
Probabilistic Horn abduction 
and 

Bayesian networks 

by 
David Poole 

Technical Report 92-2 
January 1992 

Department of Computer Science 
University of British Columbia 

Rm 333 - 6356 Agricultural Road 
Vancouver, B.C. 

CANADA V6f IZ2 



~
 



Probabilistic Horn abduction and Bayesian 
networks 

David Poole 
Department of Computer Science, 

University of British Columbia, 
Vancouver, B.C., Canada V6T 1Z2 

poole@cs.ubc.ca 
telephone: ( 604) 822 6254 

fax: ( 604) 822 5485 

January 13, 1992 

Abstract 

This paper presents a simple framework for Horn-clause abduction, 
with probabilities associated with hypotheses. The framework incor­
porates some assumptions about the rule base and some independence 
assumptions amongst hypotheses. It is shown how any probabilistic 
knowledge representable in a discrete Bayesian belief network can be 
represented in this framework. The main contribution is in finding 
a relationship between logical and probabilistic notions of evidential 
reasoning. This provides a useful representation language in its own 
right, providing a compromise between heuristic and epistemic ade­
quacy. It also shows how Bayesian networks can be extended beyond a 
propositional language, and shows a relationship between probability 
and argument based systems. 
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1 Introduction 

Probabilistic Horn Abduction [43, 42] is a framework for logic-based abduc­
tion that incorporates probabilities with assumptions. This is being used as a 
framework for diagnosis [43] that incorporates both pure Prolog and Bayesian 
Networks as special cases [42]. This paper expands on [43, 42] and develops 
the formal underpinnings of probabilistic Horn abduction, shows the strong 
relationships to other formalisms and argues that it is a good representation 
language in its own right. It can be motivated in a number of different ways: 

Determining what is in a system from observations ( diagnosis and recogni­
tion) is an important part of AI. There have been many logic-based proposals 
as to what is a diagnosis [16, 51, 13, 40, 12]. One problem with all of these 
proposals is that for any diagnostic problem of a reasonable size there are 
far too many logical possibilities to handle. For example, when considering 
fault models [14, 40], there is almost always an exponential number of logical 
possibilities ( e.g., each component could be in one of its normal states or 
in the unknown state). For practical problems, we find that many of the 
logically possible diagnoses are so unlikely that it is not worth considering 
them. There is a problem, however, in removing the unlikely possibilities a 
priori (those with a low prior probability): it may happen that the unlikely 
occurrence is the actual truth in the world. Analysis of the combinatorial 
explosions would however tend to suggest that we need to take into account 
probabilities of the diagnoses [13, 35, 31], and not even generate the unlikely 
diagnoses (i.e., those with a low posterior probability). 

In a different strand of research, Bayesian networks [34], have proven to 
be a good representation for the sort of probabilistic independence found 
in many domains. While the independence of Bayesian networks has been 
expressed in logic (e.g., [3]), there has not been a mapping between logical 
specifications of knowledge and Bayes net representations, where the logic is 
not at the meta-level to the probabilistic knowledge. This paper describes 
what could be termed as the logic of discrete Bayesian Networks, where we 
use the logic to express the object level knowledge of the Bayesian network. 
In the uncertainty community there has also been a need to extend Bayesian 
networks to beyond a propositional language [5, 6, 20]. Probabilistic Horn 
abduction is naturally non-propositional, and provides a natural extension 
of Bayesian networks to a non-propositional language. The work presented 
in this paper should be contrasted with other attempts to combine logic and 
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probability in very powerful languages (e.g., [3]). We are trying to find the 
simplest language that is useful for our purposes, rather than combine many 
different features onto one framework. Our goal in this research is to find 
the simplest logic that is useful for our purposes. 

The representation proposed in this paper is interesting in its own right 
as a compromise between epistemic and heuristic adequacy [30]. It extends 
pure Prolog in a simple way to include probabilities. While all of the hy­
potheses are independent, by inventing new hypotheses, we can represent 
any probabilistic dependency. This simplicity allows us to experiment with 
a minimalist representation and only extend it when we need to. It is inter­
esting to see how far we can go with a very simple representation language, 
only adding to it when it fails to do what we it want to do. 

1.1 A Motivating Example 

Before we present the language and the assumptions behind the representa­
tion, we first give an example to show what sorts of things we can represent. 

The example is based on the three cascaded inverters of (14]. Figure 1 
shows the connections of the inverters. 

in(i1) 

i2o-[?o 
out(i3) 

Figure 1: Three cascaded inverters. 

T~e language is an extension of pure Prolog (without negation as failure). 
We can write Prolog-like definite clauses to represent the general knowledge 
of the domain, and the specific instances known about the particular config-
uration: · 

val(out(G), on, T) +- ok(G) I\ val(in(G), off, T). 
val(out(G), off,T) +- ok(G) I\ val(in(G),on,T). 
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val(out(G), V, T) +- shorted(G) I\ val(in(G), V, T). 
val(out(G) , off, T) +-- blown(G). 
val(in(G), V, T) +-- conn(Gl, G) I\ val(out(Gl ), V, T). 
conn(il, i2). 
conn(i2, i3). 

4 

Here val(P, V,T) means that port P has value Vat time T; in(G) is the 
input port of gate G and out( G) is the output port of gate G. ok( G) means 
G is working properly; shorted( G) means that G is shorted and acts as a 
wire; and blown( G) means that G always outputs the value off. 

The language also has a "disjoint declaration" that defines a set of disjoint 
and covering hypotheses that have probabilities associated with them: 

disjoint([ok( G) : 0.95, shorted( G) : 0.03, blown( G) : 0.02]). 
disjoint([val(in(il), on, T): 0.5, val(in(il), off, T) : 0.5]). 

The first gives the prior probabilities of the states of gates. The second gives 
the prior probabilities of the inputs to the first gate. In our language, we 
have stated that the gates break independently, and that the values of the 
input to gate il is independent of the states of the system. 

The sorts of things that we can ask, and for which we have given enough 
information to compute include: 

• What is the probability that gate i2 is ok given that the input to il is 
off and the output of i3 is off at time t1? 

P(ok(i2)1val(in(il), off, t1 ) I\ val(out(i3), off, t1)) 

(The answer is 0. 76). 

• If the input of il were on what is the probability that the output of i3 
will be off? 

P(val(out(i3), off, t1)1val(in(il), on, t1)) 

(The answer is 0.899). 

• What was the probability that the input to il was on at time t2 given 
that the output to i2 was off at time t 2 and given that the output of i3 
was off and the input of il was off at time t1? 

P(val(in(il), on, t2)lval(out(i2), off, t2)/\val(out(i3), off, t1 )/\val(in(il), off, t1 )) 

(the answer is 0.55). 
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Each of these answers is computed in terms of explanations, namely argu­
ments with premises from the possible hypotheses. We assume independence 
amongst the hypotheses so that the prior probability of an explanation is ob­
tained by multiplying the probabilities of the hypotheses in the explanation. 

For example, the explanations of the observation val(in(il), off,t1 ) I\ 
val(out(i3), off, t1), together with their prior probability are: 

Explanation: [val( in( il ), off, t 1), ok( i3), ok( i2), shorted( il )] 
Prior = 0.01354 

Explanation: [val(in(il), off, t1), ok(i3), shorted(i2), ok(il)] 
Prior = 0.01354 

Explanation: [val( in( il ), off, t 1), shorted( i3), ok( i2), ok( il )] 
Prior = 0.01358 

Explanation: [val( in( il ), off, t1), blown( i3)] 
Prior= 0.01 

Explanation: [val( in( il ), off, t1), ok( i3), ok( i2), blown( il )] 
Prior = 0.009025 

Explanation: [val( in( il ), off, t1 ), shorted( i3), blown( i2)] 
Prior = 0.0003 

Explanation: [val( in( il ), off, t 1), shorted( i3), shorted( i2), shorted( il )] 
Prior = l.35e-5 

Explanation: [val( in( il ), off, t1), shorted( i3), shorted( i2), blown( il )] 
Prior = 9.0e-6 

By the way the know ledge base was constructed, these explanations are 
disjoint and covering, and so we can compute the prior probability of 

val( in( il ), off, t1) /\ val( out( i3), off, t1 )) 

by summing the probabilities of these explanations, which here is 0.05996. 
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2 Probabilistic Horn Abduction 

In this section we develop the language, the assumptions behind and a "se­
mantics" of the language in terms of abduction. The language is designed 
to be usable and does not allow us to state what cannot be computed in a 
straight forward manner. 

The initial language is translated into an abductive framework with a 
number of assumptions about the knowledge base. The appendix gives a 
more formal model-theoretic semantics and demonstrates the equivalence 
between the two. 

2.1 The Probabilistic Horn abduction language 

Our language uses the Prolog conventions: 

Definition 2.1 A term is either a variable (starting with an upper case let­
ter), a constant (starting with a lower case letter) or is of the form f(t 1 , • • ·, tn) 
where f is a function symbol (starting with a lower case letter) and each ti 
is a term. An atomic symbol (atom) is of the form p or p(t1 , • • ·, t 11 ) where 
p is a predicate symbol (starting with a lower case letter) and each ti is a 
term. 

Definition 2.2 A definite clause is of the form: a. or a +- at /\ ... /\ an, 
where a and each ai are atomic symbols. 

Definition 2.3 A disjoint declaration is of the form 

disjoint([ht : Pt,···, hn : PnD• 

where the hi are atoms, and the Pi are real numbers O ~ Pi ~ 1 such that 
Pt + · · · + Pn = l. Any variable appearing in one hi must appear in all of 
the h; (i.e., the hi share the same variables). The hi will be referred to as 
hypotheses or assumables. 

Definition 2.4 A probabilistic Horn abduction theory (which will be 
referre~ to as a "theory") is a collection of definite clauses and disjoint dec­
larations such that if a ground atom h is an instance of a hypothesis in one 
disjoint declaration, then it is not an instance of another hypothesis in any 
of the disjoint declarations. 
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Given theory T, we define 

FT the facts, is the set of definite clauses in T together with the clauses of 
the form 

false +- h; I\ h; 

where h; and hi both appear in the same disjoint declaration in T, and 
if:. j. Let Ff be the set of ground instances of elements of FT, 

HT the hypotheses, the set of hi that appears in some disjoint declaration 
in T. Let HT be the set of ground instances of elements of HT. 

PT is a function HT ..._. [O, 1]. P(hD = Pi where hi is a ground instance of 
hypothesis h;, and h; : p; is in a disjoint declaration in T. P(hD will 
be the prior probability of hi. 

Where Tis understood from context, we omit the subscript. 
The disjoint declarations allow a very restricted form of integrity con­

straints [23]. It allow binary integrity constraints (the conjunction of two 
hypotheses is false) such that the ground instances of hypotheses form mutu­
ally exclusive and covering groupings that correspond to random variables. 

A theory will define a set of represented atoms that are a subset of the 
atoms of T. The represented atoms will often be not listed explicitly, but 
will be left implicit ( they will typically be instances of hypotheses and heads 
of clauses). 

The represented atoms are those about which the theory can answer ques­
tions. Questions about atoms not in the represented atoms will be beyond 
the scope of the theory. The theory is not expected to be able to answer 
queries outside of its scope. 

2.2 Abduction 

We first give the language an abductive characterisation, using the normal 
definition of the definite clauses. Thls is used to make explicit our assump­
tions and to build the theory in a natural manner. In Appendix A, we give 
a model theoretic characterisation that incorporates our assumptions, and 
show the equivalence of the formulations. 

The formulation of abduction used is a simplified form [17] of Theorist 
[45, 38]. It is simplified in being restricted to Horn clauses. This can also 

.. 
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be seen as a generalisation of an ATMS (with predefined nogoods) [52] to be 
non-propositional1. 

An abductive scheme is a pair (F, H) where 

F is a set of Horn clauses. Variables in F are implicitly universally quanti­
fied. Let F' be the set of ground instances of elements of F. 

His a set of (possibly open) atoms, called the "assumables" or the "possible 
hypotheses". Let H' be the set of ground instances of elements of H. 

Definition 2.5 [45, 37] If g is a closed formula, an explanation of g from 
(F, H) is a set D of elements of H' such that 

•FUD~ g and 

• FUD~ false. 

The first condition says that D is sufficient to imply g, and the second says 
that D is possible. 

Definition 2.6 A minimal explanation of g is an explanation of g such 
that no strict subset is an explanation of g. 

2.3 Assumptions about the rule base 

In order to be able to simply interpret our rules probabilistically we make 
some assumptions about the rules and some probabilistic independence as­
sumptions about the hypotheses. 

The first assumption is syntactic, about the relationship between hy­
potheses and rules: 

Assumption 2. 7 There are no rules in F whose head unifies with a member 
of H,. 

1 A main difference is in the philosophy of use. We assume that the Horn clauses are 
representing the object level knowledge, rather than, as in an ATMS, acting as a back end 
of a problem solver [11]. 
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This does not seem to be a very severe restriction, in practice. It says 
that we do not want rules to imply a hypothesis. Presumably, if we had 
rules for possible hypothesis h, the only reason that we would want to make 
h a hypothesis is if it was possible that h just happens to be true ( without 
any other "cause"). In this case we can replace h in H by the hypothesis 
h_happens_to_be_true and add the rule 

h +- h..happens_to_be_true 

Assumption 2.8 (acyclicity) If F' is the set of ground instances of elements 
of F, then it is possible to assign a natural number to every ground atom 
such that for every rule in F' the atoms in the body of the rule are strictly 
less than the atom in the head. 

This assumption is described as natural by Apt and Bezem [1) (they, 
however, also include negation as failure, which we do not (but see section 
2.5.3)). It is a generalisation of the hierarchical constraint of Clark [8). It 
implies that there are no infinite chains when backchaining from any ground 
goal. This does not restrict recursion, but does mean that all recursion must 
be well founded. 

These assumptions are made implicitly in [38), are explicit in [9), but are 
relaxed in [22]. 

When using abduction we often assume that the explanations are cover­
ing. This can be a valid assumption if we have anticipa,ted all eventualities, 
and the observations are within the domain of the expected observations 
(usually if this assumption is violated there are no explanations). This is 
also supported by recent attempts at a completion semantics for abduction 
[38, 9, 22). The results show how abduction can be considered as deduction 
on the "closure" of the knowledge base that includes statements that the 
given causes are the only causes. We make this assumption explicit here: 

Assumption 2.9 The rules in F' for every ground non-hypothesis repre­
sented atom are covering. 

That is, if the rules for a in F' are 

a+- B1 
a+- B2 
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if a is true, one of the B; is true. The completion of a is 

a= B1 V ··· V Bn 

Thus assumption 2.9 says that Clark's completion (8] is valid for every non­
assumable. 

If the rules for a are not covering, then we create a new hypothesis 
a_is.Jrue_f or _some_other _reason and add the rule 

a +- a_i,s_true_f or _some_other _reason. 

Lemma 2.10 [38, 9] Under assumptions 2. 7, 2.8 and 2.9, if expl(g, T) 
is the set of all minimal explanations of g from (FT, HT), and comp(T) is 
FT augmented with the completion of every ground instance of every non­
assumable, then 

comp(T) F g = V e; 
eiEe:i:pl(g,T) 

The next assumption has to do with the status of explanations 

Assumption 2.11 The bodies of the rules in F' for an atom are mutually 
exclusive. 

Given the above rules for a this means that B;/\B; is always false for each 
i =/:- j. To ensure that this assumption holds we can add extra conditions to 
the rules. See section 5. 

Note that, whereas assumptions 2.7 and 2.8 are syntactic assumptions 
about the theory that can be automatically checked, assumptions 2.9 and 
2.11 are statements about the world, and not about the knowledge base2 • 

We do not require FT F -.(Bi I\ B;). The language is not powerful enough 
to state such constraints. For example, it may be the case that the value 
on some wire is functional ( the value cannot be both on and off at the same 
time). We cannot state this in our language. This is a deliberate design 
decisio~ to make the language as simple as possible. See section 2.5 for the 
rationale behind the design decisions. 

2There is, however, a syntactic condition that can be used to check whether assumption 
2.11 has been violated. This is when we can derive the . bodies of two rules for an atom 
from a set of assumptions that are not inconsistent. 
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Lemma 2.12 Under assumptions 2. 1 and 2.11, minimal explanations of 
atoms or of conjunctions of atoms are mutually exclusive (no two expla­
nations can both be true). 

Lemma 2.12 does not hold for arbitrary formulae. In particular, the minimal 
explanations of a disjunction are not necessarily disjoint. 

2.4 Probabilities 
Associated with each possible hypothesis is a prior probability. We use this 
prior probability to compute arbitrary probabilities. 

The following is a corollary of lemmata 2.10 and 2.12 

Lemma 2.13 Under assumptions 2. 1, 2.8, 2.9 and 2.11, if expl(g, T) is the 
set of minimal explanations of conjunction of atoms g from probabilistic Horn 
abduction theory T: 

P(g) - P( V e;) 
e;E=pl(g,T) 

- L P(e;) 
e;E=pl(g,T) 

Thus to compute the prior probability of any g we sum the probabilities 
of the explanations of g. 

To compute arbitrary conditional probabilities, we use the definition of 
conditional probability: 

P( 1/3) = P(o: A /3) 
a P(/3) 

To find arbitrary conditional probabilities P(o:1/3), we find P(/3), which is 
the sum of the explanations of /3. To compute the probability P(o: A /3), we 
sum over the explanations of a A /3. Note that the explanations of a A /3 are 
also explanations of /3. We can find the explanations of a A /3 by explaining 
a from the explanations of /3. Thus arbitrary conditional probabilities can 
be computed from summing the prior probabilities of explanations. 

It remains only to compute the prior probability of an explanation D of g. 
We assume that logical dependencies impose the only statistical dependencies 
on the hypotheses. In particular we assume: 



Probabilistic Horn abduction and Bayesian networks 12 

Assumption 2.14 Ground instances of hypotheses that are consistent (with 
FT) are probabilistically independent. 

Example 2.15 If we have the disjoint declarations 

disjoint([p(X) : 0.4, q(X) : 0.6]). 

disjoint([r(Y) : 0.01, s(Y) : 0.99]). 

then p(t) is independent of r(u) for all ground terms t and u. p(t) is inde­
pendent of q(u) for all different ground terms u and t. p(t) is independent of 
p(u) for all different ground terms u and t. 

Thus p(a) is dependent on q(a) (they are exclusive), but p(a) is indepen­
dent of q(b). p(a) is also independent of p(b). 

Under assumption 2.14, if D = { h1 , ... , hn} is a minimal explanation, then 

n 

P(h1 A ... Ahn) = II P(hi) 
1=1 

To compute the prior of the minimal explanation we multiply the priors of 
the hypotheses. 

As~umption 2.14 implies the unique names assumption if there are parametrized 
hypotheses. If h(X) is a parametrized hypothesis with each instance hav-
ing probability p, and t 1 and t 2 are different ground terms, assumption 2.14 
implies P(h(t1) A h(t2)) = p2. If t1 = t2, then h(t1) A h(t2 ) = h(t1 ), but 
P(h(t1 )) = p, a contradiction to the fact that probabilities are a measure 
over propositions, and that logically equivalent terms should have the same 
probability [34]. Thus, we are assuming that t1 #, t2 for different terms t1 
and t 2• This assumption is the unique names assumption [50]. Note that 
it is for the probabilistic calculation that we are making the unique names 
assumption. 

Appendix A gives the formal semantics for probabilistic Horn abduction, 
and justifies, in another way, the results of this section. 

2.5 Rationale for the design choices 

The language presented so far is quite weak in some respects. In this section 
we discuss why the language is as it is. The general theme is that the language 
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is a simple extension to pure Prolog that lets us consistently interpret the 
numbers on hypotheses as probabilities. We have disallowed anything that 
will make this interpretation difficult. For example, we have not allowed the 
logic to be expressive enough to be able to prove that there is a dependency 
amongst the hypotheses beyond the disjointness of our random variables. 

This simplicity makes the language semantically transparent, and allows 
for simple implementations. It is still powerful enough to express many of 
the causal and probabilistic interactions that we want to express. This work 
should be seen as an exercise in minimalist representations - we try to 
understand the limitations of very restricted languages and only add extra 
power if we can show we cannot do what we want with the tools available to 
us. 

2.5.1 Language for specifying random variables 

The first thing to notice is that we only allow a very restricted and stylised 
form of integrity constraints to be specified by the use of the disjoint dec­
laration. This is in contrast to earlier versions [43, 42] where we allowed 
arbitrary integrity constraints. While this more expressive language allows 
us to represent what the current version allows, it also lets us represent what 
we cannot interpret (both in terms of interpreting the numbers as probabili­
ties and in terms of making the proof procedures more complicated without 
providing visible advantage). 

For example, if { a, na} and { b, nb} each form a disjoint and covering sets 
of propositions (random variables), then we cannot treat these as independent 
if we can state false+- a I\ b. All we know here is that the variables are not 
independent - there are only ad hoc methods to allow us to provide the joint 
distribution. The current formulation does not give the power to state such 
constraints. The logical formulae provide no constraints on the hypotheses 
beyond the disjointedness of the values in the disjoint declaration. 

A second, but related, problem with general integrity constraints3 has to 
do with making implicit assumptions by the use of integrity constraints. For 
example, if we have false +- a I\ b, when we are using a, we are implicitly 
assuming the negation of band should pay the cost (in terms of making any 
explanation containing a less likely). This occurs at an extreme level when 

3Tbis was pointed out to me by Mark Wallace of ECRC. 
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we have { b, nb} disjoint hypotheses whose probability sums to 1, and have 
false ~ a Ab and false ~ a A nb. Here it should follow that a cannot 
occur ( or at least with probability zero) and should be pruned from other 
explanations. 

We also made sure that all atoms in disjoint declarations share the same 
variables. To see the problem with not requiring this, consider the (illegal) 
declaration 

disjoint([p: 0. 7, q(X) : 0.31). 

Given this declaration, p would be disjoint with q(a) and p disjoint with q(b). 
This would then place a dependence between q(a) and q(b). Given that the 
hypotheses are covering, if q( a) is true, then p is false, and so q( b) is true. 
Similarly if q(a) is false, p is true and q(b) is false. Thus all instances of 
q(X) would always have the same truth value. Then we may as well remove 
the variable (as the truth does not depend on the value of the variable). 
We have restricted the variables in disjoint assertions in order to avoid such 
tricky interactions that the user of the system may not be aware of, and so 
that an implementation does not need to look for them. 

The language is also not powerful enough to state the constraints on the 
legal input. When we wanted the bodies of the rules to be disjoint, we did 
not require that we could prove the disjointedness of the bodies. We only 
required that they be disjoint in the domain under consideration. Similarly, 
we require the rules to be covering, but cannot check this. This should not 
be seen as a defect in this language - there will always be true things that 
the language is too weak to state (e.g., the finiteness of integers cannot be 
stated in the first order predicate calculus). This restriction was a conscious 
decision to allow us to build efficient implementations, and to avoid difficult 
to interpret statements as described above. 

2.5.2 Assumptions concerning the knowledge base 

Assumption 2. 7 is important to ensure that we can treat the hypotheses as 
independent. H we could prove some hypothesis (based on other assump­
tions) it would not be consistent that the hypotheses are independent. It is 
also important to ensure minimal explanations are disjoint. If we have a and 
b as hypotheses, and have b ~ a as well as c ~ b. There are two minimal ex­
planations of c, namely {a} and { b}. These cannot be disjoint as one implies 
the other (and are equivalent under the Covering Assumption 2.9). 
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To see the importance of the acyclicity assumption 2.8 consider the facts 
F ={a~ a I\ b,a ~ c}, and possible hypotheses H = {b,c}. Assumption 
2.8 is violated in this example. Here there is one explanation for a, namely 
c, but under assumption 2.9, we can only prove cz => b V c, and not a => c. 
This violates the conclusion of Lemma 2.10. 

Assumptions 2.9 and 2.11 are needed so that we can have disjoint and 
covering hypotheses. This means that we just sum the probabilities of the 
hypotheses. This seems like a much more natural assumption, and is much 
easier to enforce than, for example, the assumption that the bodies of the 
rules are independent given the head (24, 48]. 

2.5.3 Negation 

The language provided does not have explicit negation. It does, however, 
give us an implicit negation. 

For example, suppose we have the theory 

a +- h1. 
b ~ h2. 

disjoint([h1 : P1, h2 : 1 - p1]), 

Under assumption 2.9, we have a= h1 and b = h2• The disjoint declaration 
essentially tells us that h1 = -,h2 • Thus we have a= -,b, 

Thus, although we cannot state negation, we can interpret one atom as 
being the negation of another. The reason that we don't want to have explicit 
negation is that this would allow the logic to imply a dependence amongst 
variables that violates the independence assumption 2.14. Once this occurs, 
it is more difficult to interpret the probabilities. For example, a ~ h1 and 
.,a ~ h3 places a dependence on h1 and h3 • 

For each atom we can create its negation. For each atom a, a is another 
atom which we interpret as the negation of a. Syntactically, a will be just 
another atom. 

If we have a disjoint declaration 

disjoint([h1 : P1, h2 : P2, · · ·, hn : PnD• 

we can create the negation of any hypothesis, say h1 , by using 

h1 ~ h2 
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The other hypotheses can be negated analogously. 
If we have rules for a 

we can define atom ri to correspond to the i-th body, and have rules a +- r 1 
through a+- rk. There are also k rules of the form ri +- bi1 /\···bin;· 

We can define the atom that is the negative of a, written here as a as 

r i is defined as 

These definitions will be well grounded by the acyclicity of the rule base. 
Note that just because some atom a is represented, it does not mean that 

the negation of a need be represented. There are however, some cases for 
which it is useful to create the negation of atoms (see section 5.1). 

This negation is closely related to that of Barbuti et. al. [4], which is 
used for negation as failure. The combination of the two ideas is, however, 
beyond the scope of this paper. 

3 Representing Bayesian networks 

In this section we give the relationship between Bayesian networks and our 
probabilistic Horn abduction. We show how any probabilistic knowledge that 
can be represented in a discrete Bayesian network, can be represented in our 
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formalism. We also demonstrate the alternate, namely that any propositional 
probabilistic Horn abduction theory is equivalent to a Bayes net. 

A Bayesian network [34] is a directed acyclic network where the nodes 
represent random variables, and the arcs represent a directly influencing re­
lation. We will use the term "RV" to mean random variable so as to avoid 
confusion with the Prolog-style variable. An arc from RV b to RV a repre­
sents the fact that RV b directly influences RV a; bis said to be a parent of 
a. The relation influences is the transitive closure of the directly influences 
relation ( corresponding to the ancestor relation). 

Suppose we have a Bayesian network with random variables a 1, ... , an, 
such that random variable ai can have values Vi,1, ... , Vi,r;· We represent ran­
dom variable ai havjng value v;,j as the proposition a;( Vi,j). 

Suppose RV ai is directly influenced by RVs Ila; = { a;1 , • • ·, ain ,} (the 
"parents" of ai) in a Bayesian network. The independence assumpti~n em­
bedded in a Bayesian Network [34] is given by 

where vis a RV (or conjunction of RVs) such that ai does not influence v (or 
any conjunct in v ). 

The formal definition of a Bayes net is often given in terms of the joint 
distribution of all of the RVs: 

n 

P(a1, ···,an) = IT P(ailITa;) 
i=l 

A Bayesian network is represented by Probabilistic Horn abduction rules 
that relates a RV with its parents: 

The intended interpretation of c_ai(V, ½, ... , Vn;) is that ai has value V be­
cause a,1 has value½, ... , and ain; has value V,i;• 

Associated with the Bayesian network is a contingency table which gives 
the marginal probabilities of the values of a depending on the values of Ila; = 
{ a,1 , • • • , a,".}. This will consist of probabilities of the form 

I 
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such that 

=1 

where Vi,t, ..• , Vi,r; are the possible values for RV ai This is translated into 
assertions 

Example 3.1 Consider a representation of the Bayesian network of Figure 
3.1, with the following conditional probability distributions: 

P(fire) - 0.01 

P(smokejfire) - 0.9 

P(smokej-.Jire) - 0.01 

P(tampering) - 0.02 
P(alarmlfire A tampering) - 0.5 

P(alarmlfire I\ -.tampering) - 0.99 

P(alarmj-.Jire A tampering) - 0.85 
P(alarmj-.Jire I\ -.tampering) - 0.0001 

P( leavingjalarm) - 0.88 

P(leavingj-.alarm) - 0.001 
P(reportjleaving) - 0.75 

P(reportj-./eaving) - 0.01 

The following is a probabilistic Horn abduction representation of this 
Bayesian network: 

disjoint([fire(yes): 0.01,fire(no): 0.99]). 

smoke(Sm) +- fire(Fi), c..smoke(Sm, Fi). 

disjoint([c..smoke(yes,yes): 0.9,c..smoke(no,yes): 0.1]). 

disjoint([c..smoke(yes, no) : 0.01, c..smoke(no, no) : 0.99]). 

disjoint([tampering(yes): 0.02, tampering(no) : 0.98]). 
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leavin 

report 

Figure 2: A Bayesian network for a smoking alarm. 
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alarm(Al) ~ fire(Fi), tampering(Ta), c...alarm(Al, Fi, Ta). 

disjoint([c_a/arm(yes,yes,yes): 0.50,c_a/arm(no,yes,yes): 0.50]). 

disjoint([c...alarm(yes, yes, no): 0.99, c_alarm(no, yes, no): 0.01]). 

disjoint([c...alarm(yes, no, yes) : 0.85, c_alarm(no, no, yes) : 0.15]). 

disjoint([c_a/arm(yes, no, no): 0.0001, c_a/arm(no, no, no) : 0.9999]). 

leaving(Le) ~ alarm(Al), cJeaving(Le, Al). 

disjoint([cJeaving(yes, yes): 0.88, c_leaving(no, yes): 0.12]). 

disjoint([c_leaving(yes, no): 0.001, c_leaving(no, no) : 0.999]). 

report(Le) ~ leaving(Al), cJ-eport(Le, Al). 

disjoint([c..report(yes, yes) : 0. 75, c_report(no, yes) : 0.25]). 

disjoint([c_report(yes, no) : 0.01, c_report(no, no) : 0.99]). 

Note that here instead of creating c_fire and making it equivalent to 
fire, we just made fire a hypothesis. 

3.1 Equivalence Results 

The basic equivalence result is the equivalence between joint distributions 
and explanations of the RVs having particular values: 

Let P be the probability function sanctioned by a Bayesian network. Let 
T be the corresponding probabilistic Horn abduction theory. Let PT be the 
probability function defined by the translation of a Bayesian network into 
the probabilistic Horn abduction framework. The aim is to show that these 
are the same. 

The definition of the Bayes net distribution is using the joint probability 
for all values in the network. This corresponds to a conjunction of values for 
all RVs. 

Lemma: 3.2 Suppose a1 , ···,an are all of the RVs in a Bayesian network, 
with T as the corresponding probabilistic Horn abduction theory, then 

P(a1 = V1 /\···/\an= Vn) = PT(a1(vi) /\ · · · /\ an(vn)) 

Proof: By definition of a Bayes net: 
n 

P(a1 = V1 /\···I\ an= vn) = IT P(ai = vilai1 = Vi1 , • • ·, ai,.i = Vi,.) 
i=l 
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By definition of c...ai in the translation 

There is only one explanation of a1(vi) A··· A an(vn), namely 
{ C..ai(vi, Vi1, ···,Vin,)) : i = 1..n }. Thus we have 

21 

P(a1 = V1 I\••' I\ an = Vn) - II P(ai = Vilai1 = Vi1,"'", ain; =Vin;) 

- II PT( c_a,( v,, Vi1,"" ' , Vin;)) 
- PT(a1(v1) A··· A an(vn)) 

D 

The equivalence between P and PT now follows directly from theorem 
A.11. These two measures agree on the combinations of values for RVs, they 
both obey the probability axioms, and so they agree on all formulae. 

Theorem 3.3 If H is a set of assignments to random variables in a Bayesian 
Network, and H' is the analogous propositions to H in the corresponding 
probabilistic Horn abduction theory T, then 

This should not be too surprising as the set of explanations of any for­
mula correspond to an assignment of values for the ancestors in the Bayesian 
network. We can compute the values of any hypothesis by summing over the 
values of the ancestors of the hypothesis. 

Appendix A gives a more formal development of this result. 

3.2 Propositional Abduction in Bayesian Networks 

The preceding section showed how any Bayesian network can be represented 
directly in terms of (propositional) probabilistic Horn abduction. 

The opposite is also true. Every propositional probabilistk Horn abduc­
tion theory corresponds directly to a Bayesian network. Here we give the 
mappmg. 
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Each disjoint declaration maps to a random variable. These form leaves 
( they have no ancestors) of the Bayesian network. 

Every atom defined by rules also corresponds to a random variable. 
If we have rules for a 

we can define atom Ti to correspond to the i-th body, and have rules a+- T1. 
through a +- Tk as well as k rules of the form Ti +- bi1 A · · · bini. 

We also create nodes for the ri (we don't have to but it makes the con­
tingency tables simpler). 

We make arcs between going from the bi; tori, and give the contingency 
table for a conjunction ("noisy-and"). We make arcs going from the Ti to a, 
giving the contingency table for a disjunction ("noisy-or"). 

When we do this mapping and then use the translation of the previous 
section to get back from the Bayesian network to a probabilistic Horn abduc­
tion theory, we get essentially the same probabilistic Horn abduction theory. 
This new theory has many new atoms ( corresponding to negations, which 
may not have existed in the original theory, but must exist in the Bayesian 
network) which can be ignored. There also will be many more disjoint dec­
larations, but these will correspond to extreme distributions ( one value has 
probability 1), and can also be ignored (or partially evaluated away). 

It is this direct correspondence that justifies our claim to having the logic 
of discrete Bayesian networks. 

4 Discussion 

4.1 Independence and dependence 

It may seem at first that only allowing independent hypotheses places a re­
striction on what we can represent. People claim that there are dependencies 
amongst hypotheses in the world. The claim in this paper is that the world 
can be represented so that all of the hypotheses are independent. This appar­
ent conflict can be resolved by noticing that the world does not determine 
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what the hypotheses are. Just as, when defining n-dimensional Euclidean 
spaces, we can define the space with non-orthogonal axes, we can also define 
the space with orthogonal axes. When we do so everything becomes simpler. 
Just because we can axiomatise a world using dependent hypotheses does 
not mean that we cannot define the world using independent hypotheses. 

The justification.for this claim is based on noticing that Bayesian networks 
(that can represent arbitrary probabilistic interaction) can be represented 
in our framework that uses only independent hypotheses. Note however 
that, as there can be an exponential number of independent va1ues given n 
probab.ilistic hypotheses, we may have to create an exponential number of 
independent hypotheses in the probabilistic Horn abduction framework. We 
are not claiming that we are getting something for nothing. 

Note that others have also noticed the universality of just having inde­
pendent hypotheses. For example, consider Reichenbach's principle of the 
common cause: 

"If coincidences of two events A and B occur more frequently 
than their independent occurrence, ... then there exists a common 
cause for these events ... " (49, p. 163]. 

When there is a dependency amongst random variables, we invent a hy­
pothesis to explain that dependence. Thus the assumption of independence, 
while it· gives a restriction on the knowledge bases that are legal, really gives 
no restriction on the domains that can be represented. 

While we have the ability invent hypotheses, we don't need to consider 
non-independent hypotheses. I would argue that it is much simpler and more 
natural to invent new hypotheses to explain dependence rather than having 
to worry about dependence in the language. 

4.2 Abduction and Prediction 

When computing the prior probability of a hypothesis, we find the explana­
tions for that hypothesis. This corresponds to the use of "abduction" [39). 

If we consider conditional probability, as we normally do, we have 

P( al,B) = P(a A (3) 
P(,B) 
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Le;Ee~pl(crA{j,T) P( ei) 

Le;ee~p/([j,T) P( ei) 
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We can generate expl(a I\ (3, T) by explaining a from the elements of 
expl(/3, T). This corresponds to the combination of abducing to causes and 
default reasoning to predictions from these causes [39, 41, 55]. Thus it should 
not be surprising that, as Pearl says 

Poole [1987] has ... devised a logic-based system where default 
rules are restricted to the causal variety, and reasoning from ev­
idence to hypotheses is accomplished by specialized "theory for­
mation" procedures. Such causal-based systems enjoy the fea­
tures of parsimony, stability and modularity and facilitate a more 
natural, declarative representation of world knowledge. [32, p. 
502] 

In the light of the results of this paper, this result may follow from Pearl's 
other arguments that Bayesian networks form the right characterisation of 
Causal reasoning. Abducing the causes and then assumption-based reasoning 
from causes to predicting what should follow, is the common feature of both 
Bayesian networks (see also, for example, Shachter and Heckerman [54]) and 
recent assumption-based logical schemes [39, 41, 55). 

There is another close similarity between the abductive approaches and 
the network propagation scheme of Pearl [32]. Finding the explanations of 
some g corresponds to working "up" the Bayesian network from g. Given 
evidence (3, we first find expl((3, T) (or at least some of the explanations 
[42, 44]). This involves searching up the tree from (3. The next step involves 
finding expl(a I\ (3, T). This can be obtained from explaining a from the 
explanations of (3. If we want to compute this for all a, we can do this by 
working down the tree from the explanations of (3. This 2-phase approach is 
analogous to Pearl's network propagation scheme, with the initial moving up 
the tree corresponding to ..X messages, and the second phase of moving down 
the tree from the explanations corresponds to the 1r messages of Pearl [32]. 
When the network is singly connected, we only need to send a summary of 
the explanations, and both phases can go in parallel, with a node able to 
send b~th ..X and 1r messages at the same time. Given this analogy, it is also 
easy to see why the upward ..X messages result in both ..X and 1r messages 
( as we need to carry out both phases of the computation of the conditional 
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probability), while the 71" messages only result in other 71" messages (we are 
only in the second phase of computing the conditional probability, namely 
finding the explanations from those explanations of the observations). 

4.3 Causation 

There have been problems associated with logical formulations of causation 
(33). There have been claims that Bayesian networks provide the right inde­
pendencies for causation (34). This paper provides evidence that abducing 
to causes and making assumptions as to what to predict from those assump­
tions (39, 41) is the right logical analogue of the independence in Bayesian 
networks ( as described in section 4.2). 

One of the problems in causal reasoning that Bayesian networks overcome 
(34) is in preventing reasoning such as "if c1 is a cause for a and c2 is a cause 
for -,a, then from c1 we can infer --ic2". This is the problem that occurs, for 
example, in the Yale shooting problem (18). Our embedding says that this 
does not occur in Bayesian networks as c1 and c2 must already be known to 
be disjoint. We must have already disambiguated what occurs when they are 
both true. If we represent the Yale shooting scenario so that the rules for 
"alive" are disjoint the problem does not arise. 

alive3(yes) +- alive2(yes) I\ shoot2(no). 

alive3(yes) +- alive2(yes) I\ shoot2(yes) /\ loaded2( no). 

alive3(no) +- alive2(no). 

alive3( no) +- alive2(yes) I\ shoot2(yes) I\ loaded2(yes ). 

loaded2(yes) +- loadedl(yes ). 

loaded2(no) +- loadedl(no). 

alive2(yes) +- alivel(yes ). 

alive2(no) +- alivel(no). 

It follows from this that given alivel(yes), loadedl(yes) and shoot2(yes), 
we can prove alive3(no). 

I do not believe that this solution would have satisfied Hanks and Mc­
Dermott (18), as we do not have general rules about persistence. 
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Probabilistic Horn abduction does not allow a general frame rule, even 
for a particular predicate such as 

alive(T + 1) +- alive(T) I\ alive.persists(T) 

since each defeater must be disjoint. 
This formulation, however does get other persistence problems right. For 

example, where there is likelihood that the position of a car does not persist, 
because the car was stolen [21]. Thus it seems like a good foundation to look 
for general rules that allow us to build the contingency tables. 

5 Representational Methodology 

Once we have a tool, it is important to know how to use it. The problem 
of a representational methodology [41] is an important and much overlooked 
part of automated reasoning research. 

It may seem that the assumptions used in designing probabilistic Horn 
abduction were so restrictive that the system would be useless for real prob­
lems. In this section, I argue that this is not the case. 

The general idea is to use definite clauses to write a simulation (in the 
"causal" direction [54]) based on different possible hypotheses. This ax­
iomatisation must follow the assumptions about the rule base and about the 
independence of hypotheses, but we argue in this section that this is not too 
difficult. 

Indeed it is arguable, that rather than stifling the imagination of the 
axiomatiser to write "what is true" in their domain, placing restrictions on 
the representation language provides guidance to how to go about thinking 
about the domain. One of the aims of restricting the language is to make it 
easier to write and understand axiomatisations of the world. Whether this 
is true in practice, however, remains to be seen. 

5.1 Disjoint and Covering Explanations 

For our probabilistic analysis (section 2.4), we assumed that the explanations 
were disjoint and covering. If we want our probabilities to be correct, we must 
ensure that the rules for an atom are disjoint and covering. 
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If the rules for an atom a are not covering, we can invent another cause 
for the goal representing "all the other possible causes" of the atom (14, 40], 
and add 

a+- a_true_for_some_other_reason. 

and make a_true_for _some_other _reason into a hypothesis. 
Although disjointedness of rules places a restriction on the knowledge 

' base, it does not place a restriction on the sorts of knowledge that we can 
represent. In general, suppose we have rules4

: 

Suppose we have the propositions bi to be the proposition that is the nega­
tion of bi (see section 2.5.3), we can make sure the rules are disjoint by 
transforming them into 

a +- b1. 

a +- bi I\ b2. 

a +- b1 I\ b2 I\ ba. 

Thus we make the rules disjoint, by ordering the rules and making sure 
that the bodies of rules are false if the bodies of previous rules are true. 

Syntactically, this seems to increase the complexity of n rules to have 
n(n

2
+1> atoms in the body. While this is true, there are only 2n - 1 different 

atoms that need to be explained. Thus, in practice, the complexity increases 
linearly not as a square. 

Example 5.1 Suppose we want to represent an "and-gate" that should have 
value O if either of the inputs are zero. Suppose we represent the proposition 
that port G has output Vat time T a.s val(G, V, T). We can ensure that the 

4This corresponds to the "noisy or" (34, p. 184] of the bi. 
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explanations are disjoint locally by ensuring that only one body can ever be 
true: 

val(out(G),off,T) +- and_gate(G) I\ ok(G) 
/\val(input(l, G), off, T). 

val(out(G),off,T) +- and_gate(G) I\ ok(G) 
/\val(input(l, G), on, T) 
/\val(input(2, G), off, T). 

val( out( G), on, T) +- and_gate( G) I\ ok( G) 
/\val(input(on, G), 1, T) 
/\val(input(2, G), on, T). 

Note that the third conjunct in body of the second rule (the val(input(l, G), on, T)) 
is there to ensure that the bodies are disjoint. 

This has repercussions in biasing the most likely explanation to the first 
rule, which is more general than the others. To make it more fair the first 
rule could be split into two cases depending on the value of input 2. This 
problem of the most likely diagnosis depending on the representation seems 
endemic to approaches that try to find the diagnosis ( either explanation or 
interpretation) that is "most likely" [34, 46]. 

5.2 Causation Events 

When representing knowledge for abduction [40, 41], we have to be able to 
make sure that we can imply the observations. In general a fault or disease 
doesn't imply a particular observation. For example, having a cold does not 
imply sneezing, but could cause sneezing. A gate being in an unknown state 
does not imply any particular value for the output of the gate. To solve this 
problem we introduce another hypothesis that the cold caused the sneezing. 
In the other example, we have to hypothesise that the gate is producing a 
particular value. This idea is analogous to the notion of a "causation event" 
of Peng and Reggia (35). 

The cold causing sneezing could be written as 

sneeze +- cold I\ cold_caused..sneeze 
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Following Peng and Reggia [35], one way to implement the causation 
events, is to use the relations ha.s..disease(D) to mean that the patient has 
disease D; actually..causes(D, M) to mean that disease D "actually caused" 
manifestation M; and ha.s..manifestation(M) to mean that the patient has 
manifestation M. 

We can say that a manifestation is caused by the disease that actually 
causes it by: 

has_manifestation(M) +-- has_disease(D) 

/\actually..causes(D, M). 

The conjunction 

has..disease(D) I\ actually..causes(D, M) 

corresponds to Peng and Reggia's [35] causation event M : D. 
We have the disjoint declarations for each i,j: 

disjoint([actually..causes(di, mj): Pi;, didnt..actually..cause(di, m;): Qij]) 

where Pij corresponds to the the "conditional causal probability" ("causal 
strength") of (35] 1 and Qij = 1 - Pij. Pii can be seen as the fraction of the 
cases where di is true that. d, "actually causes17 mj. 

We also have the possible hypotheses 

disjoint([has..disease(di) : Pi, doesnLhave..disease(di) : Qi]) 

where Pi is the prior probability of the disease di, and Qi = 1 - Pi. 
To implement this we still have to worry about making the rules disjoint. 

This is done in the same way as in section 5.1. If manifestation m has possible 
causes d1 , • · • , dk, we write: 

has..manif estation( m) +- has_disease( d1) 

/\actually ..causes( di, m). 
has..manifestation(m) +-- has_disease(d2 ) I\ doesnLhave..disease(d1 ) 

/\actually..causes(d2 , m). 
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has_manifestation(m) ~ has_disease(d1c) 

/\doesnLhave..disease(d1 ) I\··· 

/\doesnLhave..disease( d1c-i) 

/\actually..causes(d1c, m ). 
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The advantage of making these disjoint is that we are now able to interpret 
"actually causing" observationally for the cases where there are two possible 
causes. Here we arbitrarily assign the "actual cause" to the first disease. 
It is now easy to interpret the notion of "actually causing", as there is no 
ambiguity in any data. This makes the concept of "actual cause" into an 
observational notion for which we can collect statistics and do not need a 
theory of causation that is deeper than the theory we want to represent. 

5.2.1 Hypotheses with indeterminate output 

There is one case where we have to be concerned about causation events as 
well as the problem of parametrizing possible hypotheses and the interaction 
with the independence assumption. I have argued elsewhere [40, 41] that 
there is much power obtainable and subtlety involved in parametrizing hy­
potheses appropriately. In this section we expand on previous analysis [41], 
and show how probabilities affect parametrization considerations when using 
causatipn events by considering some case studies. 

As an example, suppose we have a gate G that takes two values as input, 
and outputs a value that can be in the range 1 to n. Suppose we want to 
represent the gate being in an unknown state (this is applicable whether or 
not we have fault models [14, 40]). Suppose we represent the proposition 
that gate G has output V at time T as val( G, V, T). 

We cannot represent the hypothesis that the gate is in the unknown state 
by using the hypothesis u( G) and the fact 

val(out(G), V, T) ~ u(G). 

The problem is that the above fact states that a gate in the unknown state 
produces all values of output, rather than saying that it produces some out­
put. Knowing a gate is in an unknown state does not imply any value for 
the output. 

When there are no probabilities involved [41, 40] we parametrize the hy­
pothesis by the values on which it depends. This could be done by having the 
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hypothesis produces(G, V, T) (interpreted as "gate G is faulty and produces 
value V at time T") and the rule 

val(out(G), V,T) .-- produces(G, V,T). 

We would say that a port has only one value at a time by having the disjoint 
declaration 5 : 

disjoint([ok(P): p0 ,produces(P,v1 ,T): P1, · · · ,produces(P,v,,,,T): p,,,]). 

Suppose we know that gate 91 has probability f of being in the unknown 
state. Then p0 = 1 - f. If we assume that each possible output value has 
equal chance, and that there are n possible output values, then Pi, the prior 
probability that it produces output value Vi is Ejn for 1 $ i $ n. 

When we have more than one observation, there is another problem. For 
the probabilities we assumed that the hypotheses were independent. We 
would not expect that 

Once we know that the gate is in an unknown state at time t1 it should not 
be so unlikely that it is in an unknown state at time t 2 • Put another way, 
once we have paid the price once for assuming that the gate is in an unknown 
state at time ti we should not pay the price again for assuming that it is in 
an unknown state at time t2 • 

To work in general, we need a mixture of the above two ideas. Suppose a 
gate G has probability of f: of being in the unknown state, and that there are 
n possible output values, each of which has an equal prior chance of being 
produced by a gate in the unknown state. This can be represented as the 
hypotheses6 

disjoint([produces(P, v1 , T): ¼, · .. ,produces(P, v,,,, T): ¼D· 
disjoint([ok( G) : p0, .. ·, u( G) : E]). 

6Here we have assumed that there are no fault states other than the unknown state. 
These could be added to this declaration without changing the point of the discussion. 

6Here we assume a uniform distribution of values. Any other distribution could be 
given. 
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and the rule 

val(out(G), V, T) +- u(G) A produces(G, V, T). 

u( G) means G is in the unknown state, and produces( G, V, T) means that 
given gate G is broken, it produces value Vat time T. The system assumes 
once that the gate is broken, and then makes other assumptions of what 
values it is producing at different times. 

The atom produces( G, V, T) can be seen as a "causation event", that we 
invent because being in an unknown fault state does not imply any particular 
value. 

5.2.2 Intermittent versus non-intermittent faults 

Because of the way we parametrized the hypotheses, the above representation 
of faults says that the output is only a function of the time. The hypothesis 
produces( G, V, T) and the above rules places no constraints on the values of 
the outputs at different times. This is a way to represent the fact that the gate 
can have an intermittent fault (it depends only on the time of observation). 
There is no constraint that says the gate produces the same output when 
given the same inputs at different times. 

We can give the non-intermittency assumption by saying that the fault 
only depends on the input and not on the time. This can be done instead by 
having the hypothesis prod( G, V, Ii, 12 ) (meaning gate G produces output V 
when given 11 and 12 as input) and a rule 

val(out(G), V,T) +- u(G) l\prod(G, V,Il,12) 

l\val(input(l, G), 11 , T) 
l\val(input(2, G), 12, T). 

5.3 Two Examples 

In this section we show the complete theories for two non-trivial examples. 

Example 5.2 This first example is an implementation of cascaded one bit 
adders (Figures 3 and 4), to form a ripple adder. The axiomatisation is 
adapted from the consistency-based axiomatisation of Genesereth [16]. 
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val(P, V, T) means that port P has value V at time T. We use as simple 
a representation of time as is needed. In this case we need to be able to 
have different observations at different times, and use constants to denote 
different times. 

We first axiomatise how gates work. We must axiomatise how normal 
gates as well as faulty gates work [38, 40] . 

Each of the gates can be in one of four states ( ok, stuck on, stuck off or 
unknown). When the gate is in the unknown (ab) state it can produce either 
value with equal probability. We also used the intermittency assumption. 

input(1,adder{N)) 
...:.;;...ii------\ 

input(2,adder(N)) 

lnput(3,adder(N...LL.f- ----.,r--1------+-....___. 

Figure 3: One bit adder, adder(N). 

val(output(G),off,T) +-

gate(G, and), ok(G), val(input(I, G), off, T). 
val(output(G), off, T) +-

gate(G, and), ok(G), val(input(l, G), on, T), 
val(input(2, G), off, T). 

val(output(G),on,T) +- . 

gate( G, and), ok(G), val(input(I, G), on, T), 
val( input(2 , G), on, T). 

output(1,adder(N)) 

output(2,adder(N)) 
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adder(1) adder(s(1)) 

Figure 4: Three cascaded adders 

val( output( G), on, T) ~ 
gate(G, or), ok(G), val(input(l, G), on, T). 

val(output(G),off,T) ~ 
gate(G, or), ok(G), val(input(l, G), off, T), 
val(input(2, G), off, T). 

val ( output( G), on, T) ~ 
gate(G, or), ok(G), val(input(l, G), off, T), 
val(input(2, G), on, T). 

val(output(G),off,T) ~ 
gate( G, xor ), ok( G), val( input(!, G), off, T), 
val(input(2, G), off, T). 

val(output(G), on, T) ~ 
gate(G, xor), ok(G), val(input(l, G), off, T), 
val(input(2, G), on, T). 

val(output(G),on,T) ~ 
gate(G, xor), ok(G), val(input(l, G), on, T), 
val(input(2, G), off, T). 

val(output(G),off,T) ~ 
gate( G, xor ), ok( G), val( input(!, G), on, T), 
val(input(2, G), on, T). 

val(output(G),on,T) ~ stuckl(G). 
val(output(G),off,T) ~ stuckO(G). 
val(output(G), V, T) ~ ab(G),produced(G, V, T). 

34 

adder(s(s(1))) 
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val(P, V,T) +- conn(Q,P),val(Q, V,T). 

Note how we have made the rules disjoint, by adding extra conditions. 
For example, the second rule includes the condition val(inp·ut(l, G), on, T) 
that is there just to make sure the rules are disjoint. Treated as a definite 
clause in isolation this rule is true without this second condition. 

We also specify the random variables as outlines in the preceding section. 
Note that this implies that the gates fail independently. 

disjoint([ok(X) : 0.999, ab(X) : 0.0000001, stuckl(X) : 0.0004999, stuck0(X) : 0.0005]). 
disjoint([produced(X,on,T): 0.5,produced(X,off,T): 0.5]). 

We axiomatise how the gates in an adder are connected, and what gates 
there are in an adder. 

conn(input(l, adder(N)), input(l, xorl(N))). 
conn(input(l, adder(N)), input(l, andl(N))). 
conn(input(2, adder(N)), input(2, xorl(N))). 
conn(input(2, adder(N)), input(2, andl(N))). 
conn(input(3, adder(N)), input(2, xor2(N))). 
conn(input(3, adder(N)), input(l, and2(N))). 
conn(output(xorl(N)), input(l, xor2(N))). 
conn(ootput(xorl(N)), input(2, and2(N))). 
conn(output(andl(N)), input(2, orl(N))). 
conn(output(and2(N)), input(l, orl(N))). 
conn(ootput(xor2(N)), output(l, adder(N))). 
conn(output(orl(N)), output(2, adder(N))). 

conn(output(2, adder(N)), input(3, adder(Nl))) ~ succ(N, Nl). 
val(input(3, adder(l)), off, T). 

gate(xorl(N), xor). 
gate(xor2(N), xor). 
gate(andl(N), and). 
gate(and2(N), and). 
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gate(orl(N), or). 

succ(N, s(N)). 
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The relation succ(N, NI) is used to state when one gate is next to another. 
This allows us to observe arbitrarily large cascaded adders. 

In order for us to be able to observe inputs and to be able to predict 
expected values from unknown inputs we can make the inputs to the gates 
to be random variables. (The alternative is to write as facts what the inputs 
to the gates are [40]). 

disjoint([val(input(I, adder(N)), on, T): 0.5, val(input(l, adder(N)), off, T): 0.5]). 
disjoint([val(input(2, adder(N)), on, T): 0.5, val(input(2, adder(N)), off, T) : 0.5]). 

We can specify an observation such as that 10 + 11 gave 001, as 

val(input(l, adder(!)), off, tl) 
A val(input(l, adder(s(l))), on, tl) 
A val(input(2, adder(!)), on, tl) 
A val(input(2, adder(s(I))), on, tl) 
A val(output(I, adder(l)), on, tl), 
A val(output(I, adder(s(l))), off, tl) 
A val(output(2, adder(s(l))), off, tl) 

Example 5.3 The second example is of the framework for depiction and 
image interpretation of Reiter and Mackworth [53). Here we interpret simple. 
line drawings of a map. These consist of lines and areas that depict roads, 
rivers, shores, lakes and land. This axiomatisation is based on the abductive 
representation of [41]7. 

We axiomatise how scene objects could have produced image objects. 
Given an image we conjecture scene elements that could have produced that 
image. 

The main difference between this axiomatisation and those of [53, 41) is 
that we have to make constructive derivations of the image. Rather than 

7 As in [41), for simplicity, the depicts relation of [53) has not been used even though it 
facilitates the representation of some, more complicated, examples. 
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starting with all interpretations, and use consistency to prune those that are 
impossible, we make sure that we can only generate possible explanations. 
This follows the methodology given earlier in this section. 

We :first allow one to write the building blocks of explanations. area(X, land) 
means that the object X in the image depicts land in scene, given that it is 
a region. The probabilities reflect that in our (made-up) domain, 70% of the 
areas are water and 30% are land. 

region(X) +- area(X, T). 
chain(X) +- linear(X, T). 
disjoint([area(X, land): 0.3, area(X, water) : 0. 7]). 
disjoint([linear(X, road) : 0.2, linear(X, river): 0.5, linear(X, shore) : 0.3]). 

We now have axioms that describe how image objects could be produced 
in terms of scene objects. 

tee(X, Y, E) means that end E of chain X ends at chain Y. This can 
either be because X is a roa-d that joins Y, or X is a river that starts at Y, 
or Xis a river that flows into (river or shore) Y. We arbitrarily number ends 
of chains with a 0 or a 1, and one end of a river needs to be a mouth and 
one a source of the river. 

tee(X, Y, E) +- joins(X, Y, E) I\ linear(X, road). 
tee(X, Y, E) +- joins(X, Y, E) I\ linear(X, river)/\ 

linear(Y, road) I\ source(X, E). 
tee(X, Y, E) +- linear(X, river) I\ canflowto(Y) I\ 

f lowsto(X, Y) I\ mouth(X, E). 
canflowto(X) +- linear(X, river). 
canflowto(X) +- linear(X, shore). 
disjoint([joins(X, Y, E) : 0.05, notjoins(X, Y, E) : 0.95]). 
disjoint([mouth(X, 0).: 0.5, mouth(X, 1) : 0.51). 
disjoint([Jlowsto(X, Y) : 0.1, notflowsto(X, Y) : 0.9]). 
disjoint([source(R, I) : 0.5, source(R, 0) : 0.5]). 

Similarly we can handle two chains crossing (a chi - x) in the image. 
Here again we just use the notion of a causal event to make the implication 
always true. 

Figure 5 gives the correspondences between image and scene predicates. 
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I scene I im age 

linear(X, road) chain(X) 
linear(X, river) 
linear(X, shore) 
area(X, land) chain(X) 
area(X, water) 
joins(X, Y, E) tee(X,Y,E) 
f lowsto(X, Y) 
docross(X, Y) chi(X, Y ) 
source(X, N) open(X,N) 
petersout(X, N) 
linear(X, shore) closed(X) 
roadloop(X) 
beside( X, Y) bounds(X , Y ) 
inside(X, Y) interior(X, Y ) 
outside(X , Y ) exterior(X, Y) 

Figure 5: Image-scene predicates. 
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chi(X, Y) +- crossable(X, Y) I\ docross(X, Y). 
crossable(X, Y) +- linear(X,XT) I\ linear(Y, YT) I\ crosstype(XT, YT). 
crosstype(road, road). 
crosstype(road, river). 
crosstype(river, road). 
crosstype(road, shore). 
crosstype(shore, road). 
disjoint([docross(X, Y) : 0.2, dontcross(X, Y) : 0.8]). 
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We can also have a chain being open or closed. Note here that the proba­
bilities tell us that all shores form closed loops, and some, but very few roads 
form loops. It is also more likely that a river ends nowhere than a road does. 

open(X, N) +- linear(X, river) I\ source(X, N). 
open(X, N) +- linear(X, road) I\ petersout(X, N). 
disjoint((petersout(X, E) : 0.1, doesntpeterout(X, E) : 0.9]). 
closed(X) +- linear(X, shore). 
closed(X) +- linear(X, road) I\ roadloop(X). 
disjoint([roadloop(X) : 0.01, notloop(X) : 0.99]). 

We can also have a chain bounding an area, and reason about what areas 
can be inside or outside loops. Note that the rule implying exterior assumes 
that inside is functional. In other words there is only one area (directly) 
inside a closed loop. If this is not the case another representation needs to 
be chosen. 

bounds(X, Y) +- linear(X, XT) I\ area(Y, YT) I\ 
beside(X, Y) I\ possbeside(XT, YT). 

poss beside( road, land). 
possbeside(river, land). 
possbeside( shore, land). 
poss beside( shore, water). 
disjoint([beside(X, Y) : 0.1, notbeside(X, Y) : 0.9]). 
disjoint([inside(X, Y) : 0.1, outside(X, Y) : 0.1, noside(X, Y) : 0.8]). 
interior(X, Y) +- inside(X, Y). 
exterior(X, Z) +- outside(X, Z) I\ inside(X, Y) I\ linear(X, XT), 

area(Y, YT) I\ area(Z, ZT) I\ possreg(YT, XT, ZT). 
possreg(land, road, land). 



Probabilistic Horn abduction and Bayesian networks 

possreg(land, shore, water). 
possreg( water, shore, land). 
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An image becomes an observation that we condition on. For example, 
the image of figure 6 is represented as the observation 

chain(cl) I\ chain(c2) I\ chain(c3) I\ region(rl) I\ region(r2) I\ 
tee(c2, cl, 1) /\ bounds(c2,r2) I\ bounds(cl,rl) I\ bounds(cl,r2) 
I\ exterior(cl,rl) I\ interior(cl,r2),open(c2,0) I\ closed(cl) I\ 
open( c3, 0) /\ tee( c3, c2, 1) /\ bounds( c3, r2) 

r2 

1 

Figure 6: A simple image. 

5.4 Arbitrary Individuals 

0 

c2 

One of the problems that is considered in [20), is that of when there can be 
arbitrary individuals that affect a value, and the individuals present can only 

0 
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be determined at run time. 
AB an example, consider the problem of a fire alarm going off, where it 

goes off if it was set off by one of the individuals present. All of the individuals 
can independently set off the alarm. We cannot write rules such as 

alarm(sounds) +- present(P) I\ seLoff_alarm(P). 

as the <lisjoint rules condition is violated. This is related to the problem in 
first order logic of being able to count the number of people present given 
just a data.base of relations of the form present(P) . We cannot prove there 
are 5 people present just because we have present(P) true for 5 instances of 
P, unless we have stated that everyone else is not present. Like pure Prolog, 
we cannot represent such knowledge. 

We can however encode the problem so that we can count the number of 
people present. This is by forcing us to write present( L) where L is a list of 
the people present. 

We can now represent the problem by8: 

alarm(sounds) +- present(L) I\ one_set_off_alarm(L). 

alarm(quiet) +- present(L) I\ none_seLoff_alarm(L). 

one_set_off_alarm([HIT]) +- set_off_alarm(H). 

one_seLoff_alarm([HIT]) +- didnLseLoff_alarm(H) 

I\ one_set_o ff_alarm( T). 

none_seLoff_alarm([HIT]) +- didnLseLoff_alarm(H) 

I\ none_seLoff_alarm( T). 

none_set_off_alarm( 0). 

disjoint([seLoff_alarm(P) : p1, didnt_set_off_alarm(P): P2]), 

Here p1 is the probability that a person would have set off an alarm given 
that no one before them had already set off the alarm. p2 = 1 - p1 • 

8Here we use the Prolog syntactic sugar for lists. [I] is just a. binary function symbol, 
D is a constant, and the notational convention that [ol[,8]] is written as [o, {3] for any 
sequence of symbols o and {3. 
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6 Comparison with Other Systems 

6.1 Other logic-based abductive schemes 
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There are many other proposals for logic-based abduction schemes (e.g., [47, 
10, 17]). These however consider that we have to find all of the diagnoses. 
In practice there are prohibitively many of these. It is also not clear what 
to do with all of the explanations; there are too many to give to a user, and 
the costs of tests to determine which of the diagnoses is the "real" diagnosis 
is usually not outweighed by the advantages of finding the real diagnosis 
(see Ledley and Lusted [25] for an early description of the importance of 
probabilistic and value information in diagnosis). We provide an answer to 
both of these, namely using the explanations to compute probabilities, and 
not generating unlikely explanations [44). 

The closest version of abduction to that presented here is that of Goebel 
et. al. [17], where there is also the simple abductive scheme where we do not 
need to do any chaining in order to determine inconsistency. Essentially we 
have added probabilities to that scheme under certain assumptions about the 
knowledge base and independence. 

6.2 Probability and diagnosis 

de Kleer and Williams (13, 14] and Peng and Reggia (35] both incorporate 
probabilistic knowledge to find the most likely diagnoses, but do not provide 
as :flexible and simple a representation language as the one here. 

de Kleer and Williams (13, 14] have explored the idea of using probabilis­
tic information in consistency-based diagnosis (see [38, 40] for comparisons 
between abductive and consistency-based diagnoses). 

The major differences between their approach and the one presented in 
this paper is that they differ in what they compute the probability of. de 
Kleer and Williams are finding the most likely interpretations ( assignment 
of values to all hypotheses). This is the same as the diagnoses of Peng and 
Reggia (35] and the composite beliefs of Pearl [32], but is different to the 
diagnoses of de Kleer, Mackworth and Reiter (12). We are computing the 
most ~ikely explanations; we want to remain agnostic about the value of the 
irrelevant hypotheses. Both schemes allow us to ignore the unlikely diagnoses. 
de Kleer and Williams cannot distinguish between those remaining diagnoses 
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that differ in substantial ways from the most likely interpretations, and those 
that differ only in varying values that are irrelevant to the diagnosis. In our 
system, hypotheses that are not part of an explanation are irrelevant and 
are ignored. We do not place such an importance on the explanations, but 
rather on using the explanations to compute probabilities. 

Peng and Reggia [35] also consider an abductive definition of diagnosis 
and incorporate probabilities, and best-first search. One difference is that 
they are trying to find probabilities of interpretations, but we a.re using ex­
planations to find the probabilities of atoms. The main difference is in the 
underlying language. They use the notion of "hyper-bipartite" graphs ma.de 
up of causation relations on sets of manifestations ( can be observed), disor­
ders ( can be hypothesised), and pathological states. 

One way to look at what they are doing is to consider it as a restriction 
of the system presented here where the language is propositional a.nd only 
allows one element in the body of a clause. It is, however, not expressed in 
a logical language. 

Hobbs et. al. (19] have devised a "cost-based abduction" for interpre­
tation of natural language. Their scheme is similar to the one presented 
here, but they use costs associated with assumptions rather than probabil­
ities. These costs can be seen as -log probabilities [7] . One can view the 
current work as extending Hobbs et. al. 's to derive posterior probabilities in 
a consistent manner. 

6.3 Logic and Bayes nets 

The representation of Bayes nets is related to the work by Charniak and 
Shimony (7, 56). Instead of considering abduction, they consider models 
that consist of an assignment of values to each random variable. The label 
of [56J plays an analogous role to our hypotheses. They however, do not use 
their system for computing posterior probabilities. It is also not so obvious 
how to extend their formalism to more powerful logics. 

Horsch and Poole [20], Breese [5J have defined systems that incorporate 
Prolog style rules and Bayesian networks. These were designed to allow for 
dynamic construction of Bayesian networks. The rules of (20] cannot be in­
terpreted logically but are macros that map into Bayesian network structure. 
The rules of [5] are at the meta-level of the Bayesian network, and build the 
network. We treat the rules as the object-level knowledge representation. It 
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is not clear how these proposals shed light on the underlying structure of 
the Bayesian network; they could just as easily be used to build any other 
propositional structure. 

6.4 Horn abduction and Dempster-Shafer 

This work is also closely related to recent embeddings of Dempster-Shafer 
theory in ATMS [24, 48]. One difference between our embedding of Bayesian 
networks and Dempster-Shafer is in the independence assumptions used. 
Dempster-Shafer theory assumes that different rules are independent. We 
assume they are exclusive. Another difference is that these embeddings do 
not do evidential reasoning (by doing abduction), determining probability of 
hypotheses given evidence, but rather only determine the "belief" of propo­
sitions from forward chaining. 

6.5 Argument systems 

Doyle [15], Loui [29] have argued that decisions can be best seen in terms of 
arguments for and against some propositions. Other have viewed nonmono­
tonic reasoning in terms of arguments [37, 26, 28, 36]. The explanations that 
we use can be seen as premises for logical arguments. We can determine 
the probability of some hypothesis by coming up with arguments for the 
proposition. We may only need some arguments to give an estimate of the 
probability of the hypothesis (see (42, 44]). 

7 Conclusion 

This paper has presented a pragmatically-motivated simple logic formula­
tion that includes definite clauses and probabilities over hypotheses. This 
was designed to be a compromise between representational adequacy, ease to 
interpret semantically what the knowledge means, and ease of implementa­
tion [44]. It is suggested that this simple tool provides a good representation 
for many evidential reasoning tasks. 

This is supported by the demonstration that probabilistic Horn abduction 
arguably forms the logic of discrete Bayesian networks. There is a direct 
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mapping between the knowledge in a Bayes net and the knowledge in a 
probabilistic Hom abduction theory. 

This is also interesting because it provides a link to earlier work on the use 
of assumption-based reasoning for default reasoning [37, 39, 41]. One of the 
ways of viewing default reasoning is where an adversary chooses the assump­
tions. One way of viewing the probabilistic Hom abduction is as an instance 
of assumption-based reasoning, but where nature chooses the assumptions. 
This paper also demonstrates the correspondence between the observations 
that need to be explained in abduction [40), and what is conditioned on in 
Bayesian probability. 

A Formal Semantics 

In this section we give the formal semantics for our language. As the lan­
guage is very simple1 the semantics will be correspondingly simple. The 
semantics will basically be that of Bacchus [3], restricted to our language, 
and incorporating our assumptions. 

The logical statements will restrict the possible worlds, and the probabili­
ties will provide measures over the possible worlds. The language is specially 
designed so that the logical facts neither implies a hypothesis nor implies the 
negation of a hypothesis. This means that we can treat the logic part and 
the probabilistic part of our semantics independently. 

The only tricky thing we have to worry about is that there are potentially 
infinitely many independent hypotheses, with non-extreme (i.e., not equal to 
0 or 1) probabilities. H we have one function symbol and one parametrized 
hypothesis h(X) with non extreme probability, we have infinitely many inde­
pendent hypotheses of the form h(t) for each ground term t. Once we have 
this, the probability of each possible world will be zero. Thus, we cannot just 
sum over the possible worlds to determine the probability of a proposition 
(as is done in [3)). We instead provide a measure over sentences that can 
be described in our language (as in [2]). As we have made sure that the 
logic provides no constraints on the probabilities, we only need to consider 
sentences made of hypotheses. 

As discussed in section 2.4, we make the unique names assumption. This 
is specified formally by making the domain we consider be the Herbrand 
Universe [27]. 



Probabilistic Horn abduction and Bayesian networks 46 

Definition A. 1 A semantic structure is a tuple (W, D, </>, 1r, P*), where 

W is a non-empty set. Elements of Ware called possible worlds. 

D is a non-empty set (of individuals). D here is the Herbrand Universe (the 
set of ground terms in the language). 

</> is a function that maps each n-ary function symbol to an element of 
nn 1--+ D (in particular </> maps each constant to an element of D). 
We can extend ¢, to ground terms, by the use of the recursive scheme 
</J(f(t1, • · ·, tn)) = cp(f)(</>(t1), · · ·, ¢,(tn)). In particular</> is the identity 
function so that </J(t) = t for any term t. Because the mapping does 
not depend on the world, these form "rigid designators". 

1r is a 1-1 function such that ,r(w) maps each n-ary predicate symbol into a 
subset of nn. 

p• is a function from H 1--+ [O, 1]. 

Definition A.2 We define the semantic relation F(W,D,¢,1r,P•) between pos­
sible worlds and formulae: 

The first case is for atoms 

The second is for conjunctions between atoms in the bodies of rules, as 
well as for conjunctions of definitions in our theory: 

The third rule defines the truth of definitions, and incorporates the as­
sumptions about disjointedness and coveringness: 

If b1, · · · , bn are all the bodies defining a 

w F(W,D,4>,1r,P•) (a+- b1) /\···/\(a+- bn) 

if (w F(W,D,4>,1r,P•) a and 3i (w F(W,D,4>,1r,P•) bi) and Vj-:/- i (w ~(W,D,¢,1r,P•) bi)) 

or ( w ~(W,D,4>,1r,P•) a and Vj (w ~(W,D,4>,1r,P•) bi)) 



Probabilistic Horn abduction and Bayesian networks 

The fourth rule defines the "disjoint" assertion. 

w F(W,D,,l>,1r,P•) disjoint([h1 : pi,··· , hm : Pm]) 

if 3i (w F(W,D,,1>,1r,P•) hi) and Vj # i (w ~(W,D,,1>,1r,P•) h;) 

and Vi P*(hi) = Pi 
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Definition A.3 The set of possible worlds given theory T, denoted WT is 
defined as 

WT = { w E w : w F(W,D,,p,1r,P•) T'} 

where T' is the set of ground instances of elements of T. 

In order to interpret the probabilities of possible worlds, we create the 
algebra of subsets of WT that can be described by finite formulae of instances 
of hypotheses. 

Definition A.4 

n(w,D,,p,1r,P•) = {w ~ WT: 3formula fw, Vw E w w F(W,D,,p,1r,P•) fw} 

By formula we mean a finite formula make up of conjunctions and disjunc­
tions of elements of H'. 

The elements of n(W,D,cP,1r,P•) form a sample space [2]. Elements of n(w,D,,1>,1r,P•) 

are closed under finite union, and complementation (given that we can com­
plement any hypothesis by u,sing the disjunct of the remaining hypotheses). 
Like Bacchus [2), we do not require sigma-additivity of our sample space. 
Because our language is so weak, we do not need countable unions. 

Definition A.5 An interpretable DNF formula of hypotheses is a for­
mula of the form 

n k; 

V /\ hi; 
i=lj=l 

where hi; is a ground instance of a hypothesis such that: 

1. for each i, there is no j 1 # h such that { hiii, hii2} is a subset of an 
instance of a disjoint declaration in T (i.e., { hi;1 , hii2} does not form 
part of an integrity constraint). 
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2. for each i 1 # i2 there exists ii, h such that { hidi, hi2i2} are in an 
instance of a disjoint declaration in T (i.e., the disjuncts are disjoint). 

3. For no i1 # i2 is it the case that {hi1 1, .. ·, hi1 k;
1

} ~ {hi21, .. ·, hi2 k;
2 
}. 

Lemma A.6 Every finite formula make up of conjunctions and disjunctions 
of elements of H' is equivalent, given T (i.e. they describe the same subset 
of WT) to an interpretable DNF formula. 

Proof: To satisfy the first and third conditions we can remove 
inconsistent conjuncts and any supersets of other formulae. The 
reslting formula is equivalent to the original. 

Suppose C1 and C2 are conjuncts that do not satisfy the second 
condition. Suppose, without loss of generality that C1 = Aj;.1 h1;. 

Each h1; is in a disjoint declaration. Let D; be the disjunct of 
the hypotheses in the instance of a disjoint declaration in which 
h1; appears. Each D; is true in all elements of WT, Thus, C2 I\ 
/\j;,1 D; is equivalent to C2 given T. Distribute C2 I\ /\};1 D; into 
DNF, remove the conjunct that is a superset of 0 1 , replace C2 

by this disjunct. We now have removed a violation of the second 
condition and have an equivalent formula. This can be done for 
all violations of the second formula. D 

We can define the measure elements of n(w,D,t/>,ir,P•) by 

Definition A. 7 Suppose w E n(w,D,,f,,1r,P•) and w can be described by for­
mula fw• Suppose fw is equivalent to interpretable DNF formula Vi A; hi;, 
then define 

µ(w,D,t/>,1r,P•)(w) =~IT P*(hi;) 
i ; 

Lemma A.8 µ(w,D,,f,,1r,P•) is a well-defined probability function, obeying the 
axioms of probability: 

1. µ(W,~,q,,1r,P•)(w) ~ 0 for all w E !l(w,D,t/,,1r,P•) 

2: · µ(w,D,t/>,1r,P•)(Wt) = 1. 

3. If w1nw2 ={}then µ(W,D,tf,,1r,P•)(w1Uw2) = µ(W,D,tf,,1r,P•)(w1)+µ(W,D,t/,,1r,P•)(w2), 
for all Wt, W2 E n(w,D,t/,,1r,P•) 
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Proof: To show that it is well defined, we show that any two 
equivalent formulae give the same value. Given two formulae, 
consider the set of all instances of hypotheses in the formulae. 
This subset of H' is finite. Each hypotheses in this set appears in 
a ground instance of a disjoint declaration. Let D be the set of all 
such disjoint declarations. Each disjoint declaration corresponds 
to a disjunct of the hypotheses of the disjunct declaration. Each 
conjunct has elements from a subset D. We can extend each con­
junct to cover D, by conjoining to each hypothesis the disjunct 
of each disjoint declaration that is not represented in the con­
junction. We then distribute to DNF. This procedure does not 
change the probability of any conjunct ( as the probabilities of 
the disjunct of each disjoint declaration sum to one, and we can 
distribute multiplication over addition). 

Once this procedure is carried to the two equivalent formulae, 
they will be syntactically identical ( up to commutativity and as­
sociativity), as any difference can be extended into a possible 
world in which they have a different value. This cannot happen 
as they are equivalent. 

Thus they must have the same measure. 

It _is straightforward to check that the axioms of probability hold 
for µ(W,D,,J,,1r,P•)· □ 
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Definition A.9 If T is a probabilistic Horn abduction theory, and a is a 
formula, the probability of a given T, written PT(a) is defined as: 

The following lemma shows that PT does indeed coincide with p•. 

Lemma A.IO If h is a ground hypothesis defined in T then PT(h) = P*(h). 

Proof: 

PT( h) = µ(W,D,,J,,1r,P•) ( { w E WT : w F(W,D,,J,,1r,P) h}) 

{ w E WT : w f=(W,D,,J,,1r,P) h} is described by h, and so, by defini­
tion of µ(w,D,,J,,1r,P•), PT(h) = P•(h). □ 
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Theorem A.11 If A is a ground atom or conjunction of ground atoms, 

e;Eezp/(A,T) h;;Ee; 

where expl(A,T) is the set of minimal explanations of A from theory T. 

In other words, the semantics justifies our use of summing the explana-
tions to find the prior probability of a proposition. 

Proof: For this proof we treat A as a set of atoms as well as 
well as the conjunction of these elements. What is meant should 
be clear from context. 

Based on the acyclicity of T, we define a well founded ordering 
over sets of occurrences of atoms in T'. Because T' is acyclic 
(assumption 2.8), there is an assignment of natural number to 
occurrences atoms in T' such that the elements of the body of a 
rule are less than the head of the rule. Call this number the depth 
of the rule. Because there are no rules with a hypothesis as head 
(assumption 2.7), we can consistently assume that all hypotheses 
have depth zero. 

This ordering is based on the lexicographic ordering of pairs ( d, n) 
where dis the depth of the element of the set with maximal depth, 
and n is the number of elements of this depth. Each time through 
the recursion either dis reduced or dis kept the same and n is 
reduced. This is well founded as both d and n are non-negative 
integers. 

For the base case, where d = 0, A is a conjunction of hypotheses. 
If A is inconsistent then there are no explanations, and the models 
of WT can be described by / alse, the empty disjunct, and so 
PT(A) = 0. If A is consistent, then there is one explanation for 
A, namely A i~self, so 

I: II P(hi;) = II P(A) 
e;Eexp/(A,T) h;;Ee; hEA 

Because the space defined by A has A as its interpretable DNF 
formula, we have 

PT(A) = II P(A) . 
hEA 
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For the inductive case, suppose d > 0 and a is a proposition in 
A with greatest depth. Let R = A\ {a}. As d > 0, a is not a 
hypothesis. Suppose there are m rules defining a: 

Under the ordering above Bi UR< d, and so we can inductively 
assume the lemma for B; U R. Thus 

e;Ee:r:pl(B;UR,T) h.;;Ee; 

Now the explanations of a are obtained from the explanations of 
the Bi; in particular 

m 

expl( {a} UR, T) = LJ expl(Bi UR, T) 
i=l 

Also, as fctr as the semantics are concerned a = V; B;. Thus, by 
additivity (lemma A.8), and the fact that the B; are disjoint 

m 

PT( {a} UR) = L PT(B; UR, T) 
i=l 
m 

-'E 
i=l e;E=Pl(B;,T} h.;;Ee; 

e;eLJ:
1 

e:r:pl(B;UR,T) h.;;Ee; 

IT P(h;;) 
e;Ee:r:pl(A,T} h.;;Ee; 

D 
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