
An Introduction to

Formal Hardware Veri�cation

Carl-Johan Seger

Department of Computer Science

University of British Columbia

Vancouver, B.C., CANADA V6T 1Z2

e-mail: seger@cs.ubc.ca

Abstract

Formal hardware veri�cation has recently attracted considerable interest. The need for \cor-

rect" designs in safety-critical applications, coupled with the major cost associated with products

delivered late, are two of the main factors behind this. In addition, as the complexity of the

designs increase, an ever smaller percentage of the possible behaviors of the designs will be sim-

ulated. Hence, the con�dence in the designs obtained by simulation is rapidly diminishing. This

paper provides an introduction to the topic by describing three of the main approaches to formal

hardware veri�cation: theorem-proving, model checking, and symbolic simulation. We outline the

underlying theory behind each approach, we illustrate the approaches by applying them to simple

examples, and we discuss their strengths and weaknesses. We conclude the paper by describing

current on-going work on combining the approaches to achieve multi-level veri�cation approaches.

1 Introduction

Design validation involves taking steps to guarantee that a design will perform according to its speci-

�cation. There are at least three levels of validation:

1. Design validation|have we designed what we intended to design?

2. Implementation validation|have we actually implemented our design?

3. Manufacturing validation1|have we actually manufactured our implementation?

In this paper we will concern ourselves only with design validation. Of course, we can never hope

to verify that we have met our intentions, since intentions are, at best, vague and imprecise and not

something we can write down and reason about (in any formal mathematical sense anyway). However,

what we would like to achieve is that we can verify that our design has some veri�able properties.

1Traditionally called testing.

1

Simulation is often used as the main tool for \checking" a design. Typically a design team tries

relatively few test cases, one at a time, and checks whether the results are correct. Towards the end

of the design phase, the circuit is then often simulated for an extended period of time. For example,

if the design is a microprocessor, a design team might run some reasonably large programs (e.g. boot

UNIX) on the simulated design. It is not uncommon to spend months of CPU time on mainframe

computers simulating the �nal design[25].

Considerable e�ort has been made to simply increase, in a brute-force manner, what coverage can

be achieved with simulation and to cut down the time it takes to achieve this coverage. One approach

is to run a number of independent simulations distributing simulation cases over a set of machines.

Another brute-force approach has been the development of special-purpose simulation hardware to

increase the speed of a simulation by several orders of magnitude. However, despite these tremendous

e�orts, serious design errors often remain undetected.

To illustrate how hopeless traditional simulation is in checking a design, consider a 256 bit RAM2.

Suppose we wanted to fully exhaustively simulate all possible state transitions of this circuit, how

long would that take? A 256 bit RAM has approximately 1080 possible combinations of initial state

and input. If we make the (very unrealistic) assumptions that we can use all matter in our galaxy to

build computers (1017 kg), that each computer is of the size of single electron (10�30 kg), that each

computer simulates 1012 cases per second and that we started at the time of the Big Bang (about 1010

years ago), we would just have reached the 0.05% mark of completing our task! Clearly, brute force

approaches are doomed to fail.

However, even clever use of simulation is getting more di�cult. In particular, as designs become

more complex through the introduction of aggressive pipelining and concurrently-operating subsys-

tems, it becomes increasingly di�cult to anticipate the many very subtle interactions between logically

unrelated system activities. For example, in a heavily pipelined machine it is often impossible to simu-

late all possible instruction sequences that might lead to a trap. The di�culty here is that instructions

that are logically unrelated all of a sudden are being processed in parallel and may even be processed

out of order. Thus, the \quality" of the validation achieved by traditional simulation is rapidly dete-

riorating as the VLSI technology progresses.

Formal hardware veri�cation attempts to overcome the weakness of non-exhaustive simulation by

proving the correspondence between some abstract speci�cation and the design at hand. In the long

run, these formal approaches to hardware validation are better able to scale with the complexity of

VLSI designs. The main reason for this is that they exploit powerful tools of mathematics rather than

brute-force. A good example of this is the use of mathematical induction, which is a mainstay of the

theorem-proving approach to formal hardware veri�cation.

Before we continue, there is one question that needs to be answered. In the 1960's and early 1970's

many had very high expectations for \software veri�cation". However, gradually, these hopes �zzled

out by the late 1970's. So why is hardware veri�cation di�erent? In our opinion, there are at least

�ve major di�erences between hardware veri�cation and software veri�cation:

2The example is taken from [13].

2

1. Hardware designers, as opposed to software designers, are much more willing to use a very small

set of primitives and obey some very restrictive rules on how to use them. As a consequence,

hardware is often very regular and hierarchical.

2. Re-use of designs is common practice in hardware designs. Hence, much of the veri�cation e�ort

can be amortized over several products.

3. Hardware designers are already familiar and comfortable with writing detailed (although some-

what informal) speci�cations. For example, consider the wide-spread use of behavioral Verilog

and VHDL models.

4. The primitives are signi�cantly simpler. For example, the behavior of a latch is generally much

easier to describe than the semantics of an assignment statement in a (realistic) programming

language.

5. The cost of �xing bugs. In hardware designs, a design error can mean a six months delay. In

todays highly competitive market, such a delay can mean the di�erence between success and

failure.

The goal of this paper is to provide an introduction to practical modern formal hardware veri�cation

approaches. We have chosen three of the main approaches to formal hardware veri�cation: theorem

proving, model checking, and symbolic simulation. Each of these approaches are supported by software

tools|many of which have been under constant development for the last decade|and each approach

has di�erent strengths and weaknesses. We briey discuss the underlying theory behind the systems,

illustrate their use, and discuss their di�erent strengths and weaknesses. It should be emphasized

that this paper is not a general survey paper covering all suggested approaches. For such a paper,

the reader is referred to Yoeli's book[30] or Gupta's survey[22]. However, by describing three of the

main approaches in some detail, we hope the interested reader will be well equipped to read the more

general, and more terse, survey papers.

2 Theorem Proving

One of the earliest approaches to formal hardware veri�cation was to describe both the implementation

as well as the speci�cation in a formal logic. The correctness result was then obtained by, in the logic,

proving that the speci�cation and implementation were suitably related.

2.1 Underlying Theory

Following [24] we de�ne a formal theory as follows: A formal theory S is de�ned when:

1. A �nite alphabet is given. The symbols of this alphabet are the symbols of the theory. A �nite

sequence of these symbols is called an expression of S.

2. A subset of the expressions of S are called well-formed formulas of S.

3

3. A �nite set of the well-formed formulas of S are called axioms of S.

4. A �nite set of rules of inference is given. A rule of inference allows the derivation of a new

well-formed formula from a given �nite set of well-formed formulas.

A formal proof in S is a �nite sequence of well-formed formulas: f1; f2; : : : ; fn, such that for every i,

formula fi is either an axiom or can be derived by one of the rules of inference given the set of formulas

ff1; f2; : : : ; fi�1g. Traditionally, the last well-formed formula in a formal proof is called a theorem of

S, and the formal proof is a proof of this theorem.

To illustrate a formal theory, we will use the formulation of higher-order logic, as used in the HOL

theorem prover and described in[20]3. The alphabet used contains most of the symbols from predicate

logic, i.e., _, ^,), 8, 9, etc. However, it also contains symbols for lambda abstraction and various

forms of type annotation. Some examples of well-formed formulas are:

(9 + 12) : num

((9 + 12) = 3) : bool

(�x: ((x+ 12) = 15)) : num! bool

(The last formula denotes a function that takes a number and returns true if the number is 3.) A

theorem is written as � ` t, and is read as: assumptions � imply theorem t.

Like many formal theories, the higher-order logic is de�ned using a surprisingly small number of

axioms. In the formulation used in the HOL system, only 5 primitive axioms are used. These axioms

range from, the very simple and \obvious" ones like

; ` 8t:bool: (t = T) _ (t = F)

which basically states that a Boolean type is either true or false, to some quite complex ones, like

; ` 8P : ?! bool: 8x : ?: Px) P (�P)

which states some of the properties of the Hilbert �-operator which basically serves as a \choice"

operator4.

The number of rules of inference is also often quite small. In the formulation of higher-order logic

within the HOL system, there are only 8 primitive rules of inference. The following three rules are

representative examples:5,

t ` t

which allows us to make assumptions,

� ` t2
� � ft1g ` (t1) t2)

3We will only give the avour of the theory. The interested reader is referred to [20] for the complete formulation.
4The axiom states essentially that for every predicate P over some domain, if P holds for some element x in the

domain, then �P denotes a value that satis�es P .
5We use the standard convention of writing rules of inference as a horizontal line with the assumptions written above

and the conclusion written below.

4

which allows us to discharge an assumption, and

�1 ` t1) t2 �2 ` t1
�1 [�2 ` t2

which is Modus Ponens.

It is important to distinguish between proofs in the common mathematical sense and proofs in a

formal system. The former often relies on unspoken assumptions, assumed knowledge, and leaps of

intuition, whereas every step in the latter is completely justi�ed. Of course, this means that a formal

proof is very easy to check. For example, one can imagine writing a very simple proof checker that

checks each line of the proof that it is either an axiom or that it has been obtained by a valid rule of

inference given the preceding lines. This strength of a formal proof is also its main drawback. Even

very simple proofs can take a very large number of steps to carry out. Consequently, trying to derive

formal proofs by hand is impractical. However, many of the steps in a formal proof is mostly tedious

book-keeping|something computers are very good at|and thus machine assisted theorem provers

have been developed.

2.2 A Small Example

Now given the availability of mechanized theorem provers, how can they be used in formal hardware

veri�cation? The basic idea is to embed both the implementation and the speci�cation in the formal

logic used in the proof system. The correctness statements, like that every behavior of the implemen-

tation satis�es the speci�cation, are then cast in terms of proving some relation in the chosen logic.

To illustrate this process, we will use the HOL system as our theorem-prover and formulate our cor-

rectness results, model our implementation, and express our speci�cation, in higher-order logic. The

example we will use is trivial, but it illustrates many of the underlying ideas. It should be emphasized

that the example is not representative for what can actually be achieved by using this approach.

i1

2

x
outp

Figure 1: Implementation of two-input AND gate.

The task at hand is to show that assuming the NAND gate and the NOT gate behave as speci�ed,

then combining them as in Fig. 1 yields a two-input AND gate. In order to achieve this, we need to

carry out four steps:

1. Specify the implementation of the AND gate.

2. Specify the behavioral models for the NAND and NOT gates.

3. Specify the intended behavior of the AND gate.

4. Prove that the implementation satis�es its intended behavior.

5

There are several ways to specify the implementation of the AND gate in higher-order logic. The

most common way of doing this is using existential quanti�cation to \hide" the internal connections,

i.e., we would get:

`
def

ANDgate IMP(i1; i2; o)� 9x:NANDgate(i1; i2; x)^NOTgate(x; o):

The behavioral model of the NAND and NOT gates can also be done in many ways in higher-

order logic. Furthermore, di�erent behavioral models can be used depending on the amounts of details

needed or desired. Here, we will use a simple zero-delay model of their behavior. Hence,

`
def

NANDgate(i1; i2; o)� o = :(i1^ i2);

and

`def NOTgate(i; o) � o = :i:

In a similar way, the desired behavior of the AND gate can be written as

`
def

ANDgate SPEC(i1; i2; o)� o = i1 ^ i2:

We are now faced with the task of formally proving that the implementation satis�es the speci�-

cation. Before we do this, however, we need to de�ne what it means for an implementation to satisfy

some speci�cation. Again, there are several ways of expressing this. For example, we could choose

to verify that the input/output behavior of the implementation always agrees with the input/output

behavior of the speci�cation. In other words, we would have to verify that

ANDgate IMP(i1; i2; o)� ANDgate SPEC(i1; i2; o)

holds. In other cases, e.g. when the speci�cation is incomplete, we might be satis�ed with verifying

that the behavior of the implementation implies the behavior of the speci�cation, i.e., that

ANDgate IMP(i1; i2; o)) ANDgate SPEC(i1; i2; o):

Suppose we choose the second type of correctness result, i.e., we want to verify that

ANDgate IMP(i1; i2; o)) ANDgate SPEC(i1; i2; o)

is a valid theorem. A \hand proof" of this result might look like:

1. ANDgate IMP (i1; i2; o) [assume initial formula]

2. 9x:NANDgate(i1; i2; x)^NOTgate(x; o) [by def. of ANDgate IMP]

3. NANDgate(i1; i2; x)^NOTgate(x; o) [strip o� 9x:]

4. NANDgate(i1; i2; x) [left conjunct of line 3]

5. x = :(i1 ^ i2) [by def. of NANDgate]

6. NOTgate(x; o) [right conjunct of line 3]

7. o = :x [by def. of NOTgate]

8. o = :(:(i1 ^ i2)) [substitution, line 5 into 7]

9. o = (i1 ^ i2) [simplify using :(:(t)) = t]

10. ANDgate SPEC(i1; i2; o) [by def. of ANDgate SPEC]

11. ANDgate IMP(i1; i2; o)) ANDgate SPEC(i1; i2; o) [discharge assumption line 1]

6

Although, the above manual proof may appear tedious, it is still much shorter than the complete

formal proof. For example, the HOL theorem prover establishes the result in 365 basic proof steps!

Fortunately, the user only needs to guide the HOL theorem prover 4 times. This ratio of machine

generated proof steps and manual interactions by a user guiding the theorem prover of close to 100

is relatively low for interactive theorem provers. Many systems can often achieve a factor closer to

10006.

The above example was of course very simple. In particular, the models of a NAND and NOT gate

were overly simpli�ed. However, since we have the full expressive power of logic at our disposal, it is

quite simple to generalize the behavioral models for the individual components. In this way delays

and delay models, for example, can be introduced. Of course, the more complex the behavioral model

is, the more complex the correctness proof will be.

2.3 Strengths and Weaknesses

The main advantage of a formal proof is that it can be mechanically checked. The main disadvantage,

compared to ordinary human reasoning, is that deriving a formal proof is overwhelmingly tedious.

Fortunately, there has been considerable progress made towards the partial automation of formal

proof. A very large fraction of the actual line-by-line inference steps in a formal proof can be generated

automatically by a computer-based theorem-prover.

A digital circuit can be \veri�ed" using a theorem-prover by generating a theorem which states that

the formal speci�cation of a design logically satis�es a formal speci�cation of its intended behaviour

(i.e. a high level model). The exact meaning of \satis�es" is stated unambiguously as a mathematical

relationship between the two levels of formal speci�cation. This can be judiciously interpreted as a

guarantee that the design is correct, with respect to the high level model, for all possible cases.

Among the best known interactive theorem-provers are the Boyer-Moore Theorem Prover [6] and

the Cambridge HOL System [21]. The Boyer-Moore Theorem Prover has been used by researchers

at Computational Logic Inc. to develop an multi-level proof of correctness for a complete computer

system including both hardware and software levels [3].The Cambridge HOL System has been used

by researchers at Cambridge University to verify aspects of the commercially-available Viper micro-

processor designed by the British Ministry of Defense for safety-critical applications [16].

A distinctive feature of the theorem-proving approach is that it is structural rather than be-

havioural. Consequently, a circuit is described hierarchically, where a component is de�ned at one

level in the hierarchy as an interconnection of components de�ned at lower levels. The system speci�-

cation consists of behavioral descriptions of the components at all levels in the hierarchy. Veri�cation

involves proving that each component ful�lls its part of the speci�cation, assuming that its constituent

components ful�ll their speci�cations. There are both pros and cons to this approach. Clearly, using

hierarchy is a very good way of managing complexity. Unfortunately, circuits do not always have nice

hierarchical structure. This is especially true after aggressive optimization have been performed.

6Despite this quite large multiplicative e�ect, we believe this number must be pushed closer to 10,000 or even 100,000

before interactive theorem provers will be straightforward to use for non-experts. As it is today, most theorem provers

require quite sophisticated users to be e�ective.

7

One of the main strengths of the theorem-proving approach is its ability to describe and relate

circuit behaviors at many di�erent levels of abstraction. For example, when verifying an adder, we

can show that the relationship between the inputs and outputs corresponds to addition as de�ned,

for instance, by Peano axioms, rather than just a relationship between Boolean variables. Thus, we

can reason at di�erent algebraic levels and relate behaviors between the levels. This point cannot be

stressed enough, since one of the main di�culties in formal hardware veri�cation is to convince oneself

that the speci�cation is indeed correct. By being able to reason about the circuit at increasingly

higher levels of abstraction, we can eventually minimize the semantic gap between the formal high-

level speci�cation and the informal, intuitive, speci�cation of the circuit that resides in the mind of

the designer.

Unfortunately, theorem-proving based veri�cation requires a large amount of e�ort on the part of

the user in developing speci�cations of each component and in guiding the theorem prover through all

of the lemmas. Also, in order to make the proofs tractable, most attempts at this style of veri�cation

have been forced to use highly simpli�ed circuit models.

3 Model Checking

One of the characteristics of the theorem-proving approach is its structural rather than behavioural

view of the veri�cation process. Model checking takes the completely opposite approach. Here only the

behavior of some system is checked and veri�ed to satisfy some properties. In general, model checking

is an algorithm that can be used to determine the validity of formulas written in some temporal logic

with respect to a behavioral model of a system. For example, if the controller of a microprocessor is

described as a state machine, a model checker can be used to verify that only the trap instruction can

change the mode of the processor from user mode to supervisor mode. It can also be used to prove

properties like that an interrupt is acknowledged at most t time units after the interrupt request, etc.

3.1 Underlying Theory

Before going into the details of the model checking algorithm, we need to introduce temporal logic.

Propositional logic deals with absolute truths in a domain, i.e., given a domain, propositions are either

true or false. Predicate logic extends this notion of truth to make it relative, in that the truth of a

predicate depends on the actual arguments involved. Extending this notion even further, in modal

logic, of which temporal logic is a special case, the truth of a formula may depend on what \world"

we are currently in. Within a world, predicate logic is used, between worlds, modal operators are

introduced. In the hardware domain (as well as in most other practical systems) the di�erent worlds

represent di�erent states of the system and the movement from one world to another represent the

dynamic behavior of the system. In this paper we will consistently use the word state, rather than

world. In temporal logic, the fact that a state t is a successor state of s implies that t is a possible

next state of the system. There is a wealth of temporal logics7. In this section we will highlight only

one|computational tree logic (CTL)|together with its associated decision procedure[19].

7For a very comprehensive discussion of the di�erent temporal logics used in hardware veri�cation related work, the

reader is referred to [22].

8

A CTL formula is de�ned with respect to some set of atomic formulas. These atomic formulas

should be thought of as basic properties of the individual states. In a hardware context, they could

include statements like \gate output x is high", \gate output y is low", etc. Formally, the syntax of

a CTL formula is de�ned as follows8:

1. Every atomic formula is a CTL formula.

2. If f is a CTL formula, then so are

(a) :f (not f),

(b) AXf (for all paths f holds in the next state),

(c) EXf (there is a path in which f holds in the next state),

(d) AGf (for all paths, f holds in every state),

(e) EGf (for some path, f holds in every state),

(f) AFf (for all paths, eventually f holds),

(g) EFf (for some path, eventually f holds),

3. If f and g are CTL formulas, then so are:

(a) f ^ g (f and g),

(b) A(fUg) (for all paths: f until g),

(c) E(fUg) (for some path: f until g).

All the remaining logical connectives like _,), etc., are de�ned in the usual way in terms of ^ and :.

The semantics of a CTL formula is de�ned with respect to a labeled, directed graph, called a CTL

structure9. Formally, a CTL structure is a quadruple M = (S;R;A; L), where

1. S is a �nite set of states.

2. R is a binary relation on S. sRt means that t is a possible immediate successor of s. We assume

that R is total, i.e., every state has at least one successor state.

3. A is a set of atomic formulas.

4. L : A �! 2S is a function that maps each atomic formula into the set of states in which the

formula holds.

Let now s be a state in the CTL structureM = (S;R;A; L). WithM and s we associate an in�nite

computation tree, rooted at s and with an arc from node t to node u i� tRu. Given a CTL formula f ,

we write M; s j= f (or s j= f if M is �xed), to state that the formula f holds in the computation tree

derived from M and rooted at s. An in�nite path of the tree, starting at the root, is an s-path of M .

Formally, given the CTL structure M = (S;R;A; L), the semantics of a CTL formula f is de�ned

recursively as:

8We include in parenthesis the common way to read the di�erent symbols.
9One can view this structure as a �nite Kripke structure[23].

9

1. s j= a i� a 2 A and s 2 L(a), i.e., a is an atomic formula of M and a holds in s.

2. (a) s j= :f i� s j= f does not hold,

(b) s j= AXf i� t j= f for every t such that sRt.

(c) s j= EXf i� t j= f for some t such that sRt.

(d) s j= AGf i� f holds in every state in every s-path of M .

(e) s j= EGf i� f holds in every state in some s-path of M .

(f) s j= AFf i� for every s-path of M there is at least one state in which f holds.

(g) s j= EFf i� for some s-path of M there is at least one state in which f holds.

3. (a) s j= f ^ g i� s j= f and s j= g.

(b) s j= A(fUg) i� for every s-path (s0; s1; s2; : : :) of M there exists some j � 0 such that

sj j= g and si j= f for 0 � i < j.

(c) s j= E(fUg) i� for some s-path (s0; s1; s2; : : :) of M there exists some j � 0 such that

sj j= g and si j= f for 0 � i < j.

b

c

out

Figure 2: Implementation of three-input C-element.

The temporal logic described above is quite useful for describing desirable properties of a design.

To illustrate this, consider the gate circuit shown in Fig. 2. The circuit is meant to implement a three

input Muller C-element. We can divide the properties we would like the circuit to exhibit into two

types: liveness (something good will eventually happen) and safety (nothing bad will ever happen).

First the liveness properties. For a C-element to function properly, we should make sure that if we

keep all the inputs equal, then eventually the output should change to this value. We can express this

property in the following two CTL formulas.

AG(A((a = 0 ^ b = 0 ^ c = 0)U (out = 0 _ a = 1 _ b = 1 _ c = 1)))

AG(A((a = 1 ^ b = 1 ^ c = 1)U (out = 1 _ a = 0 _ b = 0 _ c = 0)))

Basically, the CTL formulas state that either the inputs must change or the output must change to

the proper value.

10

A safety condition that should hold is of course that if all the inputs have same value and the

output also has this value, then the output should not change until all the inputs have changed to

their complementary values. This condition can be expressed in the two CTL formulas:

AG((a = 0^ b = 0 ^ c = 0 ^ out = 0)) A(out = 0U (a = 1 ^ b = 1 ^ c = 1)))

and

AG((a = 1^ b = 1 ^ c = 1 ^ out = 1)) A(out = 1U (a = 0 ^ b = 0 ^ c = 0)))

Although, CTL is a concise and powerful speci�cation language to describe desirable properties

of a system, this is only one of the reasons for our interest in CTL. The second reason is that there

is a very e�cient algorithm for determining whether a CTL formula holds in a given state in a

CTL structure. The basic algorithm, called the model checking algorithm[19], was developed by E.

Clarke, E. Emerson, and A. Sistla. The original algorithm was described in terms of labeling the CTL

structure. Unfortunately, this requires an explicit representation of the whole state space. Here we

will present the algorithm in terms of �xed point calculations. The main reason for this is that the

algorithm is then amenable to symbolic formulation. Symbolic evaluation allow us to determine the

validity of a CTL formula without having to explicitly enumerate all states of the CTL structure|a

signi�cant improvement of the maximum system we can deal with.

Before we present the algorithm, we need to introduce the basic idea of �xed point calculations.

For a more complete treatment of the underlying theory, the reader is referred to [29]. Given a set S,

the power set of S, denoted 2S , is the set of all subsets of S. We can introduce a complete partial order

v on 2S de�ned as: a v b i� a � b. It is easy to verify that this partially ordered set forms a complete

lattice. Hence, the least upper bound and the greatest lower bound are de�ned10 for any subset of 2S .

Now given a function h : 2S �! 2S , we say that the function is continuous i� for every increasing

sequence x1 v x2 v : : :, where xi 2 2S , we have h(ti�1xi) = ti�1f(xi) and h(ui�1xi) = ui�1f(xi),

where t and u denotes the least upper bounds and greatest lower bounds respectively. Now given a

continuous function h : 2S �! 2S one can prove that:

1. (a) h has a least �xed point b 2 2S , i.e., b satis�es h(b) = b and if h(c) = c for some c 2 2S

then b v c.

(b) The least �xed point of the function h, written Lfp U:h(U), is de�ned by ti�0h
i(;), where

hi is the composition of i copies of h.

2. (a) h has a greatest �xed point d 2 2S , i.e., d satis�es h(d) = d and if h(c) = c for some c 2 2S

then c v d.

(b) The greatest �xed point of the function h, written Gfp U:h(U), is de�ned by ui�0h
i(S).

The �xed point calculations are used to compute the set of states that satis�es some of the \global"

CTL formulas. For example, consider �nding the set of states that satis�es the CTL formula AGf

when given the set H(f) that contains all the states that satis�es f . Below we will state that this can

be accomplished by computing the greatest �xed point of the function h(U) = H(f)\ fs j 8t sRt)

10They correspond to set union and set intersection respectively.

11

t 2 Ug11. Intuitively, what we are doing here is �nding the largest subset U of S such that 1) f

holds in every state in U and 2) for every element u 2 U , every successor state of u is also in U .

Clearly, every element u 2 U will satisfy AGf . Conversely, it is easy to convince oneself that if

an element v is not in U , then either f does not hold in v or there is some state reachable from v

in which f does not hold (otherwise v would have been in U). However, that means immediately

that AGf does not hold in v. Altogether, it is fairly straightforward to prove that s j= AGf i�

s 2 Gfp U: H(f)\ fs j 8t sRt) t 2 Ug.

Given a CTL structure M = (S;R;A; L), and a CTL formula f , the model checking algorithm

computes the set of states H(f) � S that satis�es f . The algorithm is de�ned recursively as follows:

1. H(A) = fs j A 2 L(s)g.

2. (a) H(:f) = S �H(f)

(b) H(AXf) = fs j 8t sRt) t 2 H(f)g.

(c) H(EXf) = H(:(AX(:f)))

(d) H(AGf) = Gfp U: H(f)\ fs j 8t sRt) t 2 Ug.

(e) H(EGf) = H(:(AF:f)).

(f) H(AFf) = Lfp U: H(f)[fs j 8t sRt) t 2 Ug.

(g) H(EFf) = H(:(AG:f)).

3. (a) H(f ^ g) = H(f) \H(g).

(b) H(A(fUg)) = Lfp U: H(g)[(H(f)\ fs j 8t sRt) t 2 Ug.

(c) H(E(fUg)) = H(:(A(:gU(:f ^ :g)) _ AG(:g))).

3.2 A Small Example

b a a,b,c c

b,c

1 2

4

3 5

Figure 3: Simple CTL structure.

To illustrate the model checking algorithm, consider the CTL structure M = (S;R;A; L), where

S = f1; 2; 3; 4; 5g, A = fa; b; cg and R and L can be obtained from Fig. 3. Now consider the CTL

11We leave it as an exercise to the reader to verify that h is indeed continuous and thus the greatest �xed point is well

de�ned.

12

formula AG(a_ c). We would like to compute the set of states of S in which this CTL formula holds.

In other words, we would like to �nd the set of states U , such that:

1. every state in U is labeled with a or c (or both).

2. for every state u 2 U and every in�nite path starting in u, every state in this path is labeled

with a or c.

First, we rewrite the formula by using the usual logical connectives, i.e., we rewrite AG(a _ c) as
AG(:((:a)^ (:c))). Now, using the de�nition of H() we obtain:

H(AG(:((:a)^ (:c)))) = Gfp U: H(:((:a)^ (:c)))\ fs j 8t sRt) t 2 Ug:

Now, since

H(:((:a) ^ (:c))) = S �H((:a)^ (:c))

= S � (H((:a))\H((:c)))

= S � ((S �H(a))\ (S �H(c)))

= S � ((S � f2; 3g)\ (S � f3; 4; 5g))

= S � ((f1; 4; 5g)\ (f1; 2g))

= f2; 3; 4; 5g

we get

H(AG(:((:a)^ (:c)))) = Gfp U: f2; 3; 4; 5g\ fs j 8t sRt) t 2 Ug:

The �xed point can now be computed as:

U0 = S

U1 = f2; 3; 4; 5g\ fs j 8t sRt) t 2 U0g

= f2; 3; 4; 5g\ f1; 2; 3; 4; 5g= f2; 3; 4; 5g

U2 = f2; 3; 4; 5g\ fs j 8t sRt) t 2 U1g

= f2; 3; 4; 5g\ f1; 2; 3; 4g= f2; 3; 4g

U3 = f2; 3; 4; 5g\ fs j 8t sRt) t 2 U2g

= f2; 3; 4; 5g\ f1; 2; 3; 4g= f2; 3; 4g= U2

and thus

H(AG(:((:a)^ (:c)))) = Gfp U: f2; 3; 4; 5g\ fs j 8t sRt) t 2 Ug

= f2; 3; 4g:

Altogether, we can conclude that the CTL formula AG(a_ c) holds in the states 2, 3, and 4.

13

3.3 Strengths and Weaknesses

Since the dynamic behavior of a hardware system is usually the most di�cult to design and verify,

temporal logic is a very precise and (mostly) convenient formalism for expressing desired properties of

the system. In particular, the branching time temporal logic CTL, discussed above, is very convenient

for reasoning about asynchronous and self-timed designs.

The main strength of many of these temporal logics, and CTL in particular, is the fact that the

decision procedure is completely automated. Thus, the user never needs to be aware of the CTL

structure, but can simply interact with the model checker to determine that the dynamic behavior

of the design satis�es the speci�cation. An interesting observation is that the CTL structure is very

general. Hence, the same model checker can be used to reason about both hardware and software

systems.

There are two major drawbacks with temporal logics and model checking. First, in this approach to

hardware veri�cation, the speci�cation is as an enumeration of desired properties. However, it is often

quite di�cult to judge whether the temporal formulas that has been checked completely characterizes

the desired behavior of the system. For example, it is easy to forget to check some property that

one might take for granted12. Also, for a practical point of view, the temporal logic formulas can

sometimes become exceedingly di�cult to understand. Hence, there is a danger of misunderstanding

what properties actually have been veri�ed.

The second major drawback with temporal logic is related to its decision procedure. In order to

determine the validity of a temporal logic formula it is necessary to extract the CTL structure for the

device. The problem is that the state space S for most \interesting" systems is extremely large. In

particular, if the system consists of many asynchronous communicating state machines, the complete

state space is often enormous. This problem is usually referred to as the \state explosion problem".

The topic of how to deal with the state explosion problem is currently a very active area of research.

The most promising approach is symbolic methods[14]. In this approach the explicit construction of

the state graph is avoided. Instead, the state graph is represented by means of functions from sets

of states to sets of states. In particular, the sets are represented by their characteristic functions

over Boolean variables. By using these techniques, system with more than 1020 states have been

successfully checked.

Although symbolic model checking has signi�cantly increased the useful domain for the method,

the achievable state space is still much too small to model circuits that include non-trivial data paths.

Hence, model checking is primarily useful in verifying the control parts of a design. Other methods

must be used to verify the datapath as well as verifying the interactions between the datapath and

the control parts.

12Of course, one can also take the view that the fact that expressing the speci�cation in temporal logic|which is

behavioral rather than structural and thus will be completely di�erent from the design|makes it less likely to make the

same mistake in both the design as well as in the speci�cation.

14

4 Symbolic Trajectory Evaluation

Symbolic simulation is an o�spring of conventional simulation. Like conventional simulation, it uses a

built-in model of hardware behavior and a simulation engine to compute, on demand, the behavior of

some design for some given inputs. However, it di�ers in that it considers symbols rather than actual

values for the design under simulation. In this way, a symbolic simulator can simulate the response

to entire classes of values with a single simulation run.

The concept of symbolic simulation in the context of hardware veri�cation was �rst proposed by

researcher at IBM Yorktown Heights in the late 1970's as a method for evaluating register transfer

language representations [15]. The early programs were limited in their analytical power since their

symbolic manipulation methods were weak. Consequently, symbolic simulation for hardware veri�ca-

tion did not evolve much further until more e�cient methods of manipulating symbols emerged. The

development of Ordered Binary Decision Diagrams (OBDDs) for representing Boolean functions [10]

radically transformed symbolic simulation.

Since a symbolic simulator is based on a traditional logic simulator, it can use the same, quite

accurate, electrical and timing models to compute the circuit behavior. For example, a detailed switch-

level model, capturing charge sharing and subtle strengths phenomena, and a timing model, capturing

bounded delay assumptions, are well within reach. Also|and of great signi�cance|the switch-level

circuit used in the simulator can be extracted automatically from the physical layout of the circuit.

Hence, the correctness results can link the physical layout with some higher level of speci�cation.

The �rst \post-OBDD" symbolic simulators were simple extensions of traditional logic simulators

[9]. In these symbolic simulators the input values could be Boolean variables rather than only 0's, 1's

as in traditional logic simulators. Consequently, the results of the simulation were not single values

but rather Boolean functions describing the behavior of the circuit for the set of all possible data

represented by the Boolean variables. By representing these Boolean functions as Ordered Binary

Decision Diagrams the task of comparing the results computed by the simulator and the expected

results became straightforward for many circuits. Using these methods it has become possible to

check many (combinational) circuits exhaustively.

It is important to realize that if a circuit passes an \exhaustive" simulation suite, that does not

necessarily mean that the circuit is formally veri�ed correct. In order to prove a correctness result, not

only must all possible input values be simulated, all possible initial circuit states must also be taken

into account. Hence, a veri�cation strategy is needed as well as a sophisticated symbolic simulator.

Recently, Bryant and Seger [12] developed a new generation of symbolic simulator based veri�er.

Since the method has departed quite far from traditional simulation, they called the approach symbolic

trajectory evaluation. Here a modi�ed version of a simulator establishes the validity of formulas

expressed in a very limited, but precisely de�ned, temporal logic. This temporal logic allows the user

to express properties of the circuit over trajectories: bounded-length sequences of circuit states. The

veri�er checks the validity of these formulas by a modi�ed form of symbolic simulation. Further, by

exploiting the 3-valued modeling capability of the simulator, where the third logic value X indicates an

unknown or indeterminate value, the complexity of the symbolic manipulations is reduced considerably.

15

This veri�er supports a veri�cation methodology in which the desired behavior of the circuit

is speci�ed in terms of a set of assertions, each describing how a circuit operation modi�es some

component of the (�nite) state or output. The temporal logic allows the user to de�ne such interface

details as the clocking methodology and the timing of input and output signals. The combination

of timing and state transition information is expressed by an assertion over state trajectories giving

properties the circuit state and output should obey at certain times whenever the state and inputs

obey some constraints at earlier times.

In addition to this abstract behavior speci�cation, the user is also required to describe how the

circuit realizes the abstract system state. This mapping is given as an encoding of the abstract state

in terms of binary values on circuit nodes at di�erent times in the clock cycle.

This form of speci�cation works well for circuits that are normally viewed as state transformation

systems, i.e., where each operation is viewed as updating the circuit state. Examples of such systems

include memories, data paths and processors. For such systems, the complex analysis permitted by

model checkers is not required.

4.1 Underlying Theory

In this subsection we will highlight the underlying theory for symbolic trajectory evaluation. Although

the general theory is equally applicable to hardware as software systems, in this paper we will describe

a somewhat specialized version tailored speci�cally to hardware veri�cation. For the more general

theory, the reader is referred to [26] and [12].

In symbolic trajectory evaluation the circuit is modeled as operating over logic levels 0, 1, and a

third level X representing an indeterminate or unknown level. These values can be partially ordered

by their \information content" as X v 0 and X v 1, i.e., X conveys no information about the node

value, while 0 and 1 are fully de�ned values. The only constraint placed on the circuit model|apart

from the obvious requirement that it accurately model the physical system|is monotonicity over the

information ordering. Intuitively, changing an input from X to a binary value (i.e., 0 or 1) must

not cause an observed node to change from a binary value to X or to the opposite binary value. In

extending to symbolic simulation, the circuit nodes can take on arbitrary ternary functions over a set

of Boolean variables V .

Symbolic circuit evaluation can be thought of as computing circuit behavior for many di�erent

operating conditions simultaneously, with each possible assignment of 0 or 1 to the variables in V

indicating a di�erent condition. Formally, this is expressed by de�ning an assignment � to be a

particular mapping from the elements of V to binary values. A formula F in the logic expresses

some property of the circuit in terms of the symbolic variables. It may hold for only a subset D of

the possible assignments. Such a subset can be represented as a Boolean domain function d over V
yielding 1 for precisely the assignments in D. The constant functions 0 and 1, for example, represent

the empty and universal sets, respectively.

Properties of the system are expressed in a restricted form of temporal logic having just enough

expressive power to describe both circuit timing and state transition properties, but remaining simple

16

enough to be checked by an extension of symbolic simulation. The basic decision algorithm checks

only one basic form, the assertion, in the form of an implication [A =) C]; the antecedent A gives

the stimulus and current state, and the consequent C gives the desired response and state transition.

System states and stimuli are given as trajectories over �xed length sequences of states.

Each of these trajectories are described with a temporal formula. The temporal logic used here,

however, is extremely limited. A formula in this logic is either:

1. UNC (unconstrained),

2. (a) n=1 (a node is equal to 1),

(b) n=0 (a node is equal to 0),

3. F1 ^ F2 (F1 and F2 must both hold),

4. B ! F (the property represented by formula F need only hold for those assignments satisfying

Boolean expression B),

5. NF (F must hold in the following state).

The temporal logic supported by the evaluator is far weaker than that of other model checkers. It

lacks such basic forms as disjunction and negation, along with temporal operators expressing properties

of unbounded state sequences. The logic was designed as a compromise between expressive power and

ease of evaluation. It is powerful enough to express the timing and state transition behavior of circuits,

while allowing assertions to be veri�ed by an extended form of symbolic simulation.

The constraints placed on assertions make it possible to verify an assertion by a single evaluation

of the circuit over a number of circuit states determined by the deepest nesting of the next-time oper-

ators. In essence, the circuit is simulated over the unique weakest (in information content) trajectory

allowed by the antecedent, while checking that the resulting behavior satis�es the consequent. In

this process a Boolean function OK is computed expressing those assignments for which the assertion

holds. For a correct circuit, this function should equal 1; otherwise, the negation of the function

provides counterexamples.

The assertion syntax outline above is very primitive. To facilitate generating more abstract nota-

tions, the speci�cation language can be embedded in a general purpose programming language. When

a program in this language is executed, it generates automatically the assertions and carries out the

veri�cation process.

The Voss system is a formal veri�cation system based on symbolic evaluation of partially-ordered

trajectories developed at University of British Columbia. Conceptually, the Voss system consists of

two parts. A \simulator" back-end and a \language" front-end, see Figure 4. The front-end is a

compiler/interpreter for a small, fully lazy, functional language with a precisely de�ned semantics. A

speci�cation is written as a \program" in this language. Of course, since the language is fully func-

tional, one can also view a program simply as de�ning a (complex) function. When this speci�cation

program is executed, it builds up the simulation sequence that must be run in order to completely

verify the speci�cation.

17

Voss

C
om

pi
le

r/

In
te

rp
re

te
r

Sy
m

bo
lic

Si

m
ul

at
or

Anamos

Transistor
Netlist

Library (FL)

pecification
rogram (FL)

Compiled
switch-level

model

True/counter example

Silos2exe

Silos
Netlist

Compiled
gate-level

model

Figure 4: Voss veri�cation system

The back-end is an extended symbolic switch-level simulator. The simulator can handle both

switch- and gate-level descriptions. The switch-level simulator is an o�spring of the cosmos[11] switch-

level simulator and thus supports the mossimII [8] switch-level model. The gate level simulator is

(roughly) functionally equivalent to the silos II [28] simulator. In addition, more comprehensive delay

modeling capabilities has been added for more accurate veri�cation. The simulator employs event-

scheduling during both the circuit simulation as well as in maintaining the veri�cation conditions in

order to achieve good performance.

4.2 A Small Example

To illustrate the use of the Voss system, consider the circuit shown in Fig. 5. This is a 16-bit

instance of a (pseudo) domino-logic design for a circuit that tests whether: 1) input A is greater than

input B and, 2) input B is greater than zero, when these inputs are interpreted as the unsigned binary

representation of two numbers. Note that this circuit is by no means representative for the size and

complexity of circuits that the approach capable of handling. (For example, the circuit is (essentially)

a combinational circuit whereas virtually all \interesting" designs are sequential.) However, as an

example it illustrates several points.

A speci�cation expressed in the Voss system language is given below for the circuit in Fig. 5.

18

Vdd

φ

Ci

Di

φ

weak

Ei

Vdd

b0 b1 bn −1

weak

NZ
φ

φ

Vdd

weakφ

φ

C0

E1

E2

E3

NZ

C1

C2

C3

Out

φ

a4i +3 b4i +3 a4i +2 b4i +2 a4i +1 b4i +1 a4i +0 b4i +0

φ

Vdd

Ci

Di

≥ ≥ ≥ ≥

E3 E2 E1

NZ

C3 D3

a b

C2 D2

a b

C1 D1

a b

C0

a b

b

Out

Figure 5: 16-bit circuit for computing a > b > 0.

19

load "verification.fl"; // Load library routines

let N = 16; // Size of circuit

// Nodes accessed

let phi = node "phi1";

let out = node "out";

let an = node_vector "a." N;

let bn = node_vector "b." N;

// Variables used

let av = variable_vector "a" N;

let bv = variable_vector "b" N;

// Functionality specification

letrec greater al bl = (empty al) => F |

let eq a b = NOT (a XOR b) in

let ai = (hd al) in

let bi = (hd bl) in

(ai AND (NOT bi)) OR ((ai _eq bi) AND ((tl al) _greater (tl bl)));

letrec not_zero al = (empty al) => F | ((hd al) OR (not_zero (tl al)));

let CMP_BitLevel av bv = (av _greater bv) AND (not_zero bv);

// Verification conditions

let Timing av bv out_val =

verify (((phi _is F _for 100) _then (phi _is T _for 100)) _and

(((an _is av) _and (bn _is bv)) _from 95 _to 200))

// implies

(out _is out_val _from 180 _to 200);

The above de�nition of CMP_BitLevel speci�es the bit level \compare operation". Timing describes

the timing conditions under which we wish to verify the circuit in Fig. 5. To paraphrase this de�nition:

on the assumption that,

� the clock signal phi is low for 100 time units and then is high for another 100 time units,

� the vectors of circuit nodes a and b are assigned the vectors of symbolic Boolean variables av

and bv at time 95 and held stable until time 200,

then the circuit node denoted by out must be equal to the value out_val from at least time 180 until

time 200.

The functional speci�cation CMP_BitLevel and the timing conditions expressed by Timing are

combined in the top level Voss speci�cation: Timing av bv (CMP_BitLevel av bv)

The Voss system can now be used to fully automatically derive a correctness theorem for the

circuit of Fig. 1. More speci�cally, the Voss system can deduce that the above speci�cation is a logical

20

consequence of the �nite state machine derived from the netlist and the built-in switch-level simulator

for the circuit shown in Fig. 5. The CPU time required to run this veri�cation task is less than a

second on a SPARC II.

4.3 Strengths and Weaknesses

One key property of symbolic trajectory evaluation is that it involves symbolic manipulation only over

those variables explicit in the assertion. In contrast, symbolic model checking algorithms must perform

manipulations involving as many variables as there are bits of state in the circuit. This di�erence can

be very signi�cant.

Unlike the theorem-proving approach, symbolic trajectory evaluataion13 does not require a hier-

archy of behavioural speci�cations to be formulated to match the structural hierarchy of the design.

In fact, it is often su�cient to use a speci�cation expressed in terms of the behavior of the complete

circuit in response to di�erent inputs and starting states. Consequently, the same speci�cation and

veri�cation program can often be used for completely di�erent implementations. Also, the exact de-

tails of how the circuit works can often be left to the simulator to compute. In particular, it makes

it possible to use sophisticated circuit models without having to know the details of the model. In

summary, symbolic trajectory evaluation is a highly automated veri�cation methodology.

Unfortunately, this automation comes with a price. First of all, for some behaviors, the compu-

tational requirements for carrying out a correctness proof can make the approach infeasible for larger

circuits. For example, verifying a circuit implementing 32 bits integer multiplication is impossible

using current symbolic trajectory evaluators. The reason is simply that the Ordered Binary Deci-

sion Diagrams used to represent the outputs of the multiplier grows exponentially in the size of the

multiplicands, and thus is completely out of reach for a 32 bit version.

A second serious drawback with symbolic trajectory evaluatation is that the semantic gap between

the intuitive, informal, speci�cation the designer has in mind and the speci�cation used in the symbolic

trajectory evaluator is often undesirably large. For example, the Voss speci�cation of the circuit shown

in Fig. 5 is in terms of vectors of Boolean variables. However, in the mind of the designer, the intended

behaviour should be stated in terms of an arithmetic relation|out = 1 i� A > B > 0. Since the

speci�cation used in the symbolic trajectory evaluator often consists of a (simple) implementation of

the desired functionality, there is a danger that a designer might use an incorrect assumption in both

deriving the speci�cation as when designing the circuit itself.

5 Future of Formal HW Veri�cation

As outlined earlier in Section 1, conventional techniques for design validation (based mainly on tradi-

tional simulation) cannot be expected to keep pace with the increasing complexity of VLSI designs.

Formal techniques such as symbolic simulation, symbolic model checking, and theorem-proving are

13The same holds for model checking too.

21

better able to scale with this increasing complexity by exploiting powerful mathematical tools rather

than brute-force. However, certain \concerns" have so far limited the practical application of these

formal techniques outside the domain of research. We believe the two main concerns can be stated as:

� There is a wide \gulf" between conventional Computer-Aided Design approaches to design val-

idation (e.g., traditional switch-level simulation) and formal veri�cation techniques, especially

general purpose theorem-proving. The adoption of formal techniques currently requires a revo-

lutionary change to the design cycle.

� Each approach to formal hardware veri�cation has its own strengths and weaknesses. It is

extremely unlikely that only one approach can be used for all the veri�cation needs of a designer.

Unfortunately, todays veri�cation systems make it virtually impossible to combine di�erent

approaches to a single veri�cation task. In fact, even the format of describing circuits are often

so incompatible that many tools need hand-translated descriptions as their inputs!

Both of these statements must be addressed if formal hardware veri�cation is to gain wide acceptance

in industry.

5.1 Multi-Level Veri�cation Approaches

Traditionally, the formal hardware veri�cation community has been divided into di�erent camps with

very little interactions between di�erent camps. Clearly, this must change, since the di�erent ap-

proaches often have complementary strengths. In this subsection we will illustrate this by comparing,

and contrasting, the theorem proving approach with the symbolic trajectory evaluation approach. The

material in this section is a summary of [27].

In comparing the theorem proving approach with symbolic trajectory evaluation we can conclude

the following:

� in symbolic trajectory evaluation, the underlying model of hardware is built-in (and thus, is

�xed); the user speci�es particular designs on top of this �xed model.

� in theorem-proving, there is no built-in model of the underlying hardware; the user must supply

the underlying model of the hardware before specifying particular designs.

� in symbolic simulation, because the underlying model of the hardware is built-in, the lowest level

of speci�cation is �xed.

� in theorem-proving, because the underlying model of the hardware is supplied by the user, the

lowest level of speci�cation is variable.

� in both cases, veri�cation is a matter of relating a bottom-level speci�cation of an implementation

to a top-level speci�cation of its intended function; these speci�cations are mathematical models.

� in both cases, the users supplies both the bottom and top levels of speci�cation.

22

� in symbolic simulation, expressiveness, with respect to the representation of data, is generally

�xed at the level of Boolean expressions.

� in theorem-proving, speci�cation languages are typically very expressive; theorem-proving meth-

ods generally allow di�erent representations of data to be formally related at increasing levels

of abstraction.

� in both cases, veri�cation is governed by a �xed set of symbol manipulation rules.

� in symbolic simulation, veri�cation is completely automatic; a principal concern is e�ciency.

� in theorem-proving, veri�cation is interactive and usually depends on the user to guide the

theorem-prover through a high-level proof strategy; a principal concern is user control of the

veri�cation process.

� in symbolic simulation, veri�cation is not tightly coupled to the hierarchical structure of a design.

� in theorem-proving, veri�cation is tightly coupled to the hierarchical structure of a design.

� in symbolic simulation, complexity is controlled by the use of an e�cient internal representation

with a canonical form.

� in theorem-proving, complexity is controlled by a variety of mechanisms including induction and

hierarchical proof strategies.

� in symbolic simulation, performance of the veri�cation process is determined mainly by the speed

and size of the host machine.

� in theorem-proving, performance is determined mainly by the expertise of the user.

Based the above points, one may conclude that symbolic simulation is a highly restricted, but very

e�cient method of formally verifying hardware while theorem-proving is a very exible, but less

automatic and less e�cient method.

In particular, we regard the ability to reason about data at increasing levels of abstraction to be

a major strength of theorem-proving. On the other hand, attempts to reason about detailed level

circuit behavior are generally very di�cult for theorem-proving methods|and the results are not very

convincing.

The strengths and weaknesses of symbolic simulation are exactly the opposite: symbolic simulation

does not support abstraction representations of data but it can be used to reason about detailed circuit

level behaviour very e�ciently|and the the results are indeed convincing. Hence, an ideal veri�cation

tool would draw from both methodologies.

To illustrate how such \two-level" veri�cation tool could be used, consider again the circuit of

Fig. 5. The goal of formal veri�cation is to relate a top-level speci�cation of this circuit's intended

function to a bottom-level speci�cation of its implementation (based on an underlying model of hard-

ware). The top-level speci�cation should be su�ciently abstract to minimize the semantic gap between

it and the informal, intuitive, speci�cation of the circuit that resides in the mind of the designer. On

23

the other hand, the bottom-level speci�cation should be an accurate model of the circuit. This includes

not only an accurate electrical model but also temporal properties of the circuit.

In the mind of the human speci�er, the intended function of the circuit shown in Fig. 5 is intuitively

understood in terms of an arithmetic relation, i.e., \the output should be 1 i� A is greater than B and

B is greater than 0". To minimize the semantic gap, the top-level formal speci�cation should also be

stated in terms of an arithmetic relation. At the bottom-level of speci�cation, the actual operation

of the circuit shown in Fig. 5 cannot be accurately described by a simple model of circuit behaviour.

A number of detailed features such as clocking, charge storage, charge sharing, and sized transistors,

need to be included in an accurate model of this circuit. Hence, the veri�cation problem, in this

particular case, is to relate a top-level speci�cation expressed in terms of an arithmetic relation to a

bottom-level speci�cation based on a detailed model of switch level circuit behaviour.

Neither symbolic simulation or theorem-proving is able to satisfactorily deal with this veri�cation

problem. Symbolic simulation would clearly be unable to support a top-level speci�cation stated in

terms of arithmetic relations. Theorem-proving is generally inappropriate for reasoning about detailed

circuit behaviour. In [27] is outlined how this proof could be carried out using a combined veri�cation

approach. The basic idea is to embed the Voss language in HOL, and thus establish a \mathematical

interface" based on precisely de�ned semantics between the Voss system and HOL. Once this has been

accomplished, the two tools can be used in tandem using Voss for lower-levels veri�cation and HOL

at higher levels.

5.2 Integration into the Design Cycle

It is often thought that the integration of formal veri�cation techniques into industrial practice requires

a revolutionary change in design methodology. However, in view of the on-going work on multi-level

veri�cation mentioned above, we believe that these techniques can in fact be integrated into industrial

practice in an evolutionary rather than revolutionary manner. In particular, consider the following

\capability maturity model" for formal hardware veri�cation.

The entry point of this capability model would be the unsophisticated use of symbolic simulation as

traditional simulation, i.e., not use the symbolic capabilities of the simulator. This is merely replacing

existing simulators with another simulator14. The next level would involve symbolic representation of

data which can result in more e�ective use of symbolic simulation. The next level of this capability

model would be the use of \analytical" speci�cations of desired behaviour which better exploit the

symbolic nature of this approach to formal hardware veri�cation. In particular, symbolic trajectory

evaluation using various forms of \symbolic indexing"[1] would now be used. Higher levels of this

model could then be de�ned in terms of the incremental use of various theorem-proving capabilities.

In general, we do not believe formal methods will completely replace conventional simulation.

However, there is reasons to believe that formal methods can start to replace the most time consuming

simulations. Using the capability maturity model outlined above would gradually lead to this as the

designer becomes more and more con�dent in the tool, the approach, and in his/her own capabilities

14Of course, for this replacement to be acceptable, the symbolic simulator must be at least as capable as the replaced

simulator and be able to use the same simulation scripts as the existing simulator.

24

in using the formal veri�cation tools.

Acknowledgements

Thanks are due to the members of the Integrated Systems Design group in the Computer Science

Department of the University of British Columbia for providing a very exciting and stimulating en-

vironment for studying formal methods. In particular, special thanks go to Je� Joyce for many (and

lengthy) discussions on the strengths and weaknesses of theorem proving and symbolic trajectory

evaluation. Also, Je�'s comments on an earlier draft of this paper resulted in a signi�cantly improved

paper. This work was supported by an operating grant from the Natural Sciences Research Council

of Canada and by an Advanced Systems Institute Fellowship.

References

[1] Beatty, D.E., Bryant, R.E. and Seger, C-J., \Synchronous Circuit Veri�cation - An Illustration",

Advanced Research in VLSI. Proceedings of the Sixth MIT Conference, ed. William Dally, pp.98-

112, MIT Press, Cambridge MA, 1990.

[2] D. Beatty, R.E. Bryant, and C-J. Seger, \Formal Hardware Veri�cation by Symbolic Ternary

Trajectory Evaluation", 1991 IEEE/ACM Design Automation Conference, San Francisco, CA,

June 1991.

[3] W. Bevier, W. Hunt, J Moore, and W. Young, \An Approach to Systems Veri�cation", Journal

of Automated Reasoning, Vol. 5, No. 4, November 1989.

[4] G.V. Bochmann, \Hardware Speci�cation with Temporal Logic: An Example", IEEE Transac-

tions on Computers, Vol. C-31, No. 3, March 1982, pp. 223-231.

[5] S. Bose and A.L. Fisher, \Automatic veri�cation of Synchronous Circuits using Symbolic Logic

Simulation and Temporal Logic", IMEC IFIP International Workshop on Applied Formal Meth-

ods for Correct VLSI Design, Leuven, Belgium, 1989, pp. 759-764.

[6] R. S. Boyer and J.S. Moore, A Computational Logic Handbook, Academic Press, 1988.

[7] M. Browne, E. Clarke, D. Dill, and B. Mishra, \Automatic Veri�cation of Sequential Circuits

using Temporal Logic", IEEE Transactions on Computers, Vol. C-35, No. 12, December 1986,

pp. 1035-1044.

[8] R. E. Bryant, \A Switch-Level Model and Simulator for MOS Digital Systems," IEEE Trans. on

Computers Vol. C-33, No. 2 (February, 1984) pp. 160{177.

[9] R.E. Bryant, Symbolic Veri�cation of MOS Circuits. 1985 Chapel Hill Conference on VLSI, Fuchs,

H., Ed. Computer Science Press, Rockville, MD, 1985, pp. 419{438.

[10] R.E. Bryant, \Graph-Based Algorithms for Boolean Function Manipulation" IEEE Transactions

on Computers, Vol. C-35, No. 8, December 1986, pp. 677{691.

25

[11] R. E. Bryant, et al, \COSMOS: A Compiled Simulator for MOS Circuits," 24th Design Automa-

tion Conference, 1987, pp. 9{16.

[12] R.E. Bryant, and C-J. Seger, \Formal Veri�cation of Digital Circuits Using Symbolic Ternary

System Models", DIMAC Workshop on Computer-Aided Veri�cation, Rutgers, New Jersey, June

18-20, 1990 (to appear in Springer Verlag's Lecture Notes in Computer Science).

[13] R. E. Bryant, \Tutorial on Formal Veri�cation of Hardware," 28th Design Automation Conference,

1991.

[14] J. R. Burch, E.M. Clarke, K.L. McMillan, and D.L. Dill, \Sequential Circuit Veri�cation Using

Symbolic Model Checking", 27th Design Automation Conference, ACM, New York, 1990.

[15] W.C. Carter, W.H. Joyner, Jr., and D. Brand, \Symbolic Simulation for Correct Machine Design",

16th ACM/IEEE Design Automation Conference, 1979, pp. 280{286.

[16] Avra Cohn, \The Notion of Proof in Hardware Veri�cation", Journal of Automated Reasoning,

Vol. 5, May 1989, pp. 127-139.

[17] O. Coudert, C. Berthet, and J.C. Madre, \Veri�cation of Sequential Machines using Boolean

Functional Vectors", IMEC IFIP International Workshop on Applied Formal Methods for Correct

VLSI Design, Leuven, Belgium, 1989, pp. 111-128.

[18] O. Coudert, J.C. Madre, and C. Berthet, \Verifying Temporal Properties of Sequential Machines

Without Building their State Diagram", DIMACS Workshop on Computer-Aided Veri�cation,

Rutgers, June 1990.

[19] E. M. Clarke, E. A. Emerson, and A.P. Sistla, \Automatic Veri�cation of Finite-State Concurrent

Systems Using Temporal Logic Speci�cations: A Practical Approach", 10th ACM Symposium on

Principles of Programming Languages, ACM, New York, 1983.

[20] M. Gordon, HOL: A Machine Oriented Formulation of Higher Order Logic, Cambridge University,

Computer Laboratory Technical report No. 68, Cambridge, England, 1985.

[21] M. J. C. Gordon, et al., The HOL System Description, Cambridge Research Centre, SRI Inter-

national, Suite 23, Miller's Yard, Cambridge CB2 1RQ, England.

[22] A. Gupta, Formal Hardware Veri�cation Methods: A Survey, Carnegie Mellon University, Tech-

nical report CMU-CS-91-193, Pittsburgh, PA, 1991.

[23] G. E. Hughes and M.J. Creswell, An introduction to Modal Logic, Metheuen and Co., 1977.

[24] E. Mendelson, Introduction to Mathematical Logic, D. Van Nostrand Company, Inc., Princeton,

N.J., 1964.

[25] S. Mirapuri, M. Woodacre, and N. Vasseghi, \The Mips R4000 Processor", IEEE Micro, April

1992, pp. 10-22.

[26] C-J. Seger and R. E. Bryant, \Formal Veri�cation of Digital Circuits by Symbolic Evaluation of

Partially-Ordered Trajectories", in preparation.

[27] C-J. Seger and J. Joyce, \A Two-Level Formal Veri�cation Methodology using HOL and COS-

MOS", Workshop on Computer-Aided Veri�cation, K. Larsen and A. Skou, eds., Aalborg Uni-

versity, Denmark, July 1991, pp. 380-391.

26

[28] Silos II|Logic and Fault Simulator: User's manual, SIMUCAD, Palo Alto, 1988.

[29] J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language

Theory, MIT Press, Cambridge Massachusetts, 1977.

[30] M. Yoeli, Formal Veri�cation of Hardware Designs, IEEE Computer Society Press Tutorial, Los

Alamitos, CA, 1990.

27

