of the result. Moreover, at margins of the concatenated inputs, new or 

missing data appear in the figure. The size of these margins influences the signal to 

noise ratio of cepstrum. We will shortly propose a solution that limits the effects of 

margins (Section 5 ). 

A less obvious and more challenging characteristic of the cepstral technique is the 

effect of the DC component, or the overshadowing of the motion peak by the peak at 

location (0,0) (see Figure 6). The peak at (0,0) is partially caused by the constant 

term in Eq. 3, as well as the contributions of the original signal. Since the location of 
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Figure 6: Peak modulation by the DC component. The second highest peak at ( 1,1) 

corresponds to the correct motion. 

the false peak is predetermined, this problem could be trivially addressed by simple 

neighborhood checking and thresholding of the ratio of the secondary to the peak 

magnitude at (0, 0). We introduce below a modified technique, cepsCorr, to take 

advantage of the strength of the DC component in motion analysis. 

To further study this phenomenon, Figure 7 shows the effects of the false peak 

in a simulated motion field. The lower left square shows that the cepstrum technique 

accurately predicts the motion field for the majority of the pixels in the outlined square 

(the white pixels). The gray pixel represents the location of the only pixel that was 

affected by the false peak and whose calculated optical flow was subsequently corrected. 

The black pixel represents the motion field that was calculated erroneously independent 

of the DC effect. On the other hand, the gray pixel in the lower right square shows 

that even though this predicted motion was erroneous, it was within one pixel of the 

actual simulated motion. 

Moreover, the adverse effects of the high frequency portion of the original signal . 

can be easily reduced through simple subtraction of the cepstrum of the original signal 

[LMK89). We have also experimented with multiplying the merged windows with a 

windowing filter ( of the form 1 + cos( x) ), to reduce the windowing effect, and have 
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Figure i: Effects of DC component on correct optical flow estimation. The squares 

in the top images outline the centers of cepstral filtering windows. Lower left: white 

area shows the locations of correct estimates and gray identifies the points which are 

correctable after removal of the DC component, black: incorrect; Lower right: the gray 

area shows the incorrect estimates that are off by only one pixel. 

achieved a reduction in the DC component. 

When the portion of the image being analyzed has multiple motions, the output 

of cepstral filtering will also depict multiple peaks. Figure 8 shows a person moving 

by between one and two pixels vertically, in front of a static background. The cep­

stral output displays two bright spots at top and bottom of the lower region for the 

foreground motion and a strong peak at (0,0) for the static background motion. 

From a computational standpoint, as noted by Olson and Coombs [OC90], cepstral 

filtering can be viewed as a non-linear adaptive auto-correlation technique, with the 

logarithm function acting as part of the adaptive prefilter to the correlation. 

1 IIS(f)ll2 = II jlog IIS(f) ll 2112s(J)S.(J) 
og 11 S(!)II 

( 12) 

This prefiltering has a compressive equalizing effect in the frequency domain, reducing 

the contributions of the narrowband signals and therefore emphasizing the effects of 
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Figure 8: Result of multiple motion in cepstrum window. Both background and figure 

show signals. 

broadband components of the image (OC90]. It is the narrowband signals (i.e., uni­

form or regular periodic patterns) that increase matching ambiguity and hence reduce 

the signal to noise ratio in autocorrelation, making the cepstrum a more powerful 

discriminant and matcher. 

This compressive effect in the Fourier domain can be exploited only if the phase of 

the signal is preserved, leading to the comparison of the cepstrum approach to phase 

correlation [KH75]: 

( 13) 

Even though the phase correlation technique provides a simple approach to optical flow 

estimation. it is much more susceptible to random or quantization noise than power 

cepstrum [LMK89]. 

5 CepsCorr: A Correlative Use of the Cepstrum · 

As Figure 4 indicates, cepstral analysis of real image sequences provides accurate 

estimates of the actual motion. It is however both interesting and desirable to overcome 
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Figure 9: cepsCorr: lower right shows in white areas where (OiO) peak is maximal, 

lower left shows magnitudes of those peaks. Largest peak identifies correct motion. 

some of the challenges posed by cepstral filtering. In particular the presence of the DC 

component proves to be an important factor, one that has to be addressed if we want 

to distinguish between truly stationary portions of an image and moving ones that are 

overshadowed by this effect. 

A simple approach is to threshold the image based on the ratio of the first and 

second peak when the maximum peak is at (0, 0). As we mentioned earlier, subtract­

ing the cepstrum of one image and using windowing filters have both increased the 

signal to noise ratio and reduced the DC component. But thresholding techniques are 

rather arbitrary and do not address questions such as analyzing the motion of periodic 

patterns. 

A more astute approach is to make the DC component aid us in the correct detec­

tion of the motion in the few ambiguous situations, as well as utilizing the cepstrum 

to provide a degree of confidence or certainty about the inferred measurements. To 

this end we proceeded with cepsCorr, a correlative approach to cepstrum, where the 

window from one image is used in conjunction with a region of the second to measure 

motions between the two frames. Essentially, cepstral analysis replaces the sum of 

squared differences step often used in correlation motion or stereo. The motion chosen 

represents the displacement for which the cepstral peak at (0,0) is maximum. Figure 9 

shows the results of this approach, again on a simulated motion. 

The white area in the lower right corner shows locations in the right image where 
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Figure 10: Performance of cepsCorr in Gaussian noise. The black points in lower left 

figure show the location of the points where the cepsCorr estimate is incorrect. The 

white points in the lower left figure show the location of the points where the motion 

estimate is off by one pixel. 

the DC component of the cepstrum with the left image was in fact the dominant peak. 

The lower left corner shows the magnitude of these peaks; the bright spot is at the 

correct displacement. This peak provides a strong discriminant for the motion. In 

cepsCorr, this analysis is performed at each image point, for suitable displacements. 

Even on a small correlative window over an ambiguous region, the signal to noise 

ratio was roughly 25. In our experiments, the majority of the signal to noise ratios were 

above two orders of magnitude. Obviously, complete correlation is not necessary if the 

initial peaks of the first few iterations agree on the correct motion field. Several "vot­

ing'' schemes, based either directly on the magnitude of the cepstral output, or their 
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Figure 11: Horizontal and vertical disparity fields for a natural scene using cepsCorr 

signal-to-noise ratios 1 or a combination, immediately suggest themselves. Presently we 

are using the maxim.um (0,0) amplitude as the output of cepsCorr. 

To test the limits of our work we increased the displacement and introduced Gaus­

sian distributed noise with variance 25. As Figure 10 indicates, cepsCorr performs very 

strongly in the presence of noise, with the exception of a few points where the image 

lacks matching features. 

CepsCorr was used to analyze the natural scene in Figure 4. From knowledge of the 

direction of egomotion, the motion search region was restricted to the range of ±1 in 

the vertical, and -2 to 7 in the horizontal direction. The output of cepsCorr is shown 
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in Figure 11. The lower left corner image shows the measured vertical displacement 

and the lower right displays horizontal displacement. Lighter shades depict larger 

displacement, which correspond to closer distances. The points in distant horizon that 

do not go through any significant motion are clearly marked as darker regions. 

\Ve also used cepsCorr with the two images supplied in the reverse order ( of course 

changing limits of the correlation window to reflect this fact). Unlike regular correlation 

or sum of the square differences technique, the two results for cepsCorr were basically 

identical, reflecting the robustness of the general technique. 

Moreover a preliminary analysis shows that cepsCorr provides promising results at 

motion boundaries. In conjunction with the reduction in signal to noise ratio, this 

effect should provide a strong clue toward the location of occluding edge contours. 

6 Concluding Remarks 

In this paper we have introduced a novel nonlinear technique for optical flow analysis 

based on cepstral filtering, i.e., identifying motion ( or stereo) displacements by detec­

tion of spatial echoes between successive frames. We introduce modifications to the 

traditional power cepstral and differential cepstra.l methods to increase efficiency and 

improve the signal to noise ratio. We further extended this work to perform multiframe 

cepstral analysis. Finally, and most importantly, we develop cepsCorr - a correlative 

approach using cepstral analysis - which significantly increases the signal to noise ratio 

and provides a predictive or multi-evidence approach to visual motion analysis. 

There are many other interesting questions that can be studied, including: multi­

scale analysis, motion estimation to subpixel accuracy, integration of various cepstral 

techniques, localization of occluding contours, improvements of signal to noise ratio, the 

effects of prefiltering and various noise, and detection of contour symmetries. We have 

implemented segmentation of stationary textures based on cepstral filtering and would 

like to investigate further the effects of, and the solutions to, the affine transformation 

of these textures. 

One obvious but noteworthy attribute of cepstral filtering is its extensibility to 

parallel implementation. We have implemented one of our programs on a network of 

T ransputers and would like to address that issue more fully, in addition to reductions in 

computational costs, and standard techniques to improve performance, such as utilizing 
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of the Hartley transform. 
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