
Two Algorithms for Decision Tree Search

by
Runping Qi and David Poole

Technical Report 92-4
February, 1992

Department of Computer Science
The University of British Columbia

Vancouver, B. C. V6T 1Z2
Canada

email: qi@cs.ubc.ca, poole@cs.ubc.ca

@1992 Runping Qi and David Poole

Abstract

In this paper two algorithms for decision tree search are presented. The basic
idea behind these algorithms is to make use of domain dependent information,
in the form of an evaluation function as that used by AO*, along with a search
mechanism similar to the alpha-beta technique for minimax trees. One of the
advantages of our algorithms over AO* is that our algorithms need only linear
space. The solution computed by the first algorithm can be either optimal or
sub- optimal depending on the admissibility of the evaluation function. The sec
ond algorithm is an approximate algori thm which can cast a tradeoff between
computational efficiency and solution quality. Some results are presented on the
correctness of the algorithms and on the quality of the solutions computed by
the algorithms.

Description: decision tree searching

1 Introduction

Decision trees are a very commonly used representation tool for multi-stage decision
problems. A decision t ree representation of a sequential decision problem can be ob
tained di rec tly from the problem [Raiffa, 1968] or derived from the influence diagram of
the problem [Howard and Matheson , 1981] . A na tural computational problem related
to decision trees is to search for the optimal solution.

AO* [Pearl, 1984] is a well known heuristic algorithm that can be used for decision
tree search. However, a major drawback of AO* is that it needs exponential space. In
this paper, we develop two heuristic algorithms for decision tree search. The key idea
behind the algorithms is to use domain dependent heuristic information and a branch
bound search technique, similar to the alpha-beta mechanism [Knuth and Moore, 1975]
for minimax tree search, for decision tree search. The domain dependent heuristic
information used by these algorithms is in the form of three functions: one evaluation
function and two ordering functions. The evaluation function is similar to that used
by AO*. One of the advantages of our algorithms is that they need only linear space.

The solution computed by the first algorithm can be either optimal or sub-optimal ,
depending on the admissibility of the evaluation function. The second algorithm is an
approximate algorithm derived from Al and can cast a tradeoff between computational
efficiency and result quality. We also present some results on the correctness of the
algorithms and the quality of the solutions computed by the algorithms. To our best
knowledge, these algorithms are the first of their kind for decision tree search. In [Qi,
1992], these algorithms are applied to a decision problem arising from navigation in
uncertain environments[Qi and Poole, 1991] [Qi and Poole, 1992].

It is interesting to note that, although there are many other techniques developed
for minimax tree search (e.g., SSS* [Stochman, 1979], aspiration window [Shams et

1

al., 1991], conspiracy number [McAllester, 1988]), it seems that only the alpha-beta
technique can be conveniently applied to decision tree search 1

. This is due to the
difference between the ways node values are computed in decision trees and in minimax
trees.

The remainder of the paper is organized as follows. The next two sections introduce
some basic concepts about decision trees and decision tree search. In Sections 4 and
5, we present our algorithms for decision tree search, and give some theorems about
these algorithms. The proofs of these theorems can be found in the Appendix. Finally,
conclusions and the future work are discussed in Section 6.

2 Decision Trees

A decision tree [Raiffa, 1968] is a tree with two types of nodes: decision nodes and
nature nodes. All successors of a node in a decision tree are of the same type. For the
sake of convenience, we assume that the type of a node is always different from that
of its parent (if it is not the root), and the root of a decision tree is always a decision
node. Each decision node has a set of actions, each associated with an arc from this
node to one of its children. Each action has a cost. Each nature node has a (discret ·)
pIObability distribut ion over its children. In other words, a probability is associated
with each of the children of a nature node, and the probabilities of all the children of a
nature node sum to unit. A subset of decision nodes is designated as terminals. Each
terminal has a value associated with it.

A decision tree can possibly be interpreted as the representation of a process of
sequential decision making . A decision node represents a situation where an agent has
to select one of the actions to act. The root of a decision tree represents the initial
situation. A nature node represents an uncertain situation which will eventually change
to a situation represented by one of its successors with the probability associated with
the successor. At a decision node, if an agent selects and takes an action, a cost
associated with the action is incurred, and an uncertain situation is reached. From
this uncertain situation, some new situation will be reached. This process repeats until
a t erminal is reached. A terminal node represents a situation where an assessment can
be made. Vle assume that the value associated with a terminal is in the form of cost.
(instead of pay-off).

A solution tree T of a decision tree DTREE is a tree with the following character
istics:

1. The root of DTREE is the root of T;

1 Although the treatment in algorithm A2 discussed in Section 5.2 in this paper is similar to the
idea of aspiration window techniques, the cost for this treatment is that the result computed by A2
can be suboptimal.

2

2. If a nature node of DTREE is in T then all of its successors are in T;

3. If a nonterminal decision node of DTREE is in T then exactly one of its suc
cessors is in T .

3 Min-exp Evaluation of a Decision Tree

Let DTREE be a decision tree. A min- exp evaluation (in contrast to the minimax
evaluation of a minimax tree [von Neumann and Morgenstern, 1947]) of DTREE is a
real-valued function DT defined as follows:

1. If N is a terminal: DT(DTREE, N) = value(N) where value is a real-valued
function defined on terminals.

2. If N is a nature node and has l children, Ni, ... , N, in DTREE, let p1 , ... ,p,
be the probabilities associated with Ni, ... , Ni respectively:

DT(DTREE,N) = 'E;==iPi * DT(DTREE,Ni).

3. If N is a decision node and has l children, N1 , .• . , N1 in DTREE, let cost(N,j)
denote the cost of the action associated with the arc from N to Ni for j =
1, ... , l: DT(DTREE, N) = min;==i{ cost(N,j) + DT(DTREE, Ni)}.

DT(DTREE, N) is called the min-exp value of node N with respect to tree DTREE .
The min-exp value of node N in tree DTREE can be interpreted as the minimq,l
expected cost an agent is going to pay if it starts a sequential decision process from
the situation represented by node N. Note that the above definition is applicable
to a solution tree as well since a solution tree is a special decision tree. The problem
considered in this paper is, for a given decision tree DTREE, to find the optimal solution
tree ST such that DT{ST, N) = DT{DTREE, N) where N is the root of ST.

4 A Heuristic Search Algorithm

From the definition of DT, a recursive algorithm can be readily derived for computing
the optimal solution of a decision tree. However, the algorithm needs to Hvisit" all of
the nodes in a decision tree in order to compute the optimal solution.

In this section, we develop an algorithm for decision tree search. The algorithm uses
a kind of domain dependent information and a pruning technique similar to the alpha
beta mechanism for minimax tree search [Knuth and Moore, 1975]. In order to develop
the pruning technique, we contrast a decision tree to a minimax tree. A decision node
in a decision tree can be regarded as a min node since we want to minimize the min
exp value of it. Consequently, a nature node is analogous to a max node. However,

3

a decision tree is different from a minimax tree in two major aspects. First, there is
no cost or other information associated with the edges of a minimax tree, but in a
decision tree, the information of this kind plays an important role in computing both
the min-exp values of nodes and the optimal solution tree of the decision tree. Second
and more importantly, the way to compute the minimax values in a minimax tree is
different from the way to compute the min-exp values in a decision tree. In a minimax
tree the minimax value of a max node is the maximum of the minimax values of its
children, but in a decision tree the min-exp value of a max node is the expectation of
the min-exp values of its children. These two differences make the original alpha-beta.
pruning rules not applicable to a decision tree.

Nevertheless, we still can design a similar pruning mechanism for decision trees
if some admissible evaluation functions are available. An evaluation function for a
decision tree is a function which estimates the min-exp values of the nodes of the
decision tree. An evaluation function f for decision tree DTREE is admissible if, for
every node Nin DTREE, J(N) ~ DT(DTREE, N). As an example, the function that
returns the Euclidean distance between the current and goal positions is an admissible
evaluation function for the decision tree derived from a U- graph based navigation when
the weights in the U- graph represent distanc s [Qi and Poole, 1992). In such a decision
tree, a decision node represents a navigation task of going from the current position
to the goal position in a U-gi·aph, and the min-exp value of a decision node is the
minimal expected cost (distance) of the navigation task represented by the node.

4.1 The pruning mechanism

The pruning mechanism works by maintaining an upper limit on the min-exp value
of every node in a decision tree. The basic idea of the pruning mechanism is: if it is
known that the min-exp value of a node in a decision tree reaches its upper limit, the
node, together with the subtree rooted at it, must not be in the optimal solution, thus,
can be pruned. As a convention, we let N denote a non-terminal node, N1, ... , 1\T1

denote all of the children of N, and v, v1, •.. , vr denote the min-exp values of node
N, N1 , •.. , Nr, respectively, in a given decision tree DTREE. Furthermore, let c1, ... , c1

denote the costs of the edges from N to N1, ... , Nr , respectively, if N is a decision
node, and let p1, ... , Pt denote the probabilities of N1, ... , Ni , respectively, if N is a.
nature node.

Let f be an admissible evaluation function for DTREE. For any node N and an
upper limit bp in DTREE, the pruning mechanism tries to answer the following two
questions: (1) ls DT(DTREE, N) < bp? (2) What is DT(DTREE, N) if it is less than
b7)? In order to illustrate the pruning mechanism, we need to consider the following
cases.

• bp ~ J(N). In this case, due to the admissibility of f, it can be concluded
immediately that bp ~ DT(DTREE, N). Thus, the subtree rooted at N need

4

not be searched.

• bp > f(N) and N is a decision tree. In this case, the questions can be an
swered by searching the subtrees rooted at N1, ... , N,. Let ro = bp and ri =
min{ri-I, ci + vi} for any i, 1 :5 i '.5 l. If ri-1 :5 ci + Vi, then ci + vi is either no
less than the upper limit for N, or no less than ci + vi for some j, 1 :S j < i. In
either case, it is fruitless to search through the subtree rooted at Ni. Therefore,
we can set ri-l - Ci as the upper limit for node Ni.

• bp > f(N) and N is a nature node. In this case, a series of approximations of
v, the min-exp value of N, can be obtained as t he children of N are searched.
Let part ial; = E~=l Vj *Pi+ E~=i+l f(Nj) *Pi. partiali can be considered as
the approximation of v when the values of nodes N1 , . .. , N.- have been obtained.
It is obvious that partiali = partial;- 1 + p.- * V; - p; * f(N;) and partial, =
E~=l vi * Pi = v. Since f is admissible, partial;-1 :5 partial; for any 1 :S
i :S l. Thus, if, for some i, 1 :5 i :5 l, partial; 2:: bp, then, v 2:: bp for
sure. Since v; 2: (bp - partial;-1)/p; + f(N;) implies partiali 2:: bp, we can use
(bp - partiali_i)/p; + f(Ni) as the upper limit of node N;.

4.2 A decision tree search algorithm

A decision tree search algorithm using the pruning mechanism discussed in the pre
vious subsection, called Al , is shown in Fig. 1. In this algorithm, MAXINT is a large
positive number, representing oo; cost (N, i) and prob(N, i) correspond to c; and
Pi respectively. f corresponds to an admissible evaluation function, and order-d and
order-n correspond to two ordering functions which can order the children of decision
nodes and those of nature nodes respectively. These three functions are the abstraction
of the domain dependent information of which Al can make use.

The algorithm consists of two mutually recursive functions: dnode1 (N, bp) and
nnode1(N, bp). As we mentioned in the previous subsection, the pruning mechanism
maintains an upper limit on the niin-exp value of every node. In the algorithm, pa
rameter bp is the upper limit for node N; variable nbp is the upper limit for the child
to be searched next. In dnode1, variable result represents the intermediate back-up
value of node N. As the children of node N are being searched, variable result is
updated, and the upper limit (nbp) for the next child to be searched is computed. If
the upper limit for a child is no more than the value given by the evaluation function,
then the child need not be searched, thus the subtree rooted at the child is cut off.
In nnode1, variable partial represents the series of approximations of the min-exp
value of node N. As the children of node N are being searched, variable partial
is updated and the upper limit for the next child to be searched is computed. It is
important to note here that partial will never decrease as more children of a nature
node are searched, due to the admissibility of the evaluation function. Therefore, a.5

5

dnode1(N, bp)
if N is a terminal then

if value(N) >= bp then return MAXINT; else return value(N);
if f(N) >= bp then return MAXINT;
result= bp; j =#of children of N;
let N1,. N2, ... , Nj = 6rder-d(N);
for (i = 1 to j) do

nbp • result _- cost(N, i);
if nbp > f(Ni) then

result= min {result; cost(N, i) + nnode1(Ni,nbp)};
if result>= bp then return MAXINT; else return result;

nnode1(N, bp)
j =#of children of N;
let N1, N2, ''."• Nj = order-n(N);
partial= f(N1)• prob(N, 1) + + f(Nj) * prob(N, j);
i = O;
while (partial< bp) and (i < j) do

i = i + 1;
nbp = (bp - partial)/prob(i) + f(N_i);
partial=partial+prob(N, i)•(dnodel(Ni, nbp)~f(N1));

if partial>= bp then return MAXINT; else return partial;

Figure 1: The pseudo codes of algorithm Al

6

soon as partial catches up with bp, it is surely known that the min-exp value of the
nature node is equal to or over the upper limit. Thus no more children need to be
searched and pruning happens. Since Al is a depth first search algorithm, the size of
the space it needs is linear in the depth of the tree, provided that the solution tree
need not be constructed explicitly.

As an illustration of this algorithm, let us consider an example. For the purpose
of convenience, we can think the algorithm, for a given decision tree, orders the tree
first (using its ordering functions) and then search the ordered tree in the left- to-right
order2 (in contrast to integrating searching and ordering together). Suppose a decision
tree, after being ordered by the ordering functions used by Al, is shown in Fig. 2 where
we assume that all the terminals have value 10 and all the children of any nature node
have the same probability (0.5). Suppose that the heuristic evaluation function f
used by Al returns zero for every node in the tree. Clearly, this heuristic function
is admissible. The search algorithm starts from the root with oo as the upper limit.
After node 8 is searched, the intermediate result for node 4 is 28. Thus, when node 9
is being explored, its upper limit is 3. After node 18 is explored, the approximation
of the min-exp value of node 9 is 5 which exceeds its upper limit, thus node 19 is cut
off. Another pruning happens right after node 10 is explored. The intermediate result
of node 5 is 25. The upper limit for node 11 is negative, therefore, node 11, together
with all the nodes below it is cut off. The last pruned node for this problem is node
27. Therefore, five nodes are cut off.

Figure 2: An illustration of the search algorithm

2This convention is used throughout this paper.

7

Let DT1 be the function corresponding to Algorithm Al and be defined as:

DT (N b) = { nnodel(N, bp)
1 'P dnodel(N,bp)

if N is a nature node;
otherwise.

The following theorem establishes the correctness of algorithm Al.
Theorem 1 If the evaluation function used by Al is admissible for a given decision

tree DTREE, then DT and DT1 satisfy:

DT (N b) = { DT(DTREE, N)
1 ' p MAXINT

if DT(DTREE, N) < bp
otherwise

for any node N in the decision tree, and a number bp.
Corollary 1 If the evaluation function used by Al is admissible for a given decision

tree DTREE, then DT and DT1 satisfy: DT(DTREE,N) = DT1(N,oo) for any
node N in the decision tree.

Let Ji and h be two evaluation functions. ft is said more inform,ed than h for
a decision tree if J1 (N) ~ h(N) for every nodes N in the decision tree. Suppose that
both evaluation functions Ji and h are admissible and ft is more informed than h,
it is clear that the performance of Al with [t will be no worse than that of Al with
h for the same decision tree.

As an illustration on the effect of the evaluation function, let us assume that for
the same decision tree, we now have a more informed heuristic function f' defined as
follows: J'(Ni) = 16 for i = 2, ... , 7 and f'(Ni) = 7 for i = 8, ... , 31. ·when applying
Al with f' to the decision tree ordered as shown in Fig. 2, nine nodes (nodes in the
subtree rooted at nodes 9, 11, and 13) will be cut off.

4.3 Tree ordering

Note that the correctness of algorithm Al is independent of the ordering functions .
However, like minimax tree search, the order in which the children of nodes in a deci
sion tree are searched has a great effect on the efficiency of the algorithm. Generally
speaking, we want to search first the branch of a decision node that can result in the
final (minimal) min-exp value of the decision node in hope that as many other branches
as possible can be pruned; and we want to search first the child of a nature node which
can contribute most to the min-exp value of the nature node in hope that the partial
accumulation can reach bp as early as possible.

As an illustration on the effect of ordering, let us consider the decision tree shown
in Fig. 3. This is the same decision tree as the one in the previous example except that
the orderings of the children of some nodes are different. It can be verified that when
algorithm Al with heuristic function f is applied to this tree, nine3 nodes (nodes 27,

3 in contrast with five in the previous example.

8

29, 19, and nodes in the subtrees rooted at nodes 10 and 11) will be cut off; and when
Al with f' is applied to this tree, twenty one4 nodes (nodes in the subtrees rooted at
nodes 13, 14, and 2) will be cut off.

~

Figure 3: An illustration on the effect of children ordering

If we regard that, for a given tree, the functionality of an ordering function is to
order the nodes in the tree according to the estimations of their min-exp values, and
that the functionality of an admissible evaluation function is to estimate admissibly
the min-exp values of the nodes in the tree, it seems fair to say that it is easier to
find good ordering functions than to find a good admissible evaluation function for a
decision tree. As a special case, we can use an admissible evaluation function to define
the ordering functions. In particular, we can define order d in such a way that for a
decision node N, orderd(N) = N1, ... , N1 satisfies:

for any i,j, 1 ~ i ~ j ~ l. Similarly, for a nature node N, ordern(N) = N1 , ... , N1

satisfies:
f(Ni) *Pi~ J(Nj) * Pi

for any i, j, 1 ~ i ~ j ~ l. ,vith this definitions of the ordering functions, child Ni
of a decision node N will be cut off if there exists a child Ni of N, i < j, such that:

DT(DTREE, Ni)+ ci ~ f(Nj) + ci.

4 in contrast with nine in the previous example.

9

Let D. = f(Nj) + ci - (!(Ni)+ ci), the above inequality is equivalent to:

DT(DTREE, Ni) - f(Ni):::; D..

The left hand in the above inequality is the difference between the min-exp value of
node Ni and its lower bound given by function f, and the right hand is the difference
which determines the search order between Ni and N; . Obviously, the more informed
the evaluation function is, the better the chance for the brother nodes being pruned.
Similarly, children Ni+ 1, •.. N1 of a nature node N will all be cut off if

j I

L DT(DTREE, N1e) *Pie+ L J(N1e) * Pie ~ bp.
k=l le=i+l

It is easy to verify that with the ordering functions defined as above, if f(N) =
DT(DTREE, N), all the non-optimal successors of any decision node will be cut off,
then the subtree searched by Al is exactly the same as the optimal solution tree.

For a uniform tree of depth 2d + 1 where each nonterminal decision node has b1

children and each nature node has b2 children, then the total number of the terminal
nodes in the decision tree is (b 1b2)d while the number of the terminal nodes in the
optimal solution tree is only b~. Therefore, the ratio of the performance in the best
case to that in the worst case is bf. We call this ratio is the ideal cutoff ratio. It is
clear that the bigger the b1 , the larger the ideal cutoff ratio, thus, the more potential
Al has. An intuitive interpretation on this is that the bigger b1 , the more important
the domain knowledge.

5 Relaxing the Optimality Requirement

For a decision tree rooted at N, if it is acceptable to find a suboptimal solution then
we can improve on the performance of decision tree search algorithms in two ways.
The first one is that we can use inadmissible evaluation functions. The second one is
that we can adjust the initial back-up values dynamically during search.

5 .1 Using inadmissible evaluation functions

In the previous section, it is required that the evaluation function f must be ad
missible. For A* algorithm, Harris [Harris, 1974] has argued that the condition of
admissibility is too restrictive. His arguments are applicable to decision tree search as
well. Although it may be impractical to find a good evaluation function that never vi
olates the admissibility condition, it is often easier to find a function that estimates the
min-exp values well, but occasionally overestimates them. The following two theorems
establish the relationship between inadmissible evaluation functions and the min-exp
value of the resulting solution.

10

Theorem 2 Suppose Al uses evaluation function J for decision tree DTREE. If
f satisfies: f(N) ~ DT(DTREE, N) + b, for every node Nin DTREE, then for every
node N in the decision tree

DT(DTREE, N) + b ~ bp if DT1(N, bp) ~ bp and

DT(DTREE,N) +b ~ DT1(N,bp) if DT1(N,bp) < bp.

Theorem 3 Suppose Al uses evaluation function f for decision tree DTREE. If
the costs of all the edges in the decision tree are non-negative, and f satisfies:

J(N) ~ (1 + b) * DT(DTREE, N), for every node N in DTREE,

then for every node N in the decision tree

DT(DTREE, N) * (1 + b) ~ bp if DT1(N, bp) ~ bp and

DT(DTREE, N) * (1 + b) ~ DT1(N, bp) if DT1(N, bp) < bp.

5.2 A bounded quality search algorithm

Another algorithm, A2, is given in Fig. 4. A2 can be used to compute suboptimal
solutions, with bounded quality, of decision trees.

Algorithm A2 is the same as Al except for that the variable nb in function dnode2
is intentionally decreased by a factor of (1- €) in the situations where variable result
is less than variable bp5 • When variable nbp is decreased, the next child to be explor d
is more likely to be cut off. Consequently, the computation speed increases. This
alg~::>rithm can make an earlier resolution on the choices of a decision node which a.re
all close to optimal. Therefore, A2 can be much more efficient than Al for a decision
tree where the min-exp values of all solution trees of the decision tree vary little but
the optimal solution tree of the decision tree is toward the right of the tree.

For a given decision tree DTREE, and a constant f E [O, 1), A2 will compute a sub
optimal solution with min-exp value no more than DT(DTREE, N)/(1 - c) for every
node N in the solution tree. More accurately, let DT2 be the function corresponding
to Algorithm A2 and be defined as:

DT (N b) = { nnode2(N, bp)
2 ' P dnode2(N,bp)

if N is a nature node;
otherwise.

The next two theorems establish the relationship between A2 and Al.

5In this case, at least one solution tree with min-exp value less than the initial back-up value, bp,
is found for the sub-decision-tree rooted at node N. This treatment is similar to that of aspiration
window [Shams et al., 1991].

11

dnode2(N, bp)
if N is a terminal then

if value(N) >= bp then return MAXINT; else return value(N);
if f(N) >= bp return MAXINT;
result= bp; j =#of children of N;
let N1, N2, ... , Nj = order-d(N);
for (i = 1 to j) do

if result= bp then nbp = result - cost(N, i);
else nbp = (1 - epsilon)* (result - cost(N, i));

if nbp>f(Ni) then result=min{result;cost(N,i)+nnode2(Ni,nbp)};
if result>= bp then return MAXINT; else return result;

nnode2(N, bp) same as nnode1(N, bp) of A1

Figure 4: The pseudo codes of algorithm A2

Theorem 4 If the evaluation function f used by algorithms Al and A2 is admis
sible for a decision tree DTREE, then for any node N in DTREE and number bp,
DT2(N, bp) < bp iff DT1(N, bp) < bp.

The intuitive meaning of this theorem is that for any node N in a decision tree, if
we apply algorithms Al and A2 with the same upper limit bp to the subtree rooted at
N, then either both algorithms report that the min-exp value of node N is less than
bp, or both report that the min-exp value is no less than bp. This fact is crucial for
the validness the next theorem.

Theorem 5 If the evaluation function J used by algorithms A2 is admissible for
DTREE, then for any node N in DTREE, DT1(N, bp) 2:: (1 - £) * DT2(N, bp).

6 Discussion and Conclusions

In this paper we presented two algorithms for decision tree search. The basic idea
behind these algorithms is to make use of domain dependent information and a search
mechanism similar to alpha-beta technique for minimax trees. The domain dependent
information used by our algorithms is in the form of three functions: one evaluation
function and two ordering functions. The advantage of our algorithms over AO* is
that they need only linear space while using similar domain dependent information.

The research presented in this paper was originally motivated by the problems of
navigation with uncertainty (Qi and Poole, 1991, Qi and Poole, 1992]. In [Qi and
Poole, 1991], we showed how the problem of devising navigation plans in uncertain

12

environments can be formulated as a problem of decision tree evaluation. For that
particular domain, ordering functions and admissible evaluation function can be defined
in a straightforward way.

Future work can be carried in several directions. First, we hope that a theoretic
analysis, Hke that for game tree searching, can be carried out on the average perfor
mance of our algorithms. Second, more experimental studies on the performance of
algorithms can be carried out by applying them to practical domains.

Acknowledgement The first author is supported by University Graduate Fellowship
of UBC. The research reported in this paper is partially supported by NSERC grant
under operation number OGP0044121. The authors wish to thank A. Mackworth, M.
Queyranne, K. Kanazawa, G. Lin and Y. Zhang for their valuable comments on the
content and/or the presentation of this paper.

References

[Harris, 1974] L. R. Harris. The heuristic search under conditions of error. Artificial
Intelligence, 5(3), 1974.

[Howard and Matheson, 1981] R. A. Howard and J. E. Matheson. Influence diagrams.
In R. A. Howard and J. E. Matheson, editors, The Principles and Applications of
Decision Analysis, VolumII. Strategic Decision Group, Mento Park, CA., 1981.

[Knuth and Moore, 1975] D. E. Knuth and R. W. Moore. An analysis of alpha beta
pruning. Artificial Intelligence, 6(4), 1975.

[McAllester, 1988] D. A. McAllester. Conspiracy numbers for minmax search. Artificial
Intelligence, 1988.

[Pearl, 1984] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley Publishing Company, 1984.

[Qi and Poole, 1991] Runping Qi and David Poole. High level path planning with
uncertainty. In Proc. of the Seventh Conference on Uncertainty in AI, 1991.

[Qi and Poole, 1992] Runping Qi and David Poole. A framework for high level path
planning with uncertainty. Technical report, Department of Computer Science, Uni
versity of British Columbia, 1992.

[Qi, 1992] Runping Qi. A study of high level path planning with uncertainty. Technical
Report Ph. D. thesis, forthcoming, Department of Computer Science, University of
British Columbia, 1992.

13

[Raiffa, 1968] Howard Raiffa. Decision Analysis. Addison-Wesley Publishing Com
pany, 1968.

[Shams et al., 1991] R. Shams, H. Kaindl, and H. Horacek. Using aspiration windows
for minimax algorithms. In JJ()AI-91, 1991.

[Stochman, 1979] G. C. Stochman. a minmax algorithm better than alpha-beta? Ar
tificial Intelligence, 12(2), 1979.

[von Neumann and Morgenstern, 1947] J. von Neumann and 0. Morgenstern. Theory
and Games and Economic Behavior. Princeton University Press, 1947.

14

A The Proofs of Theorems

Theorem 1 For a given decision tree DTREE and an admissible evaluation function
f, DT and DT1 .satisfy the following relation:

DT (Nb) = { DT(DTREE,N)
1 ' p MAXINT

for any node N in DTREE and a number bp.

if DT(DTREE,N) < bp
otherwise.

Proof We first observe two facts. The first one is that function DT is equivalent
to DT0 defined as follows:

Case 1 N is a terminal:
DTo(N) = value(N). (1)

Case 2 N is a nature node:
DT0(N) = t0

. (2)

where t0 = t? and t?, l ~ i ~ l is recursively defined as follows:

(3)

If f is admissible, then t? ~ t?+l ' for i = 1, ... , l - l.

Case 3 N is a decision node:
DTo(N) = t0 (4)

where t0 = t? and t?, l ~ i ~ l is recursively defined as follows:

(5)

In the above mathematical characterization, ci denotes the cost of the edge from a
decision node to its i-th child, and Pi denotes the probability associated with the i-th
child of a natural node. They correspond to cost (N, i) and prob (N, i) respectively
in algorithms Al and A2. This convention will be used in the rest of the paper. Thus,
it suffices to prove

r _ { DTo(N)
DTi(l\' bp) - MAXINT

for every node N in DTREE.

if DTo(N) < bp
otherwise.

The second fact is that the definition of DT1 can be further refined as follows:

15

(6)

Case 1 N is a terminal;

{
value(N)

DT1(N, bp) = MAXINT

Case 2 N is a nature node:

{
tl

DTi(N, bp) = MAXINT

if value(N) < bp
otherwise.

if t 1 < bp
otherwise.

where t1 = tl and tf, 1 ~ i ~ l is recursively defined as follows:

Case 3 N is a decision node:

{
tl

DT1(N, bp) = MAXINT

if tL1 > bp.
othenvise.

if t 1 < bp
otherwise.

where t 1 = tr and t;, 1 ~ i ~ l is recursively defined as follows:

Based on these two facts, relation (6) can be proved by induction on the tree.

1. N is a terminal. The relation is obvious.

(7)

(8)

(9)

(11)

2. N is a decision node. Suppose the relation holds for all the children of N. Our
first observation here is that, under the induction hypothesis, equation (11) is
equivalent to the following simpler one:

tA = bp;
t; = min{t;_1,ci +DT1(Ni,t;_1 - ci)} (12)

Our second observation here is that the conclusion of the theorem holds too for
this case, according to equations (10) and (12), if we can prove the following
claim:

t; < bp iff t? < bp; and if t? < bp, then t? = t; , otherwise, t; = bp,
where t; and t? are defined by equations (12), (5) respectively.

16

We prove the above claim by induction on i.

i = 1. t~ = min{bp, c1 + DT1(N1, bp - c1)} and t~ = c1 + DTo(Ni).

If

then,
DTo(N1) 2:: bp- c1.

By the outer induction assumption, we have:

Therefore
t~ = bp.

If

then,
DTo(N1) < bp - c1.

By the outer induction assumption, we have:

DTo(N1) = DT1(N1, bp - c1);

c1 + DT1(N1, bp - c1) = c1 + DTo(N1) < bp.

Therefore, t} = c1 ·+ DTo(N1) = t~. The induction base holds.

Suppose the claim is true for i = k. For i = k +I, we have:

tl+l = min{t1,ck+I + DT1(Nk+1,tl- ck+l)};

t2+1 = min{ tZ, ck+l + DTo(Nk+l)}.

Now, we have two cases:

(A) tZ+i 2:: bp. In this case, we have t2 2:: bp and c1.:+ 1 + DT0 (N1.:+1) ~ bp. Thus
we can obtain tl = bp by the inner induction assumption. Furthermore, since

then, by the outer induction assumption, we have:

Therefore, tL+i = bp.

(B) tZ+1 < bp, In this case, we need to consider three subcases:

17

(a) tZ 2:'.: bp and ck+l + DT0(Nk+i) < bp. In this subcase, we have:

DTo(Nk+i) < bp - ck+i;

t2+1 = ck+l + DTo(NH1) < bp.

By the inner induction assumption, we have: tl = bp. By the outer induction
assumption, we obtain:

Thus,
ck+I + DT1(Nk+1, tl - ck+1) = DTo(Nk+1) + ck+I < bp.

Therefore, ti+i = ck+1 + DT1(N1..-+1,tl- CJ.:+1) = tZ+i ·

(b) tZ < bp and tZ::; ck+1 + DTo(Nk+I). In this subcase, we have:

t2+ 1 = t2 = tl (by the inner induction assumption);

DTo(NH1) 2:'.: t2 - ck+l = tl - Ck+1•

Thus, by the outer induction assumption, we have:

therefore, ti+i = ti = tZ+i .

(c) tZ < bp and tZ > Ck+1 + DTo(Nk+I) In this subcase, we have:

t2 = tl (by the inner induction assumption);

t2+1 = Ck+I + DTo(Nk+1)

DTo(NH1) < t2 - ck+l = tl - Ck+I·

Thus, by the outer induction assumption, we have:

Therefore, tl+i = DT1 (N1.:+1, ti - ck+i) + CJ.:+1 = tZ+i.

In summary, the claim holds for i = k + I . Consequently, the claim holds by
induction.

3. N is a nature node. Suppose the conclusion of the theorem holds for all the
children of N. Similarly, the conclusion follows from the the following claim:

t} < bp iff t? < bp ; and if t? < bp , then t? = tf , where t} and t? are
defined by equations (9), (3) respectively.

18

I I

This claim can be proved by a similar induction oil t? and tf. In the proof of
this claim, we need to use the fact that t? ::; t?+1 for i = 0, ... , l - l.

In summary, the theorem holds in general. D

Theorem 2 Suppose Al uses evaluation function J for decision tree DTREE. If
f satisfies:

J(N)::; DT(DTREE,N) +b,for all node Nin DTREE,

then
DT(DTREE,N) + b ~ bp if DT1(N,bp) ~ bp;

and
DT(DTREE, N) + b ~ DT1(N, bp) if DT1(N, bp) < bp.

Theorem 3 Suppose Al uses evaluation function J for decision tree DTREE. If
the costs of all the edges in the decision tree are non-negative, and f satisfies:

J(N) ::; (1 + b) * DT(DTREE, N), for every node N in DTREE,

then for every node N in the decision tree

DT(DTREE, N) * (l + b) ~ bp if DT1(N, bp) ~ bp;

and
DT(DTREE, N) * (l + b) ~ DT1(N, bp) if DT1(N, bp) < bp.

Since DT is equivalent to DT0 , all the occurrences of DT(DTREE, N) in the
above theorems can be replaced with DT0(N). Therefore, for Theorem 2, it suffices
to prove that for every node N in DTREE

DTo(N) + b ~ bp if DT1(N, bp) ~ bp;

and
DT0(N)b ~ DT1(N, bp) if DT1(N, bp) < bp

For Theorem 3, it suffices to prove that for every node N in DTREE

DT0(N) * (1 + b) ~ bp if DT1(N, bp) ~ bp;

and
DT0 (N) * (1 + b) ~ DT1(N, bp) if DT1(N, bp) < bp

Actually, the proofs of Theorems 2 and 3 are very similar. Here we just present the
proof of Theorem 3.

Proof of Theorem 3

19

Ca,se 1 N is a terminal. Trivial.

Case 2 N is a nature node.
Suppose the relations hold for all the children of node N. We need to consider
the following two cases:

- DT1(N, bp) < bp . According to equations (8) and (9), we have t 1 = tl < bp,
thus, DT1(N, bp) = t}. Furthermore, by the induction assumption, we
have: DT1(Ni, nbpl) < nbpf, thus, DT1(Ni, nbpl) S (1 + 8) * DTo(Ni) for
i = 1, ... , l. According to equations (3) and (2), we obtain:

I

DTo(N) = t? = LPi * DTo(Ni)
i=l

According to equation (9), we obtain:

I I

tj = LPi * DT1(Ni, nbp}) S LPi * DT1(Ni) * (1 + 8) = t? * (1 + 8)
i=l i=l

Thus, DT1(N, bp) S DT0(N) * (1 + 8).

- DT1(N, bp) ~ bp. According to equations (8) and (9), we know that t 1 =
t} ~ bp. This implies that either t~ ~ bp or there exists k, 1 S k S l such
that tL1 < bp and ti ~ bp. In the former case, we have:

I I

DTo(N) * (1 + b) = LPi * DTo(Ni) * (1 + 8) ~ LPi * J(Ni) = t5 ~ bp
i=l i=l

In the latter case, we can obtain:

DT1(Ni, nbpJ) ~ nbpJ for OS j < k

DT1(Nk, nbpl) ~ nbpl

where nbpk = (bp - (tL1 - J(Nk) * Pk))/Pk. Consequently, we have:

and

Therefore:

20

tL1 +Pk* (I+ 8) * DT2(Nk) - f(Nk) * Pk > bp

According to equation (9), we have:

k-1 I

tL1 = L DT1(Ni, nbp;) *Pi+ L J(Ni) * Pi
i=l i=k

Thus,

k-l I

L DT1(Ni, nbp]) *Pi+ Pk* (l + 8) * DT2(Nk) + L J(Ni) *Pi~ bp
j=l i=k+l

k I

L(l + 8)DTo(Ni) *Pi+ L (I+ 8)DTo(Ni) * Pi ~ bp
j=l i=k+l

Therefore,

I

(1 + 8)DTo(N) = L(l + 8)DTo(Ni) * Pi ~ bp
i=l

Case 3 N is a decision node.
Suppose the relations hold for all the children of node N. The relations hold too
for this node if we can prove

(13)

for i = 0, ... , l, where t? and tf are defined by equations (3) and (16) respectively.
This inequality can be proved by induction on i.

Basis: i = 0, trivial.

Induction. Suppose the inequality is true for i = k. Consider the case when
i=k+l.

- tZ ~ ck+l +DTo(Nk+1). In this case, we have tZ = tZ+i. On the other hand,
it is easy to verify that t1+1 ~ tl. By the inner induction assumption, we
conclude t1+1 ~ (1 + 8) * t2+1 .

- tZ > ck+1 + DTo(Nk+1) = t2+1 . In this case, if tl - ck+1 ~ J(Nk+1), then,

tl+l = tl ~ Ck+1 + f(Nk+i) ~ Ck+I + (1 + 8) * DTo(Nk+1)

Since ck+ 1 ~ 0 and 8 ~ 0, we have tl+i ~ (1 + 6) * tZ+i .
If tl - Ck+I > f(Nk+1), then,

tk+t = min{ tl, ck+l + DT1 (Nk+l, t}. - ck+l)

21

When t}-ck+l ~ DT1(Nk+l, tl-ck+i), by the outer induction assumption,
we have:

(1 + 8) * DTo(Nk+1) ~ tl - ck+l

tl+i = tl ~ (1 + 8) * DTo(Nk+1) + ck+1

Since ck+l ~ 0 and 8 ~ 0, we have tl+l :5 (1 + 8) * tZ+1 • when tL - ck+ 1 >
DT1(Nk+I, tl - ck+1), by the outer induction assumption, we have:

D

(1 + 8) * DTo(Nk+i) ~ DT1(Nk+1, tl - Ck+1)

tl+i = ck+1 + DT1(Nk+1, tl - ck+1) ~ ck+l + (1 + 8) * DTo(Nk+i)

Since ck+l ~ 0 and 8 ~ 0, we have tl+l :5 (1 + 8) * tZ+i.

In order to prove Theorems 4 and 5, we first observe that DT2 can be further
refined as follows.

Case 1 N is a terminal.

{
value(N)

DT2(N, bp) = MAXINT

Case 2 N is a nature node:

{
t2

DT2(N, bp) = MAXINT

Case 3 N is a decision node:

{
t2

- DT2(N, bp) = MAXINT

if value(N) < bp
otherwise.

if t2 < bp
otherwise.

if t2 < bp
otherwise.

where t2 = tr and tf, 1 :5 i ~ l is recursively defined as follows:

t5 = bp;

(14)

(15)

(16)

(17)

b 2 _ { bp - Cj if tL l = bp
n Pi - (1 - c) * (tL 1 - ci) otherwise; (18)

t2 _ { tL1 if nbpf :5 f(Ni)
i - min{ tL1, Cj + DT2(N;, nbpn} otherwise

22

The following proofs are based on the above characterization of DT2 .
Lemma 1 If the evaluation function f used by algorithm A2 is admissible for a

decision tree DTREE, then for any node N in DTREE and a number bp, DTo(N) ~
DT2(N, bp).

Proof By induction.
It is trivial for the cases of N being a terminal and a nature node. Let us consider

the case of N being a decision node. Suppose the conclusion of the lemma is true for
all the children of N. We observe that the conclusion in the lemma is true in this case
as well if we can prove the following claim:

tr = bp or tr ~ t? for i = 1, ... , l, where tr and t? are defined by equations
(18) and (5) respectively.

This claim can be proved by a simple induction on i. □

Lemma 2 If the evaluation function / used by algorithms Al and A2 is admissible
for a decision tree DTREE, then for any node N in DTREE and numbers bp1 and
bp2, if bpi ~ bpz, then DT1(N, bpi) ~ DT2(N, bpz).

Proof By induction.
It is trivial for the cases of N being a terminal and a nature node. Let us consider

the case of N being a decision node. Suppose the conclusion in the lemma is true for
all the children of N .

Observe that the conclusion in the lemma is true in this case as well if we can prove
the following claim:

t; ~ tr ~ bp1 for i = 1..l, where t} and tr are defined by equations (12)
and (18) respectively.

This claim can be proved by a simple induction on t} and tf.
For i = 1, the claim is true by the above assumption and equations (12) and (18).
Suppose the claim is true for i = k. According to equations (12) and (18), it

suffices to prove
(19)

\Ve need to consider two cases here. (A) tl > DT1(Nk+I, (tl - ck+1)) + ck+1 . In this
case, we have:

ti+1 = DT1(Nk+l1 (ti - Ck+1)) + Ck+1;

DT1(Nk+1, (ti - Ck+1)) < tl - Ck+l;

and (by Theorem 1)

23

Thus, by Lemma 1, we have: DT0 (N1<:+1) ~ DT2(N1<:+1, nbpi). Therefore, inequality
(19) is established.

(B) tl ~ DT1(Nk+1, tl - ck+1) + ck+l. In this case, we have:

By Theorem 1, we have:

DT1(Nk+l, tl - C1<:+1) ~ tl - Ck+1;

tl = tl+1·

DTo(Nk+1) ~ tl - ck+l·

Thus, by Lemma 1, we have DT2(Nk+l, nbpn ~ tl - Ck+l. Therefore, inequality (19)
is established. D

Theorem 4 If the evaluation function f used by algorithms Al and A2 is admis
sible for a decision tree DTREE, then for any node N in DTREE and number bp,
DT2(N, bp) < bp iff DT1(N, bp) < bp.

Proof By induction.
It is trivial for the cases of N being a terminal and N being a nature node. Let

us consider the case of N being a decision node. Assuming that the theorem holds
for all the children of N. First, DT1(N,bp) < bp if DT2(N,bp) < bp can be derive l
immediately from Lemma 2. Now suppose that DT1 (N, bp) < bp. There must xist.
at least one child, say Ni, of N such that DT1(N;, bp - cj) < bp - Cj. If t7_ 1 < bp,
then t2 < bp. Thus DT2(N, bp) < bp. Otherwise, t7_ 1 = bp. According to quatio.n
(18), t; = rnin{bp, Cj + DT2(Nj, bp - CJ)}. By the induction assumption, we have:

DT2(Nj, bp - Cj) < bp - Cj,

Therefore, t; = c; + DT2(N;, bp - c;) < bp. Thus, t2 < bp. In summary, t2 < bp can
be derived from DT1(N, bp) < bp. Therefore, we can conclude

DT1(N, bp) < bp iff DT2 (N, bp) < bp.

The theorem holds by induction. D

Lemma 3 For any node N in a decision .tree and number bp, DT2 (N, bp) < bp
or DT2(N, bp) = MAX INT.

Proof This result can be verified directly by examining the definition of function
DT2 . D

Theorem 5 If the evaluation function f used by algorithms A2 is admissible for
a decision tree DTREE, then for any node N in DTREE, DT1(N, bp) ~ (1 - t) *

24

Proof of Theorem 5 By induction.
It is trivial for the cases of N being a terminal and N being a nature node. Let

us consider the case of N being a decision node. Assuming that the conclusion of this
theorem holds for all the children of N. The conclusion of this theorem will also hold
for N if we can prove

(20)

for i = 0, ... , l, where tf and tr are defined by equations (12) and (18) respectively.
In proving inequality (20), we will use the fact

(21)

which can be derived from equation (18) directly.
For i = 0, tA = bp = t6. Inequality (20) is true.
Suppose inequality (20) is true for i = k. For i = k + 1, we need to consider three

subcases.
(A) tl+i = ·tl. Since ti+I ~ ti, inequality (20) follows from the inner induction

assumption.
(B) tl+i < tl and tl+i < tl.

In this case, we have: ·

and

Thus,
DT2(Nk+1, nbp~+l)) < nbp~+l (by lemma 3).

By Lemma 1, Theorem 4 and Theorem 1, we have:

By Theorem 1 and equation (21), we can deduce:

and
DT1(Nk+1, nbp~+1) = DTo(Nk+I)-

On the other hand, ·we can obtain from the outer induction assumption:

25

Thus,

Therefore,

tl+l = Ck+I + DTo(Nk+l) ~ Ck+l + (1 - €) * DT2(Nk+1, nbpz+I);

tl+i ~ (1- €) * tz+i·

(C) t1+1 < ti and ti+i = t~ . In this case, we have:

tl+l = Ck+l + DT1(Nk+1, tl - Ck+1);

and

Thus, we have:
DT2(Nk+1, nbp%+1) ~ (1 - E) * (t% - ck+1).

According to Theorem 4, we obtain:

DT1(Nk+1, nbp%+1) ~ (1 - E) * (t% - Ck+1).

Therefore, DTo(Nk+i) ~ (1 - E) * (ti - Ck+1). From now on, we can derive as follows:

(1 - E) * ck+l + DTo(Nk+1) ~ (1 - E) * t%;

tl+l = Ck+l + DTo(Nk+l) ~ (1 - €)*tr

In summary, inequality (20) is true in all the three subcases, hence, is true for
i = k + l . Therefore, the conclusion of the theorem is true for the case of N bei.ng a
decision node. Now, we conclude that the theorem is true in general by induction. D

26

