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1. Introduction 

Connectivity properties of graphs have been extensively studied in theoretical computer science because 

of their importance in a variety of areas. One such area involves efforts to use connectivity properties of 

computation graphs to prove lower bounds. One early attempt was by Valiant in [V], where he showed 

that computation graphs for matrix/vector products are grates. An acyclic directed graph is said to be a 

grate if a quadratic number of input-output pairs remain connected after the removal of any sufficiently 

small linearly sized subset of the vertices. If grates could be shown to require a superlinea.r number of 

edges, this would yield a superlinear lower bound on the size of circuits for matrix/vector products. In [~], 

however, Schnitger gave a construction of grates with a linear number of edges. 

Paul, Pippenger, Szemeredi and Trotter [PPST] were able to prove that the computation graphs of one 

dimensional Turing machines do not possess a grate-like property. Specifically they showed that if n is the 

number of vertices in the computation graph, it is possible to remove o(n) edges such that each vertex has 

o(n) ancestors in the remaining graph. As a consequence, they proved that linear-time bounded nonde

terministic Turing machines a.re more powerful than linear-time bounded deterministic Turing machines. 

Recently Razborov and Wigderson suggested the problem of trying to prove that for any acyclic directed 

graph of logarithmic depth, there is a small linearly sized vertex subset whose removal leaves at most a 

linear number of input/output pairs connected. Their hope was to obtain a lower bound for the size of 

logarithmic depth circuits which compute matrix/vector products by combining this with recent advances 

in matrix rigidity. 

This note shows that Schnitger's grate construction can be used to construct acyclic directed graphs 

of logarithmic depth, with the property that a superlinear number of input-output pairs remain con

nected after the removal of any sufficiently small linearly sized subset of the vertices, thus settling the 

Raz borov /Wigderson question in a negative fashion. The technique yields the analogous, and asymptot

ically optimal, result for graphs of arbitrary depth, generalizing Schnitger's result for grates. The proof 

requires a new result on connectivity properties of paths of expanding graphs which may have applica

tions elsewhere. In addition, the result shows that in the worst case, using Valiant's depth reduction tech

niques [V] is an almost optimal method for reducing the number of connected input-output pairs. This 

was known, as a consequence of Schnitger's results, for graphs of large (i.e. almost linear) depth, but is 

new for graphs of shallower depth. 

Sections 2 and 3 describe the construction for logarithmic depth. Section 3 concludes with the general

ization to arbitrary depth, and a comparison of the result with Valiant's technique for reducing the num

ber of connected input/output pairs via depth reduction. For clarity of exposition, floors and ceilings are 

omitted throughout. 
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2. The Construction 

An input (output) in an acyclic directed graph is a vertex with in-degree (out-degree) equal to zero. 

The depth of an acyclic directed graph is the length of the longest directed path joining an input to an 

output. We say two vertices are connected if they are joined by a directed path. We wish to construct a 

family of graphs, {Gm} with the following properties. 

There exist positive constants o, /3, A such that for m sufficiently large we have 

2.1 Gm is an acyclic directed graph of degree A with m vertices 

2.2 Gm has depth ~ ,8 log m. 

2.3 If any subset of at most om vertices is removed from Gm, at least m(l + o )(logm)l/
3 

input/output pairs 

remain connected. 

By hanging an extra input and output on every vertex in Gm (see Figure 1), we see that we can replace 

2.3 by the property: 

2.3' If any subset of at most om vertices is removed from Gm, at least m( 1 + o )(log m )l/
3 

pairs of vertices 

remain connected. 

input 
output 

-+ 

Figure 1. 

We will call a family of graphs satisfying properties 2.1, 2.2 and 2.3' a family of weak grates. 

In [S], Schnitger constructs a family of graphs {Hn} with the following properties. 

There exists a positive constant c such that 

2.4 Hn is an acyclic directed graph of bounded degree with n vertices 

2.5 If any subset of at most en vertices is removed from Hn, the remaining graph conta_ins at least cn1l3 

vertex-disjoint paths of length n2/ 3 • 
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Before giving the details of the construction, we first sketch the underlying intuition. A natural ap

proach to converting a Schnitger graph into a weak grate is to take n = log m, and to create Gm by re

placing each vertex v of Hn by a set Sv of m/n new vertices. We will call each such Sv a supervertex. 

We also replace each directed edge ( u, v) in H n with a bounded degree directed bipartite graph from Su to 

Sv. We will call this bipartite graph a superedge. Given that we are trying to create a graph with strong 

connectivity properties, expanding graphs are obvious choices for superedges (see the beginning of the next 

section for a definition of expanding graphs). 

Now consider the effect of removing a set T of am vertices from Gm. If T happened to be contained 

in the union of en supervertices, we could delete all those supervertices and the remaining graph would 

contain cn1l3 disjoint 'superpaths' of supervertices of length at least n 2l 3 . Now, if the superedges are ex

panding graphs, it is easy to prove (see lemma 3.1) that there is a positive constant 6 such that at least 

half the vertices in a superpath will be connected to at least (1 + 6)"~1312 other vertices. Since there are 

cm vertices contained in the superpaths, we would thus have at least cm(l + 6)"~
13

12 /4 connected pairs, 

and would thus have satisfied 2.3' for an appropriate choice of a. 

Considering the case of an arbitrary set T, we call a vertex v in Hn bad if ISv n Tl > m/l00n. We 

say that a supervertex Sv is robust if ISv n Tl $ m/l00n. Let T' be the set of bad vertices in Hn. Obvi

ously IT'I $ l00an. Setting a < c/100, we have at least cn1l3 disjoint superpaths of robust supervertices 

of length at least n2/ 3 in the graph remaining after Tis removed from Gm. Unfortunately the remaining 

bipartite graph between two adjacent robust supervertices is no longer likely to he an expanding graph. 

Thus to complete the proof, we must prove that by choosing the right type of expanding graphs for the su

peredges, we can guarantee the following. After the removal of T, a fixed fraction of the vertices in ea.ch 

directed path of robust supervertices will form a directed path of expanding graphs. This result is con

tained in the' next section, together with more precise definitions and details. 

3. Paths of expanding graphs 

If A is a subset of a graph, let r(A) denote the set of vertices adjacent to some vertex in A. Simi-

larly if Fis a subset of the edges in the graph, rF(A) denotes the set of vertices adjacent to A in the 

subgraph induced by F. Expanding graphs are graphs satisfying some sort of condition which gives a 

lower bound on lf(A)I for all subsets A which are not too large. The definition we use here is that a 

directed bipartite graph on equally sized vertex sets X and Y is 6-expanding for some positive con-

stant 6, if for a.ny subset IAI of at most half the vertices in X we have lr(A)I 2: (1 + 6)IAI. Expand-

ing graphs have been used throughout theoretical computer science for a wide variety of purposes, in

cluding proving lower bounds, asymptotically optimal constructions of graphs with connectivity prop

erties (such as superconcentrators a.nd grates), algorithms, simulations, and sorting networks (see [AK
LLW,AKS,AM,EGS,FP,GG,L,P,Pi,S,UW] for example). The existence of expanding graphs with bounded 

degree can generally be proved in a fairly straightforward manner by counting methods [EGS, P]. In the 

most common cases explicit constructions are also known [GG, LPS]. In this paper we n_eed a stronger ver

sion of expansion. This variant was first used by U pfal and Wigderson in [UW]. Essentially, we want a 

bounded degree bipartite graph that will remain an expanding graph when we restrict it to an arbitrary 

subset of edges, so long as each vertex still has high enough degree. 
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Before discussing the stronger notion of expansion, we formally define what we mean by a path of ex

panding graphs, and show that it yields the desired number of connected pairs of vertices. A (j, k, 6) 

path of expanding graphs is a graph G = (V, E) such that V is the disjoint union of j + 1 sets of 

size k, V0 , ••• , V;, and such that E is the disjoint union of j sets, E1 , ... , E;, where for each i the graph 

(¼-1 U ¼,Ei) is a directed bipartite c5-expanding graph from V.-1 to V.. 

Lemma 3.1. If G is a (j, k, c5) path of expanding graphs where (1 + o)i/2 $ k/2, then the number of 

connected pairs is at least j k( 1 + oy 12 /2. 

Proof. For 0 < h $ i - i, induction on h shows that each vertex in Vi is connected to a set of (1 + 
o)h vertices in Vi+h· The lemma follows immediately from applying this observation with h = j /2 to the 

vertices in Vo U ... U V;/2• I 

We say that ad-regular directed bipartite graph, B1,:, on k vertex subsets X and Y is a strong ex

pander if it has the following property. If A is any subset of X with IAI $ k/2, and if Fis any set of 

edges of B,: such that each vertex in A is adjacent to at least d/2 edges in F, then lrF(A)I ;::: (10/9)IAI, 

The following lemma is easily proved by standard counting arguments; a similar result is used in [UW). 

Lemma 3.2. There is a positive constant d such that for every k, there is a d-regular bipartite graph, 

B,:, on k vertex subsets X and Y which is a strong expander. 

We now complete the definition of the directed graph Gm by specifying that each superedge is a copy 

of the strong expander B,: where k = m/n. More precisely, for each directed edge ( u, v) of H n the edges 

in Gm connecting Su to S11 form a directed graph isomorphic to B,:, and if (u, v) is not an edge of Hn 

then there are no edges in Gm between the vertices in Su and S11 • Now we must show that for any small 

enough set T of vertices to be removed from Gm, each path of robust supervertices in Gm will contain a 

large enough subgraph (i.e. containing a fixed fraction of the vertices in supervertices in the path) which 

remains a path of expanding graphs after the removal of T. We will denote the grapp obtained by remov

ing T from Gm by Gm \T. The next lemma provides the basic property of adjacent robust supervertices 

that we will apply inductively in 3.4 to get the desired result. 

Lemma 3.3. Let T be a set of less than cm/100 vertices of Gm, let Su, S11 be robust supervertices such 

that (u, v) is an edge of Hn, and let k = m/n. Then for any subset V11 of S11 such that V11 n T = 0 and 

IVvl = 9/c/10, there is a subset Vu of Su with Vu n T = 0 and IVul = 9k/10, and such that the induced 
subgraph of Gm on Vu U \'v is (10/9)-expanding. 

Proof. Let A be the subset of Su consisting of all vertices which are adjacent to at least d/2 vertices in 

V11 • Then we have IAI ;::: 91/c/100. To see this consider the set B = Su \A and the set F of edges joining 

vertices in B to vertices in S11 \ V11 • It suffices to show that IBI $ 9/c/100. Each vertex in B is adjacent to 

at least d/2 edges in F. Thus for any subset B' of B with IB'I $ k/2 we have lfF(B')I ~ lOIB'l/9 by the 

definition of strong expander. Combining this with the facts that fF(B') C S11 \ Vv and IS11 \ V11 I = k/10, 

we obtain IB'I $ 9/c/100. Thus B has no subsets of size greater than 9/c/100 but less than or equal to k/2, 

and hence B itself must have size at most 9/c/100. Now let Vu be any subset of A such that Vu n T = 0 
and !Vu I = 9/c/10. Such a subset exists since IA n Tl $ k/100 by the robustness of Su, Finally, it is easy to 

see that the induced subgraph of Gm on Vu U V11 is (10/9)-expanding.1 
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Corollary 3.4. Let T be a set of less than cm/100 vertices of Gm, let S110 , •• • , S 11; be robust superver

tices which form a superpath in Gm, and let k = m/n. Then for i = 0, ... , j there is a subset Vv; of S 11 ; 

with IVv; I = 9/c/10, such that the induced graph on V110 U .. . U V11 ; in Gm \Tis a path of (10/9)-expanding 

graphs. 

Proof. The proof follows easily from Lemma 3.3 by induction on j. Specifically, for j = 1 we let V111 

be any subset of S111 \T containing 9/c/10 vertices, and let V110 be the set Vu obtained by applying 3.3 with 

(u, v) = (v0 , v1). Now assuming j > 1 and that the result holds for j - 1, we have the existence of the sets 

V111 , • •• , V11; with the desired properties. As before, taking V110 to be the set Vu obtained by applying 3.3 

with ( u, v) = ( v0 , v1 ) completes the proof.a 

As discussed in section 2, combining 3.1 and 3.4 with the property of Hn establishes the desired result. 

Theorem 3.5. {Gm} is a family of weak grates. 

The only factor affecting the depth of Gm in the above construction is the choice of n in relation to m. 

By choosing n = D(m) one obtains the following result. 

Theorem 3 .6. There exist positive constants o:, (3, t:,,. such that for any function D( m) satisfying 1 $ 

D(m) $ m, for each m sufficiently large there is an acyclic directed graph, Gm, of degree t:,,. with m ver

tices, such that Gm has depth$ {3D(m), and such that if any subset of at most om vertices are removed 

from Gm, at least m(l + o:)D(m)l/
3 

input/output pairs remain connected. 

In closing, it is interesting to compare this result with Valiant'e technique for reducing the number of 

connected pairs by reducing the depth of the graph. Valiant proved in [V] that for any bounded degree 
acyclic directed graph G with m vertices and depth D(m), and any positive integer k, it is possible to re

duce the depth to D(m)/2k by removing O(m/c/logD(m)) vertices of G. (In fact Valiant proves a more 

general result for graphs of unbounded degree in terms of the number of edges that need to be removed 

to reduce the depth.) Valiant's result implies that there is a constant o: such that after the removal of o:m 

vertices the depth is at most D( m )213 • Thus the number of input/output pairs which remain connected is 

O(m(t:,,.)D(m)~
13

) where t:,,. is the maximum out-degree of vertices in G, showing that the result in Theorem 

3.6 is optimal up to multiplicative constants in the exponent. 
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