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ABSTRACT 

We etudy aevaral variations on one huic approach to the taak of aimplifying a plane 
polygon or aubclivieion: Fatten the given object and construct an approximation iru,ide 
the fattened region. We investigate fattening by convolving the segments or vertices with 
clisks and attempt to approximate object11 with the minim.um number of line segments, or 
with near the minimum, by u.aing efficient greedy algorithm!!. We give some variant11 that 
have linear or O(nlog n) algorithms approximatingpolygon&l chairu, of n segmente, and 
show that for subdivisions or chains with no self-interaection.s it is NP-hard to compute 
the beet approximation. 

K evwortl•: Polygonal approximation, link metric, line simplification, curve segmentation 

1, Introduction 

In the pra.ctical application of computers to graphics, image processing, and geographic information sys
tems, great gains can be made by replacing complex geometric objects with simpler objects that capture the 
relevant features of the original. The need for simplification is most clearly seen in cartography. McMaster29 

lists ways that current methods and technology benefit from data simplification and reduction, including 
reduced storage space and faster vector operations, vector to raster conversion, and plotting. Improving 
computation and plotting capabilities does not always help; currently, the speed of data communication is 
often the bottleneck. Even manual cartography depends on simplification: boundaries must be simplified 
when drawing a map at a smaller scale or the map becomes unreadable because of the inconsequential 
information it presents. A good example is the map in Lewie Carroll's Sylvia and Bruno with a scale of 1: 1. 

The theme of our approach to the task of simplifying a plane path, polygon, or subdivision is: Fatten the 
given object and constroct an approximation inside the fattened regfon. This theme has many variations. In 
this section, we consider some of them applied to a the problem that cartographers call line simplification; 
in section 2 we briefly survey the literature on this and related approximation problems. 

A list of n points p1, P2, ... , Pn defines a polygonal chain with line segments or links PiP;+i. Given a 
polygonal chain C, the line simplification problem asks for a polygonal cha.in C with fewer than n links 

"Partially supported by a grant from Hughes Research Laboratories, Malibu, CA, and by NSF Grant ECSE-8857642. 
tPortiom of this research were performed while visiting Utrecht University and being supported by the ESPRIT Basic 

Research Action No. 3075 (project ALCOM). 
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that represents C well. If the criterion of representing C well is that every point of the approximation C be 
within e of a point of C, then the following fattening method could be used. Paint C with a circular brush 
of radius e to obtain a fattened region. Then use a minimum link path algorithm to approximate C within 
the fattened region, as illustrated in figure la. 

Figure 1: Some approaches to fattening and approximating a path 

Mathematically, this fattening entails computing the convolution of a path, polygon, or subdivision S 
with a disk (or some other shape) to obtain a region 'R, in the plane. The convolutions that we are interested 
in can be computed by several known methods:16•1s Given the Voronoi diagram26 •42 of the line segments 
of S, one can compute the convolution 'R, on a per-cell basis. Alternatively, divide and conquer algorithms 
can be used. s,211 Both of these methods run in in 0( n log n) time for convolution by disks or constant size 
polygons. 

In the convolution 'R,, the given polygon or subdivision S defines a homotopy class of curves that can 
be deformed to S without leaving the region 'R,, We can attempt to find a minimum link representative of 
the homotopy class. Section 3 makes the definitions for such a "homotopy method" more precise. Its four 
subsections contain the following results: 

Sec. 3.1 We briefly outline minimum link path algorithms developed in a previous paper20 and apply them 
to approximate paths and polygons. These are greedy algorithms that, after the region 'R, has been 
triangulated, find a path in time proportional to the number of triangles that the path passes through. 

Sec. 3.2 In contrast, we show that the problem of computing a minimum link subdivision is NP-hard. The 
difficulties comes in optimal placement of vertices of degree three or more; if these are fixed, then we 
can find the optimum for each chain independently using a minimum link path algorithm. 

Sec. 3.3 Returning to polygons, we show that the problem of finding a minimum link simple polygon, that 
is, one with no self-intersections, is also NP-hard. 

Sec. 3.4 Given a region 'R, with h holes, we show that we can find a simple polygon enclosing the holes with 
at most 0( h) links more than the minimum link polygon. 

Returning to the line simplification problem, we can see some "features" of this fattening method that 
are undesirable in some applications. For example, convolution may create quite large regions where the 
original chain C was dense in the plane; vertices Pi in these regions can be quite far from the approximation 
C, even though every point of C is close to C. A simple example is a sharp corner of angle 20. If we fatten 
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the segments by £, the minimum link path can be aB far away as £/sin 0-a 10° corner can be 11.4£ from 
the approximation. Aleo, the convolution itself is difficult to compute robustly. 

To address these problems, we consider fattening just the vertices Pi of the chain C by replacing each 
vertex with a disk of radius e. We then require that our approximation "visit" each of these disks in order. 
Thie method, illustrated in figure lb, would ensure that vertices of the cha.in C would be within e: of its 
minimum link approximation C. If we further restrict the path to turn only inside the vertex disks as shown 
in figure le, then C would also remain within £ of the original chain C. An alternative .shown in figure ld, 
which is more in the spirit of the convolution approach a.nd for which minimum link paths are easier to 
compute, is to convolve each link of C separately with a disk of radius £, glue the ·resulting tubes at the 
vertex disks that they share, then compute a minimum link path in this region . Notice that turns are allowed 
in the tubes and not just the vertex disks, but also that the region formed is not planar-it overlaps itself 
at every angle. 

Section 4 generalizes this slightly to a problem we call ordered stabbing: given an ordered list of disjoint 
convex objects, find a polygonal chain that visits the objects in order. We have taken the name from Egyed 
and Wenger10 , who developed a linear-time greedy algorithm for computing a li.ne stabbing disjoint objects 
in order, if such a line exists. We extend their algorithm to stabbing with a polygonal chain under three 
possible restrictions on vertices of the stabber (no restriction, in objects, or in tubes). We also study various 
definitions of "visiting order" for stabbing disks that may intersect. 

Sec. 4.1 We examine Egyed and Wenger's algorithm10, which uses Graham scan to compute a ordered 
stabbing line for an ordered set of objects in which consecutive objects are disjoint. 

Sec. 4.2 We extend the definition of ordered stabbing to polygonal chains. Stabbing line algorithms then 
give a simple procedure for computing a path that is at most a multiplicative factor of two from the 
minimum-link ordered stabbing path. 

Sec. 4.3 We show that when the vertices are not restricted to lie in the objects, that a linear-time greedy 
algorithm can compute the minimum-link ordered stabbing path of a set of objects in which consecutive 
objects are disjoint. 

Sec. 4.4 We show how to modify Egyed and Wenger's sta~bing-line algorithm to stab intersecting unit disks 
with a line, under four definitions of visiting or stabbing order. {The conference version of this paper17 

was incorrect in not restricting the results on intersecting objects to unit disks.) 

Sec. 4.5 We give a dynamic programming approach to compute the minimum-link ordered stabbing path, 
when path vertices are not restricted to lie i:n the unit disks. 

2. Previous results on approximation 

Cartographers have a large catalog of algorithms for the line simplification problem and many measures 
by which to classify them.7,~9,30 Their algorithms either seek a rough but quick reduction of the data or else 
an accurate but slow reduction. In comparative tests, the Dougla.s-Peucker algorithm9 (also proposed by 
Ramer37) produces the most satisfactory output, but its speed has been criticized.28•41 The running time of 
the Douglas-Peucker algorithm has a quadratic worst-case in current implementations, although this can be 
improved to 0( n log n) worst-case. 21 

A common feature of these algorithms is that they use original data points as vertices of the approxima
tion, even though they acknowledge that these vertices come with some error from a digitizer. This could 
be reasonable, except the volumes of data a,nd slowness of accurate reduction algorithms lead to using two 
or more phases of approximation. In the process of reducing a stream of data obtained from a digitizer to 
the vectors to be plotted on a map, a cartographer may first caBt out points until the remaining points are 
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separated by at least e, and then apply a more complex line simplification algorithm to reduce the data 
further for storage or display. Though the properties of the individual algorithms are characterized and 
classified, the properties of these heuristic combinations are not. Criteria much like our e fattening6•36 ,38 are 
then used a posteriori to test the quality of the resulting approximations. 

Imai and Iri22 •23•24 and other researchers2•6•10•19•31 •34•40 have chosen mathematical criteria for the ap
proximations and then sought efficient algorithms to find best approximations. The algorithms they have 
developed, however, have quadratic or greater running times-especially for those that use original data 
points as vertices of the approximation. 

We remove the restriction that vertices of the approximation must be original data points in an attempt 
to find faster algorithms that fulfill mathematical specifications. Our goal is linear or 0( n log n) algorithms 
that find the best approximation. Failing that, we may look for a slower algorithm or find a suboptimal 
approximation-we usually opt for the latter, especially if we can determine how close the approximation is 
to the optimal. 

3. Homotopy classes and minimum link representatives 

As indicated in the introduction, we begin by studying approximations to polygonal chains and subdivi
sions that are computed by fattening the original and finding minimum-link paths and subdivisions inside 
the fattened region. 

For this section, we abstract away the method and mechanics of fattening and just suppose that we have 
a a path, polygon, or subdivision 8 in the plane and a region 'R, containing 8. If we bend and move the 
components of 8, without leaving 'R,, we obtain other paths, polygons, or subdivisions that could be said to 
be equivalent to 8 by deformation within 'R,. The topological concept of homotopy formally captures this 
notion of deformation. Le.t a and /3 be continuous functions from a topological space 8 to a topological 
space 'R,. Functions a and /3 are homotopic if there is a continuous function r: 8 x [O, 1] --+ 'R, such that 
r(s, 0) = a(s) and r(s, 1) = /3(s). One can see that homotopy is an equivalence relation.4

•
32 

We specialize definition this for paths, polygons, and subdivisions: 

• Informally, two paths are path homotopic if one can be deformed to the other in 'R, while keeping the 
endpoints fixed. Formally, we set S = [O, 1] and find a function r where r(O, t) and r(l, t) are the two 
paths and r(s, 0) and r(s, 1) are the endpoints of the paths. 

• A polygon is the image of a circle 8 1 under a continuous map into 'R,. Two polygons with maps a 
and /3 are bomotopic if there is a continuous map r: 8 1 x [O, 1] --+ 'R, such that r(x, 0) = a(x) and 
r(x, 1) = /3(z). 

• Two subdivisions a and /3 in 'R, are homotopic in 'R, if a can be deformed to /3 within 'R, . 

If the fattened region 'R, is actually obtained by convolving the path, polygon, or subdivision 8 with a 
disk of radius e (that is, by drawing it with a fat brush) then the minimum-lin,k object homotopic to S not 
only remains within e of the original, but can also be deformed to the original while remaining within e. The 
next subsection summarizes results of Hershberger and Snoeyink20 on minimum link paths and polygons 
and the following considers subdivisions. Other subsections deal with the issue of simplicity-the fattening 
can allow an approximating curve to self-intersect even though the original was simple. 

9.1. Computing minimum link paths and polygons of a given homotopy type 

Hershberger and Snoeyink20 have investigated computing minimum link paths and closed curves of a given 
homotopy class in triangulated polygons. (They also consider minimum length and restricted orientations.) 
They prove: 
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Theorem 1 A minimum link path o/ that is homotopic to a chain 0t can be computed in time proportional to 
the number of links of 0t and the number of triangles intersecting 0t and a'. A polygon Ot1 that is homotopic 
to a polygon a and has the minimum number of links if a' is non-convex or at most one more than the 
minimum n-umber if 0t1 is convex can be computed in the same time. · 

These paths and polygons are computed by a greedy procedure, following Suri39 and Ghosh. 13 In brief, 
the idea is to start at some point and illuminate as much of the region n as possible; this is as far as one 
link can reach. Repeat the illumination from the appropriate boundary of the lit area until the goal point is 
found. The "appropriate boundary" is determined by the homotopy class of a--or more specifically, by the 
triangulation edges crossed by the Euclidean shortest pa.th of the homotopy class of o. 

9.2. The min-link subdivision problem is NP-complete 

Given a subdivision S in a polygonal region, P, the min-link subdivision problem (MinLinkSub) asks 
for the polygonal subdiviBion S1 homeomorphic to S in P that is composed of the minimum number of line 
segments. We can also look at the decision problem: Given S and P and an integer k, is there a polygonal 
subdivision S' with at most le segments that is homeomorphic to S in P? We use the decision problem to 
show that MinLinkSub is NP-complete. 

Before we argue that the decision problem is NP-hard, we note that the planar case of a problem that 
Garey, Johnson and Stockmeyer12 have called maximum 2-sat (Max2Sat) is NP-complete.The general case of 
Max2Sat ie: Given a set of variables V, an integer le, and disjunctive clauses C1 , C2 , ••. , Gp, each containing 
one or two variables, determine if some truth assignment to the variables satisfies at least k clauses. The 
variable graph of an instance of Ma.x2Sa.t is defined to be the graph G = (V, E), with an edge (u, v) EE if 
and only if the variables u and v both appear { either negated or unnegated) in some clause C;. An instance 
of Max2Sat is planar if its variable graph is planar. 

Theorem 2 Planar maximum 2-sat {Max2Sat) is NP-complete. 

Proof: One can guess a truth assignment and, in linear time, verify that at least k clauses are satisfied. 
Thus, planar Max2Sat is in NP. 

Garey, Johnson, and Stockmeyer12 prove that Ma.x2Sat is NP-hard by reducing 3-sat to Ma.x2Sat. 
Their reduction preserves planarity, so we use it to reduce planar 3-sat to planar Ma.x2Sat and show that 
the latter is also NP-hard. 

Consider an instance of planar 3-sat with m clauses. Since 
we can duplicate variables, we can assume that each clause 
has three variables. Construct an instance of Max:2Sat by 
replacing every clause (a; Vb; V c;) with ten clauses (a;), (b;), 
(c;), (d;), (a; Vb;), (b; V c,), (a; V c,), (a, V di), (b; V d;), and 
(ci V cfi). At most six of these clauses can be satisfied if the 
original was not-seven can be satisfied if the original was. 
Thus, a total of 7m 2-sat clauses can be satisfied if and only 
if all m 3-sat clauses can be satisfied. 

Given a planar embedding of the clauses and variables of 

Figure 2: From planar 3-sat to planar 
Max:2Sat 

the 3-sat instance, we form a planar embedding of the Max:2Sat variable graph by replacing the clause 
(ai Vb; V c;) with the variable d, as shown in figure 2. Since planar 3-sa.t is NP-hard 11 •27, we know that 

planar Max:2Sat is, too. □ 

In theorem 3 we prove that MinLinkSub is NP-hard by red·uction from the restricted version of planar 
Max.2Sat. That is, given an instance of planar. Max2Sat, we construct an instance of MinLinkSub that has 
a solution if and only if the in.stance of Max2Sat has a solution . We will use a similar reduction to the 
minimum link simple polygon problem in subsection 3.3. 
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Before we prove theorem 3, let us take an informal look at the gadgets for truth assignments and for unary 
and binary clauses that are used in the construction. We embed the variable graph of the 2-sat instance in 
the plane such that no edge is vertical, then we· fatten each vertex to a disk and each edge to a rectangular 
strip and require that the subdivision lies within the resulting region. Within each disk we place true and 
false points, directly above and below the disk center, and force the vertex of the minimum-link subdivision 
to lie at one of these points by using appropriate gadgets. 

Figure 3: An enforcer and its cone 

only if the subdivision vertex lies in the shaded cone. 

For a unary clause, we add an enforcer 
pointing to the true point for a positive 
clause and the false point for a negative 
clause. Figure 3 illustrates an enforcer
dashed lines are subdivision edges and solid 
lines are region boundaries. The enforcer 
can be realized by four line segments if and 

For the binary clauses on two variables, we divide the rectangular strip of the fattened edge joining the 
two variables into four strips. In each we form negaters for variables that need them and a gate to simulate 
an OR gate. Figure 4 illustrates a negater and gate combination for the clause (a V b )-dashed lines are 
subdivision edges, solid lines are region boundaries, and grey lines are possible satisfying assignments. 

Figure 4: A negater and gate combination for (a V b) 

In a minimum link subdivision, each clause that is not satisfied requires one extra line segment. Thus, 
there is a number, k', such that k clauses of the instance of Max2Sat can be satisfied if and only if the 
instance of MinLinkSub uses at most k' line segments. Theorem 3 shows that this construction can be 
carried out. 
Theorem 3 MinLinkSub is NP-hard. 

Proof: We prove that MinLinkSub is NP-hard by a reduction from Max2Sat. 
Embed the variable graph, G, of a 2-sat instance in the plane with straight edges such that no edge 
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Variable 
de 

dve 

Omin 

Overt 

rv 
w 
1'b 
h 

Oenf 
C 

Description 
Length of shortest edge 
Shortest distance from a vertex to a non-incident edge 
Minimum angle between two edges 
Minimum angle of an edge from vertical 
Radius of vertex disks (fattened vertices) 
Width of fattened edge 
Radius of boolean disks (e.g. the ball around a true point) 
Height of true point above a vertex 
Minimum angle between two enforcers 
Enforcer cone width at rv 

Table 1: Variables for the construction, illustrated in figure 5 

is vertical. Let Omin be the minimum angle between edges, Overt be the minimum angle of an edge from 
vertical, de be the length of the shortest edge, and dve be the shortest distance from a vertex to a non
incident edge. Table 1 lists these and other important dimensions of the construction, figure 5 illustrates 
them, and table 2 gives the relations between them. 

'"" '- \ •-... ~;:.\ 
·· ·· •• ...... emin 

,, ,,. . ,,.., ,.,,,..J•'-'·'_;,,........ --------.,,.-. 
~,,/ ~··"' -- ~,..,.,..c: ,, .,,,---

·' 

,,,~·-;? " \~~i~;~".,'.·~: ' h, •• 

·' '\ .... ~ ..... .. 
I ~ ' ' \ 

• 

Figure 5: Variables in the construction, described in table 1. 

We fatten the vertices of G to vertex disks of radius rv and edges to strips of widt.h w. This fattening 
preserves the face structure of G if there is a one-to-one correspondence between the faces of G and the 
connected components of the complement of its fattening such that a face bounded by a sequence of edges 
and vertices maps to a component bounded by portions of the disks from the same edges and vertices in 
the same sequence. Conditions 2-4 in table 2 ensure that the fattening of G by rv and w preserves the 
face structure: 
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# 
1. 
2. 
3. 
4. 
5. 
6. 
7. 

Constraint 
de, dve, Omin I Overt 

0 < rv < de/8 
0 < W < rv tan(Omin/2)/2 

rv + W < dve 

tan(9enr/2) > c/f'b 
2(h + Jo) < w/8 

sin(Overt/2) > Jo/h 

Reason 
Given by the embedding 
Vertex disks don't engulf edges 
Vertex disks appear on face between adj . edges 
No edge & vertex become incident by fattening 
No point outside a bool. disk is in three cones 
Boolean disks are visible along fattened edges 
Slopes that intersect both bool. disks < Overt / 2 

Table 2: Constraints on the variables. (See table 1 and figure 5.) 

Within each vertex disk we place true and false points, h above and h below the vertex. Around each 
point, we draw a boolean disk of radius Jo. We can force the vertex of a minimum link subdivision to 
lie in one of these two boolean disks by using enforcers, each consisting of a path from the vertex to a 
small triangle such that the path can be a single line segment if the vertex lies inside the enforcer cone 
as illustrated in figure 3. The enforcers are placed around the vertex disks; the cones can be made to 
have radius at most c at distance rv by moving the walls of the enforcer together. 

For a variable used in k binary clauses, we add k + 3 enforcers pointing to each boolean disk. If 
condition 5 holds, then cones from enforcers pointing to the same boolean disk do not intersect outside 
the disk; this implies that any point outside the boolean disks lies in at most two enforcer cones. In a 
minimum link subdivision, each subdivision vertex is placed in a boolean disk because placement at any 
other point causes at least 2/c + 4 enforcers to have an extra line segment, while placement at a true or 
false point adds le + 3 segments to enforcers and at most le to clauses. Thus, the placement of a vertex 
in a minimum link subdivision can be interpreted as a truth assignment. 

Next we form clauses. For a. unary clause, we simply add another enforcer pointing to the true point 
for a positive clause or the false point for a negative clause. 

For the binary clauses on a given pair of variables, we divide the fattened edge into four strips and 
form boolean balls at both ends of each strip. Then, for a clause (an OR gate) with both variables 
positive, we add a block within a strip so that the edge can be a single line segment if and only if one of 
the incident vertices is placed in a true disk. When both variables are negative, we add the block so that 
one of the vertices must be placed in a false disk. When the variables differ in sign, we pair an OR gate 
with a negater for the negative literal as shown in figure 4. Condition 6 ensures that satisfiable edges can 
be represented by one segment and condition 7 ensures that unsatisfiable edges require two segments. 

Each clause that is not satisfied adds one extra line segment to the minimum link subdivision. Thus, 
there is some k' such that k clauses of the instance of Max2Sat can be satisfied if and only if the instance 
of MinLinkSub uses at most le' line segments. □ 

Placement of vertices of degree at least three is the difficult part of MinLinkSub: 
Theorem 4 MinLinkSub is in NP. 

Proof: If one guesses the coordinates of the vertices of degree three or greater, then one can use a 
minimum link path algorithm to find paths joining adjacent vertices. Connect each guessed vertex to its 
original by a path using at most n links. Then, for every pair of adjacent vertices, a and b, compute the 
minimum link path homotopic to the path that goes from guessed a to original a to original b to guessed 
b. The path algorithm performs this computation in polynomial time in the size of its input. 

In' a minimum link path, points on the intersection of extensions of visibility edges can be chosen as 
the vertices of degree three. Such points can be represented by four times as many bits as the input 
points. Thus, the input to the path algorithm is of linear size and MinLinkSub is in NP. □ 
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9.9. Minimum link simple polygons 

In this section, we show that the problem of finding a minimum link simple polygon of a given homotopy 
type (MinLinkSP) is NP-hard by a reduction from planar Ma.x2Sat, which we defined in subsection 3.2. The 
reduction is much like the one used in that section: We embed an Euler tour of the variable graph as a simple 
closed curve in the plane and place obstacles so' that graph vertices are pinned in place. Then we form toggle 
switches at each graph vertex and use enforcers to ensure that an approximate path can be interpreted as 
a truth assignment. Finally, we arrange negaters and gates so that a.n edge of the graph can be embedded 
using fewer links if the clause is satisfied. 
Theorem 5 MinLinkSP is NP-complete. 

Proof: One can easily verify that a given polygon is simple in polynomial time. Thus, MinLinkSP is in 
NP. 

Figure 6: A graph and its edge polygon 

Embed the variable graph in the plane so that no edge is vertical. Add short vertical edges just above 
and below each vertex. By splitting vertices, we can form a planar tree that contains all the edges of the 
variable graph; an edge tree. A walk around the edge tree gives us the edge polygon, a simple polygon in 
which each clause edge appears twice. See figure 6. 

-C 

I 

C: 

-- -------------

...... ...... .... .............. ________ _ 

Figure 7: Vertex gadgets 

-------, 

In subsection 3.2, we constructed a region in which the number of edges of a minimum link embedding 
of a variable graph was a function of the number of satisfiable clauses. Here we embed the edge polygon 
in a manner that mimics the graph embedding. To hold the vertices in place, we require the polygon to 
wind through vertex gadgets as shown in figure 7. Vertex gadgets require a constant number of segments. 
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Recall that we placed vertical segments at ea.ch vertex. 
We turn the pa.tbs a.round these vertical segments into two 
toggles, which together form a. switch. The homotopy class of 
the lower toggle is shown in figure 8; the pa.th from the vertex 
goes through some zig-zag enforcers on the left, then goes back 
and forth aer088 a pentagon, then through some enforcers on 
the right. The upper toggle lacks enforcers, but otherwise is 
symmetric through the vertex. For both toggles, each path 
across the pentagon can consist of three line segments. 

If the paths across the pentagons have three segments in 
a minimum link embedding with no self intersections, then 
they must be nearly parallel, as shown in figure 9. We thus 
say that the toggles have parallel slants. The enforcers on 
the lower toggle encourage both toggles to slant down to the 
extreme right or left. A switch with toggles slanting down Figure 8: The homotopy class of a 
to the right is considered set true; slanting left is considered toggle 
false. A vertex corresponding to a variable that appears ink unary and binary clauses has 2k+ 1 enforcers 
on each side of the lower toggle so that any _slant other than extreme right or extreme left adds extra 
segments to 4k + 2 enforcers, whereas an extreme slant adds segments to 2k + 1 toggles and at most 2k 
to edges. Each toggle pa.th goes back and forth at least 4k + 3 times so that adding segments to enforcers 
is preferable to adding segments to a. toggle. Thus, in a minimum link path with no self-intersections, 
each switch is unambiguously true or false. 

,.--
I I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

Figure 9: A switch with enforcers 

To simulate a unary clause, we add two extra enforcers to the same side of the lower toggle so that they 
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will each require an additional segment if the clause is not satisfied. Binary clause OR gates a.re simulated 
by blocking the appropriate segment, just as in subsection 3.2; negaters use two blocks. Figure IO 
illustrates a single binary clause-the grey lines are possible embeddings of satisfying assignments and 
the dashed is the embedding of an unsatisfying assignment. Since each edge of the variable graph is 
doubled in forming the edge polygon, any binary clause that is not satisfied by a truth assignment 
requires two extra line segments in the minimum link simple polygon. 

Figure 10: A negater and gate combination 

Thus, there is a number, le', such that le clauses of the instance of Max2Sat can be satisfied if and only 
if the instance of MinLinkSP, the minimum link simple polygon problem, uses at most k' line segments. □ 

One can break the polygon inside one of the vertex gadgets and anchor its endpoints to obtain a path. 
Thus, the minimum link simple path problem is also NP-complete. 

9.,1. Minimum link simple curves enclosing all holes 

The reduction in the previous section requires a linear number of obstacles both inside and outside the 
curve; whether one can efficiently find a minimum link simple curve in a polygon with h boles that encloses 
all the boles is an open question. We can find a simple curve that has only O(h) more segments than the 
(non-simple) minimum link curve; this is independent of the number of segments of the minimum link curve. 
We identify O(h) junction triangles of the triangulation and group the rest of the triangles into corridors. 
In each corridor we find the minimum link path. 

Theorem 6 In a polygon P of n vertices with h holes, one can, in O(n) time, find a simple closed curve 
enclosing all the holes that has O(h) segments more than the minim,um link curve of the same homotopy 
class. 

Proof: Let o/ be the Euclidean shortest curve homotopic to o-the relative convex hull of the holes. 
The curve a' intersects any triangulation edge at most twice. 

Because all the holes have winding number one with respect to o', the curve o' does not cross any 
triangulation edge between two holes. We cut along any edges between two holes, forming bigger holes. 
Because the original holes do not intersect, the number of cuts around the boundaries of the new holes is 
bounded by the length of a circular Davenport-Schinzel sequence with at most three alternations.1 Thus, 
there are at most 2h - 2 cuts. 
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Figure U: Cuts and junction triangles bound corridors 

Call any triangle in which o/ crosses all three sides a junction triangle. There are two types: three-way 
junctions, in which all vertices lie on the outer boundary and two-way junctions, in which two vertices 
lie on the outer boundary and one lies on a hole. 

Removal of a three-way junction triangle leaves three connected components, each of which must have 
a. hole. One can form a. three-way tree whose leaves are holes and whose internal nodes are three-way 
junctions such that the holes of a component formed by removing a junction are all in the same subtree. 
This implies that the number of three-way junctions is at most h - 2. Cutting along the boundary to 
boundary edge of a two-way junction separates M into two components, each of which has a hole and in 
one of which the hole has a vertex of the junction triangle. A particular partition of holes can happen in 
only two ways, so there are only 2h two-way junction triangles. 

The triangles with at least one vertex on the outer boundary can now be grouped into maximally 
connected corridors, bounded by junction triangles and cuts, through which the shortest path o/ passes 
one or two times. Within each corridor, C, we find the minimum link path /Jc that goes from pc, the 
midpoint of one bounding junction triangle, to qc, the midpoint of the other, using a minimum link path 
algorithm as discussed in section 3.1. 

The minimum link path /Jc may require more segments than the minimum link path from Pc to qc 
of the same homotopy type because the latter path may cross cuts that bound the corridor. A path that 
crosses a cut, however, does so an even number of times. By connecting the first and last crossing with 
a portion of the cut, we obtain a path that remains within the corridor and has only as many additional 
segments as there are cuts bounding the corridor. As we argued above, the number of cuts bounding all 
corridors is at most 2h - 2. 

Finally, we link up the paths through corridors into a closed curve /3 in the homotopy class of a. The 
curve {3 gains at most two segments more than the minimum curve through corridors for each junction 
triangle that it passes through. Thus, f3 is within O(h) line segments of the minimum link closed curve 
enclosing the h holes. D 

The worst case for our procedure has no cuts, h - 2 three-way junctions and h two-way junctions. This 
results in 10h - 12 additional line segments. We have yet to find a polygon that requires more than 2h - 2 
additional segments to make a. minimum link curve simple. 

4. Ordered Stabbing 

In this section, we study the ordered stabbing problem: Given an ordered sequence of n convex objects, 
0 = { 01, 02, ... , On}, find a polygonal chain, consisting of the minimum number of line segments, that 
visits the objects in order. Different variants of the ordered stabbing problem arise from restrictions on the 
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stabbed objects or stabbing path as well as from different definitions of "visiting order." We will consider 
several variants in the following subsections. . 

Section 4.1 considers a linear-time algorithm due l;o Egyed and Wenger10 that computes a line stabbing 
a sequence of objects in which consecutive pairs are disjoint. The visiting order of the objects is naturally 
the order of their intersections with the line. 

Section 4.2 discusses various restrictions on vertices and definitions on visiting order that can be used 
to extend stabbing to polygonal chains. It points out that the stabbing line algorithm gives a simple way 
to compute a stabbing path that has at most twice the number of links needed when the path vertices 
are required to lie inside the given objects. Section 4.3 develops a linear-time greedy algorithm when the 
vertices are unrestricted or are restricted to lie in tubes--that is, inside the convex hull of two consecutive 
objects. "Turning in tubes" arises naturally when the Frechet metric is used to measure the similarity of 
the minimum link approximation to the original. 

Section 4.4 restricts the objects to unit disks (translates of constant-sized polygons can also be used) 
and extends Egyed and Wenger's algorithm to intersecting objects under four definitions of visiting order: 
entering objects in order, leaving in order, entering and leaving in order, or choosing one point from ea.ch 
object to visit in order. For the first three definitions, the algorithm still rllll8 in linear time. For the last, the 
algorithm can be implemented to run in O(n log n) time. Section 4.5 gives a dynamic programming method 
to compute the minimum-link stabbing path when the placement of vertices is unrestricted or is restricted 
to tubes. This algorithm runs in O(n2 log2 n) time and linear space; finding a quadratic or subquadratic 
time algorithm is an open problem. 

,(.J. Ordered stabbing of disjoint objects with a line 

Egyed and Wenger10 looked at the problem of stabbing disjoint convex objects in order with a line. They 
showed that the actual shape of the object mattered less than the ability to find inner and outer common 
tangents-if one assumed that computing these tangents took constant time, then one could find a line 
stabbing the objects in order by a simple Graham scan. We first reinvent {and simplify) their algorithm for 
stabbing disjoint objects with a line and extend it in later subsections. 

It may help to think about a simple instance of ordered stabbing: Is there a line stabbing a set of vertical 
segments ordered by z-coordinates? To answer this question, one can form the convex hulls of the "above" 
endpoints of segments and the hull of the "below" endpoints. If these hulls are separable-if they have inner 
common tangents, for example-then and only then does a stabbing line exist. We define support hulls and 
limiting lines to allow us to use this method for stabbing more general objects. 

If o is a direction, then let -o denote the reverse direction. We ca.11 an object 
0 E O a support object for direction o if there is a line la in direction a such that 
0 lies on and to the left of la and no object O' E O lies strictly to the left of la. 
The support object in figure 12 is shaded. The line la is called a support line for 
direction o and the point or points of Onla are called support points. We ca.n observe 
the following connection between support lines and stabbing lines. 
Observation 1 The lines parallel to direction o that stab a set of objects O are the 
lines to the left of both support lines la and La, if any. 

By analogy with the convex hull of segment endpoints, we can define the support Figure 12: 
hull of a set of n objects as the circular list of support objects, ordered by the angles Support 
of their support lines. Repetitions a.re possible, as figure 13 shows, but if any two objects O and O' have at 
most two outer common tangents, then any subsequence of the list can have only two alternations between 
0 and 0 1

• Thus, the size of the list is at most 2n - 2 by Davenport-Schinzel sequence bounds.1 
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A support line la is a limiting. line if its reverse l,_ 0 is 
also a support line, as shown in figure 13. Limiting lines are 
analogous to inner common tangents. A limiting line la hits 
two support points; we name them the first contact, p, and 
second contact, q, so that the vector q- p has direction· a. We 
name the objects that contain these points the first and second 
contact objects for ia, respectively. We can distinguish two 
types of limiting lines: l 0 is a counterclockwise (ccw) limiting 
line if the first contact p is the support point for la, as shown 
in figure 13, and a clockwise (cw) limiting line if the second 
contact q is the support point for la. 

Limiting lines are stabbers, as you can see from the figure, 
but rotating a. ccw limiting line counterclockwise gives a. line Figure 13: Support hull with limiting 
that is no longer a stabber. In our ordered stabbing problems, lines 
we wili" find at most one limiting line of each type; they will delimit the possible slopes for stabbing lines. 
The above and below portions of the support hull between these slopes limit the extent that a stabbing 
line can move up and down. Thus, the hulls and limiting lines give a linear size description of all possible 
stabbers. In the rest of this section, we show how to maintain this description under the assumption that 
basic operations, such as computing the intersection of an object with a line and computing common tangents 
of two objects, take constant time. We prove the following theorem. 
Theorem 7 Let O = { 01, 02, Os, ... } be a sequence of convez objects in which consecutive objects are 
disjoint. One can compute a line that stabs the longest possible prefiz 0 1, 02, ... , Oi in order using O(i) 
time and space. 

Proof: We outline the idea; algorithm 1 gives more com
plete pseudocode. 

Assume that a vertical line separates the first two objects 
with 01 on the left and 02 on the right as shown in figure 14. 
We can easily compute a description of all ordered stabbers for 
01 and 0 2: Initialize the ccw limiting line t and the cw limit
ing line t' to the appropriate inner common tangents directed 
from 01 toward 02. Two portions of the support hull have 
slopes that fall between the slopes of t and t'; these portions 
are delimited by the contact points of t and t'. We name them 
the above hull, A, and the below hull, B, as shown. To repre
sent A and B, we store the list of support objects in a deque-a 
doubly-ended queue-which we will maintain by a Gira.ham scan 

Figure 14: Initial description 

procedure. 115 Initially, both deques contain 01 at the tail and 02 at the head. 
We would like to add successive objects and maintain the description of ordered stabbers. Given 

the above and below hulls A and B and limiting lines t and t' after the first i objects, we want to add 
object Oi+1. We first define the line-stabbing wedge to be the region between t and t' that is right of 
object Oi-drawn shaded in figures 14 and 15. A point pin the line-stabbing wedge has the property 
that there is a line l through p that visits the first i. objects before visiting p. If Oi+l does not intersect 
the wedge, then no stabbing line visits the first i + 1 objects in order. If it does, then we update the 
limiting lines, which are ordered stabbing lines, and the portions of the support hull. 
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DATA STRUCTURES: Store the above support hull A, in a deque that supports the following 
in constant time: The operations Push(A, end, Oi) and Pop(A, end) push and pop objects 
from the head or tail of A, depending on whether end is head or tail. Pointers Tail(A), 
NTail(A), NHead(A) and Head(A) are maintained to the tail (lowest index) next-to-tail, 
next-to-head, and head (highest index) objects in A. Store B similarly. 

INITIALIZATION: Place object 01 at the tail and 02 at the head of both A and B and set 
limiting lines t and t' to the ccw and cw inner common tangents. Then set i := 2 and 
execute the following algorithm to add Oi+1. · 

1. While Oi+1 intersects the wedge between t and t' and right of Oi do 

2. If Oi+i does not intersect t then 

( * Update the head of support hull A •) 
3. While Head(A) is above the higher outer common tangent 

from NHead(A) to Oi+t do 
4. Pop(A, head) 

5. EndWhile 
6. Push(A, head, Oi+t) 

(• Update ccw limit line t and the tail of support hull B •) 
7. Sett to the ccw inner tangent from Tail(B) to Oi+t 
8. While NTail(B) is not below t do 

9, Pop(B, tail) , 
10. Sett to the ccw tangent from Tail(B) to Oi+l 

11. EndWhile 
12. Endlf 

13. If 0;+1 does not intersect t' then 
( • Update the head of support hull B •) 

14. While Head(B) is below the lower outer common tangent 
from NHead( B) to Oi+I do 

15. Pop(B, head) 
16. EndWhile 
17. Push(B,head,Oi+1) 

( * Update cw limit line t' and the tail of support hull A *) 
18. Sett' to the cw inMr tangent from Tail(A) to Oi+1 
19. While NTail(A) is not above t do 

20. Pop(A, tail) . 
2L Sett' to the cw tangent from Tail(A) to Oi+l 

22. EndWhile 
23. Endlf 

24. Set i := i + 1. 
25. EndWhile 

Algorithm 1: The basic algorithm for ordered stabbing with a line 
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If the ccw limiting line t does not intersect object 0,+1, 
then we must move t clockwise until it does. We also 
update the head of the above hull A by Graham scan. 
Specifically, to add object Oi+1 to A, some suffix may 
first need to be removed as in lines 3 to 6 of algorithm 1. 
Furthermore, the first contact object oft in B may change 
during the motion. If it does, the old contact is removed 
from the tail of B by line 9. The cw limiting line t' is 
handled similarly. 

All operations performed when 0 1+1 is added take 
constant time except for deque maintainence. Since an 
object is added to each deque once and removed at most 
once, the total computation is linear in the number of 
objects considered. D 

Figure 15: Updating t and the hulls 

Remark: We described the algorithm as started at the beginning of the sequence of objects and always 
adding objects to the end. That is not entirely necessary. Because adding objects to the tail (in reverse 
sequence, of course) is symmetrical, one could begin in the middle and add to both sides. 

4.e. Ordered stabbing with a polygonal chain 

The problem of ordered stabbing with a polygonal cha.in instead of a line has its own complications and 
variations. We can make one simple observation in this section, however; the line stabbing algorithms give a 
simple means to find a stabbing chain that approximates the minimum link stabber within a multiplicative 
factor of two. First, though, we discuss the variations that arise by different definitions of visiting order and 
restrictions on vertex placement. 

When finding an ordered stabbing line l of disjoint objects ( or a set in which consecutive objects are 
disjoint), there is a natural definition of visiting order: the intersection of I, and the objects is a set of disjoint 
intervals and the visiting order is the order of these intervals along the ( directed) line£. When extending the 
concept of stabbing to a polygonal chain, however, one can no longer arbitrarily compare pairs of intervals. 

Figure 16 shows an example of a path 1r stabbing three disjoint objects 01, 02, 
and 0 3 • For each pair of objects, we can choose intervals of their intersections 1rs 
that have the correct order, but can hardly call ,ran ordered stabber of 0 1, 02, 
and Os. Instead, we will require that there is a sequence of intervals 11, 12, ... , In 
in order along the path 1r such that I; is a maximal connected interval of the 
intersection ,r n O;. · 

In section 4.4, we consider alternate definitions for the visiting order for stab
bing intersecting objects, such as entering the objects in order, or leaving them 
in order, or both. These are more global critera work against efficient greedy al- Figure 16: Pairwise 
gorithms; for example, when considering 0,+1, an algorithm may need to avoid order is not enough 
entering any later object rather than looking only at O, and a couple of limiting lines. One benefit of our cher 
sen definition is that the stabbing problem can be viewed as minimum-link path problem in a non-manifold 
space M. For 1 $ i $ n - 1, take a manifold M, that is a Euclidean plane containing copies of objects Oi 
and Oi+l • Then identify (glue) the corresponding points in the copies of 0,+1 contained in M, and Mi+l · 

Any path in M from 01 in M1 to On in Mn-l visits the objects in order. 
Further variations arise from different restrictions on the vertices of the approximation. As mentioned in 

the introduction, we will concentrate on three, listed in order of increasing restriction. 
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1. No restriction: The approximate pa.th can turn anywhere. 

2. Turn in tubes: Each vertex of the approximation must lie within a region bounded by two consecutive 
objects and their outer common tangents. 

3. Turn in objects: Each vertex of the approximation must lie in one of the original objects. 

The non-manifold space M constructed above can be modified so that any path in M automatically 
satisfies the second ·restriction: simply let Mi be the convex hull of 0i and 0i+l rather than the entire plane. 
The third restriction is of a different character. 

Using the algorithm for ordered stabbing with a line, there is a simple method to find a stabbing path 
for the strongest restriction using at most twice the minimum number of links. 
Theorem 8 One can compute an ordered stabbing path with vertices inside objects 0 1, 02, ... , On that has 
less than twice as many segment., as the minimum link stabbing path. 

Proof: Compute a line that stabs as many objects in order as possible. Then crop the line to a segment 
from the first to last objects stabbed, discard these objects and repeat'. When all the objects have been 
stabbed, join the Jc segments formed into a path by adding k - 1 segments. 

Since each of the k segments, except for the last, stabs as many objects as possible, the minimum link 
pa.th has at least k edges even if vertex placement is unrestricted. Therefore, the path constructed baa 
less than twice as many edges as the minimum path. D 

Figure 17 illustrates that w_hen path vertices must ·lie inside stabbed objects,. a greedy approach that 
always attempts to stab as many objects as possible can attain 2k - 1 links when the minimum link path 
has k links. The bound of theorem 8 is tight. This is in contrast to the algorithms for minimum link paths 
in simple polygons13•20139, where greedy methods do obtain a minimum link stabbing path . 

Figure 17: The greedy path (dotted) versus the minimum path (solid) 

,1.9. A linear-time greedy algorithm 

In this section, we give a linear-time greedy algorithm that computes a minimum-link stabbing chain 
whose vertices are unrestricted or are restricted to lie in tubes-inside the convex hull of two consecutive 
objects. As in the previous section, consecutive objects must be disjoint. The idea. of the greedy approach 
is to place a light at 0 1 and illuminate in the space M the region of all points that can be reached with one 
link. Then repeatedly treat the boundary of the ith region as a light a.pd illuminate the region of all points 
in M that can be reached in i + 1 links. 
Theorem 9 Let O = 0 1, 02, ... , On be a sequence of convex objects in which consecutive objects are disjoint. 
One can compute, in 0(n) time, the minimum-link ordered stabbing path whose vertices either have no 
reatrictions or lie in or between consecutive objects. 

Proof: We content ourselves with a detailed sketch of the proof. 
We begin by finding the longest prefix that C,!l.n be stabbed by a line using algorithm 1. We record 

the current limiting lines after we add each new object. If the prefix has i objects, then the algorithm 
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Figure 18: Cases A, B, and AB 

ends in 0( i) time with a stabbing wedge, bounded by two limiting lines and a portion of Oi, that does 
not intersect 0i+l• 

Let us first consider restricting the vertices to lie tubes, that is, in the convex hull of consecutive 
objects. We consider three cases, illustrated in figure 18-these cases could actually be unified at the 
cost of making the exposition completely opaque. For each case, we consider first the computation when 
vertices lie in tubes, that is, in the convex hull of consecutive objects, and second the modifications 
required if the vertices are unrestricted. 

Case A: Case A obtains when some line separates object Oi from objects 0;_1 and 0;+1, A vertex of 
the approximation must lie between 0;-1 and O;+l, and if vertices are restricted to lie in tubes, then 
this vertex lies in the portion of Oi that lies in the stabbing wedge, shaded heavily in the figure. We can 
run algorithm 1 starting with this portion of 0; to find the next sequence that can be stabbed. 

If the vertices are unrestricted, then we begin algorithm 1 with the stabbing wedge, shaded in the 
figure, which is an object that is disjoint from O;+l. This beginning implicitly assumes that the vertex 
between 0;-1 and Oi+1 should occur in or after O;. One can argue, however, that no possible stabbers 
are lost by this assumption: although removing 0; may enlarge the stabbing wedge, any segment of a 
minimum-link stabbing chain that originates from a point in the enlarged wedge must cross 0; before 
Oi+1 and thus must cross the stabbing wedge bounded by 0;. 

Case B: Case B obtains when some line separates Oi-l from 0, and Oi+l• Let us assume that 0.+1 
is right of the cw limiting line t' as shown in figure 18B. The computation when Oi+1 is left of the ccw 
limiting line t is symmetric. · 

We begin algorithm 1 with above and below support hulls defined by different objects. For the above 
hull we use a single object, the convex hull of O; and the point t n t', if the vertices must lie in tubes 
(darker shading), or the wedge ti'ght oft and left oft' (dark and light shading), if vertices are unrestricted. 
For the below hull, we begin with the support hull of a sequence of objects: start from the second contact 
object O; of the cw limiting line t( and continue through Oi-trim the top of each objects by the ccw 
limit line that existed when the object was inserted. This support bull is drawn darkly in figure 18B. 

Decoupling the above and below constraints avoid the implicit committment to place a vertex between 
a given pair of consecutive objects that lead to extra segments in the algorithm of the previous section. 
As illustrated in figure 18B, the vertex can be placed on t' between two consecutive objects and the below 
support hull will ensure that objects after the vertex are stabbed by the next segment of the path. This 
choice of constraints captures the boundary of the illuminated region in the space M. 

Case AB: In case AB, the separators of Oi-1 and Oi intersect Oi+l· Case AB is handled just like case 
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B, with the decision whether Oi+l is left of t or right of t' based on the intersection of 0;+1 with a 
separator of 0,-1 and Oi, In figure 18, the initial above and below support hulls for B and AB a.re the 
same. 

All cases can be set up in time proportional to the number of objects. Each object in the entire 
sequence is considered at most twice in the computation of a minimum-link stabber, therefore the total 
computation is linear. □ 

Nata.rajan and Ruppert33 have independently developed a similar algorithm for stabbing unit squares and 
have used it to compute minimum link L1 and L00 approximations to polygonal chains when each original 
segment is longer than unity. They point out that their algorithm computes a minimum-link approximation 
that is within £ of the original when distance between curves is measured under the L1 or L 00 analogue of 
the parametric or Frechet metric. More on this in the next section. 

It is conceivable that these stabbing algorithms could be extended to a finear time algorithm for inter
secting objects. We begin in the next section by looking more carefully at the definition of vi.siting order 
for such objects. We will leave the job 11ncompleted at this time and just present a quadratic time dynamic 
programming algorithm in section 4.5. 

,1.,1. Ordered stabbing of intersecting unit disks with a line 

In this section, we extend algorithm 1 to stab an ordered set of possibly intersecting unit disks with a 
line. Our algorithm can be applied. to translates of a constant-sized convex polygon as well-unit squares, 
for example, which arise when £-disks are computed in the L1 or L00 metrics. We continue to say "disks'' 
for convenience. 

We consider four possible definitions of visiting order for intersecting objects. All four definitions are 
equivalent to the natural definition if the objects are disjoint. Given two points p and q on a directed line t, 
we say that p -< q if the vector from p to q is in the direction of £. Let the intersection t n O, have extreme 
points a; -< b,. Given a sequence of objects 0 1 , 02, ... , On and a line £ such that the intersection l n O, has 
extreme points a, -< b; , we Sc,\Y that £ visits the objects in order if 

Def. 1: Line l exits the objects in the correct order: For i < j, we have 6, -< b;. 
Def. 2: Line I. enters the objects in the correct order: For i < j, we have ai -< a;. 
Def. 3: Line I. both enters and exits the objects in the correct order: For i < j, we have ai -< 

a; and b;-< b;. 
Def. 4: Line£ hits points p1,P2, .. ,,Pn, with Pi E £ n Oi, in the correct order: For i < j, the 

point Pi -< P;. 

Definitions 1 and 2 could be considered equivalent: given an algorithm that computes stabbing lines for 
one definition we can compute stabbing lines for the other by just reversing the sequence of objects. We 
will, however, combine the algorithms for 1 and 2 to handle definition 3. Since the algorithms that compute 
stabbers without reversing the sequence are slightly different, we treat definitions 1 and 2 separately. 

Definition 4 is perhaps the most natural. When combined with the restriction that vertices must lie in 
tubes-Le. in the convex hull of adjacent objects-it gives minimum link approximations under a natural 
similarity metric. Two curves are within distance e under the Frechet metric3•14 iff they have monotone 
parameterizations a and /3, which are functions from [O, 1] tone, such that d(a(t), /3(t)) _$ e for all t E [O, 1). 
This can be understood intuitively as a person on a: can walk a dog along /3 with a lea:ih of length e. The 
next theorem was suggested by Michael Godau (persona.I communication) and has been reported for the L1 
and L00 cases by Natarajan and Ruppert.33 

Theorem 10 Let 01, 02, ... , On be a sequence of e-balls and c1, c2, ... , Cn be their centers. A minimum 
link chain stabbing 01, 02, ... , On in order according to definition 4, whose vertices are constrained to lie in 
tubes, is a minimum link path with Frechet distance at most e from the polygonal chain c1 , c2 , •.. , Cn, 
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Proof: Let er : [O, 1]-+ ne be a parameterization of the polygonal chain c1, c2, ... , en and let t, be a 
parameter at which a(ti) = c,. 

For any curve /J with Frechet distance at most e from a, the point /J(ti) E Oi. By monotonicity of 
the parameterization, the sequence of points /J(t1)-< /3(t2)-< • • •-< /3(tn) reveals that /3 visits the objects 
in order according to definition 4. 

For any piecewise-linear curve /3, let t be a parameter of one of its vertices and suppose that ti $ t < 
t,+1. Then, in between visiting O, and 0,+1, the curve /3 remains within e of the line segment CiCi+l, 
which is simply remaining in the convex hull of Oi and Oi+l. Thus the vertices of /3 lie in tubes. 

Therefore, the minimum-link curve /3 with Frechet distance at most c from a is an ordered stabber 
satisfying the hypothesis. □ 

The rest of this section concerns itself exclusively with stabbing lines. Section 4.5 returns to stabbing 
chains. 
Theorem 11 Let O = {01, 02, Oa, ... } be a sequence of unit disks or translates of a constant-size conver 
polygon. One can compute a line that stabs the longest possible prefix 0 1, 0 2, ... , Oi using 0( i) space and 
O(i) time for visiting order definitions 1-9 or O(ilogi) time for definition 4. 
Proof for Def, 1: Let us begin with definition 1: 
exiting the disks in the correct order. A way to 
view the result that we are trying to obtain is to 
imagine that the disks are painted on the plane 
in reverse order----starting with disk On. An or-
dered stabbing line must exit a visible portion of ) 
the boundary of each disk. We will not compute 
this "painting;" it will, however, guide us in modi- Figure 19: Updating t under def. 1 
fying algorithm 1 to add disk Oi+l and update the 
description of the stabbers of the first i disks. First we outline how to maintain this description, then how 
to initialize it. 

To add Oi+l, we must determine the ordered stabbers of 01, ... , Oi that exit Oi+l after Oi. As before, 
define the line-stabbing wedge to be the region between the limiting lines t and t1 and right of Oi, Because 
o, is exited last, no disk O; with j < i intersects the wedge. Also as before, if Oi+l does not intersect the 
wedge then no stabbing line exists. 

In our imaginary painting, Oi+1 may be obscured by O,; thus, we discard 
portions of Oi+1 that lie outside the line-stabbing wedge. By restricting our 
objects to translates of a given object, we can be assured that what remains of 
Oi+l is connected. If what remains does not intersect the ccw limiting line t, 
then we must update the support hulls and the line t. 

First update the head of A, as in linea 3 to 6. If O, and O,+l intersect, 
then their upper intersection point may become a point on the support hull, as 
will occur in figure 19. To this end, the tangent from thin intersection point to 
NHead(A) must be considered in line 3 and the deque data structure must be 
extended to store support points as well as support disks. 

Once the support hull A is updated, t moves clockwise until it comes to rest 

t 

t' 

Figure 20: Initial wedge, 
def. 1 

on the disk or point that is last in A. This may cause disks to be removed from the tail of B as in line 9. 
The cw limiting line is adjusted in a similar fashion. 

What remains is to initialize the description of ordered stabbers. We can reuse the description of figure 14 
if 0 1 and 02 do not intersect. If they do intersect, the description is rather strange. The above hull A consists 
of 01 follwed by the upper intersection point of 01 n 02; the below hull B of 0 1 and the lower intersection 
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... :.: point. The limiting lines, then, are tangents from an intersection point to 01 that cannot be rotated further 
as shown in figure 20. The wedge they form is greater than 180° so angle comparisons must be performed 
carefully. This adds to the programming complexity, but not the asymptotic time complexity. D 

Proof for Def. 2: Stabbing lines satisfying definition 2, entering the disks in the correct order, must hit 
the boundaries of diab in a "painting" that ,tart, with 01. They can be found by a similar algorithm. 

Define the line-stabbing wedge to be the con
vex region bounded by the two limiting lines and 
not left of O,. In figures 21 and 22, the line
stabbing wedges are shaded. Any stabber that 
crOSBes into the wedge has already entered every 
disk up through Oi. Thus, we need to determine 
and discard only the stabbers that enter OH1 and 
Oi in the wrong order. 

Following the painting model, discard portions 

) 

Figure 21: Updating t under def. 2 

of O, that lie inside Oi+l• If the remaining portion of Oi no longer intersects the ccw (or cw) limiting line, 
or if Oi+l does not intersect the line, then we must update the support hull and limiting line as before. We 
again use a Graham scan to maintain support points and support disks in A and B with the key property 
that the support points or disks for the limiting lines are the first and last entries in A and B. 

The initial hulls and limiting lines of figure 14 can be reused if 01 and 02 
do not intersect. If they do intersect, the initial support hulls A and B consist 
of the upper and lower intersection points, respectively, followed by 02. The 
limiting lines are tangents to 02 from the intersection points, as shown in 
figure 22. Again, the wedge is greater than 180°. □ 

Proof for Def. 3: We can combine the two previous algorithms to find 
stabbing lines satisfying definition 3. Given the support hulls A and B 
and limiting lines after the first i disks we need to determine the ordered 
stabbing lines that enter and exit O;+l after 0;. Unless Oi+l intersects the 
line-stabbing wedges of both definitions 1 and 2, there are no stabbing lines 
of the first i -fl 1 disks. 

t 

Figure 22: Initial wedge, 
def. 2 

First, discard portions of O; that lie in Oi+l and update the support hulls and limiting lines as under 
definition 2 if the remaining portion of O, no longer intersects one of the limiting lines. Next, discard portions 
of 0,+1 that lie in Oi and update according to definition 1 if necessary. 

If disks 0 1 and 0 2 intersect, then the initial support hulls A and B are the upper and lower intersection 
points, respectively, of the boundaries of 01 and 02. The init ial limiting lines are the two orientations of 
the line through the two intersection points. D 

Proof for Def. 4: The fourth definition is different from the others in that it involves choosing points rather 
than defining an order for intervals. There is an equivalent formulation in terms of intervals, however: no 
later interval may end before an earlier one begins. 
Lemma 12 Let (ai,bi], for i E (1 ... n], be non-empty intervals of the real line. One can choose a set of 
points {p1,P2, .. . ,pn} withp; E [ai,b.J and p;::; Pi for all 1::; i < j::; n if and only if there is no pair j < k 
with b1c < ai . Furthennore, the p;s can be chosen from the set { ai, a2, ... , an}. 

Proof: Form a set of truncated intervals [a,, b,] with a, = max;~i a; and b, = minA:~i bA:. If these 
intervals are non-empty then the set {a'1,a'2, ... ,a'n} satisfies the lemma. Otherwise, some interval 
(a~, b'1 is empty; there is a j ~ i and a k ~ i such that b1,; < a;. □ 
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We are not be able to give a linear time algorithm for this definition of visiting order because the line
stabbing wedge has non-constant complexity. When our disks are constant size polygons or equal radius 
circles, however, we can maintain the wedge by an intersection algorithm that allows us to stab i disks in 
0( i log i) time. 

As before, we want the line-stabbing wedge of the first i disks to be the locus of all points p that have 
a line that visits the i disks before visiting p. Assume that we have two limiting lines t and t' that define 
an angle of lea than 180° and let W; be the region between these lines and not left of disk O;. Define the 
line-stabbing wedge as the intersection n;:s;, W;, drawn shaded in figure 23. 

We can maintain the wedge as n disks are added incrementally 1:1sing 0( n log n) total time, according the 
the following lemma. 
Lemma 13 One can incrementally fonn all wedges for a sequence of n convex polygons with O(n) sides 
altogether or n unit radius circles in a total of 0( n log n) time. 

Proof: A convex polygon is the intersection of the half planes defined by its sides, so it is sufficient to 
compute halfplane intersections incrementally. This can be done by the dual of Preparata's convex hull 
algorithm36: Store the edges of the current wedge in a binary search tree. To add a halfplane h, compute 
the intersection of h and the current wedge in O(log n) time and discard edges outside of h in O(log n) 
time apiece. 

For equal radius circles, Melkman and O'Rourke31 have shown that, when looking from the intersection 
point t n t', the order of the centers of the circles is the reverse of the order of the edges bounding the 
wedge. By storing the centers in a binary search tree, they show how to update the wedge boundary in 
O(nlogn) total time. □ 

Let us first discuss updating the line-stabbing 
wedge and the description of stabbers when disk 
Oi+1 is added. We'll discuss their initialization af
terwards. 

To begin, we must determine if 0,+1 intersects 
the wedge-if it does not, then there is no ordered 
stabber of the first i + 1 disks. We discard por
tions of Oi+1 that lie outside the wedge. If what 
remains does not intersect the ccw (or cw) limiting 
line, then we must update the support hulls, limit
ing lines, and line-stabbing wedge. To perform the 
intersection, find the tangents from t n t' to 01+1 
(or, if t n t' is inside OH1, use the rays along t 
and t') and break 0 1+1 into left and right portions 

Figure 23: Wedge maintenance, def. 4 

where they hit its boundary. Form the region bounded by the right portion and the segments to t n t', 
then intersect it with the wedge by walking along the wedge from t and t'-any edges walked on will be re
moved from the wedge. Then update the limiting lines and support hulls by Graham scan as under previous 
definitions. Finally, use the procedure of lemma 13 to update the wedge using the left portion of Oi+1. 

To initialize the description of stabbers and the line-stabbing wedge, we begin by computing the in
tersection n;<, O; incrementally by a procedure similar to that of lemma 13. While this intersection is 
non-empty, any line that stabs it stabs the disks in order according to definition 4. When O, is disjoint 
from this intersection, then Oi must be disjoint from an disk O; with j < i and a slight modification of the 
intersection procedure of will give the disk O;. We can then limit the directions of stabbers to lie between 
the directions of the inner common tangents directed from O; to Oi and restart processing with. 01, The 
algorithm will find a line stabbing at least the first i disks. D 
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This completes the proof of theorem 11. The stabbing line methods given above can be used to give 
linear-time algorithms to compute a stabbing chain that bas at most twice the minimum number of links just 
as in theorem 8. In the next section we show how to attain the minimum number of links with a dynamic 
programming algorithm. 

,4.5. A dynamic programming approach 

In this section, we give a dynamic programming algorit~m to stab intesecting unit disks. For each disk O,, 
we compute the length of the minimum link ordered stabbing chains that stab disks 0 1 through O, and also 
all possible final segments of minumum chains. Lemma 15 shows that these final segments have a constant 
size description. Theorem 16 shows that, for definitions 1, 2, and 4 of visiting order, we can compute the 
path length and final segments for 0, from the final segments for disks O;, with j < i, by using the line 

,. · stabbing algorithms of sections 4.1 and 4.4. For definitions 1 and 2, we obtain a minimum link stabbing 
paths in 0( n2) time and linear space. For definition 4, the time increases to 0( n2 log n ). Vertices must 
either be unrestricted or restricted to lie in tubes. 

This should be compared to the general graph-based approach oflmai and Iri24 , which, in our terminology, 
would create a graph with an edge (j,k) if there is an ordered stabber from O; through 01, and then search 
the graph for the shortest path. Our dynamic programming method shares the problem of a super-quadratic 
running time, but saves a factor of 0( n) in space by better organization of computation and relaxing the 
restriction that verticies be original data points. 

In sections 4.1 and 4.4 we formed line-stabbing wedges under visiting orders 1, 2, and 4, which were the 
locus of all points p such that some line stabbed the first i disks before stabbing p. We can generalize this 
definition to polygonal chains: the chain-stabbing wedge W. of the first i disks is the locus of all points p 
such that there is a minimum link chain that visits the first i disks and then visits p. 

As an example, if disks 0 1 through Oi can be stabbed by a line, then the chain-stabbing wedge W. is a 
line-stabbing wedge, as defined in the previous sections. If the minimum path stabbing 01 through Oi has 
le > 1 links, then wedge Wi is the union of line-stabbing wedges that first stab a point of a chain-stabbing 
wedge WJ that has a path of k - 1 links and then stab disks 0;+1 through Oi. This is not quite correct 
as stated, because we have not taken into account the restriction placed on turns. The true computation of 
W, goes as follows. Let R; be the region where the turn vertex between 0; and 0;+1 can lie. Region R; 
depends upon which of the three restrictions is placed on turns: With no restriction, R; is the entire plane. 
For tubes, R; is the region bounded by disks O; and 0;+1 and their outer common tangents. For each j < i 
such that the chain-stabbing wedge W; is formed by stabbing paths with k - 1 links, compute the stabbing 
wedge for lines that stab, in order, W; n R;, Oi+l, Oi+2 , ••• , O,. The union of these staDbing wedges is the 
chain-stabbing wedge W,. 

To help make this definition into an efficient computation, we show first that chain-stabbing wedges can 
enlarge only when the path gains an extra link. 
Lemma 14 If the chain-stabbing wedges W. and Wi+1 both have minimum stabbing path~ with k-links, then 
W, 2 Wi+t• 

Proof: A point pis in W,+1 because there is a k-link path that visits the first i+ 1 disks before reaching p. 
The same path certifies that p is also in Wi. □ 

Next, we show that chain-stabbing wedges really are wedge-like. 
Lemma 15 The chain-stabbing wedge Wi is bounded by two rays and, depending on the definition of visiting 
order, a concave (def 1) or convex (def. 2} portion of the boundary of Oi or a convex chain (def 4) of the 
boundary of the intersection of Oh, Oh+l, ... , Oi-1, Oi for some h $ i. , 

Proof: Clearly, the lemma is satisfied by the stabbing wedges for lines, which are chain-stabbing wedges 
defined by 1-link chains. We use induction on the number of links in the chains forming chain-stabbing 
wedge Wi to prove that between any two rays in Wi there is a continuous family of rays in Wi. This 
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will imply that the union is connected and has at most two bounding rays. A separate argument will 
establish the rest of the boundary. . 

Consider two points p' and q' that lie in Wi, which is a chain-stabbing wedge defined form-link chains. 
By its definition, Wi contains rays pp' through p' and qq' through q' where p and q lie in stabbing wedges 
for (m - 1)-link chains. Without loss of generality, we assume that p E W; and q E Wt and that i :5 k. 
We choose p and q such that lk - ii is minimized. 

If k = j, then both p1 and q1 lie in the stabbing wedge of the objects Wt, Ot, Ot+1 , ... , Oi, But this 
is a stabbing wedge for lines, in which pp' can be moved continuously to qq'. 

Otherwise, k > j and we shall derive a contradiction. Notice that qq' stabs objects OH1, ... , Oi in 
order and pp' stabs objects 0;+1, ... , Ot, 01:+1, ... , Oi, In fact, there is a pencil of lines through the 
point of intersection of the lines through pp' and qq' that all stab objects Ot+1, ... , o. in order. 

By the minimality of lk - ii, we know two things: First, if we move p towards p' along pp', then we 
encounter the boundary of W; before we hit the stabbed portion of 0;+1-otherwise we could increase j. 
Second, if we move q away from q' along~. then we encounter the boundary of W1: before we pick up 
a stabbed portion of 01:-otherwise we could decrease k. We continue the proof, assuming that p and q 
have been chosen to lie on these boundaries. We consider the three definitions of visiting order separately. 
Def. 1: Leaving the o~ects in order. The line segment pq intersects object 01, 1 because a path from 
the point on 01: that pp' stabs last, along 01c to the boundary of W1c to q separates p from q in the 
region covered by the . pencil of lines between pp' and qq'. At this point of intersection there is a ray 
from the pencil oflines that stabs 01c, Ot+i, ... , O; in order and whose starting point is in W,1:_ 1 because 
W1c C Wt-1, But this contradicts the minimality of k. 
Def. 2: Entering the objects in order. Again, the line segment pq intersects object 01:, because a path 
from the point on Ot that pp' st.abs first, along Ot to the boundary of W.1: to q separates p from q in the 
region covered by the pencil of lines between pp' and qq'. At this point of intersection there is a ray from 
the pencil of lines that stabs 0.1: 1 01:+1, ... , Oi whose starting point is in W.1:-1- Again, this contradicts 
the minimality of k. 
Def. 4: Visiting a point in each object in order. We again derive a contradiction by considering the 
intersection (in W1c) of the segment pq and object 0.1:. At this point there is a ray from the pencil of lines 
that stabs 0.1:, 0.1:+1, ... , O; whose starting point is in W.1:-1-this contradicts the minimality of k. □ 

We now sketch the dynamic programming algorithm. 
Theorem 16 Under visiting order definitions 1, 2, or 4, one can compute the minimum link path visiting 
disks 0 1 , 0 2 , ••• , On in order that either has no restrictions on vertices or has vertices in the convex hull of 
consecutive disks. Space is O(n). Under definitions 1 and 2 the time is O(n2 logn). Under definition 4, the 
time increaaea to O(n2 log2 n). 

Proof: For definitions 1 and 2 (entering or leaving the objects in the specified order) lemma 15 says that 
a chain-stabbing wedge is an object of constant complexity-we can store all chain-stabbing wedges in 
O(n) space. We also store the number of links to each chain-stabbing wedge. 

With this information, we can carry out the computation of an m-link chain-stabbing wedge Wi 
described above: given the descriptions of all (m - 1)-link chain-stabbing wedges W;, W;+1, ... , Wt, we 
compute each of the line-stabbing wedges of the objects Wt n Rt, Ol+1, 0;+2, ... , O;, for j :5 I. :5 k, 
where Rt is the region where the turn vertex between Ot and Ot+l can lie; Rt is convex and has a 
constant-size description for the restrictions we allow. 

This computation can he carried out in 0( n log n) time by initially running the line-stabbing algorithm 
of section 4.4 on the objects ordered from O; down to 0.1:+1-this requires reversing the current definition 
of visiting order. Then, looping from l = k down to l = j, compute the limiting lines that would he 
formed by adding object Wt n Rt: one. can do this in logarithmic time by binary search of the current 
support hulls. Next, insert Ot into the current line stabbing wedge and decrement l. The limiting lines 
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computed by binary search and O, delimit the desired line-stabbing wedges. 
The union of these stabbing wedges can be computed by finding the extreme rays. Since the compu

tation of a single wedge O(nlogn), the total time is bounded by O(n2 logn). 
For definition 4, we cannot store the chain-stabbing wedges because they have non-constant complex

ity. We store only the two bounding rays for chain-stabbing wedges and construct wedge boundaries 
when we need them by intersecting arcs of unit circles using Melkman and O'Rourke's algorithm31 as in 
section 4.4. This, of course, further complicates the algorithm for finding the bounding rays. 

To compute an m-link chain.;.stabbing wedge Wi, we find the range of all (m - 1)-link chain-stabbing 
wedges W;, W;+1, ... , W1,. Then we compute line-stabbing wedges from Oi down to O; and record all 
the changes to the support hull data structures so that we can delete the objects 0;, ... , 01: by playing 
the record backwards. We compute the wedge Wj by .intersecting the objects before 0; with the wedge 
defined by O; and its two extreme rays, if necessary. Starting with l = j, we compute the limiting lines 
for Rt () W, and Ot+i, ... , Oi by finding common tangents between Rt n W, and the support hulls of 
ol+l I •• • , o, with nested binary search. Then we intersect the boundary of ol+l with the boundary of 
the wedge Wt, if necessary, delete object Ot+1 from the the current line stabbing wedge and decrement l. 
The computation for a single wedge is O(n log2 n) , so the total time is O(n 2 log2 n) . □ 

5. Conclusions and open problems 

We have examined minimum link approximations that lie in convolutions or are ordered stabbers as part 
of a basic approach to approximating paths, polygons, and subdivisions. We have developed some efficient 
algorithms and indicated that others are unlikely to ever be developed. 

There are many avenues that we hope to explore further- the most important being practical studies 
of implementations of theoretically efficient approximation methods. A few of the many open questions 
that remain are: Is computing the minimum link simple polygon enclosing all holes NP-complete? What 
other restrictions on approximation can be handled in subquadratic time? For example, the vertices may be 
required to lie within some 6 < E of the original path. Can subquadratic time algorithms be developed for 
ordered stabbing of intersection objects or for other definitions of visiting order? 
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